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Abstract

This work investigates how a Lagrangian perspective applies to models of two oceanographic flows:
an overturning submesoscale eddy and the Western Alboran Gyre. In the first case, I focus on
the importance of diffusion as compared to chaotic advection for tracers in this system. Three
methods are used to quantify the relative contributions: scaling arguments including a Lagrangian
Batchelor scale, statistical analysis of ensembles of trajectories, and Nakamura effective diffusivity
from numerical simulations of dye release. Through these complementary methods, I find that
chaotic advection dominates over turbulent diffusion in the widest chaotic regions, which always
occur near the center and outer rim of the cylinder and sometimes occur in interior regions for
Ekman numbers near 0.01. In thin chaotic regions, diffusion is at least as important as chaotic
advection. From this analysis, it is clear that identified Lagrangian coherent structures will be
barriers to transport for long times if they are much larger than the Batchelor scale. The second
case is a model of the Western Alboran Gyre with realistic forcing and bathymetry. I examine
its transport properties from both an Eulerian and Lagrangian perspective. I find that advection
is most often the dominant term in Eulerian budgets for volume, salt, and heat in the gyre, with
diffusion and surface fluxes playing a smaller role. In the vorticity budget, advection is as large as
the effects of wind and viscous diffusion, but not dominant. For the Lagrangian analysis, I construct
a moving gyre boundary from segments of the stable and unstable manifolds emanating from two
persistent hyperbolic trajectories on the coast at the eastern and western extent of the gyre. These
manifolds are computed on several isopycnals and stacked vertically to construct a three-dimensional
Lagrangian gyre boundary. The regions these manifolds cover is the stirring region, where there is
a path for water to reach the gyre. On timescales of days to weeks, water from the Atlantic Jet and
the northern coast can enter the outer parts of the gyre, but there is a core region in the interior
that is separate. Using a gate, I calculate the continuous advective transport across the Lagrangian
boundary in three dimensions for the first time. A Lagrangian volume budget is calculated, and
challenges in its closure are described. Lagrangian and Eulerian advective transports are found to
be of similar magnitudes.

3



Thesis Supervisor: Larry Pratt
Title: Senior Scientist
Woods Hole Oceanographic Institution

Thesis Supervisor: Irina Rypina
Title: Associate Scientist
Woods Hole Oceanographic Institution

4



Biography

Genevieve Brett, called Jay by her friends and colleagues, was raised in Connecticut. She attended

Hopkins School in New Haven before studying for her B.A. in Mathematics and Physics at Skidmore

College in Saratoga Springs, NY. Her first major research was done with Jim Gunton and his group

at Lehigh University in the summer of 2011. She was then introduced to physical oceanography

by Greg Gerbi, who joined the Skidmore physics faculty in 2011. Encouraged by Gerbi, she was

a Winter Fellow at WHOI in 2012, working with Young-Oh Kwon, Magdalena Andres, and then-

student Derya Akkaynak. During that fellowship, she became interested in Larry Pratt’s work,

which led to her joining the MIT-WHOI Joint Program later that year. After graduation, Jay will

begin a postdoctoral position with Kelvin Richards of the University of Hawai’i Mānoa.
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Chapter 1

Introduction

Oceanographic models and theories are traditionally Eulerian, examining the ocean from a fixed

reference point. The Eulerian viewpoint is also very useful for creating maps of water properties

from observations, such as is done for the World Ocean Climate Experiment and Global Ocean Ship-

based Hydrographic Investigation Program repeat sections. This view is also convenient for theories

of the steady circulation in a basin, such as the traditional Stommel and Munk gyres. However,

when considering the evolution of the properties of a parcel of water, a Lagrangian view is more

natural. A Lagrangian view is in the frame of the fluid, such that the coordinates are functions of

time. Lagrangian measurements of tracers and of the tracks of drifters and floats have improved our

knowledge of, for example, the North Atlantic Deep Western Boundary Current (DWBC). The paths

followed by water parcels, as measured by floats and drifters, are generally more convoluted than the

spatially and time-averaged Eulerian maps of ocean currents would suggest. For example, the path

of the DWBC was considered fairly direct, southward along the continental slope, before tracer and

float studies demonstrated that there are recirculations eastward into the interior (see Fine 1995

for a review). The possible effects of these recirculations can be demonstrated in laboratory flows

(Deese et al. 2002), where stretching and folding of a tracer can cause enhanced mixing, an idea

I will return to. Pathways from the boundary current to the interior are also important for the

meridional overturning circulation, as these paths demonstrate that newly formed deep waters can

spread to the interior of the basin fairly quickly (Bower and Hunt 2000).

The analysis of trajectories from drifters and floats represents a particular case of kinematic

analysis of the ocean. Kinematic analysis of geophysically-relevant flows have been improved over
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the past few decades by the introduction of methods based in dynamical systems theory. I will

discuss some of the basic terminology and analyses used for dynamical systems as background.

Then I will provide an overview of the types of objects identified in oceanographic applications,

before introducing the questions addressed in my research. This background is not a comprehensive

review, but rather intended to provide a qualitative understanding of the state of the field so that

the impact of the following research is clear.

A dynamical system analysis applies to differential equations or systems thereof. In a determin-

istic system where the behavior is known over infinite time, the structure of many trajectories, or

paths in time, through the phase space can be identified through invariant surfaces: surfaces that

trajectories are trapped on. The simplest case of an invariant surface is a fixed point: a location

in the system which, when used as the initial condition, produces a trajectory that does not change

with time. In a fluid system, a fixed point is a stagnation point. The qualities of a fixed point

depend on the trajectory of nearby initial conditions. Such nearby trajectories may approach the

fixed point, move around it at a (nearly) fixed distance, or move farther away. If all points nearby

behave in the same manner, the fixed point may be classified as stable, neutrally stable, or unstable,

respectively.

In the case of a two-dimensional incompressible fluid flow, a fixed point can be classified as elliptic

or hyperbolic (sketches in figure 1-1). Elliptic points are neutrally stable; a physical example is a

stagnation point in the center of a steady vortex, where trajectories remain at a similar distance from

the center over all time. Flows around a hyperbolic point follow hyperbolic trajectories, approaching

and then accelerating away from the point. For hyperbolic points, stable and unstable manifolds

are curves along which all points asymptotically approach the fixed point in forward or backward

time, respectively. Other trajectories approach the region of the fixed point in the direction of

the stable manifold and leave the region in the direction of the unstable manifold. With increased

numbers of dimensions, the possible geometries of fixed points increase, although the stability can

be defined in the same fashion.

Dynamical systems may also have features of interest that are of higher dimensions than points.

These include the manifolds associated with hyperbolic fixed points, which organize the nearby

trajectories’ hyperbolic shape. Another example is closed trajectories, which indicate repeating

oscillations of the system and may themselves be stable or unstable. Trajectories may also be
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(a) elliptic (b) hyperbolic

Figure 1-1: Sketch of fixed points possible in two-dimensional incompressible fluid flow. Green
curves are sample trajectories; black arrows are sample velocities. Left, elliptic point marked by the
blue star. Right, hyperbolic point is located at the intersection of its stable manifold (blue) and
unstable manifold (red).

confined to sub-sections of the space, such as along spheres or planes in a 3-dimensional system. It

is a general rule that trajectories may not intersect, so if there is a closed curve, for example, in a

two-dimensional system, then all trajectories starting inside (outside) that curve must remain inside

(outside) for all time. This is true for any material curve in a fluid as well, provided there is not

droplet formation. The goal of the dynamical systems-based methods developed for application to

geophysical fluids is to identify material contours that are maximal in some sense compared to their

surroundings and provide insight into the structure of the flow, generally using information about

the flow over a finite time. I will describe two types of contours that are of interest: least-stretching

closed contours and most-stretching open contours, each used to identify a different aspect of ocean

features.

Least-stretching closed material contours are usually within a set of closed material contours

surrounding a vortex or eddy. The minimal stretching of the material indicates that it does not

undergo filamentation and can therefore be considered to bind the water inside such that it is not

stirred with its surroundings over time. Eddies with such bounding contours are called coherent,

and there are quite a few methods that may find these contours (see Hadjighasem et al. 2017 for

a review). Separating these coherent eddies from others is a case where Lagrangian analysis has

improved our understanding of ocean processes.
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Eddies appear ubiquitous in altimetry as anomalous sea-surface heights (and anomalous vortic-

ities) that retain this signature over time. Some persistent recirculations are locally very important

for the flow; examples include the Great Whirl and the Western Alboran Gyre. Other eddies move

in space, often at rates similar to Rossby waves, such as rings that separate from the Gulf Stream

and Kuroshio. The extent to which these various eddies are coherent is uncertain. The transport

of water by the moving eddies is important for understanding how these observed eddies may con-

tribute to global meridional heat transport, for instance. A large study tracking sea-surface height

anomalies by Dong et al. (2014) suggested that these eddies might contribute 20% of the global

meridional heat transport. However, a study using transfer operators by Froyland and coauthors

(2012) showed that anomaly eddies do not consistently transport water, instead exchanging water

with their surroundings. The exchanging eddies are then somewhat wavelike anomalies, a clear

signal but not a consistent transport process. A study by Abernathey and Haller (2018) used a La-

grangian method to identify coherent eddies, which do carry water with them. These are generally

smaller and shorter-lived than eddies tracked with Eulerian measures, contributing 1% or less to

the meridional heat transport of the ocean, which is much smaller than the earlier estimate. The

updated idea from this series of studies is that mesoscale eddy motions, including long-lived moving

sea-surface height anomalies, are mostly stirring the water, not coherently transporting eddies with

disparate properties. However, this has not yet been examined for the more persistent recirculations.

Most stretching (open) material contours identify strong stirring regions in a fluid flow. These

can be the manifolds of hyperbolic trajectories, a generalization of hyperbolic fixed points and their

manifolds. I use a coastally-trapped recirculation as an example, first with steady flow and then

with a time-periodic perturbation (see figure 1-2 for a sketch). In the steady case, there are two

stagnation points on the coast. The outer limit of the recirculation is a streamline connecting these

points. These stagnation points are hyperbolic, with convergent and divergent flow nearby. For

𝐻1, there is convergent flow along the coast towards the stagnation point and divergence in the

offshore direction, while the opposite is true for 𝐻2. With a small perturbation to a time-dependent

flow, these stagnation points no longer exist, but are each replaced by a hyperbolic trajectory in the

same neighborhood. Then each trajectory has one offshore manifold, but these no longer match each

other. The unstable manifold of 𝐻1 and the stable manifold of 𝐻2 cross repeatedly, trapping water

in turnstile lobes between them. These lobes exchange fluid between the recirculation and the
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(a) steady (b) time-varying

Figure 1-2: Sketch of a coastally-trapped recirculation. Manifolds are represented by red (unstable)
and blue (stable) curves. H1 and H2 are hyperbolic fixed points or trajectories. Left, steady flow,
with water trapped in the recirculation for all time. The manifolds of the two hyperbolic stagnation
points are a single heteroclinic streamline. Right, a periodic velocity perturbation is added to the
flow. Shaded lobes map to each other in time and transport water out of the recirculation. Unshaded
lobes transport water into the recirculation.

exterior flow; in the figure, the shaded lobes move water out of the recirculation and the unshaded

lobes move water into the recirculation. When the time-dependent perturbation is periodic, the

shape of the manifolds will be periodic, with water moving from one lobe position clockwise to

the next in each period, shaded lobes mapping to shaded lobes and unshaded to unshaded (see

Wiggins’ book for mathematical theory). In a simplified system with wind-driven barotropic (depth-

independent) flow, Miller et al. (2002) were able to identify these lobes and calculate the related

transport. For realistic strengths of the wind forcing, the transport of volume by lobes was larger

than the Ekman pumping by the wind. For a realistic simulation of the a Gulf of Mexico eddy,

Branicki and Kirwan (2010) were able to show the structure of lobes in three dimensions but did

not continue to a transport calculation due to the difficulty of calculation of the lobes’ volume.

It is important to realize that the periodic flow described above, with their periodic manifolds,

will generally contain aperiodic trajectories. These aperiodic trajectories, including those in the

lobes, undergo exponential stretching and folding, separating far from initially-nearby trajectories

in time. This behavior of aperiodic trajectories whose later positions are very sensitive to initial

conditions is called chaos or chaotic advection. Chaotic advection was introduced to the fluid

dynamics community by Aref (1984) to describe nearly-integrable flow that is sensitive to initial

conditions and causes fast stretching and folding of trajectories and water parcels. The stretching
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and folding are controlled by long-lived structures, meaning that the lifetime of the structures is

longer than the time it takes a trajectory to orbit them. This separation of timescales allows regions

of chaotic and non-chaotic flow to be identified before the flow structure changes. Least-stretching

material contours organize non-chaotic regions, while exponentially stretching manifolds organize

chaotic regions.

The turnstile lobes defined by crossing manifolds directly relate to the transport between two

different regions of the flow. However, they not only transport the fluid, but also stir it. The lobes

become very stretched out near the hyperbolic trajectories, as the manifold of the farther hyperbolic

trajectory repeatedly folds over the manifold of the nearby trajectory. This stirring is such that if

there is a difference in water properties between the interior and exterior regions, the gradients will

be greatly enhanced, in turn enhancing mixing. I will next discuss the relationship between stirring

and mixing, which underpins much of the research to follow.

Stirring is a reversible process of shear causing the stretching and contracting of a water parcel.

For instance, kneading dough is primarily stirring it, spreading new flour across the existing dough

in a very thin layer and folding it into many thin layers. Mixing, by contrast, is an irreversible

process where properties become homogenous. Molecular diffusion is a canonical case of mixing,

where molecules of two substances, particularly liquids or gasses, become arranged in space in a

statistically homogenous distribution through the random motion of molecules due to their temper-

ature (kinetic energy). Turbulent diffusion is an analogous process where turbulent flow exchanges

fluid parcels with different properties, such that the properties spread through an area and become

more homogenous. Reynolds averaging in a system with scale separation is often used to describe

a turbulent diffusivity related to the kinetic energy of small motions.

A Lagrangian view allows for clearer consideration of stirring and mixing than an Eulerian view.

Tracking of water parcels through trajectories can allow direct measurement of the stretching and

folding they undergo through the separation of trajectories in time. Eulerian measurements, by

contrast, only allow evaluation of stretching in a location. As water parcels move, they experience

different stretching rates in different locations. The ergodic theory supposes that the total space

is sampled by any trajectory, and is sometimes used to avoid considering Lagrangian information.

However, in the ocean, physical constraints such as potential vorticity conservation organize the

flow, such that ergodicity is less reasonable.
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If trajectories and their separations are measured following a water parcel, associated measure-

ments of tracers over time shows the rate at which mixing occurs. Stirring can speed mixing by

creating large gradients between adjacent water parcels and increasing the surface area over which

exchange can occur. A good image is coffee and cream. If coffee and cream are initially added to

a container so that they have only one interface and they are both at rest, mixing can only occur

across that interface and will be due to molecular motion alone. Away from the interface, molecular

diffusion is mixing each fluid with itself, effecting no change. If the container is stirred, intrusions

of each fluid into the other will rapidly increase the surface area of the interface where molecular

motion can exchange coffee and cream molecules in space, leading to a mixture indicated by chang-

ing color. Coherent eddies in the flow, with their non-filamenting edges, are a particular case with

slow mixing. By contrast, chaotic regions in the flow, likely contraining hyperbolic manifolds, will

have high stirring rates and fast mixing.

The following chapters will examine two modeled physical systems, an eddy and a gyre. The eddy

model is an extension of work by Pratt et al. (2013), which identified the chaotic and regular regions

of the flow. I consider whether diffusivity will be important in this system in regards to tracers.

There are two complementary issues. First, I consider whether the separation between chaotic and

non-chaotic, or regular, regions will survive the addition of diffusion. This survival is important if

observational ocean studies are ever to confirm the existence and behavior of Lagrangian structures

at submesoscales. In order to observe a chaotic region using dye, for example, the dye would need to

be advected along the structure without diffusively spreading out into other flow regions. In essence,

the chaotic stretching must dominate over diffusion in the flow’s behavior for long enough to take

an effective observation. While this may be assumed for a mesoscale ocean feature, at smaller scales

diffusion is a more significant component of the tracer evolution. The second question addresses

the enhancement of mixing through stirring. Any stirring enhances mixing, but I examine how

much chaotic regions increase mixing over regular regions that are stirred. This work is covered in

Chapter 2.

The second system, the gyre, is coastally trapped in a geometry like figure 1-2. Either this type

of structure, or a double-gyre, has been repeatedly studied in the Lagrangian method literature as a

straightforward system with chaotic and regular regions. However, these are usually simplified, with

the flow being time-periodic, two-dimensional, or both. I realistically model a three-dimensional
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aperiodic gyre. I identify the manifolds at the surface and along isopycnals as an approximation of

the three-dimensional structure of the manifold surfaces and show an example of a three-dimensional

lobe. I also use this setup to quantify the exchange of water into and out of the gyre, which may

be the first such analysis for such a realistic system. This exchange forms part of the budgets for

volume, heat, and salt of the gyre, and I compare Lagrangian and Eulerian budgets to understand

the physical dynamics of the gyre. The model description and Eulerian analysis of the physics in

the mean gyre location are covered in Chapter 3. Chapters 4 and 5 present the Lagrangian analysis

and discuss the differences from the Eulerian results.

Overall, the following research aims to investigate some aspects of how a Lagrangian perspective

applies to oceanographically relevant flows. Including three dimensions, diffusion, and in the second

system, aperiodic time dependence, move these works toward the realities of the ocean. The appli-

cability of Lagrangian structures to the classical physical oceanographic concerns of the movement

of salt, heat, and vorticity is a question that is just beginning to be addressed. My work aims to

fill in some of these gaps with quantitative results from models.
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Chapter 2

Competition between Chaotic Advection

and Diffusion:

Stirring and Mixing in a 3D Eddy Model

Summary

In ocean features, as one moves down to the submesoscale, both vertical motions and diffusion can

become non-negligible factors. Vertical motions allow for chaotic advection to be present even in

steady flows, as has been shown for an Ekman-driven rotating cylinder analogue of a submesoscale

eddy (Pratt et al. 2013). Pratt et al. detailed the undisturbed flow along tori and the effect of a

small symmetry-breaking perturbation in creating regions of chaos separated by material barriers.

This work adds to that done in Pratt et al. by carefully considering diffusion, which may overcome

the barriers to transport identified previously.

The current work considers the importance of small-scale turbulent diffusion as compared to

chaotic advection for tracers in this type of rotating cylinder system. Two methods are used to

directly quantify this importance: scaling arguments including a Lagrangian Batchelor scale, which

I put on firm mathematical footing, and the spread of ensembles of trajectories. Through these

complementary methods, I find that chaotic advection will dominate turbulent diffusion in the

widest chaotic regions. In this model, these always occur near the center and outer rim of the

cylinder and sometimes occur in other regions for Ekman numbers near 0.01. In thin chaotic
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regions, diffusion is at least as important as chaotic advection.

I then consider how stirring by chaotic advection enhances mixing in this system. In particular,

the analysis of numerical simulations of dye release using a tracer variance function and Nakamura

effective diffusivity allow quantification of how much chaotic advection increases the stirring rate

and enhances mixing more than non-chaotic stirring. I find that the effective diffusivity can double

through the increased stirring by chaotic advection. This enhanced mixing increases with increases in

of the perturbation that induces chaos and decreases of the imposed small-scale turbulent diffusion.

2.1 Introduction

Eddies are known to contribute to the transport and mixing of heat, freshwater, and other tracers

in the ocean. Models that resolve the mesoscale have been shown to correspond better with satellite

measurements and have smaller temperature drift than less-resolved models (Griffies et al. 2015),

and describing sub-grid-scale processes is an ongoing challenge (e.g. Hallberg 2013). This work

looks at an overturning submesoscale eddy which is smaller than those resolved in many current

models and examines how stirring by chaotic advection affects tracer distribution within the eddy

in the presence of diffusion.

Chaotic advection, popularized by Aref (1984), accelerates stirring through rapid stretching and

folding along chaotic trajectories. These trajectories are controlled by long-lived structures, meaning

that the lifetime of the structures is longer than the time it takes a trajectory to orbit them; this

property allows regions of chaotic and non-chaotic flow to be identified on useful timescales. Chaos

requires at least three degrees of freedom, and is most often studied with a time-dependent 2D

system in fluids (i.e. the polar vortex, Rypina et al. 2007). One three-dimensional flow that can

exhibit chaotic behavior is the rotating cylinder. The physical system of the rotating cylinder is

a cylindrical volume containing a homogeneous and incompressible fluid which is forced by a rigid

lid with differential rotation between the lid and walls. This lid motion produces Ekman forcing

which induces a swirling, overturning flow, where vertical derivatives are of first-order importance.

This type of flow has been studied previously with analytic approximations to the velocity field

(Greenspan 1969) or laboratory observations and detailed numerical simulations (Fountain et al.

2000), but was not discussed in an ocean setting until recently. I use a rotating cylinder flow as an

analogue for an overturning submesoscale eddy. While many oceanic flows can be well approximated
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by two-dimensional flows, the third dimension becomes important at the submesoscale.

Pratt et al. (2014) and Rypina et al. (2015) connected the rotating cylinder flow to the ocean

as an analogue for a submesoscale eddy. Their work described this rotating cylinder system using

a simple kinematic model and a spectral Navier-Stokes simulation. Pratt et al. detailed the undis-

turbed flow along tori and the effect of a small symmetry-breaking perturbation in creating regions

of chaos separated by material barriers. Rypina et al. added periodic time-dependence to the flow,

again studying regions of chaos and material barriers; I will not consider periodic flows here. A

form of the Kolmogorov-Arnold-Moser, or KAM, theorem specifies that for small perturbations,

these chaotic regions and barriers will exist. In section 2, an updated model background flow and

steady perturbation are described, followed by a comparison of the model behavior with steady

perturbation to spectral simulation results from Pratt et al.

The stretching of fluid elements by chaotic advection increases gradients of any tracer of inter-

est, creating thinning filaments from any initial high-concentration area. Smaller-scale turbulent

processes, unresolved in this model, would halt this thinning through diffusive mixing. Although

many case studies have been done on possible chaotic regions or processes in the ocean (e.g. Sayol

et al. 2013, Olascoaga and Haller 2012, Deese et al. 2002, Miller et al. 2002), there is very limited

discussion on the effects of diffusivity for observing such features. In order to observe a chaotic

region using dye, for example, the dye would need to be advected along the structure without diffu-

sively spreading out into other flow regions. In essence, the chaotic stretching must dominate over

diffusion in the flow’s behavior for long enough to take an effective observation. While this may be

assumed for a mesoscale ocean feature, at smaller scales diffusion is a more significant component

of the tracer evolution. For the opposite extreme in scale, laboratory experiments with a flow of

glycerine with similar geometry found that diffusion spread dye along chaotic regions, allowing bar-

riers to be visualized in less time than expected from numerical trajectory integrations (Fountain

et al. 2000). I will consider whether the relative strengths of chaotic advection and diffusion will

allow similar tracer-based observations for similar features in the ocean. This work adds to that

done in Pratt et al. by carefully considering diffusion, which may overcome the barriers to trans-

port identified previously. In section 3, I quantify the competition between chaotic advection and

diffusion in several ways. Utilizing scaling arguments, ensembles of trajectories, and numerical dye

experiments, I demonstrate in which circumstances chaos is more important for tracer distribution
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than diffusion. Section 4 discusses relative advantages of the different methods and the implications

of this work.

2.2 Kinematic Model

The physical rotating cylinder is a cylindrical volume containing a homogeneous and incompressible

fluid which is forced by differential rotation between a rigid lid and the walls. This lid motion

produces Ekman forcing which induces a swirling, overturning flow, where vertical derivatives are of

first-order importance. For a lid rotating about the center of the cylinder, it is possible to analytically

solve for the flow in a piecewise manner (Greenspan 1969). I use a kinematic model rather than a

numerical solution or piecewise analytical approximation because it allows me to more thoroughly

examine parameter space and more quickly compute trajectories. This kinematic model is simpler

and seamless, but is based on the analytic solution, as was the Pratt et al. model. The updated

kinematic model adds an Ekman parameter. The model describes an incompressible flow comprised

of an overturning streamfunction and an axisymmetric azimuthal velocity. The incompressibility

allows the flow to conserve mass for my homogenous fluid. The model system is nondimensionalized

by the cylinder height, 𝐻, so that the nondimensional cyclinder has height one and radius 𝑎, the

ratio of radius to height. The boundary conditions are no normal flow on all boundaries and no-

slip flow on the sides and bottom. The overturning streamfunction depends on 𝑟 and 𝑧; then any

azimuthal flow that is a function of 𝑟 and 𝑧 will preserve volume. The streamfunction will have the

form

Ψ = −𝐸1/2𝑅(𝑟)𝐹 (𝑧), (2.1)

where 𝐸 is the Ekman number, 𝐹 (𝑧) is the vertical portion of the streamfunction, and 𝑅(𝑟) is the

radial portion of the streamfunction. The Ekman number is defined by

𝐸 = (𝛿𝐸/𝐻)2 =
(︀
𝜈/Ω𝐻2

)︀
, (2.2)

where 𝛿𝐸 is the Ekman layer depth, 𝐻 is the depth of the eddy and cylinder, and 𝜈 is vertical eddy

viscosity. The vertical portion of the streamfunction is

𝐹 (𝑧) = 𝐴[sin(𝜁) sinh(𝜁) − cos(𝜁) cosh(𝜁)] +𝐵[sin(𝜁) sinh(𝜁) + cos(𝜁) cosh(𝜁)] −𝐷, (2.3)
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where 𝜁 is a transformed vertical coordinate,

𝜁 =
𝑧 − 1/2

𝐸1/2
,

and the constants are defined by

𝐴 = −1
2

𝑐𝑆
𝑠2𝐶2+𝑐2𝑆2 , 𝐵 =

1

2

𝑠𝐶

𝑠2𝐶2 + 𝑐2𝑆2
, 𝐷 = 𝐴(𝑠𝑆 − 𝑐𝐶) +𝐵(𝑠𝑆 + 𝑐𝐶)

𝑠 = sin
(︁

1
2𝐸1/2

)︁
, 𝑐 = cos

(︂
1

2𝐸1/2

)︂
, 𝑆 = sinh

(︂
1

2𝐸1/2

)︂
, 𝐶 = cosh

(︂
1

2𝐸1/2

)︂
.

In the limit of infinite radius, the radial portion of the streamfunction, 𝑅(𝑟), can be defined so

that the flow is dynamically consistent, preserving momentum in a force balance between Coriolis,

pressure gradients, and friction at low 𝐸. One such dynamically consistent solution for 𝑅 is

𝑅 =
𝑟2

2
.

For a finite radius, with 𝑎 assumed to be near 1, this kinematic model cannot fully solve the

appropriate momentum equations. In this case, I define 𝑅 as

𝑅(𝑟) = 𝑟2(𝑎− 𝑟)2/2, (2.4)

giving velocities

𝑈 = −𝜕Ψ
𝜕𝑧 = 𝑟(𝑎− 𝑟)2[𝐴 sin(𝜁) cosh(𝜁) +𝐵 cos(𝜁) sinh(𝜁)], (2.5)

𝑊 = 𝜕Ψ
𝜕𝑟 = −(𝑎− 𝑟)(𝑎− 2𝑟)𝐸1/2𝐹 (𝑧) (2.6)

where 𝑈 is radial and 𝑊 is vertical.

The axisymmetric azimuthal velocity 𝑉 is defined

𝑉 (𝑟, 𝑧) = 𝑟(𝑎− 𝑟)2[
1

2
+𝐵 sin(𝜁) cosh(𝜁) −𝐴 cos(𝜁) sinh(𝜁)]. (2.7)

This velocity leads to typical nondimensional trajectory rotation times of 18 − 200 for all Ekman

numbers examined; the central orbit, beginning at (𝑟, 𝑧) = (0.5, 0.5) has a period of 20. Model
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velocities are typically between 0.01 and 0.1 in magnitude, which are reasonable ocean velocities in

meters per second. This choice of the velocity scale being 1𝑚/𝑠 gives rotation times of about 3.5

hours and overturning times of 7 hours to 3 days. For all parameter values, there is upwelling in

the center (𝑟 = 0) and weaker downwelling near the sides of the cylinder (strongest at 𝑟 = 0.75).

There is horizontal convergence near the bottom and divergence near the top; for 𝐸 near one, these

are true for the full bottom and top halves of the system.

As the Ekman number varies, the overturning streamfunction changes qualitatively (figure 2-

1). For 𝐸 greater than 1/60, which is the first bifurcation descending from one, the overturning

structure is rounded and has a single cell— there is only one fixed point in the overturning flow

away from the boundaries: a periodic circular trajectory in the full flow. For small 𝐸, there is

vertical rigidity. As 𝐸 decreases, the time for a trajectory to complete one overturn increases, from

about 30 for 𝐸 = 0.25 to about 180 for 𝐸 = 0.0005.

These changes in the streamfunction correspond with an increase in the number of circular

periodic trajectories at 𝑟 = 0.5. These trajectories are fixed points in a vertical cross-section,

meaning that the vertical and radial velocities are zero; I call these rz-fixed points. All rz-fixed points

occur at 𝑟 = 0.5; there is always one at 𝑧 = 0.5. New 𝑟𝑧-fixed points appear through pitchfork

bifurcations, with the first bifurcation at 𝐸 = 1/62 ≈ 0.016. Thus for 𝐸 ∈ {0.25, 0.125, 0.02}, there

is one 𝑟𝑧-fixed point, while for the smallest Ekman number I discuss, 𝐸 = 0.0005, there are 13.

Further information about these bifurcations is in Appendix A.

2.2.1 Steady Symmetry-Breaking Perturbation

The perturbation which breaks the axial symmetry in this model approximates a lid rotating off-

center. It is a horizontal flow that decays in strength with depth. The streamfunction is:

̃︀Ψ = 𝜖
− sinh(𝑧/𝐸1/2)

2 sinh(1/𝐸1/2)
(𝑎2 − 𝑟2)(𝛾2𝑎2 − 𝑠2), 𝑠 =

√︀
(𝑥− 𝑥0)2 + 𝑦2, (2.8)

where 𝑠 is the distance from the rotational axis of the lid at 𝑦 = 0, 𝑥 = 𝑥0, 𝛾 adjusts the radial

structure of the perturbation strength, and 𝜖 sets the overall strength of the perturbation. This

streamfunction is for velocities in the 𝑥 and 𝑦 directions, unlike the background overturning stream-

function which was for vertical and radial; the velocities from the two are added together. The
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(a) overturning

(b) perturbation

Figure 2-1: Background overturning streamfunction for 𝑎 = 1 and horizontal perturbation stream-
function for 𝛾 = 2, 𝑥0 = −0.5. Left to right: overturning 𝐸 = 0.125, 𝐸 = 0.02, 𝐸 = 0.0005,
horizontal perturbation. Note the vertical structure in the overturning streamfunction becoming
similar to Taylor columns as 𝐸 gets smaller. Note that the center of rotation in the perturbation
streamfunction is not at the origin.
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perturbation velocities in 𝑥 and 𝑦 are

𝑢̃ = 𝜕 ̃︀Ψ/𝜕𝑦 = 4𝑦𝜖
sinh(𝑧/

√
𝐸)

sinh(1/
√
𝐸)

[︀
(𝑎2 − 𝑟2) + (𝛾2𝑎2 − 𝑠2)

]︀
,

𝑣 = −𝜕 ̃︀Ψ/𝜕𝑦 = −4𝑦𝜖
sinh(𝑧/

√
𝐸)

sinh(1/
√
𝐸)

[︀
(𝑥− 𝑥0)(𝑎

2 − 𝑟2) + 𝑥(𝛾2𝑎2 − 𝑠2)
]︀
.

One can then write the azimuthal velocity perturbation as

𝑉 = −2𝜖
sinh(𝑧/

√
𝐸)

sinh(1/
√
𝐸)

[︁
(𝑎2 − 𝑟2) + (𝛾2𝑎2 − 𝑠2) − 𝑥0

𝑟
cos(𝜃)(𝑎2 − 𝑟2)

]︁
and the radial as

𝑈̃ = 2𝜖𝑥0
sinh(𝑧/

√
𝐸)

sinh(1/
√
𝐸)

sin(𝜃)(𝑎2 − 𝑟2).

The horizontal streamfunction of the perturbation changes sign within the domain for small 𝛾,

making a section of the perturbation have the opposite sign of rotation, which is not physically

possible for a solid lid. The streamfunction’s overall strength is proportional to 𝛾 for larger values,

decaying exponentially with depth. For the rest of the work, I will use 𝑎 = 1 and 𝛾 = 2 (figure 2-1).

It is important to note that the total (background plus steady perturbation) azimuthal velocity can

be zero at some locations in the domain for certain choices of 𝜖, but with 𝜖 < 0.05 these locations

are all very close to the boundaries of the cylinder.

2.2.2 Comparison to Dynamic Model

In this section I compare the kinematic model to the Navier-Stokes simulation of a rotating cylinder

flow by Pratt et al. (2013). I will use the kinematic model for the analyses in sections 3.1 and

3.2, and the dynamic simulation for the analysis in section 3.3. I am interested in comparing the

qualitative features of the two model flows under steady symmetry-breaking perturbation. It is

important to note that the parameters of the two systems are slightly different. The parameters

that arise in the Navier-Stokes simulation are the Ekman number, 𝐸, the aspect ratio, 𝛼, the

displacement of the lid’s center, 𝑥0, and the Rossby number, 𝑅𝑜. The kinematic model parameters

are the Ekman number, 𝐸, the aspect ratio, 𝑎, the displacement of the perturbation, 𝑥0, and the

strength of the perturbation, 𝜖. For matching the kinematic model to the dynamic simulation,

aspect ratio of one is the same, 𝛼 = 𝑎 = 1, and I examine four Ekman numbers used in the
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previous work, 𝐸 ∈ {0.25, 0.125, 0.02, 0.0005}. The displacement and strength of the kinematic

perturbation are adjusted to match the behavior for a given Rossby number and displacement of

the lid in the dynamic simulation. I do this rather than attempting a mathematical equivalence

because the kinematic perturbation has a different form than a physical lid rotating off-center. This

kinematic model assumes a small Rossby number, so I compare my results to those from Pratt et

al.’s 𝑅𝑜 = 0.2.

My primary method of looking at structure in the flow is through Poincaré sections, where a

vertical slice through the cylinder such as the 𝑦 − 𝑧 plane is selected and the crossing locations of

certain trajectories is marked by dots. Quasiperiodic trajectories’ crossing locations densely cover a

curve in the plane, while periodic trajectories have a finite number of crossings. In the unperturbed

case, all trajectories are periodic (𝑟𝑧-fixed points in the previous discussion) or quasiperiodic, lying

on a toroidal surface. When the perturbation is added, some trajectories change their qualitative

behavior, and a third type can be seen: these are chaotic trajectories, which wander through a vol-

ume in space aperiodically, never exactly repeating their path. The breakup of periodic trajectories

into quasi-periodic ones surrounded by aperiodic regions is the process by which chaos is introduced

into the system. Certain quasiperiodic trajectories enclose islands of regular flow which contain

only quasiperiodic and periodic trajectories, in contrast to the chaotic flow nearby. A more detailed

discussion of these regions is in Pratt et al. (2013) for this system and in many other works for

more general geometries (e.g. Fountain et al. 2000).

Figure 2-2 shows Poincaré maps from the dynamical simulation in the top row with maps from

the kinematic model below. There is a good match of qualitative features, meaning the number

of islands, their positions, and the widths of chaotic regions. In the central and outermost regions

of the cylinder, there is a chaotic region shown across all cases which I call the chaotic sea. In

the three smaller 𝐸 cases there are many more points near the surface than near the bottom; this

is due to the higher horizontal velocities near the surface, and is seen in both the dynamic and

kinematic model. In 𝐸 = 0.25, both Poincaré sections show a series of nested closed curves which

are quasiperiodic trajectories on nested tori. Between these are some thin resonant layers with high

numbers of islands, in white, which are regular regions. For 𝐸 = 0.125, the main feature is a series

of larger islands between a set of nested tori and the main chaotic region. For 𝐸 = 0.02, there

is one large island with a number of resonant layers surrounding it, including small islands. For
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𝐸 = 0.0005, the kinematic model has a more vertical structure than the dynamic, but the surface

islands are in the same position and the island chains near the center of the cylinder are present in

both.

Altogether, it is clear that the kinematic model’s structures match the dynamic simulation in

the main patterns: the number of islands is large for small and large 𝐸, while the island widths are

small for small and large 𝐸. The chaotic regions surrounding the islands follow the same pattern

in width as the islands. These chaotic region widths will be important in the next section.

A second method to examine the flow is Finite-Time Lyapunov Exponents (FTLEs). FTLEs

are the time constants in the exponential rate at which two trajectories separate from each other in

a flow:

∆𝑥𝑖 = 𝑒𝜆𝑖Δ𝑡,

where 𝜆𝑖 is the FTLE, ∆𝑥𝑖 is the change in the spatial separation, and 𝑖 ∈ [1, 2, 3] is the index

of direction. In order to measure the maximum stretching rates, the FTLE are calculated from

the eigenvalues of the Cauchy-Green deformation tensor, rather than calculating the changes in

separation in the 𝑥, 𝑦, 𝑧 directions. In a 3D system there are three FTLEs; these may be ordered

𝜆1 ≥ 𝜆2 ≥ 𝜆3,

where for incompressible flow 𝜆1 > 0, 𝜆3 < 0, and 𝜆1 + 𝜆2 + 𝜆3 = 0. I identify the structures here

with 𝜆1 for the kinematic model. FTLEs are not available from the dynamic model. The FTLE

calculation is based on initial and final positions of trajectories and the finite amount of elapsed

time. I used an initial separation of 0.01 and an integration time of 400. Low values indicate

regular regions where, for infinite time, the exponent approaches zero. High values indicate the

exponential stretching and folding characteristic of chaos. The colored portions of figure 2-2 show

the FTLEs calculated for the kinematic model. Regions in blue-yellow typically are the regular

regions and correspond to white islands in the Poincaré section. Red regions generally correspond

to chaotic regions. The three higher values of 𝐸 show a clear correspondence for the main islands.

Interestingly, for 𝐸 = 0.0005, trajectory pairs in the near-surface island undergo slower separation

than pairs in the bottom island. This difference indicates a better match with the dynamic system,

which has only the near-surface island, than seen in the Poincaré map alone. This ability of different
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(a)

Figure 2-2: Structures in the kinematic model and dynamical simulation for Ekman numbers of
0.25 and 0.125, continued on next page.

measurements to complement each other is why I examine this system in multiple ways in section

3, and will be discussed further in section 4.

2.3 Observing Chaotic Advection:

Can it overcome diffusion?

I examine the relative importance of chaotic advection and eddy diffusion for tracer distribution

using three types of methods. I begin with scaling arguments: a Lagrangian Batchelor scale defines

the thinnest filaments that can form based on the balance between advection, measured by finite-

time Lyapunov exponents (FTLEs), and diffusion, estimated using the Okubo (1971) empirical
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(b)

Figure 2-2: Structures in the kinematic model and dynamical simulation for Ekman numbers of
(a) 0.25 and 0.125, (b) 0.02 and 0.0005. Tops: Poincaré maps from Pratt et al. 2013, using the
dynamic simulation. Bottoms: in black, Poincaré maps from the current kinematic model with
𝜖 = 0.01 and 𝑥0 either −0.5 (left) or −0.9 (right); in color, maximum FTLEs calculated for the
kinematic model with integration time 400. For 𝐸 = 0.125, red oval approximately separates the
resonant and regular layers (inside) from the chaotic sea region (outside), with the blue line segment
showing the width of the chaotic sea. The blue diamond shows the width of an island, which is also
the width of the resonant layer.
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estimates. If the thinnest filaments are wider than the chaotic zone, then I conclude that diffusion is

the dominant process. I also compare the timescales of chaotic advection and diffusion: the behavior

is dominated by the process with shorter timescales. Second, ensembles of individual trajectories are

computed in the kinematic rotating cylinder model with either a steady perturbation that induces

chaos, a stochastic perturbation to emulate diffusion, or both. The spread of trajectory ensembles

across the background streamlines is used as a measure of the importance of each perturbation, with

the dominant perturbation being the one causing a wider spread. Finally, numerical dye releases in

a dynamically consistent model are used to quantify the effects of stirring on mixing through the

tracer variance function and Nakamura’s effective diffusivity. I use the slopes of the tracer variance

function and the values of the effective diffusivity to measure the effects of chaotic advection.

To relate the kinematic model to ocean eddies, I set dimensional length and velocity scales. The

main parameter of the background model is the Ekman number, which relates the eddy depth to

the Ekman depth. Due to the unstratified nature of my flow, I focus on two intermediate Ekman

numbers: 𝐸 = 0.125 and 𝐸 = 0.02. Assuming an Ekman depth of about 40𝑚, within the range of

open-ocean observations (see Lenn and Chereskin 2009 and references therein), my shallower eddy

is about 110𝑚 deep. In contrast, 𝐸 = 0.02 would correspond to an eddy depth of about 280𝑚.

Depending on region and season, it is possible for either of these to be within or deeper than the

surface mixed layer, which can reach 300𝑚 in subpolar regions in the winter, but may decrease

to a few meters in the summer. In order to relate the model to ocean eddies, it is necessary to

dimensionalize velocities. Unfortunately, the background model has only one physical parameter,

the Ekman number, which I used for scaling length. Model velocities are typically between 0.01 and

0.1 in nondimensional magnitude, which are reasonable dimensional ocean velocities if imagined to

be in meters per second. For that to be the case, the velocity scaling factor is 1𝑚/𝑠, a choice that

gives rotation times of about 3.5 hours and overturning times of 7 hours to 3 days.

2.3.1 Scaling Derivations

Chaotic advection thins tracer patches through exponential contraction in one or two directions,

decreasing the relevant lengthscale towards small scales where diffusion is dominant. Diffusion

widens tracer patches by moving tracer down its gradient, spreading it out from its maximum. The

length scale at which advection and diffusion balance in their respective thinning and widening of
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a patch of tracer is the Batchelor scale, 𝛿. Below 𝛿, diffusion dominates tracer behavior, while

above 𝛿 advection dominates. If 𝛿 is larger than the structures in the flow induced by chaos, then

diffusion will overcome advection and wipe out these structures. The structures of interest, induced

by steady perturbation and visible in Fig. 2-2, are the bands of chaos, called resonant layers, that

thread between regular islands (see blue diamond in (𝑎), right), and the chaotic sea region (outside

the red oval in (𝑎), right), which is near the cylinder perimeter and central axis.

Tracer filaments’ thinnest width will approach the Batchelor scale regardless of initial conditions.

If one considers an initial patch of tracer that is far from the Batchelor scale, advection and diffusion

will not balance. If the patch is larger than the Batchelor scale, chaotic advection exponentially

constricts the patch in the direction of fastest contraction so that it approaches the Batchelor scale.

If the patch of tracer is smaller than the Batchelor scale, diffusion widens the patch to approach the

Batchelor scale. When the width of a filament is at the Batchelor scale, the width will be steady in

time but the concentration will continue falling.

Traditional formulations of the Batchelor scale use statistical and Eulerian information about

turbulence, particularly strain rate, to find the scale at which advective and diffusive effects balance

(Kolmogorov 1941). In a Lagrangian frame moving with the tracer patch, the Lyapunov exponent

is the appropriate descriptor of advective stretching. Several rigorous derivations of a Lagrangian

Batchelor scale have been presented using wavenumber spectra (e.g. Thiffeault 2008, Fereday and

Haynes 2004, DT Son 1999), and a few papers have used this type of scaling to estimate the

importance of chaotic advection (Rypina et al. 2010, Ledwell et al. 1993 1998). I present here some

intuitive explanations for the formulation of a Lagrangian Batchelor scale that are less rigorous than

the former but more in-depth than the latter.

The first formulation of the Lagrangian Batchelor scale is through dimensional analysis. I use

the contracting Lyapunov exponent, 𝜆3, as the inverse timescale together with the diffusivity 𝜅 to

form the length

𝛿 =
√︀
𝜅/|𝜆3|.

I have used the Lyapunov exponent rather than an Eulerian strain rate for two reasons. First, in

chaotic flow, the Lyapunov exponent measures time-average strain. Second, I am interested in the

width following the tracer filament, so a Lagrangian measure is appropriate.

The second formulation of the Lagrangian Batchelor scale uses the equation for the evolution
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of the dye gradients, and demonstrates the importance of the gradient of the velocity, a direct

connection to the FTLE. The tracer gradient equation can be derived from the tracer evolution

equation
𝜕𝐶

𝜕𝑡
+ (∇ · 𝑢⃗)𝐶 + 𝑢⃗ · ∇𝐶 = 𝜅∇2𝐶,

where C is tracer concentration, 𝑢⃗ is a three-dimensional velocity field, and 𝜅 is the diffusivity.

Given conservation of volume, the second term is zero. The tracer gradient equation is the gradient

of the tracer equation, which is

𝜕

𝜕𝑡

𝜕𝐶

𝜕𝑧
+

𝜕

𝜕𝑧
(𝑢⃗ · ∇𝐶) = 𝜅

𝜕

𝜕𝑧
∇2𝐶

in the 𝑧 direction and analogous for other directions. Suppose that the tracer gradients in the 𝑥

and 𝑦 direction are small, because the advection and diffusion work together to spread the tracer in

those directions, becoming fairly uniform compared to the 𝑧 direction, in which the patch is thin.

Then the evolution of the gradients in the 𝑧 direction can be written as

𝜕

𝜕𝑡

𝜕𝐶

𝜕𝑧
+

𝜕

𝜕𝑧

(︂
𝑤
𝜕𝐶

𝜕𝑧

)︂
= 𝜅

𝜕3𝐶

𝜕𝑧3
.

Expanding the second term and combining part of it with the first to form the material derivative

gives
𝜕

𝜕𝑡

𝜕𝐶

𝜕𝑧
+ 𝑤

𝜕2𝐶

𝜕𝑧
+
𝜕𝑤

𝜕𝑧

𝜕𝐶

𝜕𝑧
=

𝐷

𝐷𝑡

𝜕𝐶

𝜕𝑧
+
𝜕𝑤

𝜕𝑧

𝜕𝐶

𝜕𝑧
= 𝜅

𝜕3𝐶

𝜕𝑧3
.

When the filament width is near equilibrium, gradients in the thinning direction are changing

very little with time while following the filament, so the strain and diffusive terms must be of the

same size. To scale 𝜕𝑤/𝜕𝑧 I use |𝜆3|, because spatial changes in 𝑤 determine the rate at which

nearby trajectories converge. This can be illustrated with an initial sphere evolving in a linear flow

(figure 2-3): while the mean flow moves the trajectories together, the gradients of the flow change

their spacing, with linear strain corresponding to exponential changes in ellipsoid axis lengths. This

exponential spreading rate can be measured by the FTLE, which averages the strain along trajectory

paths during the integration time. I use 𝛿 as a scale for distance, giving a balance between advection

and diffusion of the form

|𝜆3|
|𝑐|
𝛿

≈ 𝜅
|𝑐|
𝛿3
.
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Figure 2-3: An initial sphere in a linear strain field evolving into an ellipsoid during a time of 1.
Ellipsoid axes marked by bars, with figure axes ticks showing their initial values of 1 and their
individual endpoint values. Color shows 𝑧 values at 𝑡 = 0, demonstrating the contraction in the 𝑧
direction. Velocity field 𝑢 = 1.5 + 𝑥, 𝑣 = 0.5𝑦, 𝑤 = −1.5𝑧.

Simplifying gives the expected expression for the Lagrangian Batchelor scale:

𝛿 ≈
√︀
𝜅/|𝜆3|, (2.9)

with the approximate indication because tracer gradients will decrease slowly as the tracer maximum

decreases.

For my final formulation of the Lagrangian Batchelor scale, I show analytically that the width

of a Gaussian tracer distribution asymptotically approaches the Batchelor scale in a simple flow

field. This derivation is similar to that of Flierl and Woods (2015), which was two-dimensional.

First, I assume that in the Lagrangian frame the velocity field is a linear strain with rates 𝜆𝑖 in each
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direction, such that the sum of the 𝜆 is zero, giving an incompressible flow. For example,

𝑤 = 𝜆3𝑧(𝑥0, 𝑡),

𝑣 = 𝜆2𝑦(𝑥0, 𝑡),

𝑢 = 𝜆1𝑥(𝑥0, 𝑡),

𝜆1 > 𝜆2 > 𝜆3,

𝜆1 > 0, 𝜆3 < 0

characterizes such a flow with the same properties of 𝜆 previously described, with 𝑥⃗(𝑥0, 𝑡) indicating

the initial position 𝑥0 of the water parcel at 𝑡 = 0. The FTLE is an average of the contraction or

expansion rate over the path of trajectories, but here the rate is constant. Second, I assume that the

tracer concentration 𝐶 is initially a Gaussian in form in each direction, and look for a solution where

it remains that way. This form provides the well-defined width, which is the standard deviation of

the Gaussian. Now I write the Lagrangian tracer evolution equation

𝜕𝐶

𝜕𝑡
+ 𝜆3𝑧

𝜕𝐶

𝜕𝑧
+ 𝜆2𝑦

𝜕𝐶

𝜕𝑦
+ 𝜆1𝑥

𝜕𝐶

𝜕𝑥
= 𝜅∇2𝐶, (2.10)

and the expected form of 𝐶

𝐶 = 𝑐𝑚𝑎𝑥(𝑡) exp

(︂
−𝑥2𝛼2(𝑡)

2
+

−𝑦2𝛽2(𝑡)
2

+
−𝑧2𝛾2(𝑡)

2

)︂
. (2.11)

Here, 𝑐𝑚𝑎𝑥 is the maximum concentration and 𝛼 𝛽 𝛾 are the reciprocals of the standard deviations

in each direction. These four parameters are dependent on time, but not space. The smallest width,

or standard deviation, of the distribution is 𝜎 = 1/𝛾 and I look for a stable fixed point of 𝜎. To

find the behavior of the parameters I isolate 𝜕𝐶/𝜕𝑡 from equations 2.10 and 2.11 and equate them:

𝜕𝐶

𝜕𝑡
=

𝜕𝐶

𝜕𝑐𝑚𝑎𝑥

𝑑𝑐𝑚𝑎𝑥

𝑑𝑡
+
𝜕𝐶

𝜕𝛼

𝑑𝛼

𝑑𝑡
+
𝜕𝐶

𝜕𝛽

𝑑𝛽

𝑑𝑡
+
𝜕𝐶

𝜕𝛾

𝑑𝛾

𝑑𝑡
= −𝜆3𝑧

𝜕𝐶

𝜕𝑧
− 𝜆2𝑦

𝜕𝐶

𝜕𝑦
− 𝜆1𝑥

𝜕𝐶

𝜕𝑥
+ 𝜅∇2𝐶.
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Plugging in the form for 𝐶 gives

𝜕𝐶

𝜕𝑡
=

𝐶

𝑐𝑚𝑎𝑥

𝑑𝑐𝑚𝑎𝑥

𝑑𝑡
− 𝑥2𝛼𝐶

𝑑𝛼

𝑑𝑡
− 𝑦2𝛽𝐶

𝑑𝛽

𝑑𝑡
− 𝑧2𝛾𝐶

𝑑𝛾

𝑑𝑡

= 𝜆1𝑥
2𝛼2𝐶 + 𝜆2𝑦

2𝛽2𝐶 + 𝜆3𝑧
2𝛾2𝐶 + 𝜅𝐶

[︀
𝑥2𝛼4 − 𝛼2 + 𝑦2𝛽4 − 𝛽2 + 𝑧2𝛾4 − 𝛾2

]︀
.

Dividing by 𝐶 (assuming the dye is not uniformly zero), leaves a single equation but four parameters

of interest. This equation is a polynomial in 𝑥, 𝑦, 𝑧, with constant and 𝑥2𝑖 terms. I can therefore

separate these terms by order in 𝑥𝑖, giving

1

𝑐𝑚𝑎𝑥

𝑑𝑐𝑚𝑎𝑥

𝑑𝑡
= −𝜅

(︀
𝛼2 + 𝛽2 + 𝛾2

)︀
,

−𝛼𝑥2𝑑𝛼
𝑑𝑡

= 𝜆1𝛼
2𝑥2 + 𝜅𝛼4𝑥2,

−𝛽𝑦2𝑑𝛽
𝑑𝑡

= 𝜆2𝛽
2𝑦2 + 𝜅𝛽4𝑦2,

−𝛾𝑧2𝑑𝛾
𝑑𝑡

= 𝜆3𝛾
2𝑧2 + 𝜅𝛾4𝑧2.

Now I can solve algebraically from the 𝑥2𝑖 terms, finding

𝑑𝛼

𝑑𝑡
= −𝜆1𝛼− 𝜅𝛼3,

𝑑𝛽

𝑑𝑡
= −𝜆2𝛽 − 𝜅𝛽3,

𝑑𝛾

𝑑𝑡
= −𝜆3𝛾 − 𝜅𝛾3.

The differential equations for 𝛼, 𝛽, 𝛾 only have a fixed point when 𝜆𝑖 < 0, which is only certain for

𝜆3. That fixed point occurs when

𝑑𝛾

𝑑𝑡
= −𝜆3𝛾 − 𝜅𝛾3 = 0,

=⇒ 𝛾 =
√︀

|𝜆3|/𝜅,

=⇒ 𝜎 =
√︀
𝜅/|𝜆3|,

giving that the width of the Gaussian in the fastest contracting direction has a fixed point at the
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Batchelor scale, as expected. Mathematically there are also fixed points at 𝛾 = 0 with negative 𝜆3

and at 𝛾 = −
√︀
|𝜆3|/𝜅 for positive 𝜆3, but neither corresponds to a real positive tracer distribution.

The positive fixed point is attracting if the derivative of 𝑑𝛾/𝑑𝑡 is negative there, which I check:

𝑑

𝑑𝛾

𝑑𝛾

𝑑𝑡
=

𝑑

𝑑𝜎

(︀
−𝜆3𝛾 − 𝜅𝛾3

)︀
= −𝜆3 − 3𝜅𝛾2 =

𝑑𝛾

𝑑𝑡
− 2𝜅𝛾2.

Since 𝛾 and 𝛼 are positive, this derivative is negative at the fixed point, so this fixed point is

attracting. For any initial width, the width in the 𝜆3 direction will converge to the Lagrangian

Batchelor scale. The full solution for 𝛾 is

𝛾 =
√︀
|𝜆3|/𝜅

(︁
(𝜆3𝛾

−2
0 /𝜅− 1)𝑒2𝜆3𝑡 + 1

)︁−1/2
.

Details on this solution and the full solution for 𝐶 are in Appendix A.

The relative importance of chaotic advection and diffusion may also be thought of in terms of

timescales, in that the one which affects tracer gradients faster is more important. The timescale

for chaotic advection is the inverse of the Lyapunov exponent, 1/𝜆. The timescale for diffusion can

be found using dimensional analysis. The time it takes for diffusion to spread a tracer across a

distance 𝐿 is

𝜏 =
𝐿2

𝜅
, (2.12)

where 𝜅 is the diffusivity. The processes with the smaller timescale, between 𝜏 for diffusion and 1/𝜆

for advection, is the faster, more dominant process.

2.3.2 Scaling Results

In this section, I calculate the Lagrangian Batchelor scale and the chaotic advection and diffusion

timescales for the rotating cylinder. In order to calculate the Lagrangian Batchelor scale, 𝛿, I use

an empirical description of oceanic diffusivity as described in Okubo (1971) for diffusivity 𝜅. In

the ocean, diffusivity is scale-dependent, increasing with size, as described by Okubo. He used

observations of horizontal dye diffusion at various scales ranging between about 20𝑚 and 2000𝑘𝑚
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to find the empirical relationship

𝜅 = 0.0103𝑙1.15, (2.13)

where 𝑙 is the horizontal lengthscale of the dye patch in 𝑐𝑚 and 𝜅 is in 𝑐𝑚2/𝑠. Although horizontal

and vertical diffusivities in the ocean can vary by orders of magnitude, due to the constant density in

my model, I assume an isotropic three-dimensional diffusivity. The scale-dependence of diffusivity

means that the strength of the diffusion that balances advection depends on the scale at which the

balance occurs. This self-dependence can be solved to find the balancing width, the Batchelor scale

𝛿, by combining Okubo’s 𝜅 and my 𝛿 definitions, with 𝑙 = 𝛿, as follows:

𝛿 = 𝜅0.5𝜆−0.5 = (0.0103𝛿1.15)0.5𝜆−0.5,

𝛿 = (0.0103/𝜆)5/4.25 ≈ 0.0046𝜆−1.18;

with the final expression as in Rypina et al. (2010), remembering that 𝜆 here must be dimensional

(1/𝑠) and 𝛿 will be in centimeters. In even slightly stratified ocean flows, the vertical diffusivity is

smaller than the horizontal, so the Batchelor scale calculated here is an upper estimate, 𝛿𝑠𝑡𝑟𝑎𝑡 ≤ 𝛿.

Therefore, when the calculated 𝛿 is smaller than the features of interest, one can expect that chaotic

advection effects would dominate over diffusion for the spreading of a tracer.

The calculated 𝛿 values are shown in figure 2-4 next to the widths of chaotic regions. The range

of 𝛿 values is due to the range of 𝜆3 in the region. For the region widths, the resonant layer widths

are the width of the embedded islands; the outer chaotic sea width is the range of distances from the

edge of outer islands to the cylinder boundary (figure 2-2a has an example). FTLEs are estimated

for the most contracting direction over an integration time of about 20 rotations of the central orbit

(dimensionally about three days); the range of FTLE magnitudes does not noticeably change from

10 to 20 rotations. The Batchelor scale is generally about 0.01 − 0.08 in nondimensional width, or

1 − 100𝑚 dimensionally, which is similar to the resonant layer widths and smaller than the chaotic

sea widths. These results imply that chaotic advection is expected to influence tracer distribution

throughout the system, but dominate only in the wider chaotic sea region.

To calculate the advective and diffusive timescales, I use the same FTLE and Okubo diffusivities

as for the Batchelor scale. I estimate the time it takes for the dye to diffuse across a regular island to

quantify the diffusive timescale, 𝜏 . I use the numerically estimated island widths, 𝐿, from Poincaré
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Figure 2-4: Layer widths in blue, Lagrangian Batchelor scale 𝛿 in the same region in yellow. Left
half, chaotic resonant region between islands; right half, the chaotic sea region. The diffusivities at
the Batchelor scale in 𝑚2/𝑠 are between 10−4 and 6 · 10−3 for the three larger Ekman numbers and
between 1 · 10−2 and 6 · 10−2 for 𝐸 = 0.0005.

sections (the same as resonant region widths in figure 2-4), and the diffusivities, 𝜅, from Okubo’s

scaling to form

𝜏 =
𝐿2

𝜅
=

𝐿2

0.0103𝐿1.15
≈ 97𝐿0.85. (2.14)

The diffusive timescale 𝜏 can then be compared to the chaotic advective timescale 𝜆−1, which is a

few hours. Figure 2-5 shows 𝜏 for the model island regions and 𝜆−1 for the adjacent resonant layers.

These timescales are similar, which is to be expected when the layers are close to the Batchelor

scale, as that is the length scale where diffusion and advection balance. For ocean applications,

the timescales would inform observations. For the larger Ekman numbers, the timescales are hours,

which indicates that observations of these features would require intensive work over about a day

once an eddy was located.

2.3.3 Spreading of Trajectory Ensembles

I now examine the dispersion of sets of initially nearby trajectories for the relative effects of turbulent

diffusion and chaotic advection. To simulate turbulent eddy diffusion, I add a stochastic velocity

perturbation to the flow. I consider chaotic advection dominant compared to diffusion when the

ensemble spread is greater for the steady perturbation that induces chaos than the stochastic pertur-

bation that simulates diffusion. I examine ensembles of one hundred to three hundred trajectories
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Figure 2-5: Diffusive crossing times for islands compared to chaotic advection timescale for adjacent
chaotic resonant layer. Uses Okubo’s estimate of diffusivity for the island width.

that begin inside a small sphere for their behavior under various perturbations. Other initial condi-

tions, on a torus or axial circle, give similar results (not shown). The distance between trajectories

in terms of 𝜓 values, the streamfunction of the background flow, is then described over time. Ex-

amining the spread in 𝜓 is convenient because it leads to zero spread for the background flow.

However, it is important to note that this interpretation limits the directions of chaotic stretching

that are considered— it is possible for the fastest spreading direction to be along the background

streamlines, which would not be visible in the coordinates chosen.

To simulate diffusion, I add a stochastic velocity perturbation to the background model flow. The

stochastic perturbation is a random flight model created by adding small pseudorandom values with

a Gaussian distribution to the velocity at each timestep within a numerical trajectory integration:

𝑑𝑥𝑖
𝑑𝑡

= 𝑈𝑖(𝑥⃗) + 𝑢′𝑖, (2.15)

where 𝑖 is a direction index, 𝑥 is distance, 𝑈 is the steady velocity, and 𝑢′𝑖 are the stochastic

additions. These velocity additions are uncorrelated and lead to a Gaussian random walk behavior

(Zambianchi and Griffa, 1994). With the described stochastic perturbation, the variance of a set of

trajectories will grow linearly in time, while the standard deviation grows linearly with the square

root of time, as expected for diffusion. The diffusivity, 𝜅, is computed from the 1D relationship

for a Gaussian random walk: 𝜅 = 𝑠2/2∆𝑡, where 𝑠 is the standard deviation of step size in the
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random walk. I primarily use a nondimensional diffusivity of 10−6 which corresponds to the Okubo

diffusivity for a few meters, at the lower end of the Batchelor scales calculated in the previous section.

The Okubo diffusivities at the Batchelor scale is 𝜅 ∈ [10−4, 10−2]𝑚2/𝑠, which is nondimensionally

𝜅 ∈ [10−6, 3 · 10−5]. This level of diffusivity, 10−6, requires a certain step size 𝑠, which relates to

the distribution of 𝑢′ by 𝑠 = 𝜎∆𝑡/3, with 𝜎 the standard deviation of 𝑢′, ∆𝑡 the numerical timestep

(0.01), and the factor of 3 due to the details of a fourth-order Runga-Kutta integration. Together,

these give

𝜅 =
𝜎2∆𝑡

18
, (2.16)

and so 𝜎 = 0.042. I will also discuss a smaller stochastic perturbation, 𝜅 = 10−7, 𝜎 = 0.013, and

a larger one, 𝜅 = 10−5, 𝜎 = 0.13. The stochastic perturbation with 𝜅 = 10−6 has kinetic energy

(integrated over the cylinder) that is about the same as the background flow:
´

(𝑢′)2 ≈
´

(𝑈⃗2
𝑏 ) ≈ 0.63,

where 𝑢′ is the stochastic velocity and 𝑈⃗𝑏 is the background flow velocity, and both are numerically

integrated on the same grid. The perturbation with 𝜅 = 10−7 has kinetic energy about the same

as the steady perturbation with 𝜖 = 0.01, 𝑥0 = −0.5,
´

(𝑢′)2 ≈ 0.075, where now 𝑢′ can be either

perturbation velocity.

I use a straightforward example of the behavior of trajectories in 𝜓 to explain the features of

ensembles under chaotic and stochastic perturbations. Trajectories are started on a sphere in the

chaotic sea region centered on (𝑟, 𝑧) = (0.1, 0.5) in 𝐸 = 0.125 (see figure 2-2 for the Poincaré

section). For the steady perturbation, trajectories oscillate through the background streamfunction

because the perturbation velocities form an azimuthal wave (figure 2-6, top). Trajectories following

the new streamlines are different distances from the initial streamfunction at different 𝜃, nearly

repeating due to the toroidal barriers formed by regular regions. The frequency of this oscillation

depends on the exact location of the trajectory in the cylinder because the interaction of the steady

perturbation and background flow varies in three dimensions. The trajectories, having different but

similar frequencies in 𝜓, appear to have the same frequency and move out of phase over time, but in

fact this behavior can be explained by frequency differences. Increases in the spread in 𝜓 are largest

near the minima and maxima of the oscillations (figure 2-6, upper). These turning points occur near

the central axis of the cylinder, which is where trajectories pass near the central manifolds. These

manifolds are two distinct material curves with one end anchored to 𝑟 = 0 on the top or bottom;

they are created from the breakup of the heteroclinic trajectory from (𝑟, 𝑧) = (0, 0) to (𝑟, 𝑧) = (0, 1)
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Figure 2-6: Grey lines are individual trajectories in 𝜓 starting from a sphere of radius 0.002 at
(𝑟, 𝑧) = (0.1, 0.5) with 𝐸 = 0.125. Solid black curves are the mean; black dash-dot lines are ±1
standard deviations from the mean.

in the background flow by the steady perturbation (see Pratt et al. 2013 for more). It takes a few

cycles of overturning to have noticeable spreading, but then the spread grows quickly. The ensemble

shown has one of the simpler wave structures I saw, with a large sinusoid dominating the behavior;

with different initial conditions or a larger 𝜖, the oscillations of individual trajectories in 𝜓 look like

a combination of several sinusoids and pulses.

For the stochastic perturbation, trajectories are uncorrelated as they spread across the back-

ground streamfunction. There are no repeating oscillations in time (figure 2-6, bottom) because

the perturbation acts separately on each trajectory at each timestep, leading to continual spreading

of the ensemble. This spreading is similar to diffusion, but it does not depend on the gradients of

concentration the way a diffusing tracer would. If both perturbations are included (not shown),

individual trajectories maintain most of their oscillatory behavior, but spread out at all times due

to the stochastic perturbation, rather than only at the times they pass near the hyperbolic region

around the central manifolds.

I next compare the spreading of trajectory ensembles in 𝜓 with a variety of perturbations for the

same initial conditions used to create figure 2-6 using the range over time (figure 2-7); results are

similar when the variance in 𝜓 is used for comparison (not shown). Chaotic advection dominates
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when the spread in 𝜓 for an ensemble under steady perturbation is larger than the spread under

stochastic perturbation. The spread from the steady perturbation appears exponential for a period

of time, as expected, but is limited to the width of the chaotic region in which the ensemble begins.

In contrast, the stochastic perturbation will spread with the square root of time until it reaches

throughout the cylinder; the 𝑘 = 10−5 cases reach this limit before the end of the experiment.

Therefore, the time when the steady perturbation has greater spread will be limited to between

when exponential growth starts in the steady perturbation, which requires sufficient interaction

with hyperbolic regions, and when the stochastic perturbation spreads the ensemble to the width

of the chaotic region, as estimated for resonant layers in the previous section (figure 2-5).

In the chaotic sea region, ensembles with stochastic perturbations all have their ranges in 𝜓

grow like the square root of time, just like they would in physical coordinates, and the spreading is

faster for larger 𝑘 as expected (figure 2-7ac). The ensembles with steady perturbations have a small

range until they begin quickly growing between times 100 and 500, reaching the width of the chaotic

region between times 500 and 4000. Larger steady perturbations lead to earlier and faster spreading,

as well as a wider chaotic region. Comparing the spread of steady and stochastic perturbations for

𝐸 = 0.02 shows that the 𝜖 = 0.01 steady perturbation only dominates the 𝜅 = 10−7 stochastic

perturbation, with a wider spread for 𝑡 = 900 − 1100. For 𝐸 = 0.125, the chaotic sea is wider (see

figure 8), and the 𝜖 = 0.01 steady perturbation has a wider spread than the 𝜅 = 10−6 stochastic

perturbation for 𝑡 = 1000 − 6500.

Since the diffusivities calculated near the Lagrangian Batchelor scale tend to be 10−6 to 10−5,

these results imply that turbulent diffusion would affect tracers more strongly than chaotic advection

for 𝐸 = 0.02. These two processes would be of similar strength for 𝐸 = 0.125 in the chaotic sea for

these steady perturbation strengths. If I now examine an ensemble with 𝜖 = 0.08, it has a larger

spread than the 𝜅 = 10−7 ensemble from shortly after it begins spreading exponentially throughout

the examined period for 𝐸 = 0.125 and until at least 𝑡 = 4000 in 𝐸 = 0.02. This larger steady

perturbation also spreads wider than the 𝜅 = 10−6 ensemble for 𝑡 = 200 − 400. For 𝐸 = 0.125,

the 𝜖 = 0.08 ensemble spreads throughout the width of the cylinder, reaching that point at about

𝑡 = 300, before the 𝜅 = 10−5 ensemble, which is the upper limit of diffusivities calculated for the

Batchelor scale. These results show that with stronger chaotic stirring from a stronger perturbation,

chaotic advection would have a stronger effect on a tracer than diffusion in the chaotic sea.
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As in the previous section, I can also consider the timescale of these processes. If I use the

dimensionalization from the previous section, the timestep is 800s (𝐸 = 0.125) or 2000s(𝐸 = 0.02),

which means each section of length 𝑡 = 1000 is about 10 days. These ensembles show that for the

first day or two, turbulent diffusion dominates the spread, as chaotic advection does not yet show

significant growth. Then, when the chaotic advection has caused spreading throughout the chaotic

region, it will dominate over turbulent diffusion of similar kinetic energy for between two days and

a month, before that diffusion is able to cause spreading across the chaotic region. Of course, these

processes will be acting at the same time, not separately; the red curves in figure 2-7 are an example

of small perturbations of both types. Spreading of the ensemble begins immediately, as with the

stochastic perturbation, but experiences periods of pronounced growth and some oscillations, as

seen with the steady perturbations. Therefore, I would expect to see filamentation and folding in

physical space for some time in ensembles in the chaotic sea region with both perturbations; before

and after this period, the ensemble would appear to be unstructured.

I also examined the behavior of trajectories beginning at (𝑟, 𝑧) = (0.4, 0.5), in the central region

a small distance from the central fixed orbit. In these cases, the same behavior as in the chaotic

sea region occurs for the spreading under stochastic perturbations (figure 2-7b,d). The spreading

under steady perturbations is much smaller than in the outer chaotic sea region for 𝜖 = 0.01, being

bounded by islands. For these resonant regions, there is no single period of exponential growth

apparent, rather a slower growth at all times. With 𝜖 = 0.08, the steady perturbation shows

exponential spreading to a saturated state as seen in the chaotic sea region; this large perturbation

has eliminated the barriers seen in the small perturbation, and there is a wide chaotic region close

to the central orbit.

From the spreading of ensembles of trajectories, one can see that the wider chaotic regions

are where chaotic advection dominates over turbulent diffusion, as expected from the scaling re-

sults. However, those scalings did not include considerations of time, particularly when exponential

stretching begins; the delay in the stretching decreases the period of time when chaotic advection

is important. The 𝐸 = 0.02 case for the resonant layer is also surprising, given the very large

size of the main island and associated resonant region. It appears from the results that there are

boundaries within that apparent resonant region, leading to the ensemble spreading into a thinner

than expected chaotic region. From these ensembles, I would expect a set of passive 3D drifters or
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(a) 𝐸 = 0.125 (b) 𝐸 = 0.125

(c) 𝐸 = 0.02 (d) 𝐸 = 0.02

Figure 2-7: Range in 𝜓 for ensembles of trajectories started from a sphere of radius 0.002. Steady
perturbation (𝜖 ∈ {0.01, 0.08}), stochastic perturbations (𝜅 ∈ {10−5, 10−6, 10−7}), or both (𝜅 =
10−7, 𝜖 = 0.01), are added to the background flow. Left: Initial sphere in the chaotic sea region,
away from fixed points, at (𝑟, 𝑧) = (0.1, 0.5). Right: Initial sphere centered on (𝑟, 𝑧) = (0.4, 0.5), a
resonant region.
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an injected tracer beginning in a blob to spread out as a blob diffusively, then be stretched into a

filament and folded through the eddy, before losing its maxima and appearing well-mixed through

the eddy. In the next section, I will examine some dye examples.

2.3.4 Tracer Release Simulations

In this section, I analyze the effects of the symmetry-breaking, chaos-inducing perturbation on tracer

distribution directly, using a numerical simulation of a dye release in the dynamically-consistent

model which includes diffusion. Dye experiments are often used in both the ocean and the laboratory

to understand the stirring and mixing in a fluid (examples include Ledwell et al. 1993 and 1998 and

Fountain et al. 2000). The distributions of passive tracers like dye are created by the advective and

diffusive patterns without the feedback onto the flow that would occur with temperature or salinity,

allowing for insight into those processes. An understanding of how chaotic and non-chaotic stirring

each enhance mixing, and how that changes with diffusivity, will give insight into when chaos is

important for understanding tracer movement in the ocean.

My main quantification tool is Nakamura’s effective diffusivity: a background diffusivity scaled

by a representation of the stretching of dye concentration contours by advection. Two-dimensional

and quasi-three-dimensional analyses of effective diffusivity have been applied to the atmosphere

and ocean (Nakamura 1996,1997, Marshall et al. 2006, Haynes and Shuckburgh 2000). For my fully

three-dimensional system with constant density, the effective diffusivity can be written as

𝜅𝑒𝑓𝑓 (𝐶) = 𝑘
1

(𝜕𝐶/𝜕𝑉 )2
ˆ|∇𝐶|2, (2.17)

where 𝑘 is numerically imposed background diffusivity, 𝐶 is tracer concentration, 𝑉 is volume, and

𝑓 indicates an average of function 𝑓 along a concentration surface. The volume 𝑉 is a one-to-one

mapping of tracer concentration and volume such that 𝑉 (𝐶) is the volume integral of locations

in the system with higher tracer concentration. The derivation of 𝜅𝑒𝑓𝑓 is included in Appendix

A and is the first to my knowledge that is fully three-dimensional. Equation 2.17 describes an

effective diffusivity that is different from the imposed diffusivity by a function of properties of the

concentration contour. The units of the effective diffusivity are applied diffusivity, typically 𝑚2/𝑠,

multiplied by 𝑚4, or volume squared divided by length squared, which is the same as surface area

squared. Larger effective diffusivity leads to larger diffusive fluxes of tracer. This amplification can
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be understood as advection stretching and folding of tracer contours increasing its surface area and

thus the area where mixing can occur. This function is precisely the surface area squared in the

rare situation where |∇𝑐| is constant on a 𝑐 surface (see Appendix A for proof).

Both advection and diffusion redistribute tracer concentration and influence effective diffusivity.

As advection stretches and folds the initial tracer, creating filaments, the surface area of a contour

and gradients of the tracer increase, leading to larger 𝜅𝑒𝑓𝑓 . Then, as diffusion smooths the tracer

field, wiping away the filaments, gradients decrease and contours become more smooth, with a lower

surface area to volume ratio. I compare the effective diffusivity with a steady perturbation to that

without; any increase is due to increased stirring, and gives a quantitative measure of how important

that chaotic stirring is for the distribution of tracer in each region of the flow.

As a secondary quantification tool, I use the tracer variance function, 𝜒2 (Pattanayak 2001):

𝜒2 =

ˆ
𝑉
|∇𝑐|2𝑑𝑉

⧸︂ ˆ
𝑉
|𝑐|2𝑑𝑉. (2.18)

Stirring increases the variance of a tracer, while mixing deacreases it. When 𝜒2 is increasing, stirring

is dominant and the slop is the stirring rate. The tracer variance function was used to relate Ekman

number, perturbation strength, and stirring rate for the rotating cylinder in Pratt et al. 2013;

the authors found that stirring increased with larger perturbations and was nonmonotonic with 𝐸,

peaking at 𝐸 ≈ 0.01.

The numerical simulations are run using NEK5000 for several diffusivities and strengths of the

symmetry breaking perturbation. This model solves the incompressible Navier-Stokes equations

using a spectral element method (see https://nek5000.mcs.anl.gov, Pratt et al. 2014, Fischer 1997).

The domain has radius and height one, matching the kinematic model as I have been using it.

The perturbed cases have their strength set by 𝑥0, how far the lid rotation axis is offset from the

cylinder axis; I use 𝑥0 ∈ {0,−0.02,−0.16}. The 𝑥0 = −0.02 case is what was used to compare

Poincaré sections with the kinematic model, so qualitative features match the 𝜖 = 0.01 cases. The

𝑥0 = −0.16 case is significantly larger, similar to the 𝜖 = 0.08 case in the previous section. The

nondimensional imposed tracer diffusivity, 𝑘, is 10−4 or 10−6. Using Okubo’s scaling, the lower

diffusivity is appropriate for scales near 1𝑚, while the larger is appropriate for scales near 50𝑚.

After the simulated velocity field is spun up, the tracer concentration, 𝑐, is initialized with a constant

vertical gradient, 𝑐 = 1 − 𝑧.
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The set of simulations performed allow for an examination of the effects of changing 𝐸, 𝑘, and

𝑥0. They are 𝐸 = 0.125, 𝑘 = 10−4, 𝑥0 ∈ {0,−0.02,−0.16} and 𝐸 = 0.02, 𝑘 ∈ {10−4, 10−6},

𝑥0 ∈ {0,−0.02}, for a total of seven simulations. Each simulation is run for a time of 300 after the

tracer is initialized. I begin by discussing the evolution in time of the tracer variance function and

Nakamura effective diffusivity integrated across the volume of the cylinder.

The tracer variance function over time initially grows nearly linearly as stirring creates filaments

and large gradients. The function then has a single maximum that occurs at the time when diffusive

mixing starts to overcome stirring, so that the variance of the tracer begins to decrease. The maxi-

mum occurs earlier when either the imposed diffusivity or the strength of the steady perturbation

increase. Increasing the diffusivity makes the maximum occur earlier by increasing the strength of

the mixing (figures 2-8 (a) to (b)). Increasing the steady perturbation also makes the maximum

occur earlier as faster stirring creates larger gradients, in turn increasing diffusive fluxes (figure 2-8

(c), red curve).

The maximum of the tracer variance function increases with decreased diffusivity, as more fil-

amentation can occur before diffusion wipes the filaments out. This change of maximum is most

evident in the difference between 𝑘 = 10−4 and 𝑘 = 10−6 for 𝐸 = 0.02, where the decrease in

diffusivity increases the maximum of the tracer variance function by an order of magnitude (figures

2-8 (a) to (b)). Changes in the maximum as the size of 𝑥0 is increased from 0 to 0.02 are small and

negative, because the slightly earlier time of maximum combined with similar stirring rates leads

to a slightly smaller maximum with the perturbation. In the case of 𝐸 = 0.125, 𝑥0 = −0.16, the

maximum is larger than with either 𝑥0 = 0 or 𝑥0 = −0.02 due to faster stirring and a different

spatial pattern of the dye, which will be discussed later.

Integrated over the total volume, the effective diffusivity, 𝜅𝑒𝑓𝑓 , shows an overall progression

similar to the tracer variance function, which indicates the dominance of the gradient term over

both the 𝜕𝑐/𝜕𝑉 term in 𝜅𝑒𝑓𝑓 and the |𝑐|2 term in 𝜒2 (figures 2-8def). The initial slope and details

of the maximum can be understood as relating to perturbation and diffusivity strengths in the

same manner as for 𝜒2. At longer times, the integrated effective diffusivity reaches a fairly constant

positive value unlike 𝜒2, which aproaches zero. This constant value can be estimated by using

the surface area representation of 𝜅𝐸𝑓𝑓 . At long times, here meaning after many overturns but

before diffusion removes all gradients, the shape of tracer surfaces are distorted nested tori (see
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(a) (b) (c)

(d) (e) (f)

Figure 2-8: Top, tracer variance, 𝜒2; bottom, 𝜅𝑒𝑓𝑓 integrated over volume. Left: 𝑘 = 10−6, 𝐸 =
0.02, middle: 𝑘 = 10−4, 𝐸 = 0.02, right: 𝑘 = 10−4, 𝐸 = 0.125. Solid blue lines include the steady
perturbation which induces chaos, 𝜖 = −0.02, green dashed lines are unperturbed, solid red lines
include the steady perturbation with 𝜖 = −0.16. Black dashed lines indicate 𝜅𝑒𝑓𝑓 integrated over
volume in the case of nested circular tori.
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figure 2-9h). If the 𝑐 surfaces were nested circular tori, |∇𝑐| would be constant along the surfaces,

and then 𝜅𝑒𝑓𝑓 = 𝑘𝐴2, where 𝐴 is the surface area of a given toroidal tracer contour. The volume

integral of the squared surface area of circular tori nested around (𝑟, 𝑧) = (0.5, 0.5) multiplied by

the background diffusivity is 𝑘𝜋6/8, which I expect to be the minimum for
´
𝜅𝑒𝑓𝑓𝑑𝑉 in this system

while gradients are nonzero (see Appendix A for details). This value is shown as black dashed lines

in figures 2-8def and is just below the lowest
´
𝜅𝑒𝑓𝑓𝑑𝑉 value seen. The higher values for 𝜅𝑒𝑓𝑓 with

steady perturbations at long times corresponds to persistent asymmetries in the tracer field which

result in larger constant concentration surface areas. The extreme case is 𝐸 = 0.125, 𝑥0 = −0.16,

which has the most asymmetric dye contours; here, the long time value of
´
𝜅𝑒𝑓𝑓𝑑𝑉 is about twice

as large as for circular tori.

I now describe the behavior of the dye in the simulations. Initially, the tracer’s gradients are

vertical, leading to large changes in the field during the initial overturn by the flow. After a few

overturns, the dye maximum is near the central orbit and concentrations decrease toward the central

axis and walls of the cylinder. The time it takes for dye to move from vertical to mostly toroidal

gradients is 2 − 4 overturns of the dye by the vertical flow, and the overturning time depends on

the Ekman number. For 𝐸 = 0.125, an overturn takes about 60 timesteps, while the 𝐸 = 0.02 case

takes only about 15 timesteps. Therefore I include cross-sections of the cylinder at 𝑦 = 0 for 𝑡 = 39

which corresponds to one to two overturns and for 𝑡 = 299 which corresponds to about 10 overturns

to reference for the evolution of the dye (figures 2-9 and 2-10).

In the early cross-sections, figures 2-9 and 2-10 row 1, the dye contours are spirals. At early

times with small perturbations, 𝑥0 = −0.02, regardless of Ekman number or diffusivity, the breaking

of azimuthal symmetry can be seen, with the strongest asymmetries in the contours occuring in two

places. First, there are radial assymetries in the contours near the cylinder center (𝑥 = 0, especially

toward 𝑧 = 1), due to the breakup in the central manifold (see description in section 3.3 and

discussion in Pratt et al., 2013). Second, there are differences in dye values between the left and

right halves near the central orbit ((𝑟, 𝑧) = (0.5, 0.5)), indicating that dye contour locations are

dependent on 𝜃. With the large perturbation, 𝐸 = 0.125, 𝑥0 = −0.16, the early dye snapshot

shows a larger break from symmetry, with the central axis tilted by about 45∘ from vertical (figure

2-10). Increasing the diffusivity from 𝑘 = 10−6 to 10−4 gives a smaller range of dye concentrations

with fewer streaks. In all cases, there are streaks or filaments visible at the early times which smooth
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out and widen in the later cross-section.

In the late cross-sections, 𝑡 = 299, the unperturbed dye contours are nested ellipses, while

asymmetries from the early times persist in the perturbed cases (figures 2-9 and 2-10 row 3). The

𝐸 = 0.02, 𝑥0 = −0.02 dye fields contain bean-shaped patches of concentration out of alignment with

the outer elipses near the central orbit similar to those at 𝑡 = 39. It is not obvious from inspecting

these (or similar) sections whether these patches are the islands visible in Poincaré sections of this

flow (review figure 2-2). The 𝐸 = 0.125, 𝑥0 = −0.02, 𝑡 = 299 snapshot shows contours near the

central axis that still contain the deviations from 𝑡 = 39, and the 𝐸 = 0.125, 𝑥0 = −0.16 snapshot

shows the tilted central axis. The persistence of these features over time is due to the continual

action of steady advection.

The Nakamura effective diffusivity is a function of dye concentration, but the values are quite

difficult to interpret without corresponding spatial information. I therefore show 𝜅𝑒𝑓𝑓 mapped onto

cylinder cross-sections at the same times (39, 299) as the dye sections (figures 2-9-2-10). As I discuss

the results of examining these maps, it is important to keep in mind that 𝜅𝑒𝑓𝑓 depends on properties

of the entire surface of a given dye concentration. At early times, the 𝜅𝑒𝑓𝑓 fields are fairly noisy, as

the dye has streaks, meaning small changes in dye concentration can correspond to larger changes

in surface area. The broad patterns show enhanced 𝜅𝑒𝑓𝑓 where tracer gradients appear high, along

the edges of concentration contours. The 𝐸 = 0.02, 𝑘 = 10−4 case stands out, having a clear

correspondence of high 𝜅𝑒𝑓𝑓 to the edges between concentration values for both the background and

perturbed flow; this also matches the peak of 𝜅𝑒𝑓𝑓 at 𝑐 = 0.5 (not shown).

At 𝑡 = 299, the highest effective diffusivities are along the largest toroidal dye concentration

curves, with wider regions of enhancement in the perturbed cases reaching toward the central orbit,

where the noticeable asymmetries persist as described in the dye field discussion (figures 2-9 and

2-10). One exception is the 𝐸 = 0.02, 𝑘 = 10−6 case where the edges of small tracer patches, two

on the right and one elongated just left of center, also have high 𝜅𝑒𝑓𝑓 (figure 2-9j). This large 𝜅𝑒𝑓𝑓 is

partially due to the gradient in dye values between the patch and the surrounding region, but note

that the dye concentration of the patches matches that of much of the chaotic sea region. Because

the value of 𝜅𝑒𝑓𝑓 depends on averages of gradients over all regions of a given dye concentration,

information from both the chaotic sea and these patches are included. These patches are the smallest

features that are clear in my examples at 𝑡 = 299. Similarly sized high-𝜅𝑒𝑓𝑓 ridges exist in the early
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snapshot of 𝐸 = 0.02, 𝑘 = 10−4 around patches formed in the early overturns (figure 2-9f), but are

eliminated at the later times due to the larger imposed diffusivity. This scale limitation aligns with

the earlier discussion of the Batchelor scale for this flow.

For a different perspective, I examine the mean 𝜅𝑒𝑓𝑓 in subdomains of the system corresponding

to a regular island and a region of the chaotic resonant layer of the same size. The cross-sections of

the cylinder along the 𝑥 and 𝑦 axes are broken into different regions using the matching Poincaré

sections of the perturbed flow (figure 2-11). Unfortunately, finding appropriate subdomains was

only possible for 𝐸 = 0.02, with its large island and extended resonant region. The 𝐸 = 0.125

cases have islands and resonant chaotic regions that are too small to separate for 𝑥0 = −0.02 and

there are no clear islands with resonant regions for 𝑥0 = −0.16 (not shown). The mean 𝜅𝑒𝑓𝑓 in

the chosen subdomains gives a clear result in the 𝐸 = 0.02, 𝑘 = 10−4 case (figure 2-11c), where at

long times, when the overall gradients have smoothed out, the resonant regions have about twice

the effective diffusivity as the islands. The islands’ 𝜅𝑒𝑓𝑓 at that time approximately matches the

value from the same region in the unperturbed simulation, indicating that chaos has not affected

this area. In the 𝐸 = 0.02, 𝑘 = 10−6 case (figure 2-11d) the mean 𝜅𝑒𝑓𝑓 is typically higher in the

resonant region, but the differences are less clear, because 𝜅𝑒𝑓𝑓 is larger in the island than in the

same unperturbed region (the no-chaos match in the figure). This behavior may be because the

lower background diffusivity has not smoothed out some asymmetric patches of tracer which do

not exactly correspond to the island but can overlap it and the resonant region, such as the ones

highlighted in figure 2-9l.

Overall, these dye experiments show that chaotic advection enhances Nakamura effective diffu-

sivity at some times and in some regions of the flow in all cases examined. This enhanced diffusivity

is evident at the system level, such as the difference in long-time volume-integrated 𝜅𝑒𝑓𝑓 , but is

primarily due to enhancement within the chaotic regions of the flow. In this system, the amount

of enhancement is controlled by both the size of the perturbation and the imposed diffusivity. A

larger perturbation leads to more stirring and greater enhancement. A smaller diffusivity leads to

less mixing and greater enhancement.
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(a) 𝑥0 = −0.02 (b) 𝑥0 = 0 (c) 𝑥0 = −0.02

(d) 𝑥0 = −0.02 (e) 𝑥0 = 0 (f) 𝑥0 = −0.02

(g) 𝑥0 = −0.02 (h) 𝑥0 = 0 (i) 𝑥0 = −0.02

(j) 𝑥0 = −0.02 (k) 𝑥0 = 0 (l) 𝑥0 = −0.02

Figure 2-9: 𝐸 = 0.02 for three cases: left, 𝑥0 = −0.02, 𝑘 = 10−6, middle, 𝑥0 = 0, 𝑘 = 10−4,
bottom, 𝑥0 = −0.02, 𝑘 = 10−4. The 𝑥0 = 0, 𝑘 = 10−6 case is not shown, but is qualitatively
similar to the 𝑥0 = 0 𝑘 = 10−4 case. Top: Dye, 𝑡 = 39. Row 2: 𝜅𝑒𝑓𝑓 , 𝑡 = 39. Row 3: Dye, 𝑡 = 299.
Bottom: 𝜅𝑒𝑓𝑓 , 𝑡 = 299.
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(a) 𝑥0 = 0 (b) 𝑥0 = −0.02 (c) 𝑥0 = −0.16

(d) 𝑥0 = 0 (e) 𝑥0 = −0.02 (f) 𝑥0 = −0.16

(g) 𝑥0 = 0 (h) 𝑥0 = −0.02 (i) 𝑥0 = −0.16

(j) 𝑥0 = 0 (k) 𝑥0 = −0.02 (l) 𝑥0 = −0.16

Figure 2-10: 𝐸 = 0.125 for three steady perturbation levels: left, 𝑥0 = 0; middle, 𝑥0 = −0.02; right,
𝑥0 = −0.16. Top: Dye, 𝑡 = 39. Row 2: 𝜅𝑒𝑓𝑓 , 𝑡 = 39. Row 3: Dye, 𝑡 = 299. Bottom: 𝜅𝑒𝑓𝑓 , 𝑡 = 299.
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(a) (b)

(c) (d)

Figure 2-11: 𝐸 = 0.02 Poincaré sections in the (a)𝑥 − 𝑧 and (b)𝑦 − 𝑧 planes in black. Polygons
show the island (blue) and resonant (red) regions used for analysis (c) and (d), mean 𝜅𝑒𝑓𝑓 over time
in these regions under both applied background diffusivities. The no-chaos match case is the same
area as the island in the unperturbed flow.
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2.4 Discussion

I have compared the effects of chaotic advection and turbulent diffusion on tracers within a rotating

cylinder model of an overturning submesoscale eddy. In general, I find that the structures within

the flow with the deterministic symmetry-breaking perturbation are a predictor of where chaotic

advection will be important when diffusion is included: the wider the chaotic regions, the more that

stirring can affect a tracer in the chaotic region. I now summarize the results of my analyses and

discuss the differences.

I first used scaling analyses to determine the relative importance of chaotic advection and dif-

fusion in my kinematic model. The Lagrangian Batchelor scale estimates the width of a tracer

filament when advective thinning and diffusive widening balance; when this width is smaller than

that of the chaotic regions, chaotic advection dominates. The Batchelor scale was smaller than the

width of the chaotic sea region, but similar in size to the resonant regions between regular islands,

indicating that chaotic advection dominates only in the widest chaotic regions. I also compared

timescales for the diffusion in a regular island and for chaotic stretching in neighboring resonant

chaotic regions, finding them to be the same magnitude, as is implied by these features being near

the Batchelor scale. This timescale comparison also provided the information that the timescales

for the chaotic advection and for diffusion across the islands are several hours to one day, using my

dimensionalizations.

Second, I examined the spreading over time of initial small clusters of trajectories. Specifi-

cally, I examined the spread across the background streamfunction, to eliminate the associated

shear. I examined trajectory ensembles with stochastic perturbations to simulate diffusion of vari-

ous strengths and with the deterministic symmetry-breaking perturbations that induce chaos at two

strengths. For 𝐸 = 0.125, small chaos-inducing deterministic perturbations cause more spreading

than stochastic perturbations in the chaotic sea, and similar amounts of spreading in the resonant

layers, consistent with the scalings. However, my results for 𝐸 = 0.02 had the diffusivity causing

more spreading than the chaos for all regions, which is contrary to the scaling, where the chaotic

sea was larger than the Batchelor scale. The change is due to the time dependence of the spreading.

Although the width of the chaotic region is larger than the spread by diffusion over the timescale of

the chaotic advection (1/𝜆), the time it takes for the trajectories to spread across the chaotic region

is longer than the spreading timescale. This difference of scales is evident in the difference between
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the time over which the spread increases rapidly, (1/𝜆), and the longer time from the beginning of

the trajectory integrations to the end of that rapid spreading (figure 2-7a,c, red curves). Larger

symmetry-breaking perturbations reach the rapid stretching period more quickly (figure 2-7, ma-

genta curves), but still do not immediately begin stretching rapidly. Thus, the long-time Lyapunov

exponent does not capture the early-time behavior, and diffusion’s immediate spreading can cause

it to reach the chaotic region width before the chaotic spreading.

Finally, numerical dye releases in a spectral simulation of the Navier-Stokes equations allowed

me to examine system-wide effects of advection and diffusion using the tracer variance function and

Nakamura effective diffusivity. The tracer variance function showed a decreased maximum in tracer

gradients with the chaos-inducing perturbation, indicating that mixing was enhanced by stirring.

Integrated over the domain, 𝜅𝑒𝑓𝑓 was increased by including the symmetry-breaking perturbation

in all cases. However, for larger 𝑘 = 10−4, this enhancement is about a 10% change. With the

smaller diffusivity and the same small symmetry-breaking perturbation or the larger diffusivity and

a larger symmetry-breaking perturbation, the integrated 𝜅𝑒𝑓𝑓 was doubled at times near the end of

the simulations. These times are intermediate, in the sense that chaotic spreading has had enough

time to cause stretching and folding, but diffusion has not yet eliminated the majority of gradients

in the tracer. When 𝜅𝑒𝑓𝑓 was evaluated with spatial information, it was clear that chaotic regions

are where the enhancement was strong. Chaotic resonant regions could have 𝜅𝑒𝑓𝑓 twice that of

comparable regular regions in a 𝑥0 = −0.02 example. Although local comparisons showed that

chaotic advection and diffusion are of similar strength in resonant regions, this doubling of 𝜅𝑒𝑓𝑓 is

large enough to affect the tracer— the range of tracer values in the vicinity of the resonant region

is smaller that in the unperturbed case, indicating enhanced mixing from the stirring. I conclude

that the spatial structures of chaotic and regular regions can play an important role in how a tracer

is distributed.

I now discuss the way the different analysis methods complement each other, and the advantages

or challenges in using each. Both the Lagrangian Batchelor scale and the timescale analyses require

the same information, 𝜆 and 𝜅. The use of a Lyapunov exponent as the advective timescale is

suitable for a system like the rotating cylinder where chaos is a strong feature of the advection,

but would not be as applicable to, for example, the basin-scale ocean. Despite the simplicity of

scaling arguments, the Lyapunov exponent is somewhat computationally expensive, requiring the
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integration of a dense initial grid of trajectories for a long time quite accurately (see Hadjighasem

et al. 2017 for details and other options). The use of the FTLE for 𝜆 and Okubo’s formula for

𝜅 are classic choices, but other options exist such as finite-size Lyapunov exponents (FSLE) and

microscale diffusivity estimates. Finally, it is important to remember that scalings do not include

information on the progression over time, as some of my other methods do. They also do not directly

consider simultaneity of effects.

Trajectory ensembles are computationally cheap compared to Lyapunov exponent calculations

and allow for examination of the progression of a perturbation’s effect over time. However, stochas-

ticity is not an accurate representation of diffusion, in the sense of diffusion causing irreversible

property exchange— there is no direct connection to tracer gradients, and there is no scale depen-

dence in my formulation. Also, although my trajectory ensembles were calculated with a symmetry-

breaking or a stochastic perturbation, in the real system both occur at once. Trajectory ensembles

with both included are difficult to interpret because the individual contributions are obscured.

Both scaling arguments and trajectory ensembles are comparisons of advection and diffusion for

a local area of the flow. For measures of the effect of chaotic regions on the stirring and mixing

throughout the system, I used numerical simulations of dye, which is the most computationally

expensive method in this work. The Nakamura effective diffusivity and tracer variance function

use the variations in tracer concentration to describe the conditions induced by the flow, with the

effective diffusivity taking averages of tracer gradients along tracer isosurfaces. Both functions can

give global information on the progression of stirring and mixing when integrated over the domain.

The effective diffusivity is also useful in connecting enhanced mixing to spatial locations through

the tracer concentration surfaces on which it is calculated. However, because the effective diffusivity

for a tracer concentration depends on the average of the gradients over all the surfaces with that

concentration in the domain, if disparate flow regions have the same tracer concentration, all those

regions affect 𝜅𝑒𝑓𝑓 (𝐶). Therefore, the selection of the tracer contours must be done carefully.

2.5 Conclusion

Chaotic advection causes strong stirring of tracers through the exponential stretching and folding

of fluid parcels. This stirring can enhance mixing in the presence of diffusion, whether molecular or

from small-scale turbulence. Since Aref brought chaotic advection to the attention of fluid dynam-
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icists in the 1980s, a fairly large body of work has developed which examines chaotic and regular

regions in the ocean (e.g. Rypina et al. 2010, Marshall et al. 2006). Although these case studies

have brought up interesting examples of stirring enhancing or suppressing, for example, biological

production (i.e. Hernandez-Garcia et al. 2004, Hernandez-Carrasco et al. 2014), consideration of

the relative strengths of chaotic advection and turbulent diffusion have been less prominent. This

lack is in part because of the fact that studies typically integrate trajectories from Eulerian velocity

fields, either from altimetry or models, where diffusion (real or parameterized) has acted in the

creation of the velocities, but is not included directly in the calculation of trajectories.

In this chapter, I examined these relative strengths for the redistribution of a passive tracer in

a rotating cylinder flow as an analogue for an overturning submesoscale eddy. All three types of

analysis showed that chaotic advection does affect a tracer’s distribution. In thin chaotic regions,

such as the resonant regions between regular islands, chaotic advection and turbulent diffusion have

effects on tracers of the same magnitude. In large chaotic regions, chaotic advection can dominate.

However, this only occurs at times when the rapid stretching and folding of chaotic advection is

occuring. In the trajectory ensembles, I found a delay before the stretching became rapid, requiring

sufficient interaction with hyperbolic regions to begin. This delay caused stochastic perturbations

to cause more stretching than the symmetry-breaking perturbation in one case where scaling esti-

mates predicted the opposite. In the dye simulations, the symmetry-breaking perturbation led to

enhancement of the stirring rate from the beginning, due to the spatial integration including the

hyperbolic regions that have rapid stretching begin quickly. The effective diffusivity can be doubled

in chaotic regions even in my larger diffusivity, small symmetry-breaking perturbation case where

the spatially-integrated increase is about 10%. Decreasing the diffusivity (to 𝑘 = 10−6 or increas-

ing the symmetry-breaking perturbation (to 𝑥0 = −0.16) cause the integrated 𝜅𝑒𝑓𝑓 to acheive this

doubling.

Future work of this type could use one or more of the methods implemented here to determine

whether an apparent chaotic region is likely to be important for understanding a given ocean feature,

such as an eddy or front. If so, observation and modeling efforts would need to capture the flow in its

full dimensionality and time dependence. Work on simple flows like this could also be of benefit to

the Lagrangian coherent structures field, where there has been discussion of resolution and noise in

the velocity field but much less on the applicability of the structures found when turbulent diffusion
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is present.
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Chapter 3

The Western Alboran Gyre: an Eulerian

Analysis of its Properties

and their Budgets

Summary

The Alboran Sea, the westernmost basin of the Mediterranean Sea, contains many of the circulation

features of larger basins. Two of the largest and most persistent features of the circulation are the

Atlantic Jet (AJ), a meandering, surface-intensified jet that carries Atlantic Water eastward from the

Strait of Gibraltar, and the Western Alboran Gyre (WAG), an anticyclonic recirculation extending

through most of the water column, bounded near the surface by the AJ to the north and the

Moroccan coast to the south. These features are fairly well observed, both from in-situ and satellite

efforts. The AJ is connected to the surface inflow at the Strait of Gbraltar, where a reverse estuarine

exchange also carries Deep Mediterranean Water out into the Atlantic. The inflowing waters are

very slighty cooler and fresher than the Modified Atlantic Water across much of the Alboran. The

WAG has very similar properties to the AJ near its edges, with a gradient of increasing temperature

towards the center. Below the surface, the WAG contains a salinity minimum in its center.

Although the Western Alboran Gyre is fairly well observed, its most studied aspect is the dy-

namics of its occasional collapse and re-formation, which are still not well understood. In contrast,

very little work has addressed its typical features when it is present, and there are several outstand-
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ing questions. For instance, geostrophic streamlines from satellite altimetry observations separate

the AJ and the WAG, but the salinity minimum water should have originated from the Strait of

Gibraltar. This observation begs the questions of what sets the salinity minimum and whether there

is exchange between the AJ and the WAG that could be part of the process. Simpler questions are

also unanswered, such as what sets the temperature maximum at the center, and what drives the

WAG rotation— wind, lateral forcing from the AJ, or something else. Here I use a numerical model

of the Alboran Sea to gain insight into these questions.

I have used the MIT general circulation model to simulate the Alboran for part of 2007 and

2008. I used high spatial resolution, accurate bathymetry, and reanalysis forcing at both the surface

and the open boundaries to the Atlantic and Mediterranean to gain a circulation that has realistic

features and behavior for several months. My aim is to understand the processes contributing to

the properties of the WAG. These processes can be described by the physical equations for tracers

and momentum that are represented in the model. I form budgets for the WAG comprised of each

term from the physical equations and then examine their magnitudes and timeseries in order to

tease apart information on which processes most influence the properties in the questions above.

A volume budget adresses the exchange of water between the AJ and the WAG through quan-

tifying transport across the sides of the WAG. The net transport through the sides is balanced

primarily by transport through the bottom, which is closely linked to the bottom isopycnal moving

across its mean depth. This isopycnal motion is then driving a squashing-stretching motion of the

water column, which means the net transport across the sides is probably stirring water between

the AJ and WAG near the edges, not driving water into or out of the core of the WAG.

A salt budget for the region containing the salinity minimum addresses the question of what

processes set the minimum. The terms in the budget include advection of salt through the top,

bottom, and sides, horizontal and vertical diffusion, and changes in salt content. The total advection

closely matches the daily changes in salt content, indicating that advection controls the short-term

changes in salinity. However, over the study period, the salinity minimum becomes more saline,

primarily due to salt advected into it. The budget cannot directly explain the creation of the

minimum, but because none of the advective terms are on average freshening the region, it shows

that there is not a direct exchange from the AJ supporting the minimum. The remaining option,

given that the basin is evaporative and without major rivers, is that the minimum is created during
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the formation of the WAG, with a buildup of water from the Strait of Gibraltar inflow.

In order to address the warmth of the WAG compared to its surroundings, I form a heat budget

for the full gyre. Advective transport of heat through the sides and bottom are the largest terms.

The total advective transport drives changes in heat storage, with a secondary contribution from

surface forcing. In the time mean of the analyzed period, the gyre is cooling, as warming by the

surface and advection through the sides is overcome by advection and diffusion through the bottom.

Because it is warmer than its surroundings, the WAG may be warm due to warmer surface Atlantic

waters involved in its formation, rather than warming over time. This warmth from formation is

consistent with the salinity minimum forming the same way.

A budget for the relative vorticity of the WAG elucidates which processes drive or suppress the

anticyclonic rotation. The large terms in the depth-integrated timeseries are changes in the vorticity,

windstress, advection, vertical diffusion, lateral diffusion, and drag. Because of its changes in time,

the windstress curl is not always supporting the anticyclonic rotation of the WAG and so is not the

main driver. The vertical diffusion primarily transports the windstress downward, into the gyre.

In the mean, the changes in the vorticity are small, and so there is a balance between advection,

diffusion, and drag. Advection and drag add positive vorticity, slowing the gyre. Therefore, lateral

diffusion of vorticity, or a pushing by the AJ, drives the gyre.

Overall, budgets for volume, salt, heat, and vorticity have contributed to understanding what

sets the properties of the Western Alboran Gyre by allowing an examination of each term in the

physical equations for the system. Using a model run with forcing that is realistic, rather than

idealized, makes analysis more difficult but means that it is more relatable to observations. In

the end, we have learned that the AJ and WAG have an exchange that likely stirs their edges

together; that the salinity minimum and overall warmth of the WAG are decaying, likely from

their formation with the WAG, while short-term changes are driven by advection; and that lateral

diffusion of vorticity is the main driver of the WAG, while both advection and drag suppress the

rotation.

3.1 Introduction and Background

The Alboran Sea in the Mediterranean Sea, just east of the Strait of Gibraltar, contains many of the

circulation features of larger basins. Two of the largest and most persistent features of the circulation
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are the Atlantic Jet (AJ), a meandering, surface-intensified jet that carries Atlantic Water eastward

from the Strait of Gibraltar, and the Western Alboran Gyre (WAG), an anticyclonic recirculation

extending through most of the water column, bounded near the surface by the AJ to the north and

the Moroccan coast to the south. These features are fairly well observed, both from in-situ and

satellite efforts (e.g. Heburn and Violette 1990, Viudez et al. 1996, Renault et al. 2012). The AJ

is connected to the surface inflow at the Strait of Gbraltar, where a reverse estuarine exchange also

carries Deep Mediterranean Water out into the Atlantic. The inflowing waters are fresher than the

Modified Atlantic Water across much of the Alboran. The AJ leaves the interior of the Alboran Sea

and attaches to the African coast near the eastern edge of the Alboran, often at the Almeria-Oran

front, a boundary between Modified Atlantic Water and Mediterranean Sea Water. The WAG

has very similar properties to the AJ near its edges, with a gradient of increasing temperature

towards the center. Below the surface, usually near 50m, the WAG contains a salinity minimum

in its center. Deeper, Intermediate and Deep Mediterranean Sea Waters enter the Alboran Sea

from the east, outflowing through the Strait of Gibraltar and occasionally forming Atlantic Meddies

(GRID-Arendal 2013).

Although the Western Alboran Gyre is fairly well observed, its most studied aspect is the

dynamics of its occasional collapse and re-formation (e.g. Sanchez-Garrido et al. 2013, Preller 1986,

Whitehead & Miller 1979). In contrast, very little work, generally only observational, has addressed

its typical features when it is present, and there are several outstanding questions. For instance,

geostrophic streamlines from satellite altimetry observations separate the AJ and the WAG, but the

salinity minimum water should be connected to the Strait of Gibraltar (see discussion in Viudez et

al. 1996). This observation begs the questions of what sets the salinity minimum and whether there

is exchange between the AJ and the WAG that could be part of the process. Related questions

are also unanswered, such as what causes the gyre to stay warmer than its surroundings, and what

drives the WAG rotation. Candidates for drivers of the rotation include wind, lateral forcing from

the AJ, and added anticyclonic vorticity from the rising deep waters flowing towards the Strait of

Gibraltar. Here I use a numerical model of the Alboran Sea to gain insight into these questions.

In this work, I will address the questions of the controls on the features of the WAG through

the formation of budgets for the volume, temperature, salinity, and vorticity using a mesoscale-

resolving numerical model of the Alboran Sea. Specifically, I have used the MIT general circulation
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model to simulate the Alboran for part of 2007 and 2008. I used high spatial resolution, accurate

bathymetry, and reanalysis forcing at both the surface and the open boundaries to the Atlantic

and Mediterranean to gain a circulation that has realistic features and behavior for several months;

details are in Section 2. My aim is to understand the processes contributing to the properties of

the WAG. These processes can be described by the physical equations for tracers and momentum

that are represented in the model. In Section 3, I form budgets for the WAG comprised of each

term from the physical equations and then examine their magnitudes and timeseries in order to

tease apart information on which most influence the properties in the questions above. A volume

budget adresses the exchange of water between the AJ and the WAG through the term describing

transport across the sides of the WAG. A salt budget for the region containing the salinity minimum

addresses the question of what processes set the minimum. A heat budget for the WAG addresses

what mechanisms keep it warmer than the adjacent AJ. Finally, a budget for the relative vorticity

of the WAG elucidates which processes drive the rotation.

3.2 Model Description

3.2.1 Model Setup

The physical model I use is the Massachusetts Institute of Technology general circulation model

(MITgcm) in hydrostatic mode (Marshall et al. 1997). The specific configuration is similar to that of

Sánchez-Garrido et al. (2013), with resolution increased roughly by a factor of three in the Alboran.

This model solves the Boussinesq form of the Navier-Stokes equations for an incompressible fluid

with a finite-volume spatial discretization on a curvilinear grid with typical horizontal resolution

of 1 to 3 km (see figure 3-1). The vertical grid has 5m resolution at the surface, decreasing with

depth, and 46 vertical levels. The model domain includes the Strait of Gibraltar and has open

boundaries in the Atlantic and Mediterranean. Surface forcing is provided by 6-hourly, 1/4-degree,

10m wind fields from the IFREMER CERSAT Global Blended Mean Wind Fields. Surface heat

and salt fluxes are from the ERA-Interim reanalysis daily fields. Open east and west boundary

forcing of velocity, salinity and temperature are from the 1/12-degree, daily Atlantic-Iberian Biscay

Irish-Ocean Physics Reanalysis (AIBIOPR).

Initial conditions were based on September 2011 output from Sánchez-Garrido et al. (2013),
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with some temporal and latitudinal averaging so that the circulation is relatively stable. The model

was run for 55 days with ocean boundary conditions from the fall 2007 average of the AIBIOPR and

without atmospheric forcing. Average atmospheric forcing from fall 2007 was then added gradually,

followed by a transition to the October and then November monthly averages for all forcing; this

was spaced over 75 simulated days. After a total of 130 days spinup, the fully-forced simulation

began running from November 1 2007. The initial run ends at the end of 2008, which is the end of

the chosen wind field data.

(a) bathymetry

(b) grid areas, 𝑚2 (c) layer depths, 𝑚

Figure 3-1: (a) Domain of the simulation. Color is bathymetric depth, black curves are coast. Black
lines on land indicate approximate borders between Portugal and Spain (northern) and Morocco
and Algeria (southern). (b) Model grid, with every 10th gridline in blue over the area of each cell
in reds (𝑚2), and the coast indicated in black. (c) Depth grid spacing in meters, top 40 interfaces,
interfaces 1, 10, 20, 30, and 40 labeled.
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3.2.2 Model Validation

Although no model can exactly simulate the ocean, I compare my output with observations to

demonstrate that five months of the model run are realistic. The MITgcm output sea surface height

(SSH) is compared with satellite-measured gridded daily fields from AVISO as the primary check.

When patterns of SSH match, the near-surface geostrophic flows are similar, which is generally the

case in the WAG area. Secondarily, an examination is performed on the magnitude of exchange

at the Strait of Gibraltar, comparing the model outflow to outflow measured by ADCP during the

same time period.

The monthly mean SSH patterns in the model match those from AVISO well during the first

5 months and final month of the model run (figures 3-2-3-3). The WAG is evident as a positive

anomaly in about the same position in all of these months in both the model and the observations.

Farther east, the AJ attached to the African coast is often also clear as a positive anomaly. The

change in SSH between the WAG and the northern coast is larger in the model, which may indicate

a faster AJ, but could also relate to errors in SSH observations due to the nearby coast. In the first 5

months, no Eastern Alboran Gyre is evident in either the model’s monthly SSH maps or the observed

SSH, but one does appear in May through November in the observed SSH. Cyclonic features in the

interior, east of the WAG, are present in both model and observations. However, the generally

cyclonic circulation of the Alboran Sea in the model from April to September is not representative

of any observed patterns. A spatial correlation of daily SSH shows that at about day 149 of the

simulation, the correlation between output and observations drops, eventually becoming negative

for several months (figure 3-4), durigh which the monthly SSH patterns indicate this cyclonic flow

over most of the basin. I therefore use the first 148 days of output for the analysis.

The mean and variance of SSH match reasonably well for this initial 148-day period (figure 3-5).

The mean patterns are similar to the monthly maps, with the WAG clear and centered at about

4∘𝑊 . East of the WAG, there are two cyclonic features, near 2∘𝑊 and 0∘𝐸, with the western of

the two being stronger in the observations and the eastern one being stronger and larger in the

model. The variance patterns have a matching high in the east, near the Almeria-Oran front, and a

local high where the AJ typically turns southward, at the eastern edge of the usual WAG position.

However, the high variance values in the model output just east of the WAG is not confirmed by

observations, and the high variance in observations over the WAG is not well represented in the
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model.

The magnitude of exchange at the Strait is commonly observed to be about 1 Sverdrup (1

Sv=106𝑚3/𝑠) in either direction, eastward into the Alboran in a surface layer and westward toward

the Atlantic at depth. Sammartino et al. (2015) examine Mediterranean to Atlantic flux estimates

over 10 years of velocity date from a mooring on the western side of the Strait. Typically the outflow

is below 190m (interface depth) and between 0.75 and 0.9 Sv, highest in the spring and lowest in

late summer. My simulated time period is covered, and it appears that the seasonal cycle was

somewhat unusual that year, with lowest outflow in May (not shown, see reference). The simulated

outflow is of the correct magnitude, ranging from 0.6 to 1.4 Sv (mean 1.1 Sv), see figure 3-6a, but

is generally larger than the measured outflow. This slightly large outflow is consistent with the

mean SSH having a larger difference between the WAG and the northern coast, which indicates a

faster inflow than observed. The overall exchange is forced in part by the exchanges at the open

boundaries (set from AIBIOPR, typically 5-10Sv), so the increases compared to observations may

not only be due to internal dynamics. The interface between inflow and outflow in the model is

somewhat higher than observed, most commonly 163m, but given the vertical resolution at those

model depths (about 20m) this is only a difference of one to two grid cells (figure 3-6b). These

differences in the exchange flow may also be due to the lack of tides in the model run, which greatly

changes the variability of the flow in the strait, although the Sammartino et al. (2015) data for

comparison is filtered to subinertial periods. I will not be analyzing the flow in the Strait directly,

focusing on the WAG, which has longer timescales, but these differences should be kept in mind.

3.2.3 Model Output Description

Before moving on to the analysis of the WAG, I describe here the main features of the WAG in

the model results using the mean fields during my 148-day analysis period. As shown in figure

3-5a, the model flow contains the WAG in the same position as observed, with approximately the

correct extent. However, the model mean WAG is more circular than the observed WAG, and

more separated from the northern coast in terms of mean SSH anomaly differences. For subsurface

patterns, I first show two north-south sections of the mean zonal velocity field with mean potential

density contours overlaid, one in the Strait and one through the WAG (figure 3-8). The inflow and

outflow are separated at about the 𝜎𝜃 = 27.5 to 𝜎𝜃 = 28 isopycnals, with the inflowing Atlantic Jet
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(a) (b)

(c) (d)

Figure 3-2: Monthly mean SSH (saturated colors at 0.2𝑚 red and −0.2𝑚 blue), comparison between
MITgcm output and AVISO data. November 2007 through June 2008.
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(a) (b)

(c)

Figure 3-3: Monthly mean SSH (saturated colors at 0.2𝑚 red and −0.2𝑚 blue), comparison between
MITgcm output and AVISO data. July through December 2008.
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Figure 3-4: Daily SSH correlation (𝑦 − 𝑎𝑥𝑖𝑠 position and color) between output and observations
for all points each day of the simulation, where day 1 is November 1, 2007.

strongest in the top 100m north of 36.3∘𝑁 . The WAG’s center shifts northward near 200m depth

and 𝜎𝜃 = 28, corresponding with outflow through the Strait coming from near the African shore (as

described in Bryden and Stommel, 1982). My analysis will focus on the near-surface WAG, above

𝜎𝜃 = 27.5; inspection of the details of the lower WAG and the associated outflow through the Strait

is outside the scope of this work.

Looking directly at the potential density, now with isohalines overlaid, on the same sections,

shows that the pycnocline is near 150𝑚 in the southern Strait and the WAG (figure 3-9). Above

this, 𝜎𝜃 < 26.5, is fairly unstratified, as are the deep waters with 𝜎𝜃 > 28. The isohalines indicate

salinity minima below the surface on the southern side of the strait and near the center of the WAG,

but are similar to isopycnals elsewhere. These minima are roughly consistent with observations in

their position and depth (Viudez et al. 1996). Sections of salinity (figure 3-9) also show these

minima, more clearly in the Strait than in the WAG. Isotherms overlaid on the salinity sections

are generally parallel to the isohalines and isopycnals, especially near the pycnocline. However, the

salinity minimum in the southern Strait does not have a noticeable match in temperature. The

thermoclines are mostly bowl-shaped in the near-surface WAG, similar to the isopycnals. Below

the pycnocline, there are temperature minima in both sections within regions with nearly constant

salinity and density. The minimum in the Strait is very slight both in this mean view and in daily
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(a) SSH mean

(b) SSH standard deviation

Figure 3-5: (Top) Mean SSH (𝑚) over the 148-day well-correlated period, comparison between
MITgcm output (left) and AVISO data (right). (Bottom) Standard deviation of daily SSH (𝑚2)
over the same period.

92



(a) outflow (b) interface

Figure 3-6: (a) Outflow (Sv) from all depths along a meridional section going through Sammartino
et al.’s mooring location compared to Sammartino et al.’s subinertial outflow measurement. (b)
Interface depth (meters below surface). Measured is Sammartino et al.’s zero-crossing from mooring
data. Model interface is defined by the bottom of the deepest cell where the mean across-section
flow is toward the Alboran. In both, the black vertical line indicates the end of the 148-day period
analyzed further.

sections (not shown), but in the WAG the minimum is about 12.5∘ compared to surrounding water

about 13∘, but changes latitude, leading to the slight minimum in the mean. Again, I will focus on

the WAG that is connected to the inflow, which is above these features.

In order to delineate the WAG region horizontally, I use a mean salinity contour of 36.475 at

the surface. This salinity value was chosen because it encompasses the WAG region from the corner

at the southeastern edge of the Strait of Gibraltar (Ceuta) to Cabo Tres Forcas, the cape at about

3W, without continuing in the AJ farther east (figure 3-7). Definitions using mean potential density

(𝜎𝜃 = 26.3) or SSH (𝜂 = 0.04𝑚) are very similar. The vertical extent of the WAG is defined as the

mean 𝜎𝜃 = 27.5 isopycnal depth. Modified Atlantic Water is present throughout the WAG above

𝜎𝜃 = 27.5, or about 160𝑚 depth (salinity below 37.5). Below that, the salinities and temperatures

are consistent with a layer of Leventine Intermediate Water (salinity of 38 − 39 and temperatures

of 13 − 15 ∘ 𝐶) above Western Deep Mediterranean Water (salinity above 38, temperature below

13 ∘𝐶), which lies below about 200m (a more detailed discussion of water masses is in Gascard and

Richez 1985).
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Figure 3-7: Mean surface salinity of the 148-day analysis period in greens with the chosen WAG
boundary in red. Blue dashed lines indicate the location of sections shown in the next figures.

(a) strait (b) WAG

Figure 3-8: Two north-south sections, facing west, of the 148-day mean zonal velocity field with
mean potential density contours overlaid. Left, in the Strait of Gibraltar. Right, in the Western
Alboran Gyre.
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(a) strait (b) WAG

Figure 3-9: Two north-south sections, facing west, of the 148-day mean potential density field, blues,
with mean salinity contours overlaid. Left, in the Strait of Gibraltar. Right, through the Western
Alboran Gyre.

(a) strait (b) WAG

Figure 3-10: Two north-south sections, facing west, of the 148-day mean salinity field, reds, with
mean potential temperature contours overlaid. Left, in the Strait of Gibraltar. Right, through the
Western Alboran Gyre.
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3.3 Results

In this section, I analyze the Eulerian transport of water and its properties in and out of the WAG

or a subset of it. The aim of forming budgets for the water and its properties is to examine terms

from the governing physical equations in order to elucidate the drivers of typical WAG features.

A volume budget addresses the rate of exchange of water between the AJ and the WAG. A heat

budget for the WAG addresses what keeps it warmer than the adjacent AJ. A salt budget for the

region containing the salinity minimum addresses the question of what processes set that minimum.

Finally, a budget for the relative vorticity of the WAG elucidates which processes drive the rotation.

For the budgets of the full WAG, I limit the control volume in the horizontal direction to

locations with surface time-mean salinities below 36.475 and in the vertical to locations with time-

mean 𝜎𝜃 < 27.5 (figure 3-7 shows the surface limits). I compute the volume fluxes through the

boundaries and the changes in SSH storage to form the volume budget (figure 3-11). The volume

budget has four terms: advection through the sides, advection through the bottom (across the mean

𝜎𝜃 = 27.5 isopycnal), precipitation and evaporation through the surface, and volume storage from

changes in sea-surface height. The budget may be written as

𝑑𝑉𝑆𝑆𝐻
𝑑𝑡

=

ˆ
𝑠𝑖𝑑𝑒𝑠

𝑢⃗ · 𝑑𝐴+

ˆ
𝜎
𝑢⃗ · 𝑑𝐴+

ˆ
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝐹𝑃𝑅 𝑑𝐴 (3.1)

=
∑︁
𝑠𝑖𝑑𝑒

(𝑈𝑊𝐴𝑊 − 𝑈𝐸𝐴𝐸 + 𝑉𝑆𝐴𝑆 − 𝑉𝑁𝐴𝑁 )

+
∑︁
𝜎

(𝑈𝑊𝐴𝑊 − 𝑈𝐸𝐴𝐸 + 𝑉𝑆𝐴𝑆 − 𝑉𝑁𝐴𝑁 +𝑊𝐴𝑍) +
∑︁

𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝐹𝑃𝑅𝐴𝑍 ,

where the term on the left is the storage and the first on the right is convergence of advection

through the sides with (𝑈, 𝑉,𝑊 ) indicating zonal, meridional, and vertical velocity at the centers of

the cell faces, 𝐴 the area of the model cell face, and 𝑁,𝑆,𝐸,𝑊 the face of the cell that is at an edge

of the WAG. The second term on the right is the convergence of advection through the bottom,

which is the mean 𝜎𝜃 = 27.5 surface, and includes the vertical velocities. Horizontal velocities are

included because the bottom is not flat. The final term is the precipitation and evaporation over

the surface of the WAG, 𝐹𝑃𝑅, where 𝐴𝑍 is the area of the top of the cell, which is the same as

the bottom for this grid. This budget calculation uses the model daily mean velocities, sea-surface

height, and surface evaporation-precipitation; details for this calculation and all other budgets is in
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Figure 3-11: Total Euler WAG volume budget, 𝑚3/𝑠. These are the net volume transports through
the sides (dark blue), bottom (dark green), and top (red), and the volume transport form of the
change in storage due to changing SSH (light blue).

Appendix B.

The primary balance in the volume budget of the WAG is between advection through the

sides and advection through the bottom, with changes in storage from sea-surface height and the

evaporation-precipitation surface flux two orders of magnitude smaller (figure 3-11); mean values are

in Table 3.1. The advective transports on the order of 105𝑚3/𝑠 are up to about half the magnitude

of the Atlantic Jet (about 1𝑆𝑣) and about a fifth of the recirculation of the WAG (2 − 3𝑆𝑣 above

𝜎𝜃 = 27.5). The signs of the advective terms change frequently, but not regularly. Please note that

an inspection of the spectra of these transports shows no peaks, meaning that these are aperiodic

motions; this is to be expected with realistic forcing over less than one seasonal cycle when tides

are not included.

The volume budget shows the net transports, but the total gross advective transports through the

boundaries, the sum of the magnitude through each cell on each edge, is about ten times larger (figure

3-12). The gross transport magnitudes of the surface and storage terms are close to the magnitudes

of the net surface and storage terms. The difference in magnitude of the gross transports through

the sides and bottom is due to the areas of each surface and the typical magnitude of the velocities.
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Table 3.1: Time-mean volume transports across the Euler WAG boundaries, 𝑚3/𝑠, positive into the
gyre, rounded to three significant digits.

Volume Transport Mean Value
Advection through sides 25, 100

Advection through bottom −24, 900

Precipitation-Evaporation −6.97

Change in storage via SSH −41.8

While the bottom surface has a much larger area of about 1010𝑚2, velocities are about 10−4𝑚/𝑠,

giving smaller gross transport than that through the sides with total area of about 5 * 107𝑚2 but

velocities about 0.4𝑚/𝑠. The difference in magnitude between the net and gross advective terms

may be due to a combination of a path of water through the Eulerian gyre, such as the edge

of the Atlantic Jet; recirculations near the edges, from transient eddies; and an overall residual

directional flow, which could occur if the Lagrangian gyre moved across the Eulerian boundaries in

one direction.

The mean transports show a spatial pattern that supports the idea that the edge of the AJ is

contributing to the gross transports, in that the transports through the sides of the gyre are nearly

along the edges and so are due to the mismatch between the edge and a Lagrangian path along the

edge of the gyre (figure 3-13). The spatial pattern of the vertical transports includes upwelling in

the northwest, although this is too far from the coast to be due to wind-driven upwelling, and in the

center of the WAG. There is also downwelling in the eastern part of the WAG. Large values exist

near the seamounts in the gyre; these means are large, but the spatial pattern around a seamount

changes with the averaging time-interval.

The net volume transports from advection are likely largely due to the reshaping of the water

that makes up the gyre in a stretching-squashing manner. A comparison between the vertical volume

flux and the mean motion of the 𝜎𝜃 = 27.5 isopycnal, figure 3-14, demonstrates this possibility. If

the bottom isopycnal moves up, or water flows in through the fixed bottom, the water above must

move up or spread outward to conserve volume. Large matching changes in sea-surface height do

not occur, but the outflow of water across the fixed boundary does. This set of processes is like

squashing the water into a flatter shape. When water flows in horizontally across the edges, it also

flows out across the fixed bottom and the bottom isopycnal moves down. This processes is like

stretching the water into a narrower, longer region.
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The WAG volume budget is formed in order to better understand the exchange of water between

the AJ and WAG. The primary term that does the exchanging is the transport across the sides of

the WAG. The gross transport across the sides is nearly 107𝑚3/𝑠 , while the net transport is about

1 − 5 · 105𝑚3/𝑠. The difference in magnitude between the net and gross advective terms may be

due to a combination of a path of water through the Eulerian gyre, such as the edge of the AJ;

recirculations near the edges, from transient eddies; and an overall residual directional flow, which

would occur if the Lagrangian gyre moved across the Eulerian boundaries in one direction. Of these

three options, the edge of the AJ overlapping the fixed boundaries seems likely from the pattern of

the mean transports (figure 3-13), although I cannot completely discount horizontal movements of

the full gyre, which would not be obvious from a mean.

The net transport through the sides is balanced primarily by transport through the bottom,

which is closely linked to the bottom isopycnal moving across its mean depth. This isopycnal

motion is then driving a squashing-stretching motion of the water. Because the sign of the net

transport changes about once a week, in that time only about 10% of the volume of the WAG,

which is about 2 · 1012𝑚3, can be exchanged. This implies the net transport across the sides is

stirring water between the AJ and WAG near the edges, not driving water into or out of the core

of the WAG, which would require a larger exchange.
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Figure 3-12: Magnitudes of the Euler WAG volume budget, 𝑚3/𝑠. These are the gross volume
transports, the sum of the absolute value of the volume transport through each cell edge at the
boundaries of the Eulerian WAG.

Figure 3-13: Mean vertically-integrated advective volume transports for the Euler WAG. Colors
show transport through the bottom, arrows show transport through the sides. Top left arrows show
scale, 5 · 105𝑚3/𝑠. White patches indicate seamounts.
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Figure 3-14: Euler WAG net vertical volume transport is primarily the 𝜎𝜃 = 27.5 isopycnal moving
across the fixed bottom boundary, which is its mean depth. The vertical volume transport and
the derivative of the volume above the isopycnal in the WAG are shown. These correlate with
𝑟 = 0.7447 and 𝑝 < 0.0001
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3.3.1 Salt and Heat

I next compute the budgets for salt and heat using the model diagnostics of the transports of salinity

and potential temperature (again, see Appendix B for details of computations). These include the

change in storage, advective transports across the sides and bottom, diffusive transports across the

sides and bottom, and surface forcing. The concentration budget terms for the full WAG can be

represented by

𝑑

𝑑𝑡

ˆ
𝑐 𝑑𝑉 =

ˆ
𝑠𝑖𝑑𝑒

𝑢⃗𝑐 𝑑𝐴+

ˆ
𝜎
𝑢⃗𝑐 𝑑𝐴 (3.2)

ˆ
𝑠𝑖𝑑𝑒

𝜅∇ℎ𝑐 𝑑𝐴+

ˆ
𝜎
𝜅
𝜕𝑐

𝜕𝑧
𝑑𝐴+

ˆ
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝐹 𝑑𝐴,

where each term is in the order listed above; 𝑐 is either salinity or potential temperature, 𝑢⃗ is the

velocity vector, 𝜅 is the numerical diffusivity including that from turbulence closure, and 𝐹 is the

surface forcing. The surface forcing of the concentration includes the effects of changing volume

from evaporation and precipitation. Integrals are taken over the appropriate surface to separate

transports through the sides, bottom (𝑠𝑖𝑔𝑚𝑎 = 27.5 mean surface), and air-sea interface (surface).

These concentration terms are translated into salt and heat transports using density and specific

heat.

The salt and heat budgets are intended to provide insight into how the core of the WAG remains

fresher than the surroundings and how the WAG is warmer than the AJ. The question about

temperature can be examined using the same full-WAG control volume as previously described for

the volume budget, so I start there. The heat budget from the model diagnostics, figure 3-15,

indicates that advection is the largest term. This advective heat transport follows the same spatial

patterns as the volume transport (figure 3-15), demonstrating that the variations in temperature

are not large enough to qualitatively change the advective patterns.

In order to understand how the advective transport is affecting the heat in the gyre, I remove

the volume transport of the mean gyre temperature (16.99∘𝐶) using equation 3.1, scaled with the

mean temperature and the appropriate density and specific heat. The resulting heat transports are

positive when water with higher than average temperature is moving into the gyre or water with

lower than average temperature is moving out of the gyre. In the mean-referenced heat budget,

figure 3-16, changes in heat storage are now often the largest term, with advective transports a close
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second, followed by the surface forcing. The sum of the advection terms drive the changes in heat

storage, which is clear from the anticorrelation between the advection and −𝑑𝐻/𝑑𝑡, figure 3-17.

When the two are combined, the next-largest term, the surface forcing, is their primary balance.

Diffusion terms are very small and negative, because the WAG is warmer than its surroundings.

Time means show that advection through the sides is generally positive but smaller than the

average surface heating, even though the timeseries often shows the opposite (figure 3-16). This

switch is due to occasional large negative daily advection through the sides. Advection and diffusion

through the bottom cool the gyre in the mean. Overall, the gyre is cooling during the analyzed

period. Because it is warmer than its surroundings, my understanding is that the WAG is warm due

to the warmer surface Atlantic waters involved in its formation. An example of a large recirculation

forming is shown in figures 3-18 and 3-19, where it appears that the AJ is bringing warm water

along the southern coast, which is then entrained into a large gyre. After formation, in the analyzed

situation, heat is lost to the deep waters faster than the air or the advection through the sides can

warm it.

With regards to the maintenance of a subsurface salinity minimum in the WAG, the total WAG

salt budget is not the most appropriate measurement. Instead, I examine a budget for just the

region where the mean salinity is below 36.3, which is the mean location of the salinity minimum.

The only change in the form of the budget is that there is advection through the top of the volume

rather than surface forcing. Overall, the largest terms are advection and the changes in salt content,

figure 3-20. The advection through the top is sometimes of the magnitude of the advection through

the bottom and of opposite sign, as would happen if nearby isopycnals are moving in the vertical

without changing width. The total advection nearly matches the changes in salt content, similarly

to the relationship in the heat budget. Vertical diffusion is the next largest term, but it is rarely as

large as advection.

The salinity minimum in the WAG is most likely connected to the minimum in the southern

subsurface Strait of Gibraltar. However, this connection seems to be missing when the WAG is

present, as evidenced by the lack of clear addition of lower-salt water through advection. In the

mean, the total advection and the vertical diffusion are positive, driving an increase in salinity over

time (figure 3-21). In this case, as with the discussion of the heat budget, my interpretation is

that the salinity distribution is set by the formation of the WAG and is then eroded over time.
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Figure 3-15: Top, total Euler WAG heat budget, 𝐽/𝑠. Bottom, mean vertically-integrated advective
potential temperature transports for the Euler WAG. Colors show flux through the bottom, arrows
show flux through the sides. Top left arrows show scale, 5 · 1010 ∘𝐶𝑚3/𝑠. Seamounts do not appear
as empty space as they did for the mean volume transports because the transport across the bottom-
most wet cell is used rather than the 𝜎𝜃 surface.

104



Figure 3-16: Top, Euler WAG heat budget, 𝐽/𝑠, with the transports of heat by the volume transports
of the mean gyre temperature, 16.99∘𝐶, removed. Bottom, time-mean transports of heat, 𝐽/𝑠, with
the transports of heat by the volume transports of the mean gyre temperature removed. Terms are,
left to right, advection through the sides, advection through the bottom, vertical diffusion, surface
forcing, −𝑑𝐻/𝑑𝑡, and the sum of the terms.
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Figure 3-17: Top, Euler WAG heat budget, 𝐽/𝑠, advection combined, with the transports of heat
by the volume transports of the mean gyre temperature, 16.99∘𝐶, removed. Bottom, same budget,
with advection and −𝑑𝐻/𝑑𝑡 combined to show smaller terms.
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(a) (b) (c)

(d) (e) (f)

Figure 3-18: Potential temperature at 25m on simulation days 220, 240, 245, 250, 255, and 260.
Day 220 is typical of the case where the AJ is attached to the African coast. The remaining days
show how the AJ carries Atlantic water that forms a recirculation of nearly WAG size.
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(a) (b) (c)

(d) (e) (f)

Figure 3-19: Potential temperature at 75m on simulation days 220, 240, 245, 250, 255, and 260.
Day 220 is typical of the case where the AJ is attached to the African coast. The remaining days
show how the AJ carries Atlantic water that forms a recirculation of nearly WAG size.
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The time-variation discussed in Viudez et al. (1996) is more dramatic in my interpretation than

the authors likely expected, being related to the collapse and reformation of the gyre rather than

its smaller, more common variations. An example of the salinity patterns in a recirculation as it

is forming is shown in figure 3-22 at the subsurface level where the minimum is often observed.

Although this recirculation is transient and not in the same location as the typical WAG, this

example demonstrates the possibility of my theory.

These Eulerian budgets of volume, salt, and heat in the WAG demonstrate that advection is the

dominant process. It is possible that the advective terms in all three budgets indicate the reshaping

of the Lagrangian gyre, in the squashing-stretching behavior described for volume. However, the

changes in heat and salt due to the total advection match the changes in heat and salt content, so

it could also be indicating the exchange between the WAG or its salinity minimum region and the

surrounding waters. Given the consistent reversals, it is difficult to determine from the timeseries

whether this exchange mostly changes the water properties or if it is a measure of fronts moving

across the Eulerian boundaries. However, the time means indicate overall increases in salt and

decreases in heat over the analysis period of five months. These changes are of the same sign as the

transports through the bottom by mean advection and diffusion. Therefore, interactions with the

deeper waters appear to be important drivers of the water properties of the gyre.

Both the salinity minimum and the overall heat of the WAG appear to be erroding over time.

Not long after the end of the analysis period, the modeled WAG collapses. Past the analyzed period

in the original simulation, a gyre-sized recirculation forms in the Alboran, near the Alboran Island.

This reforming gyre is warmer and fresher than its surroundings, with a clear connection to the

Strait of Gibraltar visible when examining a series of subsurface images from this gyre formation

(figures 3-18,3-19,3-22). As stated previously, I suspect that the formation of the WAG sets the

anomalous salinity and temperatures of the WAG as compared to its surroundings, and that the

slow erosion of these properties may contribute to its collapse. However, further research would be

needed to verify this hypothesis.
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(a)

(b)

Figure 3-20: Euler salinity minimum region volume-integrated salt budget, 𝑔/𝑠. Top, all terms;
bottom, advection terms combined. In the legends, ‘h’ indicates horizontal, ‘z’ indicates vertical,
and ‘adv’ is for advection.
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Figure 3-21: Euler salinity minimum region volume-integrated salt budget, 𝑔/𝑠, time means. Left
to right, terms are the total of the advection terms, the vertical diffusion, the negative changes in
salt content, and the sum of these terms.
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(a) (b) (c)

(d) (e) (f)

Figure 3-22: Salinity at 50m on simulation days 220, 240, 245, 250, 255, and 260. Day 220 is typical
of the case where the AJ is attached to the African coast. The remaining days show how the AJ
carries Atlantic water that forms a recirculation of nearly WAG size.
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3.3.2 Dynamics of the WAG: Vorticity

The WAG has anticyclonic circulation which is clear from the mean surface relative vorticity as well

as the mean surface velocities (figure 3-23). In order to understand what drives the collapse of the

gyre, Sanchez-Garrido et al (2013) have suggested that advection into the gyre of cyclonic features

causes it to become unstable. However, no vorticity budgets were shown, so I now examine the

vorticity budget for this case with a consistent WAG to understand whether such advection could

be a dominant term. The physical vertical vorticity equation is

𝜕𝜁

𝜕𝑡
+ 𝑢ℎ · ∇𝜁 + 𝑓∇ · 𝑢⃗ℎ + 𝛽𝑣 =

1

𝜌2
(∇𝑃 ×∇𝜌) + 𝜈∇2𝜁 + ∇× 𝐹 , (3.3)

where 𝜁 is relative vorticity and 𝛽 is the meridional derivative of the coriolis parameter, 𝑓 . This

is derived from the curl of the momentum budgets. In order, the terms are the change of relative

vorticity in time, the advection of relative vorticity, the coriolis effects, the baroclinic pressure term,

the viscous diffusion of relative vorticity, and forcing, from both wind and topographic drag. All

necessary diagnostics to calculate the terms in the Navier-Stokes momentum equations are available

as outputs from the MITgcm except the barotropic portion of the pressure gradient term, which

can be calculated from SSH (details in Appendix B). To calculate the vorticity budget, I integrated

the parallel part of each momentum term around the edge of the WAG, which is equivalent to the

area integral of the curl by Stokes’ theorem. For example, to calculate the change in time of the

area-integrated vorticity from the changes in time of velocity, the formula is

𝑑

𝑑𝑡

¨
𝜁 𝑑𝐴 =

¨
∇× 𝑑𝑢ℎ

𝑑𝑡
𝑑𝐴 =

˛
𝑑𝑢ℎ
𝑑𝑡

· 𝑑𝑠⃗ =
𝑑Γ

𝑑𝑡
; (3.4)

where 𝜁 is the relative vorticity, 𝑑𝑢⃗ℎ/𝑑𝑡 is a vector of zonal and meridional velocity changes in time,

𝑑𝐴 is the WAG area, 𝑑𝑠⃗ is the WAG edge, and Γ is the circulation. The full vorticity equation in

this form is
𝑑Γ

𝑑𝑡
+

˛
𝜁𝑎𝑢⃗ · 𝑛̂𝑑𝑠 =

˛
−1

𝜌
∇𝑃 · 𝑑𝑠⃗+

˛
𝜈∇𝜁 · 𝑛̂𝑑𝑠+

˛
𝐹 · 𝑑𝑠⃗, (3.5)

where the terms are in the same order: change in time, advection and coriolis, pressure gradient

force, diffusion, and surface forcing. Here, 𝜁𝑎 is the absolute vorticity, 𝜁𝑎 = 𝜁 + 𝑓 . The integral

calculations for each term are done for each layer of cells, then integrated using the height of each
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Figure 3-23: Mean surface relative vorticity normalized by planetary vorticity, 𝑓 , in color. Magenta
vectors show the mean surface water velocity, with a scale of 0.5𝑚/𝑠 shown in the box near (−6, 37).
Black vectors show the mean wind stress, with a scale of 0.05𝑃𝑎 shown in the box near (−6, 37).

cell to form the total. This method avoids introducing errors from taking the derivatives for the

curl, so that the total of other terms matches the change in vorticity (see Appendix B for discrete

calculation details).

In the depth-integrated vorticity budget, changes in vorticity, advection, and horizontal diffusion

are the largest terms, with changes in vorticity and advection changing signs frequently (figure 3-24).

The drag is slightly smaller and always positive. Windstress and vertical diffusion, shown together

because windstress is the vertical diffusion of vorticity from the air, is similar in size to drag but

does change signs. The Coriolis term is several orders of magnitude smaller than the five terms

described. The pressure gradient and timestep terms are typically 5 orders of magnitude smaller

than the five terms described and are not shown; both of these would be zero except for numerical

approximation. Carefully examining the depth-integrated timeseries shows that depth-integrated

advection is correlated with the changes in vorticity, but the other terms are not.

The frequent changes in sign of several vorticity budget terms makes time means of most of

them sensitive to the period over which they are taken (figure 3-25). Drag is always positive, or

cyclonic, which means it is slowing down the gyre. Advection is overall positive when integrated
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Figure 3-24: Vorticity budget for the Eulerian WAG, volume-integrated terms, 𝑚3/𝑠2. Pressure
and model time-stepping terms not shown, on the order of 10−5𝑚3/𝑠2. Coriolis term not shown,
less than 1𝑚3/𝑠2 in magnitude.

in depth and averaged in time, meaning that advection is also slowing down the gyre. Windstress

and viscous diffusion are generally negative (anticyclonic). In particular, horizontal diffusion is the

most anticyclonic in the total or monthly means, which indicates that it is the main driver of the

WAG. Over the 148 day period, the mean change in integrated relative vorticity is fairly small but

negative, indicating that the WAG speeds up slightly.

The depth structure of the budget terms adds spatial information about what is happening.

However, most terms change signs in depth as well as time, including when looking at the means

over different periods (figure 3-26). The exception is still drag, which is always positive, slowing

down the gyre due to the model no-slip boundary conditions (figure 3-27a). In general, advection

is negative near the surface and positive below, vertical diffusion becomes small below about 80𝑚,

and horizontal diffusion has a subsurface maximum. At the surface, advection, diffusion, drag, and

windstress together change the relative vorticity. Just below the surface, the advection and drag

slow the gyre while the horizontal and vertical diffusion speed it up, probably in part by transferring

wind stress downward. Past about 80𝑚, the vertical diffusion is small, and advection and drag are

balanced by horizontal diffusion.

The small but negative values of vertical diffusion at depth may be important for the dynamics.
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Figure 3-25: Time means of the volume-integrated vorticity budget terms, 𝑚3/𝑠2, 148-day period
in blue bars, red stars for each month’s means.

In the mean, the vertical diffusion drives the WAG more than the wind stress. This driving effect

may be due to the deep outflow current along the African coast driving the southern part of the

WAG that lies above it. This forcing of the gyre was discussed by Bryden and Stommel (1982).

The location of the deep outflow in the model during the analysis period supports this possibility

(figure 3-28).

Returning to the structure of the vorticity budget terms, the mean magnitudes have a quite

consistent pattern with depth. The mean magnitudes of each depth-integrated term are 2−20𝑚3/𝑠2

(not shown), and the layered mean magnitudes are 0.05−0.35𝑚2/𝑠2 and decrease with depth (figure

3-27). The vertical diffusion decays with depth fastest and most consistently, rather than having

subsurface maxima (figure 3-27). This decay makes sense in terms of an Ekman effect, and is more

clear in the mean magnitudes than in means due to the changes in windstress direction. Fitting an

exponential to the magnitudes of vertical diffusion gives a decay scale of 37𝑚, which is consistent

with observed ocean Ekman layer depths, and indicates that the gyre has an Ekman number of

about 0.04.

Altogether, the vorticity in the WAG is driven by diffusion and wind but slowed by advection and

drag. The day-to-day sign variations of the terms in the vorticity budget makes it hard to interpret

their timeseries, but the depth structure of the time mean and the depth-integrated time means are

more clear. The wind drives the surface, with the vertical diffusion also speeding up the gyre in
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(a) 148 day mean

(b) mean days 1-74 (c) mean days 75-148

Figure 3-26: Euler WAG area-integrated vorticity budget in horizontal layers, mean of all terms vs.
layer center depth, 𝑚2/𝑠2. Top, full 148-day mean; left, first 74-day mean; right, last 74-day mean.
Dissipation is the combination of drag and horizontal diffusion.
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(a) 148 day mean (b) mean magnitudes

Figure 3-27: Euler WAG area-integrated vorticity budget in horizontal layers, mean of all terms vs.
layer center depth, 𝑚2/𝑠2. Left, full 148-day mean; right, 148-day mean magnitudes. The decay in
the diffusion term has a scale of about 37m.

(a) (b)

Figure 3-28: Mean velocity at 170m (a) and 250m (b) over the 5 months analyzed. Note the westward
current along the southern coast that connects to the outflow through the Strait of Gibraltar.
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the top half of the water column; below that, horizontal diffusion speeds the gyre. Drag from the

topography on the sides and bottom slows the gyre, and integrated advection does as well, although

the near-surface advection can be of opposite sign. The fact that the advective term here does

slow the gyre by adding positive vorticity supports the possibile mechanism of WAG collapse being

advection, as put forth by Sanchez-Garrido et al. (2013). In the timeseries, advection frequently

changes sign, but if it were positive (cyclonic) for a longer period, it is reasonable to expect it could

destabilize the WAG.
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3.4 Discussion and Conclusions

This work used a numerical model of the Alboran Sea to examine, from an Eulerian perspective,

transports of properties in and out of the Western Alboran Gyre. The model output was shown to

produce a realistic flow with a consistent WAG for about 5 months, which is the period analyzed.

The main volume analyzed was limited by a mean surface salinity of 36.475 and the mean depth of

the 𝜎𝜃 = 27.5 isopycnal. Overall, budgets for volume, salt, heat, and vorticity have contributed to

understanding what sets the properties of the Western Alboran Gyre by allowing an examination of

each term in the physical equations for the system. Using a model run with forcing that is realistic,

from reanalyses, rather than idealized, makes analysis of the budgets more difficult but means that

results should be more relatable to observations.

The volume budget for the WAG had compensating horizontal and vertical advective transports,

with the vertical volume transport through the bottom being driven by the motion of the 𝜎𝜃 = 27.5

isopycnal. Surface evaporation and precipitation and the changes in volume storage due to SSH

variations were orders of magnitude smaller than these advective fluxes. The horizontal and vertical

advective volume transports are likely largely due to the reshaping of the water that makes up the

gyre in a stretching-squashing manner, as discussed with the comparison between the vertical volume

transport and the mean motion of the 𝜎𝜃 = 27.5 isopycnal (figure 3-14). The magnitude of these

transports are equivalent to about 1% of the volume of the gyre moving across the boundary in one

day. Due to the frequent changes in sign, the transport across the sides of the WAG is probably

stirring water between the edges and the AJ, but not reaching the WAG core. These net transports

across the sides and bottom do not capture the possible motion of the WAG horizontally across the

boundaries, which is part of the difference in magnitude between the gross and net transports.

The heat budget was examined to understand why the WAG remains warmer than the sur-

rounding waters of the Alboran. The dominance of the advective transports through the sides and

bottom of the WAG in volume carries over into the heat budget computed for the same volume.

These largest transports are due primarily to the volume transport and do not indicate large changes

in the salt and heat storage of the gyre. The vertical and horizontal advection again mostly com-

pensate, but their sum correlates well with the changes in time, i.e. storage, of the heat inside the

WAG. When the movement of the mean temperature by the volume transports are removed, the

avective transports are reduced by about 80%, showing more clearly their relationship to changes
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in storage. The surface forcing is a secondary contributor to the changes in storage. Diffusive

transports were quite small and nearly constant in time, in contrast to the advective fluxes and

surface forcing, indicating the consistency of the magnitude and direction of gradients of salinity

and heat. Overall, the gyre is cooling in the time mean, primarily due to advection and diffusion of

heat through the bottom to deeper water. It is likely that the WAG is warm due to the advection

of warm water from the Atlantic into the area during the WAG’s formation and not an ongoing

heating process.

The WAG contains a salinity minimum at 40− 100𝑚 depth in both observations and the model

output. Previous discussion on the maintenance of this minimum by Viudez and coauthors (1996)

indicated that the options for transport from the Strait of Gibraltar are a mean ageostrophic flow

or time variation in the flow. A salt budget for the volume containing the mean salinity minimum

confirmed that advective transports of salinity are much larger than other terms in the budget.

Overall, the salinity increased in time, due primarily to advection. Therefore, as with the analysis

of heat, I expect the formation of the WAG plays a primary role in the formation of the salinity

minimum, which is then degraded over time by advective stirring. I expect a Lagrangian analysis

of the source of water advected into this region during the formation and when the WAG is present

would be the next step in understanding the minimum, but such an analysis was outside the scope

here.

The vorticity budget for the WAG was examined to understand what drives the gyre. Overall,

the vorticity budget shows that advection, winds, diffusion, and drag all contribute to the dynamics

of the WAG. While drag and advection add positive vorticity, slowing the gyre, windstress and

diffusion add negative vorticity and drive the continued rotation. The largest driver on average is

the lateral diffusion of vorticity, which is due to the AJ pushing the WAG clockwise. A balance

between diffusion of vorticity from the faster AJ and drag from the coast is consistent with theory

about smaller-scale recirculations (e.g. Hill 2013), but these theories do not include wind or advective

exchange. Comparing the vorticity budget results to observations will also be complicated by the

fact that the diffusion and drag are parameterized to account for unresolved motions.

Past theories about what is controlling the WAG include advection of relative vorticity (Sanchez-

Garrido et al. 2013), windstress (Perkins 1990), and the inflow strength (Preller 1986). The vorticity

budget suggests that advection of relative vorticity has a larger impact than windstress on the
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maintenance of the gyre. In their timeseries, both windstress and advection terms were sometimes

the same magnitude, partially confirming the suggestions of both past papers. However, in the time

mean, advection slowed the gyre much more than the wind drive it. The third theory, regarding the

influence of the inflow through the Strait, is less directly related to the budgets formed here. Inflow

may relate to the large-scale pressure gradients, which are important for the large-scale geostrophic

balance of the WAG. However, the inflow time series, which is very similar to the outflow in figure

3-6a, did not correlate with the pressure gradient term from the model diagnostics for any lag.

Overall, the advection of positive vorticity into the WAG may contribute to its collapse, while

lateral forcing from the AJ is very important for its continued anticyclonic rotation.

A significant complication in interpretation of the Eulerian WAG budgets is that the area chosen

does not correspond to a “dynamical" gyre, in that the boundaries of the “dynamical" gyre evolve in

time, crossing my fixed boundaries. These crossings probably contribute to the very large horizontal

advective fluxes in all budgets shown here. A Lagrangian approach that tracked the edges of the

gyre should give more clear results, but has its own challenges in identifying the evolving boundaries.
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Chapter 4

Chaotic Advection in the Alboran Sea, I:

Lagrangian Geometrical Analysis of the

Western Alboran Gyre

Summary

Fluids are studied from either Eulerian or Lagrangian reference frames, depending on the types

of information available and the questions being asked. The Eulerian frame has a fixed reference

point and coordinates, which is useful for creating maps of water properties from observations,

such as for Global Ocean Ship-based Hydrographic Investigation Program repeat sections, and for

theories of the steady circulation in a basin, such as the traditional Stommel gyres. In contrast,

the Lagrangian frame is that of the fluid, where coordinates are functions of time following a fluid

parcel. The Lagrangian view is most useful when considering the evolution of the properties of a

parcel of water and its path.

From the results of the Eulerian analysis of the Western Alboran Gyre (WAG), there appears

to be a large transport of water across the northern boundary. I interpreted this transport as

an exchange between the Atlantic Jet (AJ) and the WAG, which have slightly different physical

properties including temperature and salinity. However, it is possible that this transport could be

due to the WAG moving across the fixed Eulerian boundaries. I will now use a Lagrangian definition

of the WAG edge to elucidate the movement of the edge of the WAG and the paths of exchanged
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water.

A Lagrangian edge for the WAG would ideally be a material contour that separates water

that recirculates in the gyre from water that passes by the gyre, with some capacity to identify

water that will be exchanged. In order to construct such an edge, I use special material contours

called manifolds that are connected to hyperbolic trajectories on the coast where the eastward

current associated with the Atlantic Jet separates and then reconnects. The sketch of the WAG in

the introduction, figure 1-1b, shows these manifolds in a time-dependent case. The two hyperbolic

trajectories each have an associated material manifold that extends offshore. The western separation

point has an offshore unstable manifold, separating water inside the WAG, to the south of the curve,

from water that flowed through the Strait of Gibraltar, to the north of the curve. The eastern

reconnection point has an offshore stable manifold, separating water that continues eastward, to the

north of the curve, from water that turns westward and recirculates inside the WAG, to the south

of the curve.

The stable manifold of the eastern hyperbolic trajectory and the unstable manifold of the western

hyperbolic trajectory do not coincide, but instead cross each other. With multiple crossings of these

material contours, it is possible for water to be trapped between them in lobes. These lobes contain

water that is being exchanged between the WAG and the rest of the Alboran. For instance, when

a lobe is bounded to the north by the unstable manifold and to the south by the stable manifold,

it contains water that started inside the WAG but exits it, going farther east. In the opposite case,

the lobe contains water that started outside the WAG and now enters it.

I find the manifolds numerically using direct trajectory integration by following an initially small

blob of fluid that originate near the hyperbolic trajectories. These manifolds are computed at the

surface and along several isopycnals. In order to use these manifolds to understand the exchange

between the WAG and the AJ, I do two analyses. First, I create maps of the frequency with which

a manifold passes through each point. These maps demonstrate the region where the manifolds and

lobes exist. Therefore, this is the region where water is exchanged between the WAG and the AJ

on the timescale of the manifold integration.

The stirring region includes the Eulerian WAG edge and, interestingly, can reach the northern

coast, where there is upwelling. This extent indicates that upwelled nutrient can reach the WAG on

fairly short timescales, which may be important for phytoplankton productivity. The extent of the
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stirring region becomes narrower with depth. The narrowing of the stirring region can be explained

by the slower velocities at depth, leading to longer exchange timescales.

A complementary result to the stirring region is the location and extent of the core of the

WAG: a region in the center of the WAG where manifolds do not enter. This core region is not

in contact with the AJ or any other part of the ocean outside the WAG on the timescale of the

manifold integration. The core is larger with depth as the stirring region is narrower. When 14-day

integrations are used instead of 8-day, the core region shrinks to one point at the surface. Therefore,

at the surface, the WAG can exchange water throughout its extent on timescales of weeks. This

result is consistent with the timescale observed for the collapse of the WAG.

For the second analysis, I indentify individual lobes in three dimensions and examine their

evolution. As an example, one of the larger lobes is shown in three layers on three different days

as it enters the WAG. The lobe shrinks in horizontal extent as it moves south, corresponding to

the deepening of the isopycnals toward the interior of the WAG. The lobe approximately conserves

volume.

The size of the lobes and their water properties provide another insight into the exchange between

the WAG and the AJ. The timescale of transport is related to the time for water parcels to traverse

from one hyperbolic point to the other, about one week at the surface. From observing the surface

lobes’ movement, I chose a two day timescale, enough time for most lobes to move farther than

they are long. With the two-day timescale, three-dimensional lobes extending from the surface to

the 𝜎𝜃 = 26.5 isopycnal transport water at the rate of about 105 𝑚3/𝑠, with associated transports

of 108 𝑘𝑔/𝑠, 106 𝑘𝑔/𝑠 of salt, and 1012 𝐽/𝑠 of heat. The cumulative transport shows that the

WAG is increasing in volume, mass, and heat but decreasing in salt due to near-surface horizontal

lobe advection. To know whether these trends will hold for the evolution of the WAG properties

would require examining the full content of the WAG over time and estimating the other transports

associated with diffusion, surface forcing, and other physical processes.

4.1 Introduction and Background

The Alboran Sea, just east of the Strait of Gibraltar, is where Atlantic water enters the Mediter-

ranean in the form of the Atlantic Jet (AJ). After passing through the strait, this jet interacts

with coastal recirculations, most notably the Western Alboran Gyre — a persistent anticyclonic
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mesoscale eddy along the African coast. Typical forms of the circulation can also include the Cen-

tral Cyclonic Gyre and the Eastern Alboran Gyre (Renault et al. 2012). The AJ attaches to the

African coast near the eastern edge of the Alboran Sea, often at the Almeria-Oran front, a boundary

between Modified Atlantic Water and Mediterranean Water. Below the surface, Intermediate and

Deep Mediterranean Sea Waters enter from the east, outflowing through the Strait of Gibraltar and

contributing to Atlantic Meddies.

The Western Alboran Gyre (WAG) is warmer and fresher than the surrounding water, containing

an observed below-surface salinity minimum (Viudez et al. 1996, 40-150m deep). As discussed in

Chapter 3, although the WAG has been observed and modeled for some time, the processes that

control its features are not well understood. I used Eulerian budgets for volume, salt, heat, and

vorticity to elucidate these processes. In the results of my analysis of the WAG, there appears to

be a large transport of water across the northern boundary, which I interpreted as an exchange

between the Atlantic Jet and the WAG. However, this transport could be due to the WAG moving

across the fixed Eulerian boundaries. In this chapter, I use a Lagrangian definition of the WAG

edge to elucidate the paths of exchanged water.

Several recent studies have calculated statistics on the variability of the surface flow (eg Renault

et al. 2012 and Peliz et al. 2013), but have not discussed the implications for transport. In a different

approach, Sayol et al. (2013) used Finite-Size Lyapunov Exponents (FSLEs), a Lagrangian measure

of chaos, to examine the sea surface transport. The authors found that the exterior of the WAG has

high rates of stretching of fluid parcels as measured by the exponential separation rate of virtual

particles. These high stretching rates indicate chaos, which suggests exchange across the WAG edge

with enhanced mixing rates of the different waters. I will examine the geometry of this exchange,

to elucidate the region with high stretching rates using information about the range of exchanged

water on timescales of weeks.

In order to examine the exchange of fluid across the time varying boundaries of the Lagrangian

WAG, I apply Lagrangian analysis techniques from dynamical systems to a model flow field from the

Massachusetts Institute of Technology general circulation model (MITgcm, Marshall et al. 1997).

The model flow is three-dimensional with a horizontal resolution of about 1𝑘𝑚 in the WAG and

variable in time, forced by 6- and 12-hourly reanalysis data. These analysis techniques have been

developed over the past few decades (see Haller 2015, Wiggins 2003) to locate coherent structures
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that constrain the transport of the fluid in physical flows. In a study of transport into a coastally-

trapped recirculation in an idealized model (Miller et al. 2002), Lagrangian dynamical systems

methods, specifically lobe analysis, provided a clear accounting of the exchanged water. In partic-

ular, the authors were able to clearly define the moving gyre boundary and avoid spurious fluxes

caused by the gyre moving across its time-mean boundaries. I will apply similar methodology to ex-

amine the three-dimensional exchange between the AJ and WAG over about five months, the same

period as described in Chapter 3. This is the first, to my knowledge, three-dimensional application

of these methods to an aperiodic flow. I define the edge of the WAG in a time-varying manner,

determine the stirring region where exchange can occur through chaotic advection, and quantify the

lobe transports that occur into and out of the gyre.

4.2 Methods

4.2.1 Model

The physical model I use is the Massachusetts Institute of Technology general circulation model

(MITgcm) in hydrostatic mode (Marshall et al. 1997). The specific configuration is similar to

that of Sánchez-Garrido et al. (2013), with resolution increased roughly by a factor of three in

the western Alboran. This model solves the Boussinesq form of the Navier-Stokes equations for

an incompressible fluid with a finite-volume spatial discretization on a curvilinear grid with typical

horizontal resolution of 1 to 3 km. The vertical grid has 5m resolution at the surface, decreasing

with depth, and 46 vertical levels. The model domain includes the Strait of Gibraltar and has

open boundaries in the Atlantic and Mediterranean. Surface forcing is provided by 6-hourly, 1/4-

degree, 10m wind fields from the IFREMER CERSAT Global Blended Mean Wind Fields. Surface

heat and salt fluxes are from the ERA-Interim reanalysis daily fields. Open east and west boundary

forcings of velocity, salinity and temperature are from the 1/12-degree, daily Atlantic-Iberian Biscay

Irish-Ocean Physics Reanalysis.

Details of the initial conditions and spinup are in Chapter 3. After 130 days of spinup, the full

run began for November 1, 2007. Due to the behavior of the output as compared to Aviso daily

fields and the Sammartino et al. (2015) measurements of flow through the Strait of Gibralter, the

first 148 days will be analyzed. This is a period of about 5 months, November 2007 through March
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2008. For a more detailed discussion of the output and validation, see the previous chapter.

4.2.2 Velocity Field Analysis

I use a Lagrangian perspective and dynamical systems methods to analyze the daily-average ve-

locity fields from the MITgcm at the surface and along potential density surfaces. For potential

density surfaces, the depth of the surface is found through linear interpolation for each day, and

the horizontal velocity field is interpolated to that depth. This method assumes trajectories remain

isopycnal, as no vertical velocity is explicitly considered. Generally, this assumption is reasonable for

low Rossby number flows; for the full WAG, 𝑅𝑜 = 𝑢/𝑓𝐿 ≈ 0.25(𝑚/𝑠)/(8 · 10−5𝑠−1 · 105𝑚) ≈ 0.03,

which is small. I use the surfaces 𝜎𝜃 ∈ 26.3, 26.5, 26.75, 27, 27.5 for my analysis of the exchange

between the WAG and the Atlantic Jet.

In order to construct a Lagrangian edge for the WAG, I use special material contours called

manifolds that are connected to hyperbolic trajectories on the coast. These trajectories are where

the eastward current associated with the Atlantic Jet separates from and then reconnects to the

African coast. Figure 4-2 sketches out the relevent geometry. The hyperbolic points (𝐻1, 𝐻2)

are along at corners of the coast (black). The unstable manifold from 𝐻1 is the offshore material

contour comprised of points that approach 𝐻1 asymptotically in backwards time. This manifold

separates water that begins inside the WAG, to the south of the curve, from water that just flowed

through the Strait of Gibraltar, to the north of the curve. The stable manifold from 𝐻2 is the

offshore material contour comprised of points that approach 𝐻2 asymptotically in forward time.

This manifold separates water that continues eastward, to the north of the curve, from water that

turns westward and recirculates inside the WAG, to the south of the curve. In a steady two-

dimensional flow, the two manifolds would coincide and there would be no exchange between the

gyre and the rest of the domain (see figure 4-2a). In a time-varying flow, the two manifolds can

cross. Since water cannot cross material contours, the water between the manifolds is trapped,

moving along the edge of the gyre with the manifolds until the relevent crossing passes 𝐻2 (see

figure 4-2b). These trapped parcels of water are called lobes, and are the only advective exchange

across the edge of the gyre.

In order to numerically calculate the manifolds, I integrate trajectories from initial circles of

about 100 points with radius 10𝑘𝑚 centered on the topographic corners marked as hyperbolic
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points in the geometry sketch. The hyperbolic trajectories in my model flow can move, but they

are usually close to these corners. The initial circles are intended to allow for the movement of the

hyperbolic trajectories, but changes in their position do not change the position of the manifold away

from the coast (figure 4-1 shows an example for the stable manifold). The unstable, or forward,

manifold is found by integrating forward from the coast at the southeast edge of the Strait of

Gibraltar, (−5.35∘, 35.86∘). For the trajectory integration, I use an explicit Runge-Kutta 4.5 order

scheme with linear interpolation in space and time from daily-averaged horizontal velocities. The

integration time is 8 or 14 days, with daily reseeding along the curve of the manifold each day to

have a resolution of 2𝑘𝑚 or better, allowing the shape of the manifold to be well-resolved. The

stable, or backward, manifold is integrated backwards in time from the African coast at the typical

eastern extent of the WAG, (−3.05∘, 35.4∘), with the same method and reseeding of trajectories

over time. Trajectories move toward the hyperbolic point along the stable (unstable) manifold in

forward (backward) time initially and extend away from the hyperbolic point along the unstable

(stable) manifold in forward (backward) time, so an initial circle of points becomes a line along the

unstable (stable) manifold at the end of integration. Similar methods have been used in Miller et

al. 2002, Rypina et al. 2010, and Mancho et al. 2003, but with a line of initial points, which is

most appropriate when the hyperbolic point and manifold direction are known.

An 8-day integration period for the manifolds was chosen so that at the surface, the unstable

manifold from the western hyperbolic point and the stable manifold from the eastern hyperbolic

point typically meet or cross. As an example of the geometry in the model gyre, I show the manifolds

for the mean flow over the 148 day study period in figure 4-3. At the surface and isopycnals 𝜎𝜃 = 26.3

to 𝜎𝜃 = 27, the stable manifold is outside of the unstable manifold, showing that the flow is into

the gyre. This convergence is consistent with anticyclonic gyres’ typical downwelling behavior. At

𝜎𝜃 = 27.5, the manifolds are nearly matching each other, with the stable manifold just inside the

unstable. This arrangement indicates a very small flux out of the gyre near this layer, and so I will

consider it the bottom of the gyre for my analysis. Below the 𝜎𝜃 = 27.5 isopycnal, particles released

near 𝐻1, the western point, go west, part of the outflow through the Strait of Gibraltar.

Next, I use the manifolds and lobes associated with the WAG to elucidate the Lagrangian

geometry of the Alboran Sea. I will begin by describing the regions covered by manifolds and

untouched by them. I will then describe the behavior of lobes and use them to estimate the rate of
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Figure 4-1: Surface stable manifold integrated over 14 days from two different initial positions. Note
that in the interior of the Alboran Sea, these two calculations match.

(a) steady (b) time-varying

Figure 4-2: Definition Figure : Unstable (red) and stable (blue) manifolds . Hyperbolic points H1,
H2. Left, steady. Water is trapped in the gyre for all time. Right, periodic. Shaded lobes map to
each other in time and transport water out of WAG. Unshaded lobes transport water into WAG.

132



(a) surface (b) 𝜎𝜃 = 26.3

(c) 𝜎𝜃 = 26.5 (d) 𝜎𝜃 = 26.75

(e) 𝜎𝜃 = 27 (f) 𝜎𝜃 = 27.5

Figure 4-3: Manifolds on the surface and 5 isopycnals using the 148-day mean flow. Integration
time 14 days, resolution 2km. Red, unstable manifold; blue, stable manifold; thin black contours,
isopycnal mean depth; thick black, coast.
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exchange of material into and out of the WAG.

4.3 Results

4.3.1 WAG core and stirring regions

Manifolds trace water that asymptotically approaches the hyperbolic points that define the limits

of the WAG and delineate the entering and exiting lobes of water between their intersections.

Although in the next section I will examine individual lobes, here I describe the typical location

of the manifolds and, by extension, the lobes. The region where manifolds are typically located is

the region where lobes are typically located; the regions beyond the extent of the manifolds do not

exchange water across the edge of the WAG on the manifold integration timescale.

For the five-month period of analysis, manifolds are integrated for 8 or 14 days; 8 days typically

allows a closed curve at the surface from the combination of forward and backward manifolds to

define the WAG, while 14 days typically is long enough for this closing at deeper isopycnals. I

examine manifolds from the surface and potential density surfaces 𝜎 ∈ 26.3, 26.5, 26.75, 27, 27.5

which all have mean inflow through Gibraltar. Maps of the probability of a manifold crossing small

location bins were created, and show that the manifolds are typically in the area that is expected to

form the ‘edge’ of the WAG (figure 4-4. I call the region covered by manifolds the stirring region,

because it is the region where water can be exchanged across the WAG edge on relatively short

times, 1 day to 2 weeks. The stirring region is similar to the high-valued regions in the Sayol et al.

(2013) mean FSLE map at the surface. At increasing depth (density), these stirring region maps

have thinner high-probability regions and a lower integrated probability over the domain. This

decrease can be explained by manifolds being shorter with depth as the typical velocities decrease.

Equivalently, the smaller exchange area with depth indicates longer timescales for exchange.

At the surface, I also show the probability maps of the location of the forward and backward

manifold separately (figure 4-5) to describe the regions of the Alboran that can reach the hyperbolic

regions within the 8 day integration time. Interestingly, the northern shore is included in the stirring

region; in particular, the northwestern Alboran front (NWAF) region which often has upwelling is

included for connections along the backward manifold, implying that some of this water is likely

to be advected into the outer edges of the WAG and thus might be brought to the interior via a
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lobe. For phytoplankton, this is important because the upwelling region would add nutrients to

the water and the WAG would retain it for a fairly long time, such that there might be growth of

plankton along the edges of or inside the WAG that is connected to the added nutrient from the

NWAF. Further explanation of why this may be important and how it could be investigated are in

Appendix C.

The core of the WAG, a region where water is retained over long times, moves with the gyre over

time, but a statistical Eulerian location for the core is the area with a low likelihood of manifolds

inside of the high-probability region. I use the contour of zero manifold probability to define the

core (figure 4-6a). As defined, this core region is not in contact with the AJ or any other part

of the ocean outside the WAG on the timescale of the manifold integration. Although this is not

a rigorous technique to find a Lagrangian coherent structure, such as the least-stretching contour

(Haller and Beron-Vera, 2012), I found that passive particles seeded inside these contours stayed

within the WAG over time. Particles started within the region where no manifolds are observed

tend to stay together as a cluster inside of the daily manifolds over a 12 day integration time (not

shown). The core region expands with depth, implying a dome-shaped region in three dimensions.

This expansion relates again to the decrease of velocities with depth, which creates longer timescales

for exchange.

The exact contours of the core are particular to both the period analyzed, as more days of

manifolds gives a greater certainty in the probability maps, and the integration time of the manifolds,

as longer integration lengthens the manifold and covers more of the Alboran Sea. For comparison,

the contours of zero manifold probability for 14-day manifolds is shown (figure 4-6b), which has a

reduced area at each depth but follows the same pattern of expanding with depth. With the 14-day

timescale, the core region shrinks to one point at the surface. Therefore, at the surface, the WAG

can exchange water throughout its extent on timescales of weeks. This result is consistent with the

timescale of about two weeks observed for the collapse of the WAG.

4.3.2 Advective Transport by Lobes

Lobes of water are trapped between the stable and unstable manifolds. They move around the edge

of the WAG as they move from the inside to the outside or vice-versa. When a lobe is bounded to

the north by the unstable manifold and to the south by the stable manifold, it contains water from
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(a) surface (b) 𝜎𝜃 = 26.3

(c) 𝜎𝜃 = 26.5 (d) 𝜎𝜃 = 26.5

(e) 𝜎𝜃 = 27 (f) 𝜎𝜃 = 27.5

Figure 4-4: Probability of a manifold crossing each location on a given day, color. Daily horizontal
velocities 8-day integration, 2km resolution. For (b)-(e), black contours are mean isopycnal depth
and velocities are horizontal at the daily depth of the isopycnal. Contrasting color is the zero
probability curve of the probability field.
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(a) forward (b) backward

Figure 4-5: Probability of a manifold crossing each location on a given day. Surface velocity, 8-day
integration, 2km resolution. (a)Unstable manifold. (b)Stable manifold.

(a) 8 day (b) 14 day

Figure 4-6: The center region of the WAG. Zero contour of the manifold probability field from the
surface and 4 isopycnals (𝜎𝜃 = 26.75 skipped for readability). Left, 8 day manifolds. Right, 14 day
manifolds.
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inside the WAG that will now leave it, going farther east into the Mediterranean. In the opposite

case, the lobe contains water that started outside the WAG and now will enter it. The location of

these lobes and their sizes describe the water that is exchanged between the WAG and the rest of

the Alboran. Manifolds along isopycnals, discussed in the previous section, can show the shape of

lobes with depth and allow estimates of their volume.

The depth to which I examine the lobes is limited by the inflow density, typically giving my

deepest analyzed isopycnal (𝜎𝜃 = 27.5) a depth of 80-150m. The lobes identified at the surface

are usually visible in the 𝜎𝜃 = 26.3 isopycnal, but less often in deeper sections. These changes in

depth are large when using finite manifolds of the same integration time, because often lobes are

not closed on the lower isopycnals, but decrease if the integration time is adjusted to resolve the

same average length of the manifold at each level. The manifolds I use for finding lobe volumes are

all resolved on the same day along each isopycnal, and for about the same distance, in the hope

that this will better represent the three-dimensional structure of the manifold and the lobe.

Unfortunately, identifying lobes is a non-trivial task; see figure 4-7 for an example of manifolds

on two days. I identify lobes throughout the 148-day period at the surface and 𝜎𝜃 = 26.3, but only

fully identify lobes during the first month on deeper isopycnals. 33 lobes are found at the surface,

29 of which are also found on 𝜎𝜃 = 26.3 which also had 12 other identified lobes. In the examination

of deeper isopycnals, in the first month 5 lobes were identified which corresponded to those seen

at both the surface and 𝜎𝜃 = 26.3. As an example of the 3D structure of lobes, one of the larger

lobes is shown (figure 4-8) in three layers on three different days as it enters the WAG. The lobe

shrinks in horizontal extent as it moves south, corresponding to the deepening of the isopycnals

toward the interior of the WAG. Therefore, the lobe approximately conserves volume. It is still

difficult to calculate a quantitative volume at this vertical resolution, particularly with uncertainty

regarding the full vertical extent, as the lobe is clear at 𝜎𝜃 = 26.5 but not below, and manifolds are

not attached to the same coastal locations for 𝜎𝜃 = 28 or below, where the water flows westward in

the Strait of Gibraltar.

For an estimate of the lobe transport, I use the surface and 𝜎𝜃 = 26.3 lobe edges and the depth

of the 𝜎𝜃 = 26.5 isopycnal as the vertical extent of the lobes. Near-surface volume, mass, salt, and

heat transports are estimated using the average content of each lobe and a timescale of two days.

The transports are on the order of 105 𝑚3/𝑠 for volume, 108 𝑘𝑔/𝑠 for mass, 106 𝑘𝑔/𝑠 for salt, and
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(a) (b)

Figure 4-7: Lagrangian WAG edge (green dashed curve) using gate to connect the unstable (red)
and stable (blue) manifolds. A lobe is visible near (−3, 36). Note the complicated folding of the
manifolds.

1012 𝐽/𝑠 for heat. The cumulative transport due to near-surface horizontal lobe advection shows

that the WAG is increasing in volume, decreasing in salt, and increasing in heat. However, without

the full depth of lobes or the diffusive fluxes, it is not clear whether these trends hold. The next

chapter will use other methods to re-examine the contribution of horizontal advection by lobes to

the changes in water properties of the layer of the WAG connected to the inflow.

4.4 Discussion and Conclusions

So far, I have examined the geometry of the Alboran Sea around the WAG from a Lagrangian

perspective. The manifolds that form the edge of the WAG extend through much of the Western

Alboran Sea on timescales of 1-2 weeks, showing that water from the Strait of Gibraltar, the

northern (Spanish) coast, and the Alboran Island can all interact with the gyre in that time. The

core region of the WAG that is disconnected from these outside areas is fairly small by comparison,

nearly disappearing at the surface for the two-week integration case. These paths for water between

regions in the Alboran Sea indicate that it is well connected. This connectivity can be important

for management in terms of both pollution, e.g. runoff and oil spills, and fisheries management for
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(a)

(b)

Figure 4-8: Evolution of one lobe in 2D and 3D. (a) Points inside the lobe are shown on simulation
days 13, 15, 17, and 19 at the surface, with the manifolds from day 15 also shown. (b) Points show
the edges of the lobe on days 15, 17, and 19 at the surface and on isopycnals 𝜎𝜃 = 26.5, 𝜎𝜃 = 27
which are sections of the stable and unstable manifolds on those surfaces. Bottom topography is
shown with purple deeper regions; green curves on the topography are the projection of the 𝜎𝜃 = 27
lobe edges on the three days.
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(a) Water

(b) Salt, Heat

Figure 4-9: Lobe fluxes, positive into WAG. Lobe depth is the deeper of the 𝜎𝜃 = 26.5 isopycnal
or the top grid cell (5m). Lobes were used to estimate fluxes into the WAG, assuming a 2 day
timescale.
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the nearby populations of Spain and Morocco.

Details of the exchange of water across the Lagrangian edge of the WAG were discussed in terms

of lobes. Lobes are water trapped between intersections of the stable and unstable manifolds and

exchanged across the boundary of the gyre. From the near-surface manifolds, I found about 40 lobes

during the 148-day period analyzed. These lobes travel completely around the offshore edge of the

WAG and into the interior (or out from it) on timescales of about one week. Estimates of their

near-surface transport using a two-day timescale, during which they tend to travel more than their

own length, gives transport rates on the order of 105 𝑚3/𝑠 for volume, 108 𝑘𝑔/𝑠 for mass, 106 𝑘𝑔/𝑠

for salt, and 1012 𝐽/𝑠 for heat. Given a WAG volume of about 2 · 1012 𝑚3, daily transports at this

rate would take about four months to fully replace the water. There is likely to be more exchange

below the 𝜎𝜃 = 26.5 isopycnal, not identified here due to the challenges involved in identifying

lobes in complicated manifolds. Although the WAG is connected to the inflow for about 50m below

this isopycnal, velocities are lower with depth, so it is not clear how much larger the full exchange

would be. The next chapter will examine that question using a different method to quantify the

Lagrangian exchange.

In the previous chapter, I quantified the Eulerian exchange of water across fixed boundaries for

the WAG. The volume transport through the sides, the term most similar to the lobe exchange, was

also on the order of 105 𝑚3/𝑠. This consistency is intruiging, but is an apples-to-oranges comparison

and should not be over interpreted. In particular, the Lagrangian exchange is localized to individual

lobes, while the Eulerian exchange is across the full side of the gyre and may include the AJ passing

through or the reshaping of the Lagrangian gyre across the fixed boundaries.

Overall, a Lagrangian examination of the geometry of the Western Alboran Sea as connected

to the Western Alboran Gyre shows the area to be well-connected. The core of the WAG is small

compared to the stirring region where water can be exchanged with the WAG edges over days to

weeks. This stirring region reaches the Strait of Gibralter, the upwelling region in the north-west,

and slightly past the Alboran Island to the east. The exchange rate of the top 5 − 50𝑚 through

lobes could replace the water throughout the WAG over a season. Understanding how this stirring

exchange connects to the features of the WAG, including its size, temperature, and salinity, will be

the focus of the next chapter.
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Chapter 5

Chaotic Advection in the Alboran Sea,

II:

Lagrangian Analysis of Property

Budgets of the Western Alboran Gyre

Summary

From chapter 3, it is clear that although the Western Alboran Gyre (WAG) is in an approximately

constant location, its slight variations in position cause large transports of water across the bound-

aries, in both the horizontal and vertical directions. For instance, most of the volume transport

across the fixed lower boundary is associated with the motion of the bottom isopycnal a few meters

per day across its mean depth. Chapter 4a elucidated the geometry of the WAG, showing the

horizontal range of manifolds, where water can be exchanged between the WAG and the rest of the

Alboran. However, the description of the lobes that carry the exchanging water left questions about

both the rate of the exchange, due to picking a fixed timescale, and how this exchange compares

to the total change in properties of the WAG, due to other processes not being considered. In this

section, I continue from the Lagrangian perspective, quantifying the exchange transport using a

gate method and then formulating Lagrangian budgets for the properites of the WAG.
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I now define the Lagrangian WAG boundary to include a section of the unstable manifold from

the western hyperbolic tranjectory that ends at a fixed longitude, a section of the stable manifold

from that longitude to the eastern hyperbolic trajectory, the coast between the two hyperbolic

trajectories, and the latitudinal segment connecting the two manifold sections, which I call the gate.

This gate is the only section of the closed WAG boundary that by definition allows advection across

it.

The advective transport perpendicular to the gate is computed numerically by integration for

volume, salt, heat, and relative vorticity for the gates at the surface and along several isopycnals.

Typical magnitudes of the gate transports are 1𝑆𝑣 for volume, 107𝑘𝑔/𝑠 for salt, 1013𝑊 for heat, and

10𝑚3/𝑠2 for relative vorticity. These transports through the gate are consistent with the surface lobe

analysis. Also, the transport magnitudes are of the correct size such that, if they had a constant

sign, the WAG could be emptied in about 10 days to 3 weeks, consistent with the timescale on

which the surface core disapears and over which observed WAG collapses occur. However, the sign

of the gate transports do change, leading to a mean exchange over five months that is an order

of magnitude smaller than the daily exchange; the exact values are sensitive to the time averaging

interval. Overall, the gate transports increase the WAG volume and its salt and heat content while

slowing down its rotation. This is consistent with the lobe analysis for the volume and heat, but

not salt.

In order to understand the impact of the advective exchange through the gate on the WAG,

it is necessary to compute the other terms in a Lagrangian budget for the WAG. For example, a

Lagrangian volume budget includes the change in the Lagrangian WAG volume over time, the gate

transport, the surface evaporation and precipitation, and cross-isopycnal diffusive transport at the

bottom isopycnal. Similar Lagrangian budgets can be computed for salt, heat, and vorticity. From

the volume budget I see that the gate transport and the changes in WAG volume over time are

the two largest terms and are correlated, indicating that the advective exchange at the gate is the

dominant control over the WAG volume. Advection being the dominant term is consistent with

the Eulerian budgets in chapter 3. However, the Lagrangian volume budget does not close, and so

these results may be erroneous. Several sources of error may prevent the closing of this budget. The

known errors include insufficiently long manifolds to reach the gate longitude, which can be fixed

by longer integration; the rapid movement of manifolds causing the gate to change on timescales
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shorter than one day, which may be fixed by higher time resolution; and errors in computing the

daily volume of the WAG due to very complicated manifolds, which are not easily remedied.

5.1 Introduction

From chapter 3, it is clear that although the Western Alboran Gyre (WAG) is in an approximately

constant location its slight variations in position cause large transports of water across the bound-

aries, in both the horizontal and vertical directions. For instance, most of the volume transport

across the fixed lower boundary is associated with the motion of the bottom isopycnal a few meters

per day across its mean depth. Chapter 4, the first part of the Lagrangian analysis, elucidated the

geometry of the WAG, showing the horizontal range of manifolds, where water can be exchanged

between the WAG and the rest of the Alboran. However, the description of the lobes that carry

the exchanging water left questions about both the rate of the exchange, due to picking a fixed

timescale, and whether this exchange describes the total change in properties of the WAG, as other

processes were not considered. In this section, I continue from the Lagrangian perspective, quan-

tifying the exchange transport using a gate method and then formulating a Lagrangian budget for

the volume of the WAG.

Lagrangian budgets for volume, salt, heat, and vorticity would allow the examination of each

physical process affecting the WAG properties as a term in the budget. This examination, as done

for the Eulerian WAG in chapter 3, could elucidate which processes are the dominant controls on the

size, temperature, salinity, and vorticity of the WAG. The advantage of a Lagrangian WAG budget

is that the water is tracked over time as it moves, eliminating any error due to the WAG moving

across fixed boundaries. The challenge in a Lagrangian budget is in correctly identifying the moving

edges. Such budgets have rarely been presented; for one case, with an idealized coastal recirculation,

see Miller et al. (2002). To my knowledge, this is the first attempt to close a Lagrangian budget

for an aperiodic, three-dimensional ocean feature.

5.2 Methods

As described in the previous chapter, manifolds from the hyperbolic separation points on the coast

can delineate the WAG from the rest of the gyre. The unstable manifold connected to the western
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(a) steady (b) time-varying

Figure 5-1: Definition Figure : Unstable (red) and stable (blue) manifolds . Hyperbolic points H1,
H2. Left, steady. Water is trapped in the gyre for all time. Right, periodic. Shaded lobes map to
each other in time and transport water out of WAG. Unshaded lobes transport water into WAG.
Orange gate connecting the manifolds allows a well-defined gyre boundary.

hyperbolic trajectory, where the Atlantic Jet (AJ) separates fromt the coast, separates water that

begins inside the WAG, to the south of the curve, from water that just flowed through the Strait

of Gibraltar, to the north of the curve. The stable manifold connected to the eastern hyperbolic

trajectory, where the AJ reconnects to the African coast, separates water that continues eastward,

to the north of the curve, from water that turns westward and recirculates inside the WAG, to the

south of the curve. I now define a unique, piecewise-continuous Lagrangian WAG boundary.

In order to consistently have a unique boundary, segments of the stable and unstable manifolds

are joined by a gate (figure 5-1). This gate is then the single part of the boundary where advected

water crosses the boundary (see Haller and Poje 1998 for a mathematical treatment of this behavior).

A 14-day integration period for the manifolds is chosen so that on the below-surface isopycnals, the

unstable manifold from the western hyperbolic point and the stable manifold from the eastern

hyperbolic point typically pass some of the same longitudes. I then use a longitudinal north-south

oriented line segment as the gate, which connects the manifolds. A segment of coast between the

separation points closes the WAG boundary.

The Lagrangian nature of the boundary formed from these manifolds should mean that the

boundary advected from one day to the next lies on top of the new boundary, except for that region

involving the gate. To demonstrate this property, I show a series of three days’ boundaries with

the boundary from the previous day advected forward (figure 5-2). These days have an extremely
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(a) day 99 (b) day 100 (c) day 101

Figure 5-2: WAG Lagrangian boundary on the surface in blue. Red dashed curves are the previous
day’s offshore boundary advected forward one day. Axes are longitude and latitude.

good match, except for near the gate and very close to the coast. Near the gate, the mismatch is

due to the segment of the forward manifold that is advected past the gate being separate from the

backwards manifold. The region inside this mismatch is part of a lobe passing through the gate

(lobes were discussed in the previous chapter). The coastal differences near the eastern hyperbolic

trajectory are related to the unstable manifold of that hyperbolic trajectory folding and extending

along-coast there, because forward integration of any slight errors will follow the unstable rather

than stable manifold. The coastal differences near the western hyperbolic trajectory are related

to that trajectory’s movement in time, such that the resolution of the boundary may not allow an

exact alignment near the coast after being advected offshore.

In the results section, I will quantify the advective exchange through the gate for the full depth

of the WAG connected to the inflow from the Straight of Gibraltar, down to 𝜎𝜃 = 27.5. The gate

transport is computed by two-dimensional numerical integration on the vertical stack of gates at the

surface and on each isopycnal (figure 5-3). The integrand is the perpendicular velocity for volume,

the appropriate advective model diagnostic for salt and heat, or velocity multiplied by the vertical

component of relative vorticity for vorticity. This exchange through the gate is simpler to compute

than identifying individual lobes, as it only requires the intersections of manifolds with a fixed

longitude, rather than finding intersections between manifolds. However, it is the same process of

exchange (see Haller and Poje 1998 for a more detailed discussion of this fact). I will then consider

this advective exchange through the gate in the context of a full Lagrangian volume budget.

Computation of the full Lagrangian volume budget requires several terms beyond the transport
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Figure 5-3: WAG Lagrangian gate for simulation day 19. The gate locations at the surface and on
5 isopycnals are shown (solid lines), plus the edge of the full two-dimensional area the transport is
integrated over (dashed).

through the gate. These include air-sea exchange, or evaporation and precipitation; the cross-

isopycnal volume transport due to the diffusive movement of the isopycnals; the cross-manifold

transport, which is due to errors in manifold computation; and the change in total WAG volume

over time. The precipitation and evaporation are integrated from model diagnostics (listed in

appendix B) over the surface of the Lagrangian WAG.

The diffusive volume transport is the change in volume above an isopycnal due to the motion of

that isopycnal from diffusion of heat and salt; a more detailed description of where this applies is in

the budget section of the results. The change in density over one day is computed by updating the

temperature and salinity from a snapshot at the beginning of the day using the model diagnostics

of their daily-average diffusive changes (listed in appendix B), then computing an updated density

using the TEOS-10 seawater equation of state (McDougall and Barker, 2011). The depth of the

isopycnal in the updated density field is found using linear interpolation, and its change from the

beginning of the day, multiplied by the cell area, is the cross-isopycnal transport at that point.

The cross-manifold transport should be zero if manifold segments for each day are exact La-

grangian matches to manifold segments on the following day. The error is computed from the

perpendicular distance between the Lagrangian boundary on one day and the Lagrangian boundary

from the previous day advected forward over that day. The advection is done in the same manner
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as the original manifold integration. Transports are computed by multiplying the perpendicular

distanceby the distance along the manifold between points and the depth between layers.

Finally, the change in total WAG volume is computed from the volume of cells inside the

Lagrangian WAG boundary each day. The daily-average density of each cell determines which

boundary curve applies. For example, the manifold segments, gate, and coast segment that comprise

the boundary for 𝜎𝜃 = 26.5 apply to cells with densities between 𝜎𝜃 = 26.4 and 𝜎𝜃 = 26.625, as those

are halfway to the next analyzed isopycnals. All cells with their corners fully inside the boundary

have their full volume included. Cells that intersect the boundary have the polygonal area inside

the horizontal extent of the cell and inside the boundary calculated; these areas are then multiplied

by the height of the cell for the volume. Occasionally, multiple intersections with one cell prevent

reasonable computation, in which case either the fraction of corners inside the boundary are used as

the fraction of the cell inside the boundary, or the boundary of the WAG at that level is simplified

by hand. Errors associated with this problem will be discussed in the results section on the volume

budget.

5.3 Results

5.3.1 Gate Transport

From both the time-mean manifolds (figure 4-3) and the surface lobe volume fluxes (figure 4-9) in

the previous chapter, there is a positive volume flux into the WAG. To quantify the time-varying

fluxes continuously, I have redefined the boundary of the gyre using segments of the coast and the

14-day manifolds joined by a gate, a nonmaterial surface where all advective transports occur. This

gate method allows computation of the same advective exchange as using the lobes, but with a clear

definition of the rate at which they occur, due to not needing to pick a timescale.

Advection of volume, salt, heat, and vorticity through the gate are calculated for each vertical

layer as defined on isopycnals by the manifolds computed on that isopycnal, with the vertical extent

being limited to halfway to the adjacent isopycnals. The transports through the gate from each

layer and the total are in figure 5-4, with salt fluxes of 107𝑘𝑔/𝑠 and heat transports of 1013𝑊 .

These follow the same overall patterns as the volume transport through the gate, which is often

on the order of 1𝑆𝑣. In fact, using the mean salinity and temperature from the Eulerian WAG in
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the previous chapter, the volume transport through the gate with these reference water properties

almost exactly matches the total gate transport of salt and heat (figure 5-5). The relative vorticity

transport is on the order of 10𝑚3/𝑠2. The planetary vorticity multiplied by the volume transport

through the gate is generally larger in magnitude than the relative vorticity transport through the

gate and more clearly shows the differences in the patterm over time, which indicates that the

relative vorticity is more variable than the temperature or salinity at the gate.

These transports through the gate are consistent with the magnitudes from the near-surface

lobe analysis, which covered 10 − 60% of the WAG depth. Also, the gate transport magnitudes

are of the correct size such that, if they had a constant sign, the WAG could be emptied in about

10 days to 3 weeks, consistent with the timescale on which the surface core disapears and over

which observed WAG collapses occur. However, the sign of the gate transports do change, leading

to a mean transport an order of magnitude smaller than the daily exchange; the exact values are

sensitive to the time averaged over. Overall, the gate transports’ means describe a WAG that is

getting larger, increasing in salt and heat, and slowing down its rotation. These signs are consistent

with the signs of the means from lobe analysis for the volume and heat, but not salt.

5.3.2 Budgets using the gate method

In order to describe a budget for the Lagrangian WAG, I first define the volume of interest. The

area is limited using the piecewise-continuous boundary decribed above at the surface and on every

isopycnal analyzed, comprised of the coast, the stable and unstable manifolds, and the gate. In the

vertical, the top of the volume is at the sea surface and the bottom is the 𝜎𝜃 = 27.5 isopycnal. I will

look at the evolution of volume, salt, heat, and vorticity for this approximately Lagrangian volume.

Unfortunately, closing these types of budgets is exceedingly difficult. I will describe all the terms of

the volume budget and the most important challenges preventing the closing of this budget. After

that, I will present a comparison of the transports through the gate and the changes in storage of

salt, heat, and vorticity, which I expect to be the largest terms in those budgets.

The volume of the Lagrangian WAG can change through precipitation and evaporation through

the surface, advection through the gate, and diffusive movement of the 𝜎𝜃 = 27.5 isopycnal. The

diffusive movement of the bottom boundary is the change in depth of the 𝜎𝜃 = 27.5 isopycnal due

to the diffusion of salt and heat across this surface, changing the local density and therefore the
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(a) volume

(b) salt

Figure 5-4: Advective transports through the gate at each layer and total for volume (a, top), salt
(b, bottom); more on next page.
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(c) heat

(d) vorticity

Figure 5-4: Advective transports through the gate at each layer and total for volume (previous
page), salt (previous page), heat (c, top), and vorticity (d, bottom).
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(a) salt and volume

(b) heat and volume

(c) vorticity and volume

Figure 5-5: Advective transport through the gate compared with that done by the volume transport
at a representative salinity, temperature, or vorticity.
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volume above the isopycnal. The sum of these three transports would be equal to the change in

volume over time if the boundary were exactly mapped onto itself by advection, except for the

gate. However, the discrete depths where manifolds are calculated brings in an additional term of

the diffusive movement of each isopycnal in the areas where the boundary is “open” in the vertical

because it is inside the Lagrangian boundary at one isopycnal and not the next, or vice-versa. An

example of two manifolds on different isopycnals is shown in figure 5-6; generally, the blue boundary,

which is higher, is larger than the green. Then upward diffusive movement of the isopycnal between

them decreases the volume inside the gyre, indicating cross-isopycnal volume transport out of the

gyre.

The volume budget can then be written

𝑑𝑉

𝑑𝑡
=

¨
𝑔𝑎𝑡𝑒

𝑈 · 𝑑𝐴+

¨
𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑃 − 𝐸 𝑑𝐴+

¨
𝜎=27.5

𝑑ℎ

𝑑𝑡
𝑑𝐴+

¨
𝑠𝑡𝑒𝑝𝑠

𝑑ℎ

𝑑𝑡
𝑑𝐴, (5.1)

where 𝑈 is the velocity perpendicular to the gate (eastwards), 𝑃 − 𝐸 is precipitation minus evap-

oration, and ℎ is the depth of the isopycnal. The 𝑑ℎ/𝑑𝑡 is transport due to diffusion of salt and

heat over one day, calculated as described in the methods section. The steps term occurs at the

isopycnals halfway between those used to define the gyre boundaries, with the area pertaining to

water where only one side of the isopycnal is inside the gyre. A budget for a volume vertically

bounded between any two isopycnals would not have a step term. Furthermore, the precipitation

minus evaporation term and 𝜎𝜃 = 27.5 diffusive term will be replaced by diffusive terms for the

upper and lower isopycnals.

I first show a budget for the bottom layer of the Lagrangian WAG. This volume is limited by

the 𝜎𝜃 = 27 manifolds and gate in the horizontal, and extends in the vertical between the 𝜎𝜃 = 27

and 𝜎𝜃 = 27.5 isopycnals (figure 5-7). This layer is defined by the manifolds at the top of it, rather

than in the middle as I described above, to have the simplest example case with the same type of

budget. The volume transport at the gate is generally between 104𝑚3/𝑠 and 105𝑚3/𝑠, taking both

signs as the manifolds change their order: if the unstable manifold is north of the stable one, the

transport is negative, out of the gyre, while if the stable manifold is north of the unstable one, the

transport is positive, into the gyre.

The diffusive movement of the top and bottom isopycnals are generally an order of magnitude or

two smaller, 103−104𝑚3/𝑠. The larger diffusive transports are similar to the isopycnal moving 1𝑐𝑚
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Figure 5-6: WAG edge at 𝜎𝜃 = 26.5 (blue) and 𝜎𝜃 = 27.5 (green) on day 38 of the simulation for
illustration. Advection through the gate is represented by red arrows. Volume transport implied by
the diffusive movement of 𝜎𝜃 = 27.5 will occur over its whole area. That from diffusive movement of
the 𝜎𝜃 = 27.25 isopycnal, where the boundary takes a “step”, will occur wherever only one boundary
covers the area.
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Figure 5-7: WAG volume budget for the region defined by the 𝜎𝜃 = 27 manifolds and ending
at 𝜎𝜃 = 27.5. Red stars indicate days with known problems of ill-defined boundaries, fast time
dependence, or large errors in 𝑑𝑉/𝑑𝑡 from manifold surgery. Transports in 𝑚3/𝑠.

in the vertical over the whole gyre due to one day’s diffusion. These three volume transports should

sum to the change in volume of this layer of the WAG. The daily volume is calculated similarly to

the method described in the methods section, by finding the areas of the model’s grid cells inside

the horizontal boundary on 𝜎𝜃 = 27 as described and then multiplying by the distance between the

two isopycnals in the vertical for each. The daily volume is on the order of 1011𝑚3, and its discrete

derivative is generally on the order of 105𝑚3/𝑠. However, there are occasions where the change in

volume spikes. Even when there are no spikes, the change in volume does not quite match the sum

of the other transports. An examination of the timeseries shows that the transport through the

gate, which is the dominant term, is correlated with the time-derivative of the volume (figure 5-7,

green and negative blue curves), but that the total of the three transports minus 𝑑𝑉/𝑑𝑡 is not close

to zero.

I know about several sources of error within this volume budget and will describe them before

showing the budget for the full vertical extent of the WAG. First, occasionally the manifolds from
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trajectories integrated for 14 days will not reach the position of the gate (example in figure 5-8a).

The gate position was chosen to minimize these occurances, but there are still a few. In these cases,

a bounded WAG is defined using the nearest isopycnal boundary that is closed. This problem can

be remedied with longer integration times.

Second, calculating the area inside the boundary can be nearly impossible when manifolds are

very complicated, folding back on themselves or curling around repeatedly in an eddy, such that

model grid cells are intersected repeatedly (example in figure 5-8b). I therefore simplified the

boundaries by hand, connecting subsets of points from the original boundary to remove the folding

and curling sections without changing the nature of the included area. This “manifold surgery”

generally does not change the area much from estimates using only cells with one or no crossings by

the boundary. When the area is different by similar amounts to daily changes, I consider the day

with the large changes to have a poorly defined volume and 𝑑𝑉/𝑑𝑡, so the budget will not generally

close. Another problem is that the manifold surgery can cause the boundaries to not exactly advect

onto eachother from day to day, creating a cross-manifold volume transport. This transport, which

is usually small, is calculated from the mismatch in the position of boundary points advected from

the previous day and the day’s boundary, as described in the methods section. Neither of these

issues with the manifolds’ complications and the associated surgery can be improved by better

resolution or longer integration; those are more likely to exacerbate the issues.

Third, sometimes the velocity field and the manifolds are evolving more quickly than can be

resolved by daily positions. This is clear when, for instance, the gate positions from one day to

the next are far from eachother. The gate longitude is fixed, so this type of change means that

the manifolds have moved latitudinally more than the width of the gate in one day (example in

figure 5-8c). Then the advective transport through the gate, using the daily gate position and the

daily-averaged velocities there, is not a good approximation of the transport through the moving

gate. To improve the gate transport, manifolds must be calculated more frequently, which requires

more resolution in time from the model. This is possible, but costly in terms of storage and use of

the increased output. An example of the gate transport and changes in volume at this improved

resolution is shown for two days (figure 5-9). The volume transport through the hourly gate is quite

variable, and its daily means, while similar to the transport through the daily gate, are not the

same value as those daily computed values. The hourly volume transport and changes in volume

159



(a) (b)

(c)

Figure 5-8: Lagrangian budget error examples. Left top, 𝜎𝜃 manifolds for simulation day 62 with
14 day integration do not reach the gate location of 4.4∘𝑊 . Right, surface manifolsa and boundary
on simulation day 20. Note the complicated and self-intersecting edge in the southwest. Bottom,
𝜎𝜃 manifolds for simulation days 61 and 62, over which the gate moves farther than its width.
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(a) (b)

Figure 5-9: Example of terms in an hourly Lagrangian volume budget over simulation days 20 and
21. Left, volume transport comparison between daily and hourly. Right, comparison of the hourly
gate transport and changes in Lagrangian volume.

on these two days are an even worse match than for most of the daily estimates I will describe.

This mismatch is without any problems with manifolds not reaching the gate location or needing

to be simplified by hand, and indicates that either the surface and diffusive terms are fairly large,

or there is a term missing in the budget. Unraveling this budget was outside the scope of work that

time allowed.

Returning to the lower WAG budget, the cross-manifold transport is shown in purple and is

included in the total. Days when the horizontal boundary is from a different isopycnal, the gate

moves farther than its length, or the manifold surgery changed the volume significantly are marked

by red stars. These errors explain the more egregious mismatches between the changes in volume

and the calculated transports, although errors still can reach about 50% of the change in volume.

One further error, which I have not been able to calculate, is the effect of vertical shear. If vertical

shear is large, the manifolds may not be an accurate representation of water slightly above or below

them. Then the cross-manifold transports may be much larger than calculated above. Improving

this error would require either using more isopycnals or else changing methods to one that is fully

three-dimensional.

With all of the known errors described, I present the volume budget calculated for the full

161



Lagrangian WAG (figure 5-10). The total transports of each type are shown, the sum of those

terms from each layer. As an example of how the layers contribute to the whole, figure 5-4 shows

the component gate transports. Generally, the transport timeseries have similar patterns, but the

transports near the surface are larger because the velocities are larger there. In the full budget,

as with the lower layer budget, the transport through the gate and the changes in volume are the

dominant terms. They are both typically on the order of 1𝑆𝑣, which is similar to the transport

of the inflow through the Strait of Gibraltar and about 1/2 to 1/3 the recirculating volume in the

Eulerian WAG (definition in Chapter 3). This transport through the gate is consistent with the

surface lobe analysis, as the total depth covered here is about ten times the depth of the surface

layers analyzed there. It is also worth noting that when the WAG has been observed to move

eastwards or collapse, these large circulation changes occur over about 2 weeks (e.g. Heburn and

Violette, 1990). The gate transports of 1-3 Sv, if consistent, could drain the WAG (≈ 1012𝑚3) in

1-3 weeks. Thus, these volume fluxes are in line with what has been observed.

The diffusive movement of 𝜎𝜃 = 27.5 is still typically 103-104𝑚3/𝑠, and the precipitation-

evaporation is even smaller, with a mean of −8𝑚3/𝑠. The diffusion at the steps is larger, 104-

105𝑚3/𝑠, mostly due to the movement of the 𝜎𝜃 ∈ 26.2, 26.4 isopycnals, which can move several

meters a day due to the small density gradients near the surface. The cross-manifold transport is

about the same size, 104 − 105𝑚3/𝑠, which is usually small compared to the gate and 𝑑𝑉/𝑑𝑡 terms.

Days with known problems of manifolds that did not reach the gate, fast time dependence, or large

changes in area from the manifold surgery are marked. Unfortunately, because these errors occur

at different times at the different depths, this indicates problems on most days. Overall, the known

transports do correlate with the calculated changes in volume (𝜌 ≈ 0.6), but differences are in no

way negligible. Looking at just the periods of time with the fewest days with known errors (figure

5-11), the unaccounted-for volume changes are still more than 20% of the total 𝑑𝑉/𝑑𝑡 on many days.

However, it is more clear in these sections that the transport through the gate is the major con-

tributer to the changes in volume. Also, the cross-manifold transport and the diffusive movement of

isopycnals are sometimes as large as the error, so on those days the budget is approximately closed.

Given the uncertainties in the volume budget and the fact that the calculated transports do not

match the calculated changes in volume, it is not possible to close the budgets for water properties

carried by these transports. However, I still present a comparison between the advective transport
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Figure 5-10: WAG volume budget for the full analyzed section, surface to 𝜎𝜃 = 27.5. Red stars
indicate days with known problems of ill-defined boundaries, fast time dependence, or large errors
in 𝑑𝑉/𝑑𝑡 from manifold surgery. Transports in 𝑚3/𝑠 for the 148 days analyzed.
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Figure 5-11: WAG volume budget for the time periods without known large errors, surface to
𝜎𝜃 = 27.5. Transports in 𝑚3/𝑠. Here, total is the gate transport plus surface flux plus diffusive
movement of the bottom isopycnal minus the time derivative of the volume. The diffusive movement
of isopycnals at the steps and the cross-manifold transport are also plotted.

through the gate and the changes in the storage for salt, heat, and vorticity. These are likely to be

the largest terms, at least for salt and heat, as they are in the Lagrangian volume budget and the

Eulerian budgets from the previous chapter, and their order of magnitude should be accurate, as

demonstrated by the similar values for gate transport in hourly and daily computations.

The changes in storage of salt and heat are calculated by adding together the values in each cell

multiplied by the portion of the cell’s volume and then differentiating in time. The same challenges

in finding the included volume persist. The changes in storage are shown with their associated

gate transports in figure 5-12, and are, similarly to the volume transports and changes in storage,

correlated but of different values.

The volume-integrated relative vorticity and its time derivative are calculated in the same man-

ner as for salt and heat. Several of the large spikes carry over from the problems in calculating

the WAG volume. However, as with the gate transport, this does not match the volume storage

changes as well as the heat and salt storage changes. It is possible that the other terms of windstress,

diffusion, and drag are important for the Lagrangian vorticity budget in the same way they were in

the Eulerian budget. In the next section, I will discuss the relationship between the Eulerian and

Lagrangian transports and budgets.
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(a) salt

(b) heat

(c) vorticity

Figure 5-12: Lagrangian budget terms: transport through the gate and changes in storage for salt,
heat, and vorticity.
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5.4 Discussion

Throughout my work on the WAG, I have been examining its exchange with its surroundings. The

Eulerian budgets had the complication that the dynamical edges may not match the fixed edges,

leaving uncertainty about what part of the computed transport through the sides was really exchange

between the WAG and AH. In the previous chapter, I estimated transport across a Lagrangian WAG

boundary using lobes. However, identifying individual lobes was complicated and I had to make

assumptions about their vertical structure and the time over which they moved from the interior

to the exterio of the WAG or vice-versa. In this chapter, I haveredefined the Lagrangian WAG

boundary and used a gate to find the transport into and out of the gyre in a more continuous way.

The volume, salt, heat, and vorticity transports through the gate are equivalent to the transport

by lobes and are the Lagrangian analogue of the net advective transports through the sides of the

Eulerian WAG. Comparing the two (figure 5-13) shows that they are the same magnitude for

volume, salt, and heat. These three transports are driven by the volume transport in both Eulerian

and Lagrangian frames, with variations in temperature and salinity making very small changes to

the transport. For vorticity, the Lagrangian transport across the gate is 5-10 times larger than

the net Eulerian advection across the boundary. The vorticity transport also does not follow the

same patterns in time as volume transport, indicating that there are relatively large variations in

vorticity near the gate. The mismatch in vorticity advection here, as with the mismatch between

gate transport and integrated changes in vorticity, implies that other terms in the vorticity budget

will be important. As this was true for the Eulerian budget, with five terms of similar magnitudes,

further analysis of the Lagrangian vorticity budget requires aditional calculations. Unfortunately,

using Stokes’ theorem to calculate the area integral of the curl from the line integral along the

boundary will be much less useful in this case, due to the very complicated boundaries on many

days. I have not presented such calculations due to the large errors involved in either integration

method, around the boundary or the area integral of the curls.

The qualitative features of these transports are that they take both signs in all layers, that typi-

cally the fluxes are of the same sign with depth, and that the signal is aperiodic (no peaks were found

in spectra computed using 28-day segments). As mentioned previously, the lobe and gate transports

agree in the magnitude of the transport. Generally, there is also agreement with the magnitude from

the Eulerian analysis. These consistencies in this aperiodic, depth-dependent flow are encouraging
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(a) volume (b) salt

(c) heat (d) vorticity

Figure 5-13: Comparison of transport through the sides of the WAG from the Lagrangian and
Eulerian analyses. Transport of volume, salt, heat, and vorticity are shown.
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for the general use of these Lagrangian methods in other oceanic flows. However, the challenges

in closing the budgets require additional methodological work before three-dimensional Lagrangian

budgets will allow for a clear interpretation. Some of the problems described for the budgets are

tractable to solve, such as needing longer manifold integration times for a closed boundary, or re-

peating the analysis with varied numbers of layers to determine the errors from shear. Problems

with accurately calculating the volume, and thereby correct storage terms, are not easily remedied,

and may require new methods to be developed.

Altogether, the Lagrangian analysis has shed some light on what controls the features of the

Western Alboran Gyre. Advection is the largest driver of changes in water properties and mostly

explains the short-term changes in storage, so time-dependent advection is most likely controlling

the salinity minimum and temperature maximum in the gyre. However, the Eulerian analysis

suggested that these extrema were created with the WAG and decaying over time. Given the lack

of closed budgets, I cannot confirm or contradict this suggestion with the Lagrangian information

from this chapter. However, from chapter 4 it is clear that it takes more than two weeks for water

from the edges of the WAG to reach the core region where the extrema are located. If water is

mixed through diffusion along the way, it is reasonable to expect the extrema to be fairly unaffected

by the exchange across the WAG edge.

While Eulerian and Lagrangian analyses have large differences, the magnitudes of transports

are similar, implying that some of the conclusions from the Eulerian budgets will probably hold for

fully-formed Lagrangian budgets. Questions about the collpase of the WAG might benefit from an

analysis like this for a simulated collapse (such as done by Sanchez-Garrido et al. 2013), but it will

probably be necessary to more carefully track the hyperbolic trajectories for integrating manifolds,

as such a collapse changes the geometry of the system. As discussed earlier, it may also be necessary

to have higher time resolution to close a Lagrangian budget than an Eulerian one, and in the case

of a collapsing WAG this need for high time resolution is likely to increase.
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Chapter 6

General Discussion and Conclusions

In this work, I have examined two model flows based on oceanographic features: a submesoscale

overturning eddy and the Western Alboran Gyre. My goal was to understand the role of advection

for tracers in each case, particularly from a Lagrangian viewpoint. Here I will summarize the findings

in the previous three chapters and discuss both how these improve past understandings and what

questions remain for future work.

In Chapter 2, I presented a kinematic submesoscale overturning eddy model based on the rotating

cylinder. Following work in Pratt et al. (2013) on the chaotic and regular regions in the system,

bounded by Lagrangian barriers to transport, I considered the question of how the described chaotic

advection and oceanic turbulent diffusion might affect tracer distribution. I used the kinematic

model for trajectory integration to find out whether chaotic advection or turbulent diffusion would

dominate the flow in the chaotic sea and resonant regions. Using the Batchelor scale and trajectory

ensembles, I found that chaotic advection is dominant when the chaotic region is larger than the

Batchelor scale, which is several meters to tens of meters using the scalings presented. This result

supports the use of Lagrangian coherent structures identified as barriers to transport as such, even

in the presence of diffusion, if the chaotic regions or adjacent regular regions identified are much

larger than the Batchelor scale. In the past, mesoscale features (usually several kilometers or more

across) have been the main focus; these are not in danger of being overrun by turbulent diffusion.

However, there is a lower limit on the scales where that is the case, and this should be checked for

the systems under consideration.

A second aspect of the work in Chapter 2 examined the evolution of a tracer in a dynamic
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simulation of the rotating cylinder flow. In the cases with chaotic advection due to symmetry

breaking by an off-center rotating lid, the increased stretching and folding of water parcels in

chaotic regions increased the full-cylinder stirring rate measured by the tracer variance function

and increased the volume-integrated Nakamura effective diffusivity. Larger off-center perturbations

and lower imposed numerical diffusivity amplified these changes. Overall, chaotic advection could

double the mixing of a tracer through stirring, but did not change it by a large amount such as an

order of magnitude. Therefore, when there is a combination of chaotic and regular regions stirring

a fluid, mixing will occur faster in the chaotic regions, but not dramatically faster.

Chapter 2 and Appendix A also presented some mathematical derivations that are new. First,

there is the evolution of a Gaussian tracer distribution in linear three-dimensional flow, updated

from a similar derivation by Flierl and Woods (2015). Second, a derivation of the Nakamura

effective diffusivity in a constant-density fluid in three dimensions, updated from a two-dimensional

presentation by Nakamura (1996). Hopefully both of these will be of use to researchers working

on stirring and mixing. One aspect of theory that could be improved, building on these terms, is

a clear mathematical connection between Lyapunov exponents, Nakamura effective diffusivity, and

the tracer variance function.

Other, more oceanographic directions for future work include examining more open flows with

submesoscale features and considering the effects of stirring and mixing in the rotating cylinder on

phytoplankton. The biggest limitation of the rotating cylinder as an analogue of an eddy, in my

view, is that it is closed. In the ocean, most features are not exactly closed, exchanging some water

with their surroundings. Even eddies identified as coherent are often the core of a larger rotating

feature that is exchanging water. It would be very interesting work to look at the effects of realistic

eddies on the stirring and mixing of tracers. On a large scale, I have done this for the Western

Alboran Gyre, which I will discuss shortly, but for the submesoscale, the lack of observations of

overturning eddies leaves room for the development and analysis of another model.

The effects of an overturning flow on phytoplankton production and diversity is another interest-

ing direction for future work. Vertical mixing of phytoplankton is strongly connected to productivity

through the mean level of light, and competition depends somewhat on how intermixed different

species are. Looking at the effects of an overturning circulation on initial conditions with different

light-adapted phytoplankton at different depths may provide insight into how transient eddies affect
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competition in the ocean. Alternatively, looking at the dominant type of phytoplankton that wins

out from a large pool of initial traits in a permanent overturning feature would allow for consider-

ation of whether such traits are found in the ocean, such as regions with frequent convection and

this strong overturning.

In Chapters 3-5 I presented Eulerian and Lagrangian analyses of the Western Alboran Gyre,

WAG, from five months of a realistic simulation using the MITgcm. The WAG is an anticyclonic gyre

just east of the Strait of Gibraltar in the westernmost basin of the Mediterranean Sea. Outstanding

oceanographic questions about the WAG include the maintenance of the horizontal gradients of

temperature and salinity and the vorticity balance that maintains the structure. There is also a

variety of work addressing the occasional collapse of the gyre, but I did not examine this behavior.

From the Eulerian analysis of the budgets for the properties of the WAG I was able to conclude

that advection is a significant driver. In budgets of volume and heat for the WAG, the total advection

(net through all sides) generally was the same magnitude as and correlated with the changes in the

storage of the property of interest. A salt budget for the region containing the salinity minimum

addressed the evolution of the minimum, finding that advection drove its decay. For both salt and

heat, the local extrema appear to be decaying from values set during the formation of the WAG.

In the vorticity budget, there was a complicated balance including advection, wind stress and the

downward viscous diffusion of that force, and drag and horizontal viscous diffusion. All of these

and the changes in time of the integrated relative vorticity were sometimes of similar magnitudes.

Lateral viscous diffusion was the largest driver in the mean, with wind and vertical diffusion adding

smaller amounts of anticyclonic vorticity. Drag and advection opposed the rotation of the WAG.

Advection as a large contributor is consistent with the suggestion that advection of cyclonic vorticity

into the gyre may prompt its collapse (Sanchez-Garrido et al. 2013), even though the time period

analyzed here does not include a collapse.

The balance of advection through the sides and bottom in the Eulerian volume budget of the

WAG was an outstanding feature, where each was much larger than the total advection which drove

the changes in volume. The advection through the bottom of the WAG was associated with the

motion of the 𝜎𝜃 = 27.5 isopycnal. The anticorrelation between this bottom transport and the net

transport through the sides indicates a stretching-squashing motion of the water in the area. This

overall rearrangement of water on timescales of a few days indicates that a Lagrangian view may
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give better insight into the physical processes occurring, without the obscurement of these large

motions.

A set of Lagrangian budgets parallel to the Eulerian ones would still have advection through

the sides, but now localized to the gate. Advection through the bottom is replaced by changes

in storage when the bottom isopycnal moves due to advection. Smaller terms due to diffusion

and surface forcing are also present. Due primarily to challenges in computing the Lagrangian

WAG volume, it was not possible to close such budgets. It is necessary to use manifolds which are

longer and more frequently resolved in time to get a more exact estimate of the transports involved.

Unfortunately, often the manifolds are complicated, and errors are introduced from the process of

simplifying them enough to be able to calculate the area inside. These challenges did not totally

prevent the calculation of the storage and advective terms of the budgets for volume, salt, heat,

and vorticity. However, because the volume budget is not closed, it is not possible to strongly state

a balance of terms for anything else. Nonetheless, there are similarities between the Eulerian and

Lagrangian advection through the sides of the gyre. These are often of the same magnitude, and in

both cases the transport can take both signs in an aperiodic fashion.

This is the first time transport estimates from lobes and a gate have been calculated in three

dimension for an aperiodic three-dimensional flow. Further development of Lagrangian methods

for budgets would allow for clarity in the types of budgets presented here. So far, the results were

somewhat similar to Eulerian budgets, so it is not entirely clear that further improvements in the

same methods will allow budgets that add significantly to the results in terms of what the major

balances are. Nonetheless, a Lagrangian budget would be exactly relatable to the properties of

a more fixed set of water parcels than an Eulerian budget can be, and there is an advantage in

interpretation there.

In that vein, the Lagrangian information about the paths of transport into and out of the gyre

that connect to other regions of the Alboran Sea and to the Strait of Gibraltar are useful on their

own, and were presented in chapter 4. Lagrangian manifolds outlined a three-dimensional lobe’s

evolution and the shape of three-dimensional stirring region and core of gyre. Interestingly, the

stirring region can reach the northern coast, where there is upwelling; this indicates that upwelled

nutrient can reach the WAG on fairly short timescales, which may be important for phytoplankton

productivity. The extent of the stirring region becomes narrower with depth. The narrowing of
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the stirring region can be explained by the lower velocities at depth, leading to longer exchange

timescales. The Lagrangian connections between different regions matter for understanding the

Alboran Sea, showing that the WAG is less separate from the Atlantic Jet and northern coast than

an Eulerian geostrophic picture, such as from satellite observations, would suggest. Given the fast

changes in time and in the vertical seen here that caused problems closing budgets, past work done

with altimetry for Lagrangian structures may be missing part of the dynamics. It would be useful

to do a repeat study of the WAG using altimetric geostrophic velocity fields to examine how large

the differences are.

In chapter 4, I also identified individual lobes, masses of water bounded by manifolds that

are exchanged between the WAG and its surroundings, in three dimensions and examined their

evolution. As an example of the 3D structure of lobes, one of the larger lobes is shown in three

layers on three different days as it enters the WAG. The lobes were used to estimate the transport

across the WAG boundary near the surface, over the top 5−50𝑚, with results of 105𝑚3/𝑠 of volume

transported, with associated transports of 108𝑘𝑔/𝑠, 106𝑘𝑔/𝑠 of salt, and 1012𝐽/𝑠 of heat. These

transports are smaller than those from the gate transport due to the greater depth of the gates

included.

Finally, another avenue for future work is to examine the impact of the WAG stirring region

on biology. Some past studies have shown a large impact on productivity through the ageostrophic

flow in the Atlantic Jet (e.g. Oguz et al. 2014), and a connection between the variability in sea-

surface height patterns and chlorophyll concentrations (Navarro et al. 2011). The advection of

nutrient-enriched water from the Strait of Gibraltar, where there is high vertical mixing by tides,

and the northwestern coastal region, where there is upwelling, has not been examined. Stirring of

these waters into the WAG may impact both productivity and diversity; an in-depth discussion of

possible methods for studying these impacts is in Appendix C. Finally, the connectivity of the WAG

to the coast of Spain can impact the management of fish populations. An ongoing study is examining

larval dispersal of sardine and hake in light of these possible connections (Sanchez-Garrido, pers.

comm.).

Altogether, the research described here has reexamined model oceanographic flows using La-

grangian methods but including aspects that are often neglected, such as diffusivity, three dimen-

sions, and aperiodic flows. I can conclude that turbulent diffusivity in the ocean will not destroy
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Lagrangian coherent structures that are large compared to the Batchelor scale; that advective trans-

port through a gate is similar in magnitude to the net Eulerian transport through the sides of the

same structure; and that Lagrangian budgets require sufficient resolution in space and time but may

still not close exactly when manifolds are very complicated. There are many opportunities for fur-

ther work regarding biological impacts, Lagrangian budget methods, and a detailed understanding

of measures of stirring and mixing.
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Appendix A

Rotating Cylinder Appendix

This appendix includes detailed information associated with Chapter 2. These details are likely

only necessary if you wish to work with this model of the rotating cylinder yourself, and thus much

of it has been omitted from the main text.

A.1 Bifurcation Analysis

Here I go into more detail about the bifurcations of the background velocity field in the kimenatic

model of the rotating cylinder. I first repeat the definitions of the velocity field and our definitions

of fixed points. Then I present the bifurcation diagram and an example of the flow with many fixed

points.

The overturning streamfunction for the kinematic model of the rotating cylinder is

Ψ = −𝐸1/2𝑅(𝑟)𝐹 (𝑧), (A.1)

where 𝐸 is the Ekman number,

𝐹 (𝑧) = 𝐴[sin(𝜁) sinh(𝜁) − cos(𝜁) cosh(𝜁)] +𝐵[sin(𝜁) sinh(𝜁) + cos(𝜁) cosh(𝜁)] −𝐷, (A.2)

𝜁 is a transformed vertical coordinate,

𝜁 =
𝑧 − 1/2

𝐸1/2
,

and the constants 𝐴,𝐵,𝐷 are defined as in section 2 of the main text. For a cylinder height of 1
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and finite radius, 𝑎, assumed to be near 1, we define 𝑅 as

𝑅(𝑟) = 𝑟2(𝑎− 𝑟)2/2, (A.3)

giving velocities

𝑈 = −𝜕Ψ
𝜕𝑧 = 𝑅(𝑟)[𝐴 sin(𝜁) cosh(𝜁) +𝐵 cos(𝜁) sinh(𝜁)], (A.4)

𝑊 = 𝜕Ψ
𝜕𝑟 = −(𝑎− 𝑟)(𝑎− 2𝑟)𝐸1/2𝐹 (𝑧) (A.5)

where 𝑈 is radial and 𝑊 is the vertical. The axisymmetric azimuthal velocity 𝑉 is defined

𝑉 (𝑟, 𝑧) = 𝑟(𝑎− 𝑟)2[
1

2
+𝐵 sin(𝜁) cosh(𝜁) −𝐴 cos(𝜁) sinh(𝜁)]. (A.6)

For all parameter values, there is upwelling in the center and weaker downwelling near the sides of

the cylinder. There is horizontal convergence near the bottom and divergence near the top.

The azimuthal velocity 𝑉 has a value of zero only at 𝑧 = 0 and 𝑟 ∈ 0, 𝑎. At 𝑧 = 0 and 𝑟 = 𝑎, the

vertical and radial velocities are also zero, meaning that along the bottom and outer walls, every

point is fixed. There are no other points in the flow where the total velocity is zero. However,

because the azimuthal velocity is axisymmetric, points with zero vertical and radial velocity are

circular periodic orbits. These trajectories are fixed points in a vertical cross-section, so we will call

these rz-fixed points. At the surface, 𝑧 = 1, the vertical and radial velocities are zero, so every point

is an 𝑟𝑧-fixed point.

All 𝑟𝑧-fixed points in the interior occur at 𝑟 = 0.5𝑎, because this is the only place where 𝑊 = 0

in the interior. Finding the 𝑟𝑧-fixed points is thus the process of finding 𝑈 = 0 at 𝑟 = 0.5𝑎, which

we have done numerically by finding the values of 𝑧 where 𝑈 changes sign. It is equivalent to

numerically find the local extrema of Ψ at 𝑟 = 0.5𝑎. There is always an 𝑟𝑧-fixed point at 𝑧 = 0.5.

New 𝑟𝑧-fixed points appear through pitchfork bifurcations, where new pairs split from 𝑧 = 0.5

and move apart in 𝑧 as 𝐸 decreases from one (figure A-1). It is possible to classify the rz-fixed

points as elliptic or hyperbolic according to their behavior in the 𝑟 − 𝑧 plane: the overturning

streamfunction is a local maximum at elliptic points and a saddle at hyperbolic points, where it is

a minimum along 𝑟 = 0.5𝑎 but a maximum for its value of 𝑧. At 𝐸 = 1, the (𝑟, 𝑧) = (0.5, 0.5) point
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Figure A-1: Height of rz-fixed points in the vertical plane at 𝑟 = 0.5𝑎. Black indicates elliptic
points, blue hyperbolic, gray the neutrally stable points at the top and bottom. New fixed point
pairs separate symmetrically from 𝑧 = 0.5 as 𝐸 decreases. At each bifurcation, the central fixed
point changes stability.

is elliptic. As 𝐸 decreases to about 1/62, the first bifurcation creates two elliptic points which move

away from the central, now-hyperbolic, point. The next bifurcation creates two hyperbolic points,

and the central fixed point becomes elliptic again. This process continues; the growth in number of

fixed points as 𝐸 decreases is due to repeated pitchfork bifurcations of the 𝑧 = 0.5 fixed point. Thus,

as these bifurcations occur, their effects remain within a region bounded by trajectories between

the first pair of hyperbolic points, meaning that their effects are quite local. The spreading of the

first pair of hyperbolic points, and not the total increase in rz-fixed points, causes the increasing

vertical homogeneity of the flow with decreasing 𝐸 which appears qualitatively similar to Taylor

columns. An example with 9 𝑟𝑧-fixed points is shown in figure A-2 for 𝐸 = 0.00125; the central

point is now elliptic. Trajectories in the vertical plane are level curves of the streamfunction; these

show the elliptic and hyperbolic nature of the 𝑟𝑧-fixed points, where a point near an elliptic point

remains nearby but a point near a hyperbolic point may travel a long distance before returning or

may move toward another hyperbolic point.
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Figure A-2: Trajectories in the vertical plane for 𝐸 = 0.00125, 𝑎 = 1. There are 9 rz-fixed points
along 𝑟 = 0.5, marked with red stars. Note the closed curves between the outermost hyperbolic
points which surround the interior 5 rz-fixed points; these limit the effects of those points to the
local area.

A.2 Gaussian Tracer in Linear Strain

In this section, I finish the derivation of the evolution of a three-dimensional tracer in a steady

linear strain flow. This was omitted from the main text because there I was primarily interested

in showing that the thinnest width will asymptotically approach the Lagrangian Batchelor scale. I

first repeat the definitions of the velocity field, the tracer evolution equation, and the form of the

solution. Then I present the remainder of the derivation for the full time-dependent solution from

the differential equations for each parameter.

We are solving for the evolution of tracer concentration, 𝐶, with a solution in the form

𝐶 = 𝑐𝑚𝑎𝑥(𝑡) exp

(︂
−𝑥2𝛼2(𝑡)

2
+

−𝑦2𝛽2(𝑡)
2

+
−𝑧2𝛾2(𝑡)

2

)︂
, (A.7)

where 𝑐𝑚𝑎𝑥 is the maximum concentration and 𝛼 𝛽 𝛾 are the reciprocal of the standard deviations

in each direction. These four parameters are dependent on time but not space. The smallest width

of the distribution is 𝜎 = 1/𝛼 and in the main text we found a stable fixed point of 𝜎 =
√︀
𝜅/|𝜆3|,

where 𝜆3 is the contraction rate of the velocity field. The velocities are defined in the Lagrangian
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frame by

𝑢 = 𝜆3𝑥(𝑥0, 𝑡), (A.8)

𝑣 = 𝜆2𝑦(𝑥0, 𝑡), (A.9)

𝑤 = 𝜆1𝑧(𝑥0, 𝑡), (A.10)

𝜆1 > 𝜆2 > 𝜆3, (A.11)

𝜆1 > 0, 𝜆3 < 0, (A.12)

with 𝑥⃗(𝑥0, 𝑡) indicating the initial position 𝑥0 of the water parcel at 𝑡 = 0. The Lagrangian tracer

evolution equation is
𝜕𝐶

𝜕𝑡
+ 𝜆3𝑥

𝜕𝐶

𝜕𝑥
+ 𝜆2𝑦

𝜕𝐶

𝜕𝑦
+ 𝜆1𝑧

𝜕𝐶

𝜕𝑧
= 𝜅∇2𝐶, (A.13)

where 𝜅 is the diffusivity.

In the main text, the form of 𝐶 and the tracer evolution equation allowed us to find differential

equations for each of our four parameters, which are

1

𝑐𝑚𝑎𝑥

𝑑𝑐𝑚𝑎𝑥

𝑑𝑡
= −𝜅

(︀
𝛼2 + 𝛽2 + 𝛾2

)︀
, (A.14)

𝑑𝛼

𝑑𝑡
= −𝜆3𝛼− 𝜅𝛼3, (A.15)

𝑑𝛽

𝑑𝑡
= −𝜆2𝛽 − 𝜅𝛽3, (A.16)

𝑑𝛾

𝑑𝑡
= −𝜆1𝛾 − 𝜅𝛾3. (A.17)

A full solution for 𝐶 can be written by solving the differential equations for all four parameters.

The width parameters’ equations are nonlinear, but rewritten in terms like 𝛼−2 give:

𝑑𝛼−2

𝑑𝑡
= 2𝜆3𝛼

−2 + 2𝜅,

𝑑𝛽−2

𝑑𝑡
= 2𝜆2𝛽

−2 + 2𝜅,

𝑑𝛾−2

𝑑𝑡
= 2𝜆1𝛾

−2 + 2𝜅,
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which are Bernoulli equations, solvable with integrating factors, giving

𝛼 =
√︀

|𝜆3|/𝜅
(︁

(𝜆3𝛼
−2
0 /𝜅− 1)𝑒2𝜆3𝑡 + 1

)︁−1/2
,

𝛽 =
(︁

(𝛽−2
0 + 𝜅/𝜆2)𝑒

2𝜆2𝑡 − 𝜅/𝜆2

)︁−1/2
,

𝛾 =
√︀
𝜆1/𝜅

(︁
(𝜆1𝛾

−2
0 /𝜅+ 1)𝑒2𝜆1𝑡 − 1

)︁−1/2
,

where subscript 0 indicates the value at 𝑡 = 0. The differences in these equations is due to the

different signs of each 𝜆, with the ambiguity of the sign of 𝜆2 preventing its factoring.

The 𝑐𝑚𝑎𝑥 equation depends on the width parameters and is not simple to solve directly. However,

some inspection shows that 𝑐𝑚𝑎𝑥/(𝛼𝛽𝛾) is conserved, so we can write

𝑐𝑚𝑎𝑥(𝑡) = 𝑐0𝛼(𝑡)𝛽(𝑡)𝛾(𝑡).

For anyone in doubt, we plug in this solution to check it:

𝑑𝑐𝑚𝑎𝑥

𝑑𝑡
=

𝑑

𝑑𝑡
(𝑐0𝛼𝛽𝛾) = 𝑐0

(︂
𝛽𝛾
𝑑𝛼

𝑑𝑡
+ 𝛼𝛾

𝑑𝛽

𝑑𝑡
+ 𝛼𝛽

𝑑𝛾

𝑑𝑡

)︂
,

= 𝑐0
(︀
−𝛼𝛽𝛾(𝜆3 + 𝜅𝛼2) − 𝛼𝛽𝛾(𝜆2 + 𝜅𝛽2) − 𝛼𝛽𝛾(𝜆1 + 𝜅𝛾2)

)︀
,

= −𝑐0𝛼𝛽𝛾
(︀
𝜆1 + 𝜆2 + 𝜆3 + 𝜅[𝛼2 + 𝛽2 + 𝛾2]

)︀
,

=⇒ 1

𝑐𝑚𝑎𝑥

𝑑𝑐𝑚𝑎𝑥

𝑑𝑡
= −𝜅

(︀
𝛼2 + 𝛽2 + 𝛾2

)︀
.

𝐶 then has been fully solved:

𝐶(𝑥, 𝑦, 𝑧, 𝑡) =𝑐0
√︀

|𝜆1𝜆2𝜆3|/𝜅3
(︁

[(𝜆3𝛼
−2
0 /𝜅+ 1)𝑒2𝜆3𝑡 − 1][(𝜆2𝛽

−2
0 /𝜅+ 1)𝑒2𝜆2𝑡 − 1][(𝜆1𝛾

−2
0 /𝜅+ 1)𝑒2𝜆1𝑡 − 1]

)︁−1/2

· exp

[︂
−𝑥2𝜆3

2𝜅[(𝜆3𝛼
−2
0 /𝜅+ 1)𝑒2𝜆3𝑡 − 1]

+
−𝑦2𝜆2

2𝜅[(𝜆2𝛽
−2
0 /𝜅+ 1)𝑒2𝜆2𝑡 − 1]

+
−𝑧2𝜆1

2𝜅[(𝜆1𝛾
−2
0 /𝜅+ 1)𝑒2𝜆1𝑡 − 1]

]︂
.

For a three dimensional Gaussian tracer in a linear strain field, in the Lagrangian frame the width will

increase in the stretching direction(s) forever, but reach a fixed value in the contracting direction(s).
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A.3 Nakamura Effective Diffusivity

A.3.1 Derivation

I follow the derivation of Nakamura’s (1996) effective diffusivity, updating it to be in three dimen-

sions rather than two. Mathematically, there are no large changes; I simply replace areas with

volumes and curves with surfaces, as appropriate. It should be noted that the 𝑞 in Nakamura’s

work is a density-weighted tracer concentration. The rotating cylinder as formulated has a constant

density, and so this weighting is not included.

I begin with a tracer advection-diffusion equation assuming no sources:

𝜕𝑐

𝜕𝑡
+ 𝑢⃗ · ∇𝑐 = 𝑘∇2𝑐, (A.18)

where 𝑐 is the tracer concentration, 𝑢⃗ is the fluid velocity, and 𝑘 is the diffusivity without stirring.

The goal is to form an equation that appears to include only diffusion:

𝜕

𝜕𝑡
𝑐 =

𝜕

𝜕𝑉
𝜅
𝜕𝑐

𝜕𝑉
,

where 𝜅 is an effective diffusivity. To do so, I will change to volume coordinates.

I first define a relationship between volume, 𝑉 , and 𝑐 as

𝑉 (𝑐) ≡
˚

𝑐*≥𝑐
(1)𝑑𝑉 ; (A.19)

note that 𝑐* denotes values of 𝑐 inside integrals. This definition of 𝑉 (𝑐) gives the total volume in

the system where dye concentration is larger than 𝑐, so it is zero at the maximum dye concentration

and is the total volume of your system at the minimum of dye concentration. Regardless of the

arrangement of dye, 𝑉 (𝑐) is a one-to-one relationship between volumes and concentrations. The

volume can be rewritten using 𝜈, an integral operator on a scalar defined as

𝜈 ≡
˚

( )𝑑𝑉 ; (A.20)

then the volume is

𝑉 (𝑐, 𝑡) ≡ 𝜈(1).
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These integrals can be rewritten in two coordinates along the 𝑐 surface and one across so that

the unit volume changes form:

𝑑𝑉 = 𝑑𝑥𝑑𝑦𝑑𝑧 = 𝑑𝑠1𝑑𝑠2
𝑑𝑐

|∇𝑐|
,

where the gradient of 𝑐 is the determinant of the Jacobian for changing coordinates in an integral.

Then 𝜈 can be written as

𝜈( ) =

ˆ
𝑐*≥𝑐

𝑑𝑐*
‹

𝑐*
𝑑𝑠

( )

|∇𝑐*|
, (A.21)

where 𝑑𝑠 now stands for a small area on the surface. This form describes integrating a series of shells

in 𝑐 for whatever scalar function is chosen. Reversing the inequality changes the side of the chosen

𝑐 surface integrated over, and islands can be included without changing the function. However, it

is assumed that the domain boundaries are 𝑐 surfaces; for the rotating cylinder problem, there is no

flux across the boundaries, and this condition is met.

If there are no non-conservative processes affecting 𝑐, here meaning no diffusion, then 𝑉 (𝑐) will

be a constant relationship in time. With the addition of diffusion, the change in 𝑉 with time at a

constant 𝑐 will be nonzero. The evolution of 𝑐(𝑉 ) due to diffusion should take the usual form,

𝜕𝑐(𝑉 )

𝜕𝑡
= 𝑘∇2𝑐(𝑉 ), (A.22)

One can take the time derivative of 𝜈 as defined in Eqn. 3 to find the time derivative of 𝑉 :

𝜕

𝜕𝑡
𝑉 =

𝜕

𝜕𝑡
𝜈(1) =

𝜕

𝜕𝑡

ˆ
𝑐≥𝑐*

𝑑𝑐*
‹

𝑐*
𝑑𝑠

1

|∇𝑐*|
(A.23)

=
𝜕

𝜕𝑐

ˆ
𝑐*≥𝑐

𝑑𝑐*
𝜕𝑐*

𝜕𝑡

‹
𝑐*
𝑑𝑠

1

|∇𝑐*|
𝜕𝑉

𝜕𝑡
=

𝜕

𝜕𝑐
𝜈

(︂
𝜕𝑐

𝜕𝑡

)︂
(A.24)

= −1

‹
𝑐
𝑑𝑠
𝜕𝑐/𝜕𝑡

|∇𝑐|
. (A.25)

The negative one comes from taking the derivative of a semi-definite integral, using the fundamental

theorem of calculus:
𝜕

𝜕𝑥

ˆ 𝑎

𝑥*
𝑓(𝑥)𝑑𝑥 = − 𝜕

𝜕𝑥

ˆ 𝑥

𝑎
𝑓(𝑥*)𝑑𝑥* = −𝑓(𝑥).

Because the relationship between 𝑐 and 𝑉 is one-to-one, one can use the evolution of 𝑉 above to
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determine the evolution of 𝑐:

𝜕

𝜕𝑡
𝑐 =

𝜕𝑐

𝜕𝑉

𝜕𝑉

𝜕𝑡
(A.26)

=
𝜕𝑐

𝜕𝑉

𝜕

𝜕𝑐
𝜈

(︂
𝜕𝑐

𝜕𝑡

)︂
=

𝜕

𝜕𝑉
𝜈

(︂
𝜕𝑐

𝜕𝑡

)︂
=
𝜕𝑐

𝜕𝑡
. (A.27)

The 𝑉 derivative of 𝜈 is equivalent to the average of the scalar function along the chosen 𝑐 surface;

here, that means the evolution of 𝑐(𝑉 ) on a surface is the average of the changes along it, which is

intuitively correct. In volume coordinates 𝜕𝑐/𝜕𝑡 is the righthand term in Eqn 4. Putting that term

into the 𝑐 evolution and rearranging, we will soon find the effective diffusion equation. First, put in

the correct term, using the volume-integration form of 𝜈:

𝜕

𝜕𝑡
𝑐 =

𝜕

𝜕𝑉
𝜈

(︂
𝜕𝑐

𝜕𝑡

)︂
=

𝜕

𝜕𝑉
𝜈
(︀
𝑘∇2𝑐

)︀
=

𝜕

𝜕𝑉

˚
𝑐*≥𝑐

(𝑘∇2𝑐*) 𝑑𝑉. (A.28)

Then use the appropriate divergence theorem,
˝

∇ · 𝑓 𝑑𝑣 =
‚
𝑓 · 𝑛⃗ 𝑑𝑠, and rewrite the normal

vector in terms of the gradient of 𝑐:

𝜕

𝜕𝑡
𝑐 =

𝜕

𝜕𝑉

˚
𝑐*≥𝑐

(𝑘∇2𝑐*) 𝑑𝑉

=
𝜕

𝜕𝑉

‹
𝑐=𝑐*

(𝑘∇𝑐*) · 𝑛⃗ 𝑑𝑠

=
𝜕

𝜕𝑉

‹
𝑐=𝑐*

(𝑘∇𝑐*) · ∇𝑐*

|∇𝑐*|
𝑑𝑠

=
𝜕

𝜕𝑉
𝑘

‹
𝑐=𝑐*

|∇𝑐*|2

|∇𝑐*|
𝑑𝑠 (A.29)

=
𝜕

𝜕𝑉
𝑘
𝜕

𝜕𝑐
𝜈
(︀
|∇𝑐|2

)︀
, (A.30)

where the final equality depends on the derivative 𝜕𝜈/𝜕𝑐, Eqn 6. Now, to have the derivatives in
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𝑉 , use
𝜕

𝜕𝑐
=
𝜕𝑉

𝜕𝑐

𝜕

𝜕𝑉
=

1

𝜕𝑐/𝜕𝑉

𝜕

𝜕𝑉
,

which gives

𝜕

𝜕𝑡
𝑐 =

𝜕

𝜕𝑉
𝑘
𝜕

𝜕𝑐
𝜈
(︀
|∇𝑐|2

)︀
,

=
𝜕

𝜕𝑉
𝑘
𝜕𝜈

(︀
|∇𝑐|2

)︀
𝜕𝑉

1

𝜕𝑐/𝜕𝑉
(A.31)

=
𝜕

𝜕𝑉
𝑘
𝜕𝜈

(︀
|∇𝑐|2

)︀
𝜕𝑉

1

(𝜕𝑐/𝜕𝑉 )2
𝜕𝑐

𝜕𝑉
(A.32)

=
𝜕

𝜕𝑉
𝜅
𝜕𝑐

𝜕𝑉
, (A.33)

where

𝜅 = 𝑘
𝜕𝜈

(︀
|∇𝑐|2

)︀
𝜕𝑉

1

(𝜕𝑐/𝜕𝑉 )2

= 𝑘
1

(𝜕𝑐/𝜕𝑉 )2
𝜕

𝜕𝑉

˚
|∇𝑐|2 𝑑𝑉

= 𝑘
1

(𝜕𝑐/𝜕𝑉 )2
ˆ|∇𝑐|2. (A.34)

Eqn 17 shows that the effective diffusivity is a function of the average gradient, ˆ|∇𝑐|2, along the

relevant 𝑐 contour and the slope of 𝑐(𝑉 ). This expression can be interpreted as an effective surface

area. To demonstrate the connection to surface area, we reconsider the average gradient and volume

slope terms as integrals of the same form:

1

(𝜕𝑐/𝜕𝑉 )2
ˆ|∇𝑐|2 =

𝜕𝑉

𝜕𝑐

1

(𝜕𝑐/𝜕𝑉 )
ˆ|∇𝑐|2

=

‹
𝑐=𝑐*

1

|∇𝑐*|
𝑑𝑠

1

(𝜕𝑐/𝜕𝑉 )

𝜕

𝜕𝑉

ˆ
𝑐*≥𝑐

‹
𝑐=𝑐*

|∇𝑐*|2

|∇𝑐*|
𝑑𝑠

=

‹
𝑐=𝑐*

1

|∇𝑐*|
𝑑𝑠

1

(𝜕𝑐/𝜕𝑉 )

𝜕𝑐

𝜕𝑉

𝜕

𝜕𝑐

ˆ
𝑐*≥𝑐

‹
𝑐=𝑐*

|∇𝑐*|2

|∇𝑐*|
𝑑𝑠

=

‹
𝑐=𝑐*

1

|∇𝑐*|
𝑑𝑠

‹
𝑐=𝑐*

|∇𝑐*|2

|∇𝑐*|
𝑑𝑠. (A.35)

We then assume that |∇𝑐| is constant on the 𝑐-surface of interest and take it out of the integrals,
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giving

1

(𝜕𝑐/𝜕𝑉 )2
ˆ|∇𝑐|2 =

1

|∇𝑐*|

‹
𝑐=𝑐*

𝑑𝑠
|∇𝑐*|2

|∇𝑐*|

‹
𝑐=𝑐*

𝑑𝑠

=
|∇𝑐*|2

|∇𝑐*|2

‹
𝑐=𝑐*

𝑑𝑠

‹
𝑐=𝑐*

𝑑𝑠

=

[︂‹
𝑐=𝑐*

𝑑𝑠

]︂2
= 𝐴2, (A.36)

where 𝐴 is the surface area. Thus, the diffusive flux depends upon the gradient across a surface,

𝜕𝑐/𝜕𝑉 , and the size of the surface, 𝐴, the terms one would expect.

A.3.2 Long-time Limit

In section 3.3 we describe the evolution of dye in our flow field under various parameters for the

rotating cylinder flow. At long times, for the symmetric flow field, the dye contours resemble nested

tori, although with cross-sections that are somewhat oval, between a circle and a square. Here, we

show the derivation of the expected limit of
´
𝜅𝑒𝑓𝑓𝑑𝑉 . We are assuming that the dye concentration

at late times will depend only on distance from the central orbit the tori are nested around, meaning

that the gradient of the dye concentration will be uniform along a torus and the effective diffusivity

on each torus is exactly 𝑘𝐴2 as suggested by equation 18.

We can calculate
´
𝜅𝑒𝑓𝑓𝑑𝑉 for a standard circular tori, by taking the volume integral of 𝑘𝐴2, the

background diffusivity multiplied by the squared surface area. Recall that the volume of a circular

torus is

𝑉𝑐𝑡 = 2𝜋2𝑟2𝑅,

where 𝑟 is the radius of the circular cross-section and 𝑅 is the distance from the center of mass to

the center of the cross-section. The surface area is

𝐴𝑐𝑡 = 4𝜋2𝑟𝑅.

Note that 𝐴 is the derivative of 𝑉 with respect to the half-width of the cross-section. Therefore, to

do a volume integral of a function that changes only with that width, such as 𝐴2, we can simplify
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the integration: ˚
( )𝑑𝑉 =

ˆ
( )𝐴𝑑𝑟.

We can now calculate
´
𝜅𝑒𝑓𝑓𝑑𝑉 assuming the contours are nested circular tori. First, we rewrite

the integral in terms of area:

ˆ
𝜅𝑒𝑓𝑓𝑑𝑉 =

˚
𝑘𝐴2𝑑𝑉

ˆ
𝜅𝑒𝑓𝑓𝑑𝑉 = 𝑘

ˆ
𝐴3𝑑𝑟 (A.37)

= 𝑘

ˆ
(𝐴𝑐𝑡)

3𝑑𝑟 = 𝑘

ˆ
(𝐴𝑠𝑡)

3𝑑𝑟.

Then, we use the formula for area of a circular torus to complete the integration:

ˆ
𝜅𝑒𝑓𝑓𝑑𝑉 = 𝑘

ˆ
(𝐴𝑐𝑡)

3𝑑𝑟

= 𝑘

ˆ
(4𝜋2𝑟𝑅)3𝑑𝑟

= 43𝜋6𝑅3𝑘

ˆ
𝑟3𝑑𝑟

= 42𝜋6𝑅3𝑘𝑟4
⃒⃒⃒𝑟𝑚𝑎𝑥

𝑟𝑚𝑖𝑛

. (A.38)

For our cylinder, 𝑅 = 0.5 and 𝑟 ∈ [0, 0.5], giving

ˆ
𝜅𝑒𝑓𝑓𝑑𝑉 = 𝑘

ˆ
(𝐴𝑐𝑡)

3𝑑𝑟 = 42𝜋6𝑅3𝑘𝑟4
⃒⃒⃒𝑟𝑚𝑎𝑥

𝑟𝑚𝑖𝑛

= 𝑘𝜋6/8.

The circular torus result is a minimum, because there is still volume outside the largest torus that

fits in the cylinder and the final cross-sections are somewhat oval, thus having a larger surface area

per volume.
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Appendix B

Eulerian Analysis Appendix

B.1 MITgcm Output Comparison to Climatology

Although truly validating any complex model output is not possible, demonstrating the approximate

correctness of the output’s behavior is desirable when relating modeled results to the natural system.

Here, temperature, and salinity output from the MITgcm for a simulation of the Alboran Sea is

compared to climatological temperature and salinity. The model has 1-3km resolution and is forced

by ocean and atmospheric reanalysis data for November 2007 to December 2008. Monthly averages

are shown; data is linearly interpolated to selected depths. The model run was performed by the

author, and the climatological data is from the MEDAR/MEDATLAS II dataset, which is based

on in-situ hydrographic observations (http://www.ifremer.fr/medar/climatol.htm). The mapping in

climatology assumes a 100km correlation lengthscale.

Figures are presented for all 14 months with both Novembers and both Decembers adjacent;

they are organized by depth (5, 100, 400, and 1000m), so the first 14 are for 5m depth. The

salinity comparison shows fairly good matching at all depths and months. Temperatures show more

separation. The model Atlantic is too warm below the surface, and at the 5m depth the seasonal

cycle in the model is smaller than in climatology.

B.1.1 5m depth

Temperature images have a colorbar range of 14 (dark blue) to 22 (dark red), which is the potential

temperature from the model and the in-situ temperature from climatology. Salinity images have a
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colorbar range of 35 (dark blue) to 38 (dark red) in practical salinity units.

190



(a) Jan
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(a) May
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(a) Jul

(b) Aug
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(a) Sep

(b) Oct
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(a) Nov 2007

(b) Nov 2008
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(a) Dec 2007

(b) Dec 2008
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B.1.2 100m depth

Temperature images have a colorbar range of 10 (dark blue) to 15 (dark red), which is the potential

temperature from the model and the in-situ temperature from climatology. Salinity images have a

colorbar range of 35 (dark blue) to 39 (dark red) in practical salinity units.
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(a) Jul
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(a) Sep

(b) Oct
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(a) Nov 2007

(b) Nov 2008
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(a) Dec 2007

(b) Dec 2008
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B.1.3 400m depth

Temperature images have a colorbar range of 9 (dark blue) to 14 (dark red), which is the potential

temperature from the model and the in-situ temperature from climatology. Salinity images have a

colorbar range of 35 (dark blue) to 39 (dark red) in practical salinity units.
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(a) Jan
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(a) Mar

(b) Apr
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(a) May
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(a) Jul

(b) Aug
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(a) Sep

(b) Oct
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(a) Nov 2007

(b) Nov 2008
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(a) Dec 2007

(b) Dec 2008
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B.1.4 1000m depth

Temperature images have a colorbar range of 7 (dark blue) to 13.5 (dark red), which is the potential

temperature from the model and the in-situ temperature from climatology. Salinity images have a

colorbar range of 34 (dark blue) to 39.5 (dark red) in practical salinity units.

B.2 MITgcm Eulerian Budget Methods

B.2.1 Overview

The Massachusetts Institute of Technology general circulation model (MITgcm) allows for the output

to include diagnostics necessary to close the volume, momentum, temperature, and salinity budgets

of the model grid cells. In this section, I will list the necessary diagnostics and describe how I

use them to examine the balance of terms in those budgets and a vorticity budget for the Western

Alboran Gyre. Details of these budgets can change with the configuration of the MITgcm, but the

following descriptions should be useful for those starting their own work. The information contained

here is consolidated from the MITgcm documentation, archives of the MITgcm user listserv, and

“Heat and salt budget in MITgcm" by Abisek Chakraborty and Jean-Michel Campin.

B.2.2 Diagnostics

My model configuration has a 10-second timestep, and I am analyzing the daily-averaged fluxes for

my budgets. This averaging time is much larger than the timestep, so I am not including diagnostics

needed to account for the Adams-Bashforth time-stepping (advection scheme 33 for heat and salt).

My model run does include surface forcing (EXF package) but does not include relaxation to known

fields; it is also a hydrostatic run. Other packages used include KPP (turbulence closure) and OBCS

(open boundary forcing).

All diagnostics to be saved out must be specified before the model run begins. An example of

the data.diagnostics file to request one of the diagnostics to be saved is:

frequency(3) = 86400.,

fields(1,3) = ’momVort3 ’,

filename(3) = ’VORTave’,

where momVort3 is the vertical component of vorticity, and files VORTave will contain daily-
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Table B.1: Table of diagnostic names and what they contain, plus grid measures needed for budgets
and background stratifications.

Name Field Units
Standard Diagnostics

UVEL Zonal velocity 𝑚/𝑠

VVEL Meridional velocity 𝑚/𝑠

WVEL Verical velocity 𝑚/𝑠

SALT Salinity 𝑝𝑠𝑢

THETA Potential Temperature ∘𝐶
RHOAnoma Density Anomaly 𝑘𝑔/𝑚3

PHIHYD Hydrostatic pressure potential anomaly 𝑚2/𝑠2

Grid
rAc Temperature, salinity, vertical velocity (TSW) cell area 𝑚2

rAw Zonal velocity cell area 𝑚2

rAs Meridional velocity cell area 𝑚2

rAz Vorticity cell areas 𝑚2

drF Cell heights 𝑚

hFacC Portion of TSW cell height in water 𝑚2

hFacW Portion of western edge of TSW cell height in water 𝑚2

hFacS Portion of southern edge of TSW cell height in water 𝑚2

dxg Zonal cell edge edge length 𝑚

dyg Meridional cell edge length 𝑚

dxc Zonal distance between TSW cell centers 𝑚

dyc Meridional distance between TSW cell centers 𝑚

Constants from data or STDOUT
rhoConst Background density 𝑘𝑔/𝑚3

CP Specific heat 𝐽/𝑘𝑔 ∘ 𝐶

average vorticity for each model cell.Table ?? lists the set of grid information and standard variables

(e.g. temperature and salinity) that are needed for understanding the budgets. Table B.3 lists all

the diagnostics needed to close the momentum (horizontal), vorticity (vertical), temperature, and

salinity budgets.

Other useful diagnostics are UVEL, VVEL, WVEL, the velocity field; SALT, THETA, salinity

and potential temperature; RHOAnoma, PHIHYD, density anomaly and pressure/density anomaly.

A few other terms are needed: rhoConst and CP from your data file or STDOUT, and the grid

distances and areas: rAc, rAw, rAs, drF, hFacC, hFacW, hFacS, dxg, dyg, dxc, dyc.
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Table B.2: Table of diagnostic names and what they contain. This set of diagnostics can close the
salinity and temperature budgets.

Name Field Units
Change in Time

TOTSTEND Total salinity tendency 𝑃𝑆𝑈/𝑑𝑎𝑦

TOTTTEND Total potential temperature tendency ∘𝐶/𝑑𝑎𝑦

Advection
ADVx_SLT Zonal salinity advection 𝑃𝑆𝑈𝑚3/𝑠

ADVy_SLT Meridional salinity advection 𝑃𝑆𝑈𝑚3/𝑠

ADVr_SLT Vertical salinity advection 𝑃𝑆𝑈𝑚3/𝑠

ADVx_TH Zonal potential temperature advection ∘𝐶𝑚3/𝑠

ADVy_TH Meridional potential temperature advection ∘𝐶𝑚3/𝑠

ADVr_TH Vertical potential temperature advection ∘𝐶𝑚3/𝑠

WSLTMASS Vertical velocity and salinity correlation 𝑃𝑆𝑈𝑚/𝑠

WTHMASS Vertical velocity and potential temperature correlation ∘𝐶𝑚/𝑠

Mixing
DFrI_SLT Vertical implicit salinity diffusion 𝑃𝑆𝑈𝑚3/𝑠

DFrI_TH Vertical implicit zonal potential temperature diffusion ∘𝐶𝑚3/𝑠

DFrE_SLT Vertical explicit salinity diffusion 𝑃𝑆𝑈𝑚3/𝑠

DFrE_TH Vertical explicit zonal potential temperature diffusion ∘𝐶𝑚3/𝑠

DFxE_SLT Zonal salinity diffusion 𝑃𝑆𝑈𝑚3/𝑠

DFyE_SLT Meridional salinity diffusion 𝑃𝑆𝑈𝑚3/𝑠

DFxE_TH Zonal potential temperature diffusion ∘𝐶𝑚3/𝑠

DFyE_TH Meridional potential temperature diffusion ∘𝐶𝑚3/𝑠

KPPg_SLT Salinity flux due to vertical turbulence closure 𝑃𝑆𝑈𝑚3/𝑠

KPPg_TH Potential temperature flux due to vertical turbulence closure ∘𝐶𝑚3/𝑠

Forcing
oceFWflx Surface freshwater flux 𝑘𝑔/𝑚2𝑠

SFLUX Surface salt flux, including effects of freshwater flux 𝑔𝑚2/𝑠

TFLUX Surface heat flux 𝑊/𝑚2

Other
SSH Sea surface height 𝑚

momHDiv horizontal momentum divergence 𝑠−1
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Table B.3: Table of diagnostic names and what they contain. This set of diagnostics can close the
horizontal momentum and vertical vorticity budgets.

Name Field Units
Change in Time

TOTUTEND Total zonal velocity tendency 𝑚/𝑠/𝑑𝑎𝑦

TOTVTEND Total meridional velocity tendency 𝑚/𝑠/𝑑𝑎𝑦

Advection
Um_Advec Zonal velocity tendency due to advection of momentum 𝑚/𝑠2

Vm_Advec Meridional velocity tendancy due to advection of momentum 𝑚/𝑠2

Mixing
VISrI_Um Vertical implicit zonal momentum diffusion 𝑚4/𝑠2

VISrI_Vm Vertical implicit meridional momentum diffusion 𝑚4/𝑠2

Um_Diss Horizontal diffusion and drag of zonal momentum 𝑚/𝑠2

Vm_Diss Horizontal diffusion and drag of meritional momentum 𝑚/𝑠2

UBotDrag Bottom drag of zonal momentum 𝑚/𝑠2

VBotDrag Bottom drag of meritional momentum 𝑚/𝑠2

USidDrag Side drag of zonal momentum 𝑚/𝑠2

VSidDrag Side drag of meritional momentum 𝑚/𝑠2

Forcing
Um_Ext Zonal velocity tendency due to wind 𝑚/𝑠2

Vm_Ext Meridional velocity tendency due to wind 𝑚/𝑠2

Other
Um_Cori Zonal velocity tendency due to Coriolis term 𝑚/𝑠2

Vm_Cori Meridional velocity tendency due to Coriolis term 𝑚/𝑠2

Um_dPHdx Zonal velocity tendency due to pressure gradient term 𝑚/𝑠2

Vm_dPHdy Meridional velocity tendency due to pressure gradient term 𝑚/𝑠2

momVort3 Vertical component of vorticity 𝑠−1
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B.2.3 Budget Terms

Volume Budget

The volume budget is the simplest of the budgets I discuss. The model grid is aligned such that

velocities are defined at the centers of cell faces, allowing the velocity multiplied by the area of the

face to be the total transport through that face. For a single cell, the volume budget is

𝑑𝑉 (𝑥𝑖, 𝑦𝑖, 𝑧𝑖)

𝑑𝑡
= 𝑈𝑉 𝐸𝐿(𝑥𝑖− 1, 𝑦𝑖, 𝑧𝑖) * ℎ𝐹𝑎𝑐𝑊 (𝑥𝑖− 1, 𝑦𝑖, 𝑧𝑖) * 𝑑𝑟𝐹 (𝑧𝑖) * 𝑑𝑦𝑔(𝑥𝑖− 1, 𝑦𝑖)

− 𝑈𝑉 𝐸𝐿(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) * ℎ𝐹𝑎𝑐𝑊 (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) * 𝑑𝑟𝐹 (𝑧𝑖) * 𝑑𝑦𝑔(𝑥𝑖, 𝑦𝑖)

+ 𝑉 𝑉 𝐸𝐿(𝑥𝑖, 𝑦𝑖− 1, 𝑧𝑖) * ℎ𝐹𝑎𝑐𝑆(𝑥𝑖, 𝑦𝑖− 1, 𝑧𝑖) * 𝑑𝑟𝐹 (𝑧𝑖) * 𝑑𝑥𝑔(𝑥𝑖, 𝑦𝑖− 1)

− 𝑉 𝑉 𝐸𝐿(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) * ℎ𝐹𝑎𝑐𝑆(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) * 𝑑𝑟𝐹 (𝑧𝑖) * 𝑑𝑥𝑔(𝑥𝑖, 𝑦𝑖)

+𝑊𝑉𝐸𝐿(𝑥𝑖, 𝑦𝑖, 𝑧𝑖− 1) * 𝑟𝐴𝑐(𝑥𝑖, 𝑦𝑖) −𝑊𝑉𝐸𝐿(𝑥𝑖, 𝑦𝑖, 𝑧𝑖) * 𝑟𝐴𝑐(𝑥𝑖, 𝑦𝑖)

+ 𝑜𝑐𝑒𝐹𝑊𝑓𝑙𝑥 * 𝑟𝐴𝑐(𝑥𝑖, 𝑦𝑖, 1)/𝑟ℎ𝑜𝐶𝑜𝑛𝑠𝑡.

The change in volume will be zero for all below-surface cells. At the surface, the change in volume

is due to sea-surface height changes. The surface is also the only place where the fresh-water flux,

𝑜𝑐𝑒𝐹𝑊𝑓𝑙𝑥, is defined. Depending on whether the surface is linear or nonlinear, at the surface, the

horizontal fluxes may need to have SSH added to drF.

Horizontal Momentum

The physical horizontal momentum equations are:

𝜕𝑢

𝜕𝑡
+ 𝑢⃗∇𝑢− 𝑓𝑣 =

1

𝜌

𝜕𝑃

𝜕𝑥
+ 𝜈∇2𝑢+ 𝐹𝑥,

𝜕𝑣

𝜕𝑡
+ 𝑢⃗∇𝑣 + 𝑓𝑢 =

1

𝜌

𝜕𝑃

𝜕𝑦
+ 𝜈∇2𝑣 + 𝐹𝑦,

where 𝑢 and 𝑣 are the eastward and northward velocities, 𝑢⃗ is the three-dimenstional velocity vector,

𝑡 is time, 𝑓 is the coriolis parameter, 𝜌 is density, 𝑃 is (hydrostatic) pressure, 𝜈 is viscosity, and 𝐹
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is forcing. Numerical budgets for horizontal momentum contain the same terms:

𝑈_𝑡𝑒𝑛𝑑 = 𝑈𝑚_𝐴𝑑𝑣𝑒𝑐+ 𝑈𝑃𝑟𝑒𝑠𝑠_𝑡𝑒𝑛𝑑+ 𝑈𝐷𝑖𝑓_𝑡𝑒𝑛𝑑+ 𝑈𝐷𝑖𝑠𝑠+ 𝑈𝑚_𝐸𝑥𝑡,

𝑉_𝑡𝑒𝑛𝑑 = 𝑉 𝑚_𝐴𝑑𝑣𝑒𝑐+ 𝑉 𝑃𝑟𝑒𝑠𝑠_𝑡𝑒𝑛𝑑+ 𝑉 𝐷𝑖𝑓_𝑡𝑒𝑛𝑑+ 𝑉 𝐷𝑖𝑠𝑠+ 𝑉 𝑚_𝐸𝑥𝑡,

where each term is in the same order as the physical equation term. The advection term includes

coriolis, but the coriolis alone is also a diagnostic, so the two can be separated if desired. The

diffusion terms are vertical diffusion 𝑈𝐷𝑖𝑓_𝑡𝑒𝑛𝑑 and dissipation, which includes horizontal diffusion

as well as bottom and side drag. Bottom and side drag are available as separate diagnostics too,

so these could be separated if desired. The first, fourth, and last terms on the right hand side are

diagnostics. The _𝑡𝑒𝑛𝑑 terms are calculated from diagnostics as follows:

𝑈_𝑡𝑒𝑛𝑑 = 𝑇𝑂𝑇𝑈𝑇𝐸𝑁𝐷/86400,

𝑉_𝑡𝑒𝑛𝑑 = 𝑇𝑂𝑇𝑉 𝑇𝐸𝑁𝐷/86400,

𝑈𝑃𝑟𝑒𝑠𝑠_𝑡𝑒𝑛𝑑 = 𝑈𝑚_𝑑𝑃𝐻𝑑𝑥− 𝑔(𝑆𝑆𝐻(𝑥𝑖+ 1, 𝑦𝑖) − 𝑆𝑆𝐻(𝑥𝑖, 𝑦𝑖))/𝑑𝑥𝑐,

𝑉 𝑃𝑟𝑒𝑠𝑠_𝑡𝑒𝑛𝑑 = 𝑉 𝑚_𝑑𝑃𝐻𝑑𝑦 − 𝑔(𝑆𝑆𝐻(𝑥𝑖, 𝑦𝑖+ 1) − 𝑆𝑆𝐻(𝑥𝑖, 𝑦𝑖))/𝑑𝑦𝑐,

𝑈𝐷𝑖𝑓_𝑡𝑒𝑛𝑑 = 𝑈𝑚_𝐷𝑖𝑠𝑠+ (𝑉 𝐼𝑆𝑟𝐼_𝑈𝑚(𝑥𝑖, 𝑦𝑖, 𝑧𝑖+ 1) − 𝑉 𝐼𝑆𝑟𝐼_𝑈𝑚(𝑥𝑖, 𝑦𝑖, 𝑧𝑖))/(𝑟𝐴𝑤 * 𝑑𝑟𝐹 * ℎ𝐹𝑎𝑐𝑊 ),

𝑉 𝐷𝑖𝑓_𝑡𝑒𝑛𝑑 = 𝑉 𝑚_𝐷𝑖𝑠𝑠+ (𝑉 𝐼𝑆𝑟𝐼_𝑉 𝑚(𝑥𝑖, 𝑦𝑖, 𝑧𝑖+ 1) − 𝑉 𝐼𝑆𝑟𝐼_𝑉 𝑚(𝑥𝑖, 𝑦𝑖, 𝑧𝑖))/(𝑟𝐴𝑠 * 𝑑𝑟𝐹 * ℎ𝐹𝑎𝑐𝑆).

All zonal terms are defined at the center of the western edge of temperature/salinity/vertical velocity

(TSW) cells. All meridional terms are defined at the center of the southern edge of TSW cells. To

integrate momentum over a volume comprised of many TSW cells, multiply each term by the volume

of the cell they are the center of. For zonal momentum terms, this is the western cell:

𝑐𝑒𝑙𝑙𝑉 𝑜𝑙𝑊 = 𝑟𝐴𝑤 * 𝑑𝑟𝐹 * ℎ𝐹𝑎𝑐𝑊,

while for meridional momentum terms, this is the southern cell:

𝑐𝑒𝑙𝑙𝑉 𝑜𝑙𝑆 = 𝑟𝐴𝑠 * 𝑑𝑟𝐹 * ℎ𝐹𝑎𝑐𝑆.
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Vorticity

Vertical vorticity is the curl of the horizonal velocity, and the vertical vorticity equation can be

derived from the curl of the horizontal momentum equations. The physical vertical vorticity equation

is
𝜕𝜁

𝜕𝑡
+ 𝑢⃗ · ∇𝜁 + 𝑓∇ · 𝑢⃗ℎ + 𝛽𝑣 =

1

𝜌2
(∇𝑃 ×∇𝜌) + 𝜈∇2𝜁 + ∇× 𝐹 ,

where 𝜁 is relative vorticity and 𝛽 is the meridional derivative of the coriolis parameter. The

numerical budget is the curl of the horizontal momentum budgets, so it is defined at the corners of

TSW cells. For a vorticity budget integrated over some volume of vorticity cells, Stoke’s theorem

means one can take an integral of the momentum components around the edge of cells rather than

taking the curl of them and doing an area integral. The curl of the SSH component of 𝑃𝑟𝑒𝑠𝑠_𝑡𝑒𝑛𝑑

will be zero, but all other terms will persist. Forming the vertical relative vorticity budget requires

using Stokes’ theorem on each horizontal layer, being certain that only wet edges are used (check

ℎ𝐹𝑎𝑐𝑆 and ℎ𝐹𝑎𝑐𝑆). For each layer of the volume, identify the edges of the area to be integrated

over and create a logical that identifies them. I call these logicals openN for northern edges, openE

for eastern edges, and the equivalent for southern and western. Then terms in the vorticity budget

equivalent to those in the momentum budgets can be calculated in the same way as the tendency

term,

𝜁_𝑡𝑒𝑛𝑑 =𝑈_𝑡𝑒𝑛𝑑(𝑜𝑝𝑒𝑛𝑁) * 𝑑𝑥𝑐(𝑜𝑝𝑒𝑛𝑁) − 𝑈_𝑡𝑒𝑛𝑑(𝑜𝑝𝑒𝑛𝑆) * 𝑑𝑥𝑐(𝑜𝑝𝑒𝑛𝑆)

+ 𝑉_𝑡𝑒𝑛𝑑(𝑜𝑝𝑒𝑛𝐸) * 𝑑𝑦𝑐(𝑜𝑝𝑒𝑛𝐸) − 𝑉_𝑡𝑒𝑛𝑑(𝑜𝑝𝑒𝑛𝑊 ) * 𝑑𝑥𝑐(𝑜𝑝𝑒𝑛𝑊 ).

Note that the pressure term can be calculated using 𝑈𝑚_𝑑𝑃𝐻𝑑𝑥 and 𝑉 𝑚_𝑑𝑃𝐻𝑑𝑦 without adding

the SSH component, and will be the baroclinic pressure effect, the 1
𝜌2

(∇𝑃 × ∇𝜌) in the physical

equation. The calculation is shown for a single layer, and the total over the volume requires each

layer to be multiplied by 𝑑𝑟𝐹 before summing. Then the numerical budget will have terms

𝜁_𝑡𝑒𝑛𝑑 = 𝜁_𝐴𝑑𝑣𝑒𝑐+ 𝜁_𝑃𝑟𝑒𝑠𝑠+ 𝜁_𝐷𝑖𝑓_𝑡𝑒𝑛𝑑+ 𝜁_𝐷𝑖𝑠𝑠+ 𝜁_𝐸𝑥𝑡.

As with the momentum budgets, it is possible to separate the coriolis from the advection term and

the drags and horizontal diffusion from the dissipation term. To do so, one would calculate the
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listed terms, then perform the same calculation for the coriolis, bottom drag, and side drag, and

subtract the timeseries found from the advection or dissipation term.

Salinity and Potential Temperature

The terms in the salinity and potential temperature, or salt and heat, budgets are the same. In the

following, I will use C to represent SLT or TH in diagnostics names, and 𝑐 for tracer concentration

in equations. The physical tracer budget equation is:

𝜕𝑐

𝜕𝑡
+ 𝑢⃗∇𝑐 = ∇𝜅∇𝑐+ 𝐹 ,

where 𝑢⃗ is velocity, 𝜅 is diffusivity, and 𝐹 includes sources and sinks. The numerical tracer budget

is:

𝐶_𝑡𝑒𝑛𝑑 = 𝐴𝑑𝑣_𝑡𝑒𝑛𝑑_𝐶 +𝐷𝑖𝑓_𝑡𝑒𝑛𝑑_𝐶 + 𝑆𝑢𝑟𝑓_𝑡𝑒𝑛𝑑_𝐶,

where 𝑡𝑒𝑛𝑑 means tendency, and the terms adding up to the change in concentration of a cell are

advection, diffusion (including mixing from turbulence closure), and surface forcing (including mass

corrections due to a linear free surface approximation). The correspondence between the physical

and numerical budgets is term-by-term, except that the mixing from the turbulence closure scheme

in 𝐷𝑖𝑓_𝑡𝑒𝑛𝑑 would be equivalent to a variable 𝜅. Each of the terms in the numerical budget is
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calculated from the diagnostics in table B.3 as follows:

𝐶_𝑡𝑒𝑛𝑑 = 𝑇𝑂𝑇𝐶𝑇𝐸𝑁𝐷/86400,

𝐴𝑑𝑣_𝑡𝑒𝑛𝑑_𝐶 = [(𝐴𝐷𝑉 𝑟_𝐶(𝑖𝑥, 𝑖𝑦, 𝑖𝑧 + 1) −𝐴𝐷𝑉 𝑟_𝐶(𝑖𝑥, 𝑖𝑦, 𝑖𝑧))/𝐶𝑒𝑙𝑙𝑉 𝑜𝑙+

(𝐴𝐷𝑉 𝑥_𝐶(𝑖𝑥+ 1, 𝑖𝑦, 𝑖𝑧) −𝐴𝐷𝑉 𝑥_𝐶(𝑖𝑥, 𝑖𝑦, 𝑖𝑧))/𝐶𝑒𝑙𝑙𝑉 𝑜𝑙+

(𝐴𝐷𝑉 𝑦_𝐶(𝑖𝑥, 𝑖𝑦 + 1, 𝑖𝑧) −𝐴𝐷𝑉 𝑦_𝐶(𝑖𝑥, 𝑖𝑦, 𝑖𝑧))/𝐶𝑒𝑙𝑙𝑉 𝑜𝑙],

𝐷𝑖𝑓_𝑡𝑒𝑛𝑑_𝐶 = [(𝐷𝐹𝑟𝐸_𝐶(𝑖𝑥, 𝑖𝑦, 𝑖𝑧 + 1) −𝐷𝐹𝑟𝐸_𝐶(𝑖𝑥, 𝑖𝑦, 𝑖𝑧))/𝐶𝑒𝑙𝑙𝑉 𝑜𝑙+

(𝐷𝐹𝑟𝐼_𝐶(𝑖𝑥, 𝑖𝑦, 𝑖𝑧 + 1) −𝐷𝐹𝑟𝐼_𝐶(𝑖𝑥, 𝑖𝑦, 𝑖𝑧))/𝐶𝑒𝑙𝑙𝑉 𝑜𝑙+

(𝐾𝑃𝑃𝑔_𝐶(𝑖𝑥, 𝑖𝑦, 𝑖𝑧 + 1) −𝐾𝑃𝑃𝑔_𝐶(𝑖𝑥, 𝑖𝑦, 𝑖𝑧))/𝐶𝑒𝑙𝑙𝑉 𝑜𝑙+

(𝐷𝐹𝑥𝐸_𝐶(𝑖𝑥+ 1, 𝑖𝑦, 𝑖𝑧) −𝐷𝐹𝑥𝐸_𝐶(𝑖𝑥, 𝑖𝑦, 𝑖𝑧))/𝐶𝑒𝑙𝑙𝑉 𝑜𝑙+

(𝐷𝐹𝑦𝐸_𝐶(𝑖𝑥, 𝑖𝑦 + 1, 𝑖𝑧) −𝐷𝐹𝑦𝐸_𝐶(𝑖𝑥, 𝑖𝑦, 𝑖𝑧))/𝐶𝑒𝑙𝑙𝑉 𝑜𝑙],

𝑆𝑢𝑟𝑓_𝑡𝑒𝑛𝑑_𝐶 = 𝐶𝐹𝐿𝑈𝑋(𝑖𝑥.𝑖𝑦)/(𝑟ℎ𝑜𝐶𝑜𝑛𝑠𝑡 *𝐷𝑅𝐹 (1) * ℎ𝐹𝑎𝑐𝐶(𝑖𝑥, 𝑖𝑦, 1)

−𝑊𝐶𝑀𝐴𝑆𝑆(𝑖𝑥, 𝑖𝑦, 1)/(𝐷𝑅𝐹 (1) * ℎ𝐹𝑎𝑐𝐶(𝑖𝑥, 𝑖𝑦, 1),

where 𝐶𝑒𝑙𝑙𝑉 𝑜𝑙 is the tracer cell volume, 𝑟𝐴𝑐 * 𝑑𝑟𝐹 * ℎ𝐹𝑎𝑐𝐶. A volume-integrated budget for

a volume of interest would require numtiplying each term by its cell volume before adding; this

generally is a simpler calculation, because the terms above require dividing by the cell volume.

It is important to know that the gradients of ADV terms are equivalent to

𝜕(𝑢𝑐)/𝜕𝑥

and not

𝑢𝜕𝑐/𝜕𝑥.

Thus the total advective tendency is equivalent to

𝑢⃗∇𝑐,

but if split into directional components, the divergence term must be subtracted:

𝑢𝜕𝑐/𝜕𝑥 = 𝜕(𝑢𝑐)/𝜕𝑥− 𝑐𝜕𝑢𝜕𝑥.
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Figure B-1: Potential temperature budget with daily-averaged fields for two months. Fluxes are
totals for the Eulerian Western Alboran Gyre. Red dashed line is the error.

The horizontal divergence diagnostic, momHDiv, can be used for splitting the advection tendency

into horizontal and vertical components:

𝐴𝑑𝑣_𝑡𝑒𝑛𝑑_𝐶_𝑧 = [(𝐴𝐷𝑉 𝑟_𝐶(𝑖𝑥, 𝑖𝑦, 𝑖𝑧 + 1) −𝐴𝐷𝑉 𝑟_𝐶(𝑖𝑥, 𝑖𝑦, 𝑖𝑧))/𝐶𝑒𝑙𝑙𝑉 𝑜𝑙+

𝐶 *𝑚𝑜𝑚𝐻𝐷𝑖𝑣], 𝐴𝑑𝑣_𝑡𝑒𝑛𝑑_𝐶_ℎ

= [(𝐴𝐷𝑉 𝑥_𝐶(𝑖𝑥+ 1, 𝑖𝑦, 𝑖𝑧) −𝐴𝐷𝑉 𝑥_𝐶(𝑖𝑥, 𝑖𝑦, 𝑖𝑧))/𝐶𝑒𝑙𝑙𝑉 𝑜𝑙+

(𝐴𝐷𝑉 𝑦_𝐶(𝑖𝑥, 𝑖𝑦 + 1, 𝑖𝑧) −𝐴𝐷𝑉 𝑦_𝐶(𝑖𝑥, 𝑖𝑦, 𝑖𝑧))/𝐶𝑒𝑙𝑙𝑉 𝑜𝑙−

𝐶 *𝑚𝑜𝑚𝐻𝐷𝑖𝑣],

The diffusion tendency can be easily split into vertical and horizontal by including the first 3 terms

in the vertical and the last 2 in the horizontal. An example of this budget is in figure B-1; errors

are at least an order of magnitude smaller than the fluxes.

Another option for careful division of advective terms is to consider the volume of interest as

a control volume and calculate the fluxes through the edges. This can be done by identifying the

edges and creating logicals for them as done for the vorticity budget. Then the advective terms of
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the volume-integrated budget can be calculated as

𝐴𝑑𝑣_𝑡𝑒𝑛𝑑_𝐶_𝑧 = (𝐴𝐷𝑉 𝑟_𝐶(𝑜𝑝𝑒𝑛𝐷𝑜𝑤𝑛) −𝐴𝐷𝑉 𝑟_𝐶(𝑜𝑝𝑒𝑛𝑈𝑝)),

𝐴𝑑𝑣_𝑡𝑒𝑛𝑑_𝐶_ℎ = [(𝐴𝐷𝑉 𝑥_𝐶(𝑜𝑝𝑒𝑛𝑊 ) −𝐴𝐷𝑉 𝑥_𝐶(𝑜𝑝𝑒𝑛𝐸)) + (𝐴𝐷𝑉 𝑦_𝐶(𝑜𝑝𝑒𝑛𝑆) −𝐴𝐷𝑉 𝑦_𝐶(𝑜𝑝𝑒𝑛𝑁)).

These calculated terms are equivalent to those where every interior cell’s divergence is also included.

B.3 Western Alboran Gyre Budget Examples

B.3.1 Overview

Using the methods of the previous section, Chapter 3 evaluated a number of budgets and used them

to elucidate the processes controlling some of the features of the Western Alboran Gyre, WAG,

from my model run. Salt and momentum budgets were evaluated but did not contribute well to the

analyses. Those budgets are presented here, in case future researchers with different questions find

them useful.

B.3.2 Full WAG salt budget

In the WAG, there is a subsurface salinity minimum. In Chapter 3, I presented a salt budget for

just the area that contained the minimum in the mean. Here, I show a salt budget for the full WAG.

This budget does not assist with an understanding of the minimum, but does demonstate how the

different physical processes affect the salt content of the WAG.

Figure B-2 shows the full salt budget and a spatial representation of the mean advective trans-

ports. Advection through the sides and bottom of the volume are the dominant terms in the

timeseries budget, as they were in the volume budget. The mean depth-integrated advective fluxes

through the sides and mean advective flux through the bottom have spatial patterns quite similar

to those for volume.

Because of how the MITgcm treats tracers, the positive upward volume flux through the bottom

is moving positive amounts of salinity and potential temperature upward, but it is not directly clear

if this is increasing or decreasing the total salt and heat in the gyre. Thus, in order to understand the

effects of the salt transports, the volume transports of the mean gyre salinity (36.61) are removed,

scaled with the means and the appropriate density and specific heat. Now positive salt transports
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Figure B-2: Top, total Euler WAG salt budget, 𝑔/𝑠. Bottom, mean vertically-integrated advective
salinity fluxes for the Euler WAG. Colors show flux through the bottom, arrows show flux through
the sides. Top left arrows show scale, 5 · 1010[𝑐]𝑚3/𝑠, where [𝑐] is salinity units. Seamounts do
not appear as empty space as they did for the mean volume fluxes because the flux across the
bottom-most wet cell is used rather than the 𝜎𝜃 surface.
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indicate water with higher than average salinity moving into the gyre, or water with lower than

average salinity moving out of the gyre. That budget, figure ??, shows the transports through

the sides and bottom and the changes in storage as the largest terms. In the mean-referenced salt

budget, transport through the sides and bottom still oppose each other when they are largest, and

diffusion and surface fluxes are still much smaller than the three large terms. The time-mean of

these tranposts indicate that horizontal advection brings in fresher water, while advection through

the bottom increases the salt content and drives a mean increase in salt over time.

To continue with the salt budget, when the dominant terms of advection across the sides and

bottom are combined, it is clear they are nearly equal in size to the change in salt content. The

surface forcing is an order of magnitude smaller and diffusion terms are smaller yet (figure B-4). The

surface forcing fluxes’ negative spikes indicate rain events. The relationship between total advection

and changes in salinity content indicates that advection is the main driver in changes in salinity in

the WAG. This is also clear in the mean of these transports (figure ??), where advection of salt

out through the sides and in through the bottom are the two terms on the order of the changes

in salt. The surface forcing approximately balances the advection minus content change terms (see

figure B-5). Bottom diffusion is an order of magnitude smaller, and much more constant in time,

due to the consistent vertical gradient of salinity here (about 0.01𝑝𝑠𝑢/𝑚). Horizontal diffusion is

not shown because it is extremely small, less than 1𝑘𝑔/𝑠, due to both small horizontal gradients of

salinity (typically 0.01/𝑘𝑚) and the very small explicit numerical horizontal diffusivity, chosen due

to the high resolution of the model.

B.3.3 Momentum Budgets

In order to understand the dynamics that maintain the WAG, I now examine the momentum and

vorticity budgets. All necessary diagnostics to calculate the terms in the Navier-Stokes equations

are available as outputs from the MITgcm except the barotropic portion of the pressure gradient

term, which was calculated from SSH (details in the appendix). I will first discuss the zonal and

meridional momentum budgets, followed by the vorticity budget.

The momentum budgets include the following terms:

𝑑𝑈

𝑑𝑡
= ∆𝑈𝐴𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛 + ∆𝑈𝐶𝑜𝑟𝑖𝑜𝑙𝑖𝑠 + ∆𝑈𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 + ∆𝑈𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 + ∆𝑈𝐷𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑖𝑜𝑛 + 𝐹𝑈 + ∆𝑈𝐴𝐵, (B.1)
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Figure B-3: Top, total Euler WAG salt budget with volume transport of water with mean WAG
salinity, 36.61, removed. Bottom, time-mean transports of salt, 𝑔/𝑠, with the transports of salt by
the volume transports of the mean gyre salinity, 36.61, removed.
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Figure B-4: Euler WAG salt budget, advection combined, 𝑔/𝑠, with the transports of salt by the
volume transports of the mean gyre salinity, 36.61, removed.

Figure B-5: Euler WAG salt budget, smaller terms, 𝑔/𝑠, with the transports of salt by the volume
transports of the mean gyre salinity, 36.61, removed. Negative peaks in the surface term are rain.

235



where the changes in the momentum due to advection, coriolis acceleration, pressure gradients,

vertical diffusion, drag and horizontal diffusion (together called dissipation), surface forcing by

windstress, and numerical timestepping details (AB) combine to the change in time of the momen-

tum. The volume-integrated momentum budgets with all terms (figure B-6) show that the gyre is

nearly in geostrophic balance, with the Coriolis and pressure gradient terms being the largest and

opposing each other. The next-order terms include advection, windstress, and the topographic drag

and horizontal viscous diffusion term. The smallest terms are the vertical viscous diffusion and the

timestepping term, which is a correction due to half forward steps in the Adams-Bashforth advection

scheme. The vertical viscous diffusion is small because it primarily redistributes momentum input

by the surface windstress, rather than adding or removing momentum from the WAG; this will be

explained with the vertical structure of the terms. Combining the Coriolis and pressure gradient

terms removes the geostrophic part of the budget, and I call the remainder the ageostrophic term;

it can be represented as the Coriolis acceleration of the ageostrophic velocities. This term and the

next-order terms of the total budget show that the zonal and meridional budgets have different

characteristics (figure B-7). In the zonal direction, the ageostrophic term is balanced by the surface

windstress, while in the meridional direction it is balanced by advection. This difference is due, to

the fact that the windstress is about twice as large in the zonal direction as meridional, whereas the

advection terms are similarly sized. In the mean, the wind direction is mostly zonal (figure 3-23),

confirming this difference in windstress.

The mean values of the momentum budget terms integrated over each vertical layer of the WAG

gives additional insight into the physics (figure B-8). While the geostrophic balance is still dominant,

and thus removed for readability to leave the ageostrophic term, the vertical viscous diffusion is

larger than the dissipation at most depths, the opposite of in the integrated budget. The vertical

viscous term includes the surface windstress in the top layer and shows how that momentum is

redistributed downward over about 80𝑚. Again, the zonal momentum budget has a balance between

the ageostrophic term and the windstress, but that now includes the vertical viscous diffusion and

is true only in the top half of the gyre, with advection balancing the ageostrophic term below that.

For the meridional momentum, in the top half the ageostrophic term, wind and vertical diffusion,

and advection together form the main components, with the balance between the ageostrophic term

and advection in the bottom half that was visible in the depth-integrated timeseries.
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(a)

(b)

Figure B-6: Euler WAG volume-integrated momentum budget, all terms, 𝑚4/𝑠2. Top, zonal; bot-
tom, meridional.
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(a) (b)

Figure B-7: Euler WAG volume-integrated momentum budget, 𝑚4/𝑠2, secondary terms (largest
terms, Coriolis and pressure gradient force, are combined into the ‘ageostrophic’ term). Left, zonal;
right, meridional

(a) (b)

Figure B-8: Euler WAG volume-integrated momentum budget in horizontal layers, mean of all
terms vs. layer center depth, 𝑚4/𝑠2. Left, zonal; right, meridional
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Appendix C

Biological-Physical Interactions in the

Alboran Sea

This appendix describes possible avenues for further research stemming from the work in chpaters

3 and 4. These projects were proposed as part of my thesis planning at various times, but were not

completed due to challenges in the physical analysis. The physical analysis of the Alboran Sea and

the Western Alboran Gyre (WAG) indicate that there is strong stirring around the edges of the WAG

but not near the core. Also, the water from the Strait of Gibraltar inflow that becomes the Atlantic

Jet (AJ) can be transported into the WAG on timescales of days to weeks. A similar connection

to the northeastern part of the Alboran was found. Both the inflow waters and the northeastern

area have enhanced nutrient loads. The first section below describes research considering how the

different levels of stirring may affect competition and diversity in phytoplankton. The second section

describes a research avenue to examine how the transport of high-nutrient-load water can impact

productivity.

C.1 Phytoplankton in the Alboran Sea: Physical Interactions and

Functional Types

This proposed work was submitted for a NASA Earth Science Student Fellowship grant and was

rejected. Reviewers’ and project managers’ comments suggested that the questions were good and

that this work should be done. However, connections to the larger scale needed to be further
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developed, and a better quantitative measure of diversity than the Shannon index was needed.

This work would unfortunately not be possible with the model run of the physical system that I

developed, because much of the year has a never-observed circulation. If a physical run of one full

seasonal cycle that was reasonable existed, the following work would be possible.

C.1.1 Introduction and Background

Phytoplankton form the base of the marine ecosystem, produce most of the world’s oxygen, and are

a significant carbon pool. The region of the Mediterranean with the highest primary productivity is

the Alboran Sea. This productivity supports a biologically diverse ecosystem that is home to several

endangered and vulnerable vertebrates (Coll et al. 2010). As such, it is crucial to understand how

ocean physics impacts phytoplankton productivity. The Alboran Sea is a favorable region to study

interactions between phytoplankton and their physical environments because it is limited in extent

and its circulation is controlled by a relatively small number of well-defined coherent structures,

including a surface jet and several gyres and fronts that are thought to impact phytoplankton

populations. The proposed work will explore the relationship between phytoplankton diversity

and physics using a bio-physical model, dynamical systems analysis, and a recent advance in the

interpretation of the Moderate Resolution Imaging Spectroradiometer (MODIS) data: PHYSAT-

Med.

C.1.2 Physics

The Alboran is bounded by the Strait of Gibraltar where Atlantic Water enters in the Atlantic Jet

(AJ) which is partially entrained into gyres and eddies along the African coast to become Modified

Atlantic Water (MAW). Persistent features include the Northwestern Alboran Front (NWAF), the

Almeria-Oran Front, and the Western Alboran Gyre (WAG); see Figure C-1. The WAG and other

less-persistent gyres can shift and re-form within the sea with higher variability in the winter as

described by Renault et al. (2013). Gyre motions were shown to be influenced by vorticity fluxes

through the Strait of Gibraltar by Sánchez-Garrido et al. (2013). The transport in the Alboran has

been shown to be spatially heterogeneous with enhanced mixing in some “chaotic" regions (d’Ovidio

et al., 2004, Sayol et al. 2013). These regions, characterized by rapidly diverging fluid trajectories

and elevated stirring, can be identified using Lagrangian analysis techniques developed within the
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(a) Schematic (b) Velocity

Figure C-1: (a)Schematic of the Alboran. This is one of several quasi-equilibrium states commonly
observed. CCG is the Central Cyclonic Gyre. (b) An example MITgcm daily mean surface velocity
plotted over bathymetry. Note the WAG at about 4∘𝑊 .

dynamical systems community over the past two decades. These techniques can provide a template

that identifies transport pathways, barriers to transport, coherent material structures, and regions

of strong or weak stirring and mixing (e.g. Rypina et al. 2009). Application is most straightforward

when the flow field contains long-lived coherent features such as jets, fronts and gyres, making

the Alboran Sea an ideal region to investigate. This study will explore the use of these methods

in order to identify transport pathways and barriers, regions of strong and weak stirring, and the

fluxes of relevant physical and biological properties, all with the purpose of clarifying the causes of

phytoplankton community structure.

C.1.3 Biology

The Alboran’s high animal biodiversity relates to diversity at the plankton level, but microbial

diversity is difficult to document. Recent work has instead examined the functional types of phyto-

plankton present (Navarro et al. 2014, León et al. 2015) and the overall distribution (Siokou-Frangou

et al. 2010). The density and relative frequency of phytoplankton functional types have mesoscale

variability, an apparent “patchiness" that is similar to that of chlorophyll-a measurements. A recent

study of in-situ phytoplankton measurements in the Alboran Sea by León et al. (2015) examined

the mesoscale variation in density of pico and nanoplankton in relation to hydrodynamic features

during three cruises, each sampling a different feature. For the NWAF, the physical process related

to high phytoplankton densities was advection by the Atlantic Jet of waters mixed in the Strait of
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Gibraltar. For the WAG, high-density patches of overall biomass and each plankton size formed

in cold waters due to upwelling. For the Almeria-Oran Front, the distribution of prochlorococcus

depended on the intrusion of Mediterranean Surface Water (MSW) from the basins to the east.

Overall, this work showed that mesoscale advection causes biological responses, longer residence

times relate to higher phytoplankton density, large changes occur on the timescale of days to weeks,

and measurements of phytoplankton groups show greater spatial variability than chlorophyll-a.

While local studies focus on water mass advection and vertical velocities, idealized modeling work

has examined the effects of transport barriers and chaotic stirring. Chaotic stirring caused a persis-

tent high growth region in a study by Hernández-García and López (2004). A two-phytoplankton-

type study of an idealized vortex street demonstrated that transport barriers between nutrient

sources and the cores of eddies delineated regions of dominance for the two types (Bastine and

Feudel 2010). Moving into a three-dimensional, time-varying flow with three phytoplankton types

makes this work more realistic and allows comparison to both modeling and observation studies.

Remote measurements of ocean color allow scientists to study the near-surface phytoplankton

across the world’s ocean, but regional shipboard measurements of hydrography and biology are

necessary to calibrate the satellite data. Navarro et al. (2014) have done this calibration for the

Mediterranean to modify the PHYSAT algorithm for interpreting ocean color data from MODIS.

The regional model, PHYSAT-Med, identifies the dominant phytoplankton functional type (PFT)

for each pixel (about 4 km resolution) based on radiance anomalies at several wavelengths, allowing

for the mapping and spatio-temporal study of phytoplankton throughout the Alboran Sea. The au-

thors validated their results against in-situ data and found good agreement. Monthly climatologies

of the most-seen dominant type are shown in Figure C-2. Two types are most common: nanoeukary-

otes, a range of species of eukaryotes between 2 and 20 𝜇𝑚, and synechococcus, a picoplankton that

grows well in low nutrient environs like the open ocean. In November through February some areas

have a large presence of diatoms, a microplankton that grows in high nutrient environs and is often

found near coasts. The proposed work will take advantage of this new PHYSAT-Med algorithm

for comparison of the variation of community structure observed in the Alboran to that in the

numerical model.
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Figure C-2: PHYSAT-Med ap-
plied to MODIS data (2002 to
2013): monthly climatology of
dominant PFT. Top row: Jan,
Feb, Mar. Each pixel is marked
as one of: 0 unidentified, 1
nanoeukaryote, 2 prochlorococ-
cus, 3 synechococcus, 4 di-
atom, 5 phaeocystis, 6 coc-
colithophorid. The Alboran
is dominated by nanoeukary-
otes and synechococcus, with
diatoms in Nov-Feb. (Adapted
from Navarro et al. 2014.)

C.1.4 Proposed Work

C.1.5 Goal and Questions

This work will use MODIS data interpreted with PHYSAT-Med, previously published in-situ data,

and a coupled physical-biological numerical model (MITgcm and Darwin) to investigate the rela-

tionship between phytoplankton diversity and physical oceanographic processes in the Alboran Sea.

It will answer:

• What patterns of phytoplankton diversity and functional type dominance are seen in the

physical-biological model? Specifically, how do the phytoplankton community structure and its

spatio-temporal scales relate to major circulation features, their variability, and the associated

fluxes?

• Given satellite observations of altimetry and functional types, what do relationships from the

model tell us about the causes of the observed diversity patterns?

As part of answering these questions, I will apply dynamical systems methodology to compute

fluxes between circulation features and identify regions of intense stirring. These measures will

allow me to examine, for each region of the Alboran, which processes are most important; these

processes include local growth and the fluxes of phytoplankton, nutrients, temperature, and salinity

by horizontal and vertical advection, stirring, and mixing.
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C.1.6 Approach

The proposed work will investigate the relationship between phytoplankton diversity and physical

flow using a combination of physical-biological numerical modeling, dynamical systems analysis, and

the recent advance in interpretation of Moderate Resolution Imaging Spectroradiometer (MODIS)

data: PHYSAT-Med.

The physical model I will use is the Massachusetts Institute of Technology general circulation

model (MITgcm) in hydrostatic mode (Marshall et al. 1997). The specific configuration is similar

to that of Sánchez-Garrido et al. (2013), with resolution increased roughly by a factor of three in

the eastern Alboran. This model solves the Boussinesq form of the Navier-Stokes equations for an

incompressible fluid with a finite-volume spatial discretization on a curvilinear grid with horizontal

resolution of 1 to 3 km. The vertical grid has 5m resolution at the surface, decreasing with depth,

and 46 vertical levels. The model domain (see sample velocity field in Figure 1b) will include the

Strait of Gibraltar and have open boundaries in the Atlantic and Mediterranean. Surface forcing will

be provided by 6-hourly, 1/4-degree, 10m wind fields from the IFREMER CERSAT Global Blended

Mean Wind Fields. This should provide adequate spatial and temporal resolution of wind fields to

capture upwelling events. Surface heat and salt fluxes will be from the ERA-Interim reanalysis daily

fields. Open east and west boundary forcing of velocity, salinity and temperature will be from the

1/12-degree, daily Atlantic-Iberian Biscay Irish-Ocean Physics Reanalysis. I have tested this set-up

by running the model for 2008 (preceded by suitable spin-up period), a year with a large amount

of available functional type data (Navarro et al. 2014). The model and satellite sea surface height

(AVISO) are well correlated in the mean (Figure C-3).

Figure C-3:
Mean SSH in the Albo-
ran Sea for 2008 from the
MITgcm (left) and AVISO
(right).

I will use the Darwin model (Duktiewicz et al. 2009) as the biological model which will be
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coupled to the three-dimensional output of the MITgcm. The Darwin model is designed to repro-

duce the biology of multiple phytoplankton and zooplankton species. The phytoplankton prognostic

equations represent growth as a function of light, temperature, and Monod functions for nutrient

limitation. I will set up the model to represent just one nutrient and three functional types of phyto-

plankton (synechococcus, nanoeukaryotes, and diatoms) matching those observed most frequently

by Navarro et al. (2014) and choose biological parameters based on Follows et al. (2007). For

spatial or temporal patterns in the surface layer of the model that are similar to satellite-measured

patterns, the model will be used to give insight into what physical oceanographic factors are impor-

tant for phytoplankton dominance and diversity and the mechanisms involved. For a full year run,

the monthly dominant type maps can be compared to the climatology shown earlier (Figure 2) and

the individual months from 2008.

To examine diversity, I will look at variations in the community structure as quantified by the

Shannon index, 𝐻:

𝐻 =
∑︁
𝑖

𝑝𝑖/ log(𝑝𝑖), 𝑝𝑖 = 𝑃𝑖/
∑︁
𝑖

𝑃𝑖, ,

where 𝑃𝑖 is a given functional type concentration (Shannon 1948, Spellerberg and Fedor 2003).

When 𝐻 is large, there are more species present in more equal fractions; thus, the diversity is large.

The Shannon index can be computed for the model ouput at any scale from one grid cell and up.

For direct comparison to satellite, the diversity of dominant types from each comparable surface

point can be used for the Alboran as a whole or for sub-regions.

The model output can be compared to in-situ measurements by examining local variability. I can

relate the overall biomass, converted from nitrogen units, and the relative abundance of different

size classes by matching size classes with modeled types. Field measurements tend to be local,

both in time and space. For studies with differentiation between sizes or phytoplankton taxa, the

spatio-temporal scales of observed variation can be compared to those in the model. As an example,

Figure C-4 from Arin et al. (2002) shows the variability of size-fractioned phytoplankton at three

sites near the WAG, each visited every three days over two weeks.

To construct a story about the growth and decay of each particular functional type, I will take the

Lagrangian perspective, following populations as they are advected by the near-surface circulation.

The time history of nutrient fluxes is particularly important, both from local upwelling and AW

inputs; barriers to transport may also explain oberved patterns. To examine fluxes of nutrients,
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Figure C-4: Variability of the contribution of three size fractions of plankton to the total chl-
a. Stations (A,B,C) were visited every 3 days (4 times total) during a cruise in May 1998. The
location is in the northern portion of the WAG. (From Arin et al. 2002)

phytoplankton, temperature, and salinity between quasi-steady circulation features, I will apply lobe

analysis (Samelson and Wiggins, 2006; Miller et al. 2002). When circulation features change quickly,

I will trace water masses and populations through backwards trajectories. I will also use Finite-

Time Lyapunov Exponents (FTLEs) to measure stirring, which is likely to increase homogeneity.

I will experiment with these Lagrangian measures to see which correlate best with factors such as

the Shannon index, as each measure gives information about the extent to which a particular water

parcel is brought into close contact with parcels carrying different nutrients or phytoplankton types.

I will also examine Eulerian fluxes between time-averaged circulation features for comparison.

C.2 Phytoplankton in the Alboran Sea: Can Nutrients Sources and

Advection Explain Persistent Productivity?

Once it was clear that the existing physical model for the Alboran Sea would not allow the research

proposed above, I sought a different option. Because I had about 5 months of physical circulation

that I consider to be realistic and the timescales of the stirring and of phytoplankton blooms are

a few weeks, I considered looking into just the effects of the nutrients being stirred into the WAG.

This work did not occur because challenges with the physical analyses, particularly water property

budgets, took much longer than anticipated. This work is possible using existing resources.
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Figure C-5: Mean primary production across the Mediterranean. Generally productivity decreases
from West to East and from coastal areas to deeper water. (Coll et al. 2010)

C.2.1 Motivation

The proposed work will use Lagrangian trajectories from a realistic simulation of the Alboran Sea to

determine how much of the observed production patterns may be created by horizontal advection of

nutrients from the westernmost parts of the basin. The reasons for choosing the Alboran Sea include

its interesting flow structures, our existing knowledge of the system, and the existence of previous

works, some supporting the alternate theory that high productivity is due to vertical motions in the

basin interior, another supporting the SG source but without details of its contributions separated.

The Alboran Sea has the highest primary productivity of the Mediterranean; this is clear in mean

primary production (figure C-5, Coll et al. 2010), which also shows enhanced values around the

periphery of the WAG. As the base of the marine food web, phytoplankton growth is an intensely

studied subject. Several physical processes contribute to the distribution of both nutrients and

phytoplankton, leading to an interest in finding which are dominant under what circumstances. For

instance, studies have looked at whether stirring rates in horizontal advection increase or decrease

phytoplankton biomass (i.e. Hernandez-Garcia et al. 2004, Hernandez-Carrasco et al. 2014).

Vertical fluxes of nutrients are also important, as shown by the mentioned Oguz et al. paper (2014).

Most studies examining the physical controls of production have used a biological model of a single

population of phytoplankton; this is a significant simplification of the biology at play, but one which

will continue in my work.

C.2.2 Background

In the Alboran, there is addition of nutrients into surface waters from vertical tidal mixing in the

Strait of Gibraltar, upwelling along the Northwest coast, and upwelling in cyclonic gyres or transient
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Figure C-6: Climatology of December chl from 9 km gridded monthly SeaWiFS in color. Magenta
curves are isobaths. (Oguz et al. 2014)

cyclonic eddies. Peak chlorophyll-a (chl-a) values measured in-situ were subsurface values between

4 and 8𝜇𝑔𝑙−1, and primary production measurements range from 6 to 1300𝑚𝑔𝐶𝑑−1 (Siokou-Frangou

et al. 2010). Subsurface maxima, near 50m, tend to be present in the non-bloom spring and summer

months (Oguz et al. 2013). A broad study of deep chlorophyll maxima in the Mediterranean, while

not including the Alboran in the analysis, showed that in our period of November through March

there is usually a surface maximum in both chlorophyll and primary production rate (Macias et al

2014).

Two areas with significant annual variation in chlorophyll measurements have been associated

with patterns of absolute dynamic topography (ADT) by Navarro et al. (2011). The first is a high

in the strait and the northwest coastal area, with peaks in the late summer and autumn. The second

is highest along the northern edge of the WAG, where the AJ is typically located, with peaks in the

late winter and early spring. These correlations imply that large-scale physical features force the

large-scale plankton features. Given that our existing model run covers November 2007 to March

2008, fall to spring, we are likely to see variations associated with both patterns.

Satellite observations of ocean color allow for a quantification of the chlorophyll content of the

near-surface water through analyzing the color spectrum. SeaWiFS products include 9𝑘𝑚 gridded

monthly-averaged chl-a, which are publicly available. A common pattern in the Alboran is for the

periphery of the WAG to have high 𝑐ℎ𝑙, which may be wide enough to reach both coasts (figure

C-6). This pattern can be explained by vertical velocities within the basin bringing nutrients into

the surface layer, as demonstrated by Oguz et al. 2014.

248



C.2.3 Relevant Papers

The most relevant background for the work I am doing is four recent publications which all use

models to describe phytoplankton spatial patterns in the Alboran. I will summarize each. All

of the following works use limited biological models (one or a few each of nutrient, phytoplankton,

zooplankton, and detrital categories) coupled to physical general circulation models. All are Eulerian

and include multiple physical processes that affect the distribution of the biological fields, including

horizontal and vertical advection and diffusion. The physical forcing varies, such as choosing whether

to include tides and whether meteorological forcing is constant or realistic. Conclusions of which

physical processes influence productivity are then drawn by comparison between either different

regions of the flow or different realizations of the physical model.

Skliris et al. (2009) modeled the Alboran as a nested element in their Western Mediterranean

model, examining how upwelling and advection affect nitrogen and phytoplankton. The modeled

surface chlorophyll concentrations in the Alboran peaked in the northwest from the edge of the strait

through the upwelling region, and the local maximum continued around the eastern side of the WAG.

The authors find that the lifting of the nitracline at the north-eastern corner of the strait and in the

north-west Alboran upwelling region are the main drivers of phytoplankton growth in the Alboran,

and the continued maximum is due to advection by the AJ. The physical model is GHER with

1km resolution in the western Alboran as a nested grid within a broader Western Mediterranean

grid of 5km resolution; open boundaries were relaxed to monthly climatological values; surface

forcing was from an eight-year averaged ECMWF reanalysis to get one ‘climatological’ year. The

biological model is NNPZDD, with initial and boundary conditions based on MEDAR climatology.

The above-mentioned high-chlorophyll areas have the peak in the correct near-coast location, but

have more broad spatial maxima; nonetheless the mean summer and winter surface patterns match

satellite better than the MEDAR climatological maps do.

Oguz et al 2014 shows that the nonlinearity of the AJ leads to cross-frontal circulation that brings

nutrients from depth into the euphotic zone. The jet becomes weaker to the east, and productivity

also decreases to the east in the model and observations. No advection of the biological components

is allowed in the SG, so this analysis does not include nutrients advected from the Atlantic or mixed

into the surface in the SG. The biological model was NPZD. The physical model was POM with

about 3km resolution, no surface forcing, and constant exchange in the Strait of Gibraltar. The
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highly productive areas are mostly along the jet, with higher subsurface production. The productive

region does connect to the northern coast and decrease to the east, as seen in climatology, but both

of these are less strong than in satellite observations of chlorphyll.

Sanchez-Garrido et al 2015 shows that including tides increases production in the Alboran by

40% overall, and more in the Western Alboran. This finding uses comparison between a model runs

with and without tides. A third run shows that parameterizing the effects of the tides by greater

vertical mixing of nutrients in the SG gives a good approximation of the production with tides,

demonstrating that the propagating internal tides are less important than the mixing at the sill in

the SG. The biological model was Darwin configured with four nutrients, two phytoplankton, and

two zooplankton. The physical model is the MITgcm with 0.5-4km resolution with daily lateral

forcing from the Iberia-Biscay-Ireland Regional Seas reanalysis, surface forcing from ASCAT winds

and NCEP/NCAR reanalysis heat and freshwater fluxes. The highly productive areas are mostly in

the western Alboran outside of the WAG; including tides increases productivity, total phytoplankton,

and the east-west gradient of both. These productive areas match satellite observations of chlorphyll

in general, with the tidal model doing a better job of matching the maxima and the east-west

gradient. All model results show more phytoplankton in the WAG interior and along the southern

coast than observed at the same time, but longer-time averages of observations do show southern-

coast chlorophyll.

Oguz et al 2016 shows that the strength of the AJ controls the productivity: stronger cross-jet

density gradients support frontenogenesis, creating the strong cross-frontal circulation shown to be

important in the previous (2014) study. The authors also show that cyclonic eddies can create

comparable levels of production through eddy pumping. The biological model was NPPZD. The

physical model was POM with about 3km resolution, surface heat forcing from ERA40 reanalysis,

no wind, no tides, and seasonally varying prescribed exchange in the Strait of Gibraltar. This study

does not give any averaged maps of phytoplankton or productivity, as the authors were interested

in changes over the course of the year as the Strait of Gibraltar exchange strength, and thus the AJ

strength, varied. Individual depth-integrated biomass maps show higher values along the AJ in the

western Alboran, but little extension to either coast, which is different from satellite observations

of chlorophyll.
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C.2.4 Proposed Work

• What regions of the Alboran are fed by nutrients from the Strait of Gibraltar? From the

Northwest upwelling region?

• What patterns of phytoplankton concentration do we see when including only horizontal

advection from one of these regions? How does this change with biological model parameters?

Do these mirror satellite-observed patterns of chl-a?

• Since both horizontal and vertical velocities can move nutrients to give the observed phyto-

plankton growth, what is the relative size of nutrients in the initial conditions and accumulated

from upwelling along trajectories? Can the Alboran be partitioned into regions where one or

the other dominates?

• What are the (N,P) fluxes into the WAG?

• How do all of these compare in a mean vs time-varying flow?

I propose to use a nutrient-phytoplankton (NP) model coupled with the hydrodynamic flows

from the MITgcm to study the spatial distribution of phytoplankton in the Alboran Sea. Physically,

the surface and along-isopycnal horizontal flow will be used to create Lagrangian trajectories. The

deepest isopycnal used will be determined based on the regional optical depth, to capture most of the

photic zone and ease comparisons with satellite measurements; figure C-7 shows the climatological

attenuation coefficient for the area from MODIS. The biological model will have one phytoplankton,

representing chlorophyll concentration, and one nutrient, representing nitrate. Although much of

the Mediterranean is phosphorus-limited, the Alboran is nitrate-limited (Lazzari et al. DSR-I Feb

2016).

The observed patterns of 𝑐ℎ𝑙 that I am interested in are where the periphery of the WAG has

high 𝑐ℎ𝑙, which may be wide enough to reach both coasts (figure C-6). The gradient in production

between this high region and the relatively oligotrophic interior of the WAG may be a function of

the vertical supply of nutrients, as previously shown by Oguz et al., since the anticyclonic WAG

primarily downwells near the center. However, it could also be created by the limited exchange of

water between the AJ and the WAG, which my previous work has shown to be intermittent but on

the order of 105𝑚3/𝑠 in an average over several months. The limited supply of nutrients, which will
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Figure C-7: Climatological diffuse attenuation coefficient (1/m) from MODIS 9km for 490nm. No
appreciable difference is found using MODIS 4km. (MODIS data and Giovanni visualization by
GES DISC, Acker and Leptoukh 2007)

be diminished from the initial values over about a week as they are advected into the gyre, may

explain the lower production without any consideration of local vertical velocities.

The biological concentration equations are based on Modod kinetic models. The model equations

are:

𝐷𝑁

𝐷𝑡
= −𝜇𝑖

𝑁

𝑁 + 𝑘
𝑃 + 𝜖𝜎𝑃, (C.1)

𝐷𝑃

𝐷𝑡
= 𝜇𝑖

𝑁

𝑁 + 𝑘
𝑃 − 𝜎𝑃, (C.2)

where 𝐷/𝐷𝑡 is the change in time (days) following a trajectory, 𝑃 is chlorophyll concentration, 𝑁

is nitrate concentration, 𝜇 is the maximum growth rate, 𝑘 is the nitrate concentration for which

phytoplankton growth is half the maximum rate, 𝜎 is the linear mortality of phytoplankton, and 𝜖

is the remineralization constant. This set of equations has a decay over time of total 𝑁 + 𝑃 , due

to a fraction of dead phytoplankton being removed from the system, either from sinking or being

consumed by higher trophic levels.

Our application of these equations will be along trajectories starting from the region of high

surface nitrate in the western Alboran (figure C-8), which also has enhanced nitrate at depth,

allowing us to follow the same procedure along sub-surface isopycnals to check whether production
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(a) (b)

Figure C-8: Climatological surface nitrate concentration (𝑚𝑚𝑜𝑙/𝑚3) from MEDAR. (a) Full clima-
tology (b) Winter only.

patterns in this simple case change with depth.

Variable 𝑟𝑎𝑛𝑔𝑒 initial value
𝜇 0.4-2 1
𝑘 0.1-0.5 0.5
𝜎 0.1-0.5 0.1
𝜖 0-1 0.1

Table C.1: Reasonable parameter values for nutrient-phytoplankton model.

I now perform an initial examination of the behavior of these equations. Table C.1 gives the

expected range of the variables and the values I am using to begin with. Using the initial conditions

of for 𝑁 = 1𝑚𝑚𝑜𝑙/𝑚3 (the high surface value) and a low 𝑃 = 0.01, peak chlorophyll occurs after

10 days; increasing initial phytoplankton concentration to 0.1𝑚𝑔/𝑚3 decreases the time to peak to

6 days (figure C-9). In the mean surface velocity of our model, with velocities up to 1𝑚/𝑠, this

peak would occur 200− 1000𝑘𝑚 downstream of the Strait. Given sample trajectories, 11 days from

the eastern Strait is at the eastern extent of the WAG or in its interior, depending on the initial

position (figure C-10). As biological model parameters are varied, this distance will change, as will

the path with the time-dependent velocities. However, this basic calculation of the reach suggests

that the nutrients from Gibraltar may be able to cause enhanced chlorophyll throughout the area

observed.

A larger demonstration, with different initial conditions, shows that the full pattern may be

recoverable from this model/method. I start month-long trajectories throughout the region each
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Figure C-9: Typical behavior of the NP model with time. Parameters as given as initial values in
Table C.1, with initial 𝑁 = 1, 𝑃 = 0.01, 0.1.

Figure C-10: Sample points from trajectories from surface MITgcm velocities. All initial points
(black shading) are in the Strait of Gibraltar, east of the Camarinal Sill; daily releases for 45 days.
Blue points are positions 6 days after release, red points are positions 10 days after release.
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Figure C-11: Sample 𝑃 field from one-month set of daily releases of trajectories throughout Alboran.

day for a month with the winter surface nitrate climatological values and constant 𝑃 = 0.01. Then

I bin the trajectories in space and average the NP values (the biological model has run for 0-28 days

depending on which release day the trajectory is from). These binned fields (figure C-11) show the

same type of high-periphery chl as the climatological SeaWifs (figure C-6).
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