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North Atlantic right whales (Eubalaena glacialis) are highly endangered and frequently

exposed to a myriad of human activities and stressors in their industrialized habitat.

Entanglements in fixed fishing gear represent a particularly pervasive and often drawn-out

source of anthropogenic morbidity and mortality to the species. To better understand

both the physiological response to entanglement, and to determine fundamental

parameters such as acquisition, duration, and severity of entanglement, we measured

a suite of biogeochemical markers in the baleen of an adult female that died from

a well-documented chronic entanglement in 2005 (whale Eg2301). Steroid hormones

(cortisol, corticosterone, estradiol, and progesterone), thyroid hormones (triiodothyronine

(T3) and thyroxine (T4)), and stable isotopes (δ13C and δ15N) were all measured

in a longitudinally sampled baleen plate. This yielded an 8-year profile of foraging

and migration behavior, stress response, and reproduction. Stable isotopes cycled in

annual patterns that reflect the animal’s north-south migration behavior and seasonally

abundant zooplankton diet. A progesterone peak, lasting approximately 23 months,

was associated with the single known calving event (in 2002) for this female. Estradiol,

cortisol, corticosterone, T3, and T4 were also elevated, although variably so, during the

progesterone peak. This whale was initially sighted with a fishing gear entanglement

in September 2004, but the hormone panel suggests that the animal first interacted

with the gear as early as June 2004. Elevated δ15N, T3, and T4 indicate that Eg2301

potentially experienced increased energy expenditure, significant lipid catabolism, and

thermal stress approximately 3 months before the initial sighting with fishing gear. All

hormones in the panel (except cortisol) were elevated above baseline by September

2004. This novel study illustrates the value of using baleen to reconstruct recent temporal

profiles and as a comparative matrix in which key physiological indicators of individual

whales can be used to understand the impacts of anthropogenic activity on threatened

whale populations.
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INTRODUCTION

North Atlantic right whales (Eubalaena glacialis Müller 1776)
are highly endangered mysticete cetaceans that range in the
industrialized coastal waters of the eastern United States and
Canada (Kraus and Rolland, 2007; Thomas et al., 2016).
Individuals are identifiable by unique patches of cornified skin
on the rostrum and bonnet, which become infested by cyamid
whale lice and are highly visible against a whale’s black skin
(Kraus et al., 1986; Figure 1A). Since the early 1980s, the New
England Aquarium (Boston, MA, U.S.) has curated a photo-
identification and sightings catalog for monitoring habitat use,
migratory phenology, health, calving rates, and survivorship
of right whales (Hamilton et al., 2007)—making them one of
the most well studied wild populations on the planet. Despite
significant conservation efforts, there are approximately 450
individual right whales remaining, with a trajectory of population
decline (Kraus et al., 2016; Pace et al., 2017; Pettis et al., 2017a).

FIGURE 1 | Field photographs and schematic of Eg2301 (A) with calf (Eg3310)

in 2002, photograph: New England Aquarium under NOAA permit 14233;

(B) with detail of fishing gear entanglement, illustration: Scott Landry, Center

for Coastal Studies; (C) post-mortem in 2005, with portion of left baleen rack

visible, photograph: U.S. Coast Guard; (D) left baleen rack, reflected to reveal

the lingual baleen surface and entangling lines, photograph: Virginia Aquarium

Stranding Program under NOAA permit 932-1905/MA-009526.

In recent years, fixed fishing gear entanglements have
increased in frequency and severity to become the primary
source of serious injury (i.e., injuries that do not result in an
immediatemortality but will likely result in subsequentmortality,
Moore et al., 2013) and anthropogenic mortality to right whales
(Knowlton et al., 2012, 2016; van der Hoop et al., 2013; Hayes
et al., 2017). Fixed fishing gear1 (herein referred to as “gear”) is
stationary, anchored at least at one end and can include gillnets,
long lines, pots, traps, and vertical lines and buoys. It is estimated
that 12–16% of the right whale population becomes entangled
in gear each year, with approximately 83% of the population
showing evidence of at least one entanglement (Knowlton et al.,
2012). Entanglements can become chronic when large whales
survive an acute gear entanglement and carry some or all of
the gear away with them, often resulting in death within 6–
12 months after first detection in the field (Moore et al., 2006;
Cassoff et al., 2011). These entanglements are often difficult
to assign to a particular fishery or geographic location, or to
track in real-time. Chronic entanglements have a variety of
sub-lethal consequences including: serious [likely painful] injury
(Knowlton and Kraus, 2001; Moore et al., 2005; Moore and
van der Hoop, 2012; Moore, 2014), loss of body condition—
from increased energetic demands due to the additional drag
of attached gear and/or impaired feeding (van der Hoop et al.,
2015, 2016, 2017), or compromised health and reduced fecundity
(Schick et al., 2013; Robbins et al., 2015; Rolland et al., 2016;
Pettis et al., 2017b). Longitudinal studies of individuals impacted
by gear entanglements are especially important to ascertain the
effect(s) and interactions of these potential consequences.

A retrospective biogeochemical approach can provide critical
insight regarding how entanglements affect large whales, such as
their impact on foraging success, migration behavior, or stress
physiology during an interaction with gear. Here, we measured
a panel of six hormones and stable isotopes in the baleen tissue of
a 12-year old, reproductively active female right whale (catalog
number Eg2301) that died from a well-documented chronic
gear entanglement. Eg2301 was first seen with attached gear
in September 2004, but the extent of the associated injuries
suggested that she had been carrying the gear for weeks/months
prior to this field sighting. The aim of this study was to validate
a novel endocrine method on a well-studied wild cetacean
by (i) describing the hormone and stable isotope profiles of
Eg2301 during known stressors that were both anthropogenic
(i.e., a chronic gear entanglement) and natural (i.e., a calving
event); and (ii) approximating the time and location of Eg2301’s
entanglement acquisition to provide better information for future
mitigation of whale-fishery interactions.

Baleen, a series of metabolically inert keratin plates in
the upper jaw that comprise the filter-feeding apparatus of
mysticetes, is an ideal tissue for recent retrospective, longitudinal
analysis due to its growth—which is assumed to occur
continuously, year round (St. Aubin et al., 1984; Werth and
Potvin, 2016; Figures 1C,D). In balaenid species like right
whales, adults can grow baleen plates upwards of 8 feet in length,
representing approximately 10 years of tissue for retrospective

1https://www.st.nmfs.noaa.gov/st4/documents/FishGlossary.pdf
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analysis. Similar to mammalian hair, baleen is a cornified
tissue that contains circulating endocrine compounds that have
been deposited during its growth (Bryan et al., 2013; Ullmann
et al., 2016; Cattet et al., 2017; Hunt et al., 2017b). For this study,
we analyzed: two adrenal glucocorticoid steroids—cortisol and
corticosterone—as elevations of these two hormones indicate the
initiation of the vertebrate stress response via the hypothalamic-
pituitary-adrenal (HPA) axis (Norris, 2006; Romero and
Wingfield, 2015). Thyroid hormones—triiodothyronine (T3)
and thyroxine (T4)—were analyzed as biomarkers of foraging
success since these hormones are regulators of metabolic rate in
mammals, and thyroid hormone status correlates with energy
expenditure and body condition (reviewed in Mullur et al.,
2014; McAninch and Bianco, 2015). Female gonadal steroids—
progesterone and estrogen—were analyzed as indicators of
pregnancy and potentially, estrous (Rolland et al., 2005; Kellar
et al., 2013; Hunt et al., 2016a; Burgess et al., in press).

Additionally, we analyzed carbon (δ13C) and nitrogen (δ15N)
stable isotopes in baleen, as they are well-established trophic
markers of seasonal diet and foraging location in large whales
(Schell and Saupe, 1993; Best and Schell, 1996; Lee et al., 2005;
Hobson, 2007; Lysiak, 2008; Newsome et al., 2010; Matthews
and Ferguson, 2015; Busquets-Vass et al., 2017). Animals acquire
their stable isotope signatures from their diet, with predictable
enrichment of both δ13C and δ15N at each trophic level
(Kelly, 2000). Lysiak (2008) documented annual δ13C and δ15N
oscillations in right whale baleen, which were attributed to a
whale’s foraging on zooplankton with disparate stable isotope
signatures during annual migrations through their seasonal
feeding habitats. In recent studies, stable isotopes have been
used in conjunction with baleen steroid hormone analysis to
establish a timeline of tissue growth—which greatly enhances the
resolution at which longitudinal hormone concentrations may
be interpreted (e.g., biological validations by Hunt et al., 2014,
2016a, 2017a).

MATERIALS AND METHODS

Study Animal
Field observations and sighting records for whale Eg2301 were
obtained from the North Atlantic Right Whale Catalog (http://
rwcatalog.neaq.org/; NARWC, 2006a). Eg2301 was born in 1993,
and was photographed annually in at least one of the known
right whale seasonal habitats in the Gulf of Maine or southeast
US (see Supplementary Material). This female whale was first
observed with a calf on December 31, 2002 in the southeast
US calving ground (Figure 1A), and sightings with that calf
continued as she migrated northward through Gulf of Maine
feeding habitats in 2003. She was last seen with her calf on
September 18, 2003 in the Bay of Fundy (New Brunswick,
Canada). Eg2301 was not documented again until September 6,
2004, when she was sighted on Roseway Basin (Nova Scotia,
Canada) with an extensive gear entanglement, which involved
rope wrapped around the left pectoral flipper and cutting across
and through the blowhole, and an extensive entanglement in the
mouth and baleen (Figures 1B–D). Eg2301 was last seen alive on
December 8, 2004, off the North Carolina, U.S. coast. The carcass

of Eg2301 was discovered on March 3, 2005 on a barrier island
off the Virginia, U.S. coast (Figure 1C), approximately 6 months
after the entanglement was first detected in the field. Given these
observational records, Eg2301 could have been entangled for a
minimum of 178 days and maximum of 532 days. A necropsy
indicated a serious injury to the left pectoral flipper (a deep
v-shaped laceration in the soft tissue with extensive periosteal
fibro-osseous proliferation around the humerus bone), partial
occlusion of the left blowhole, severe dermal abrasions, and
emaciated body condition (NARWC, 2006b; Cassoff et al., 2011).
A single, full-length baleen plate (with associated gingiva) was
collected from the carcass for this study and stored at−20◦Cuntil
analysis. Entangling rope was also collected from the carcass, but
it could not be attributed to a particular fishery or location.

Sample Preparation
The baleen plate from Eg2301 was scrubbed with a plastic bristle
brush and amild shampoo [Herbal Essences] to remove sand and
oils. Gingiva were flensed away to expose the unerupted base of
the baleen plate. After drying at room temperature, the plate was
wiped three times with 95% ethanol. We placed laboratory tape
down the midline of the baleen plate, where 2 cm increments
were marked for sampling, with “0” starting at the end of the
wide, proximal base of the plate (i.e., the attachment point to
upper jaw and newest baleen growth). To obtain higher temporal
resolution of hormone data in the final year of the animal’s life, we
sampled the baleen plate at 1 cm intervals between 0 and 24 cm
of baleen length. At each sampling point, baleen was ground
into a powder using a Dremel rotary tool fitted with a tungsten
carbide bit. All tools, surfaces, gloved hands, and the baleen plate
were wiped with ethanol between each sampling bout to prevent
cross-contamination. Given the limited amount of tissue at the
distal tip of the baleen plate, hormone analysis (which requires
significantly more tissue biomass—100mg for hormone analysis
vs. 1mg for isotope analysis) was collected from 0 to 158 cm of
baleen, while stable isotopes measurements were collected from
the full length of the specimen (0–214 cm).

Stable Isotope Analysis
Baleen powder aliquots (1.0 ± 0.2mg) were packaged into 4 x
6mm tin capsules in duplicate for δ13C and δ15N analysis, using
a PDZ Europa ANCA-GSL elemental analyzer interfaced with
a PDZ Europa 20-20 isotope ratio mass spectrometer (Sercon
Ltd., Cheshire, UK) at the University of California Davis Stable
Isotope Facility. Baleen stable isotope values are reported in delta
notation (δ, in parts per thousand), as the ratio of an unknown
sample to an international standard (Vienna Pee-Dee Belemnite
limestone for δ13C and atmospheric N2 for δ15N):

δ13Cor δ15N(‰) = [(Rsample/Rstandard)− (1)]× 1000

where R is a heavy-to-light isotope ratio, 13C/12C or 15N/14N.
Values were normalized using reference materials with an
isotopic composition that spanned that of the sample range (i.e.,
bovine liver, glutamic acid, and nylon 5; δ13C range: −27.72 to
37.626‰, δ15N range: −10.31 to 47.6‰) and were calibrated to
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NIST Standard Reference Materials (IAEA-N1, IAEA-N2, IAEA-
N3, USGS-40, and USGS-41). Analytical precision, 0.05‰ for
δ13C and 0.20‰ for δ15N, is based on the standard deviation
of a repeated internal laboratory standard (glycine). Reference
samples and standards were analyzed after every 12 baleen
samples.

Data Analysis
Autoregressive (AR) models and spectral analysis were used to
characterize variation and seasonality in the baleen δ13C and
δ15N profiles. Linear trends were removed from each isotope
time series before they were fit to high-order autoregressive
(AR(p)) models, with model order p selected based on minimum
Akaike information criteria (AIC). The spectral peak frequency
was converted to samples per period (1/peak frequency) and then
multiplied by sample interval (2 cm) to estimate the period length
of each times series (after Matthews and Ferguson, 2015). All
statistical analysis were performed using JMP 13.

Similar to other balaenid species, North Atlantic right whales
exhibit asymptotic baleen (and body) growth, where annual
tissue growth decreases with maturation (Best and Schell, 1996;
Lubetkin et al., 2008; Lysiak, 2008; George et al., 2016). Given
that Eg2301 was a 12-year-old whale, we expect the baleen
plate to contain tissue that grew at variable annual rates across
the approximately 8-year profile, such that a single estimate
of the period of each isotope time series may not be the best
characterization of a potentially dynamic annual growth rate.
To characterize inter-annual variation in baleen growth rate, we
estimated the period of each annual isotope cycle by counting
the number of inclusive data points (i.e., isotope maxima to
subsequent maxima) on the detrended data.

We used the stable isotope profiles to establish a timeline that
indicates the calendar year of deposition for each baleen sample.
The timeline begins with sample 0, which was given a date of
February 2005 based on observations at necropsy, suggesting that
Eg2301 was dead 1–2 weeks prior to the location of the carcass in
early March 2005 (NARWC, 2006). We then worked backwards,
using the estimated periods of each isotope cycle obtained from
counting the number of data points per oscillation, to assign
January of each previous calendar year on the baleen profiles.
The field sighting record for Eg2301, which indicated migration
behavior and potential times of residency in particular seasonal
habitats, also informed this timeline. Protracted feeding in one
area may manifest itself as a series of near-identical points in
a baleen isotope record, as the whale is theoretically ingesting
prey of consistent isotope signature during its residency. We
noted instances of repeated sightings of Eg2301 in a particular
habitat (in the same season and year) and cross-referenced these
to the baleen timeline to determine if field observations matched
temporally with sections of samples with similar isotope values.
The sighting record also indicates that Eg2301 was first seen
in the field with a new calf on December 31, 2002. This event
provides an additional opportunity to ground-truth the timeline,
as samples from this time period should be characterized by
a precipitous decline in baleen progesterone concentration (see
Hunt et al., 2016a).

Hormone Extraction
Following the extraction protocol by Hunt et al. (2014), 100mg
of baleen powder was combined with 4.0ml of 100%methanol in
a borosilicate glass tube, vortexed for 20 h at room temperature,
and centrifuged for 15min at 4,000 g. The resulting supernatant
was transferred to a clean glass tube and dried down at 45◦C
under nitrogen in a dry-block sample evaporator. Samples were
reconstituted in 1.0ml assay buffer (catalog #X065; Arbor Assays,
MI, USA) vortexed well, transferred to a cryovial, and frozen at
−20◦C until analysis.

Hormone Assays
Commercial enzyme immunoassay kits from Arbor Assays
were used to analyze baleen progesterone (catalog #K025),
17β-estradiol (catalog #K030), cortisol (catalog #K003),
corticosterone (catalog #K014), T3 (catalog #K056), and T4

(catalog #K050). Each of these assay kits has previously been
biochemically validated for hormone analysis of North Atlantic
right whale baleen (Hunt et al., 2016a, 2017a,b). An extensive
laboratory validation study by Hunt et al. (2017b) demonstrated
that all six assay antibodies exhibited reliable binding affinity to
the desired hormone in right whale baleen (i.e., good parallelism;
slopes of the linear portions of the binding curves of serially
diluted samples and standards are not significantly different),
and verified that each assay was able to distinguish a range of
concentrations with acceptable mathematical accuracy (i.e., good
accuracy; linear regressions of known standard dose vs. observed
dose are within r2 > 0.95 and slope= 0.7–1.3).

The manufacturer’s protocols were followed for analysis of
all six hormones. Samples, standards, non-specific binding, and
blank wells were assayed in duplicate. Any samples that fell
outside 10–90% bound on the standard curve were re-assayed;
samples with high hormone concentrations (percent bound
< 10%) were diluted 2-fold (1:2, or up to 1:256 in some
high progesterone samples) while samples with low hormone
concentrations (percent bound> 90%) were concentrated within
the assay wells at 2:1. Samples with > 10% coefficient of variance
between duplicates were re-assayed. Results were converted to
nanograms of immunoreactive hormone per gram of baleen.
Baseline hormone concentrations were determined for each
dataset using an iterative process excluding all points that deviate
from themean+ 2 SD until no points exceed this threshold (after
Brown et al., 1988). Peaks in hormone values were defined as
points exceeding the overall baseline concentration + 2 SD. The
corticosterone (compound B) to cortisol (compound F) ratio (i.e.,
B/F ratio) was calculated for all hormone samples.

RESULTS

Stable Isotope Timeline
The Eg2301 baleen δ13C and δ15N profiles contained regular
oscillations, which are hypothesized to be annual signals (Schell
and Saupe, 1993; Best and Schell, 1996; Lee et al., 2005; Hobson,
2007; Newsome et al., 2010; Matthews and Ferguson, 2015;
Figure 2A). Similar to another study of North Atlantic right
whale baleen isotopes (Lysiak, 2008), we observed δ13C maxima
in the boreal fall/winter while δ13C minima occurred in the
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spring. δ15N profiles were slightly out of phase with δ13C, with
δ15N maxima occurring in summer/fall and minima occurring
in winter (Figure 2A). Spectra from first-order autoregressive
models (AR(1)) fit to the stable isotope data estimated periods
of 32.4 cm (δ13C) and 29.3 cm (δ15N). The periods of each
individual isotope oscillation, representing annual baleen growth
rates, were estimated by counting the number of data points
in each isotope cycle. Across the baleen isotope records, we
observed a range of 12–17 data points per cycle (x= 15.28± 1.70
points, Figure 2B). This is equivalent to a mean annual growth
rate of 30.56 cm yr−1. Eg2301 shows evidence of decreasing
baleen growth rate, especially in the most recent years of
the isotope record (i.e., 2002–2004, Figure 2) when the baleen
growth rate declines to 24 cm yr−1, which is a stable growth
rate reported for other adult female North Atlantic right whales
(Lysiak, 2008; Hunt et al., 2016a).

The two methods used to determine the period of each
isotope profile, modeling and counting data points, provided
similar results (period = 32.4 cm yr−1 (δ13C, via modeling),
30.56 cm yr−1 (mean annual growth rate, via counting points),
or 29.3 cm yr−1 (δ15N, via modeling). Since we observed a
decrease in the period of each isotope cycle across the profile
(Figure 2B), we used the annual periods estimated by the
counting method to build a tissue growth timeline that would
best reflect the dynamic nature of the annual baleen growth
rate. There were three instances of repeated field sightings
of Eg2301 within a single habitat area, in the same season
and same year. Eg2301 was seen in the Bay of Fundy (New
Brunswick, Canada) in July/August/September of 1999 and 2001,
and in August/September of 2003 (NARWC, 2006a). When
these field sightings were cross-referenced with the sample
timeline, we observed sections of baleen with very similar δ13C
and δ15N values (open circles in Figure 2A), which suggest
Eg2301’s protracted feeding on zooplankton with a consistent
isotopic signature during these times. The date of first sighting
with a new calf (December 31, 2002) coincides with baleen
samples with declining progesterone concentrations, occurring
just after a sustained peak associated with gestation (see
section Discussion). The sighting record of Eg2301 provides
important validation for the tissue growth timeline. Given
the good alignment of the timeline with these known life
history and migratory events, we suggest that an error of
±1 data point (approximately 21.5–30 days) is a reasonable
estimate of uncertainty for the dates of deposition assigned to
each sample.

Hormone Panel
In the early years of the baleen hormone profiles for Eg2301 (i.e.,
between 1999 and 2001), nearly all samples fluctuate at or below
baseline and corticosterone:cortisol (B/F Ratio) ratios are <1.0
(indicating that immunoreactive cortisol was measured at higher
concentrations than immunoreactive corticosterone; Figure 3).
A protracted progesterone peak, two orders of magnitude above
baseline, was observed from early 2001 to late 2002 (x = 199.48
ng g−1, baseline = 2.249 ng g−1; Figure 3A). In 2001, the
increase in progesterone coincided with three discrete estradiol
spikes (Figure 3A), high cortisol (x = 9.02 ng g−1, baseline =

FIGURE 2 | (A) Carbon (δ13C, gray circles) and nitrogen (δ15N, black circles)

stable isotope ratios in Eg2301 baleen. Open circles represent samples

matched to repeated field sightings in the Bay of Fundy (New Brunswick,

Canada) in 1999 and 2001 (whale seen in July, August, and September) and

2003 (whale, with calf, seen in August and September). Vertical dotted black

lines represent estimates for calendar year of baleen growth. Gray box

indicates the duration of the progesterone peak associated with the single

known pregnancy for Eg2301. Vertical dashed gray lines represent the

minimum and maximum bounds of entanglement duration; vertical red dashed

line is the revised estimate of when the entanglement was acquired. (B) Annual

baleen growth rate (cm yr−1).

1.967 ng g−1) and elevated corticosterone (baseline = 4.663 ng
g−1; Figure 3B), B/F ratios predominantly <1.0 (Figure 3C),
and elevated but variable T3 (baseline = 0.719 ng g−1) and T4

(baseline = 0.376 ng g−1; Figure 3D). By contrast in 2002, the
progesterone peak coincided with a peak in estradiol (x = 6.91
ng g−1, baseline = 2.79 ng g−1; Figure 3A), low cortisol and
elevated corticosterone (Figure 3B), B/F ratios>1.0 (Figure 3C),
and variable fluctuations in T4 (early 2002) and T3 (late 2002)
(Figure 3D). In 2003, we observed one discrete, concomitant
increase in progesterone and estradiol (Figure 3A) and several
instances of elevated T3 (Figure 3D).

At death, in February 2005, all six hormones measured
during this study were elevated above baseline (Figure 3).
T3 and T4 showed variable fluctuations above baseline
throughout the baleen record, but persistently increased in
concentration beginning in June/July 2004 with the highest
recorded concentration of T3 being the last data point on
February 2005 (8.48 ng g−1; Figure 3D). By August/September
2004, corticosterone showed persistent elevations, increasing
to the highest recorded concentration (13.89 ng g−1, 3-fold
above baseline) by the end of the baleen record (Figure 3B). By
September 2004, progesterone and estradiol rose continuously
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FIGURE 3 | Observed immunoreactive hormone concentrations across the

Eg2301 baleen plate. Vertical dotted black lines represent estimates for

calendar year of baleen growth, as determined from stable isotope profiles.

Horizontal dotted lines indicate baseline hormone levels. Gray box indicates

the duration of the progesterone peak associated with the single known

pregnancy for Eg2301. Vertical dashed gray lines represent the minimum and

maximum bounds of entanglement duration; vertical red dashed line is the

revised estimate of when the entanglement was acquired. (A) Progesterone

(pink solid line—note logarithmic scale, baseline = 2.249 ng g−1) and estradiol

(purple dashed line, baseline = 2.79 ng g−1); (B) Cortisol (red solid line,

baseline = 1.967 ng g−1) and corticosterone (orange dashed line = 4.663 ng

g−1); (C) Corticosterone:cortisol ratio (B/F Ratio), horizontal dashed line at y =

1.0 indicates equal concentrations of both hormones; (D) triiodothyronine

(T3–blue solid line—note logarithmic scale, baseline = 0.719 ng g−1) and

thyroxine (T4–green dashed line—note logarithmic scale, baseline = 0.376 ng

g−1).

above baseline (Figure 3A). We observed three discrete spikes of
high cortisol during 2004–2005, the highest concentration (4.72
ng g−1 and approximately 2-fold above baseline) occurred at the
end of the hormone record (Figure 3B).

DISCUSSION

Baleen hormone and stable isotope profiles (Figures 2, 3)
showed correspondence with documented life history events
for this reproductively mature, chronically entangled female
right whale. A period of gestation was characterized by high
baleen progesterone concentrations and contained two distinct
phases, each lasting approximately 1 year: (1) low estradiol,
high corticosterone-cortisol in 2001 and (2) high estradiol-
corticosterone, low cortisol in 2002 (Figure 3). The end of
gestation (i.e., parturition and a return to baseline progesterone
values) coincides with the timing of the first field sightings of
Eg2301 with a calf, on December 31, 2002. Thyroid hormones
(T3 and T4) are periodically elevated across the baleen record
and point to periods of short- and long-term food limitation,
associated thermal stress, and increased energy expenditure.
Finally, the hormone panel shows evidence of a stress response
in 2004, during a period when Eg2301 was documented in the
field with a chronic gear entanglement.

Gestation and Estrous
Gestation Timeline
Progesterone, as detected in several balaenid whale tissue
matrices (e.g., feces, Rolland et al., 2005, 2012, 2017; blubber,
Kellar et al., 2013; respiratory vapor, Burgess et al., in
review; and baleen, Hunt et al., 2016a), is a robust indicator
of pregnancy. Longitudinal, physiological-based estimates of
mysticete gestation period, as provided by this study, are
extremely limited. The protracted progesterone peak observed
in the Eg2301 baleen record contains 29 data points that,
according to our date of growth timeline, are equivalent to
approximately 696 days (23months). These results could indicate
that North Atlantic right whale gestation is significantly longer
than previously reported in other balaenids.

Based on field observations, stranding data, and whaling
records, Best (1994) estimated a gestation period of 357–396 days
(12–13 months) for southern right whales (Eubalaena australis).
Reese et al. (2001) modeled bowhead whale (Balaena mysticetus)
average gestation length at 13.9 months (predictive distribution
= 12.8–15.0 months), based on observations of the reproductive
tract of specimens harvested during subsistence whaling.
Estimates for both species are associated with a high degree
of uncertainty given the difficulty of observing small embryos
within the female reproductive tract during the initial, non-linear
phase of fetal growth (Best, 1994; Reese et al., 2001). Using an
endocrine approach, Hunt et al. (2016a) conservatively defined
gestation as “uninterrupted baleen samples with progesterone
>100 ng g−1,” and detected progesterone peaks lasting 540
and 451 days (18 and 15 months, respectively) in two North
Atlantic right whales. Though anecdotal, in an endocrine study
of North Atlantic right whales, one adult female was sampled
in the summer/fall 2004 (fecal progesterone was low) and again
in summer/fall 2005 (fecal progesterone was very high), and
the whale calved in the winter 2005/2006 calving season (R.M.
Rolland, pers. comm., see Rolland et al., 2005). In this case, fecal
progesterone was low (i.e., at or below baseline) at approximately
15–17 months prior to parturition, which puts upper bounds on
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the length of gestation for this particular animal. Taken together,
these previous studies highlight the need for further examination
of gestation length in this species, with priority to the detection
and characterization of the non-linear fetal growth period in early
pregnancy.

The temporal mismatch between our observed high
progesterone peak and previous estimates of gestation length
could potentially be explained by the timeline calculated using
stable isotopes. Baleen growth rate varies with age in bowhead
(Lubetkin et al., 2008) and right whales (Lysiak, 2008), where
calves, juveniles, and sub-adults exhibit faster growth rates
than mature adults. Changes in baleen growth rate per year, or
inter-annual growth rates, were quantified in this study as the
number of data points per isotope oscillation, and if significant
confounding changes occurred in baleen growth rate during
pregnancy, we should also see the period of annual δ13C and
δ15N signals change coincidentally (i.e., the period of δ13C and
δ15N oscillations should increase during a slower growth rate
scenario, or decrease with a faster growth rate). We did observed
inter-annual variation in Eg2301 baleen growth, with longer
periods seen in older sections of baleen (Figure 2). However,
during the proposed pregnancy, the 2002 cycle contained 16
data points (baleen growth rate = 32 cm yr−1) and the 2001
cycle contained 17 data points (baleen growth rate = 34 cm
yr−1) (Figure 2B), suggesting that baleen growth occurred at a
relatively consistent rate for the duration of the progesterone
peak.

In this study, as in previous work (Schell and Saupe, 1993;
Best and Schell, 1996; Lee et al., 2005; Hobson, 2007; Lysiak,
2008; Newsome et al., 2010; Aguilar et al., 2014; Matthews and
Ferguson, 2015; Busquets-Vass et al., 2017), we assume that
baleen grows continuously throughout the year (i.e., no intra-
annual or seasonal variability in growth). Given the consistent
wear patterns in baleen, such as abrasion by the tongue, intra-
and extra-oral water flow, and food or sediment particles (Werth
et al., 2016), there is strong selective pressure for right whales
to consistently maintain their baleen given its integral role in
foraging. It is possible that baleen growth rate could change
during pregnancy, stress, or food limitation, as variations in
the gestational growth rates of keratin-based tissues have been
observed in human hair (LeBeau et al., 2011) and cow hooves
(Hahn et al., 1986; Mülling et al., 1999). This may add uncertainty
and error to our established timeline of baleen tissue growth.
While difficult to measure directly in free-ranging cetaceans,
future studies should prioritize the investigation of seasonal
variability in baleen growth and wear.

Rather than being indicative of one continuous pregnancy,
an alternative explanation is that the observed progesterone
peak can be divided into two distinct phases: estrous and
gestation. In this case, we hypothesize that gestation comprises
the second half of the baleen progesterone peak. There is
observational evidence for the endpoint of gestation; it ends at
parturition in late 2002, when progesterone returns to baseline
levels (at baleen length 58) and Eg2301 was first seen in the
field with her new calf on December 31 2002; Figures 1A, 3A).
However, defining the beginning phase of gestation is more
tentative. Cortisol concentrations may be an adequate endocrine

biomarker for the transition between estrous and gestation since
a very dramatic shift was observed in that hormone between our
two proposed phases of the reproductive event (Figures 3B,C).
This is similar to observations of captive female Asian elephants,
where a protracted cortisol peak preceded a progesterone peak
in longitudinal serum samples, and indicated a transition from
the follicular phase to the luteal phase (Fanson et al., 2014).
Under this scenario, gestation begins in late 2001 when cortisol
levels return to baseline and B/F ratios increase to >1.0 (at
baleen length 88; Figures 2, 3). This provisional gestation period
represents 16 baleen samples, and is equivalent to approximately
384 days (12.8months), using our timeline of baleen growth. This
corresponds well to the Best (1994) estimate of a 12–13 month
gestation in southern right whales—a closely related species.

Estrous Cycling
We hypothesize that a period of estrous, a state of sexual
receptivity during which a female is capable of conceiving,
comprises the first half of the baleen progesterone peak (i.e.,
early to late 2001, from baleen length 114–90 cm; Figure 3A).
During this time, corticosterone, T3, and T4 are variable but
primarily elevated above baseline, estradiol is predominantly low,
and cortisol is consistently high−9-fold above baseline and at
the highest concentrations observed across the entire baleen
record (Figure 3). Cortisol (along with other glucocorticoids,
GCs) is an index of relative stress (i.e., it indicates activation of
the hypothalamic-pituitary-adrenal axis), but also has a role in
responding to natural states of increased energetic needs such
as migration or reproduction in free-ranging cetaceans (Brann
and Mahesh, 1991; Andersen, 2002; Tetsuka, 2007; Rolland
et al., 2012; Trumble et al., 2013; Kellar et al., 2015; Hunt
et al., 2017a). Under normal physiological conditions, short-
term increases in GCs promote sexual receptivity, stimulate
gonadotropins (i.e., luteinizing hormone and follicle stimulating
hormone), facilitate ovulation, and ameliorate damage from
inflammation (reviewed in Fanson et al., 2014). However,
reproductive dysfunction or failure can occur under chronic
stress and elevated GCs (Tilbrook et al., 2002). Sighting records
and the right whale photographic database do not indicate any
significant anthropogenic stressors (i.e., visible entangling gear,
new entanglement scars, or evidence of a non-lethal vessel strike)
or an overall decline in health for Eg2301 during 2001 (NARWC,
2006a; A. Knowlton, pers. comm, after Schick et al., 2013).
These observations, and that Eg2301 successfully completed a
full-term pregnancy in 2001–2002 suggest that the observed
high cortisol values could be a component of the animal’s
natural reproductive cycle. This result highlights the importance
of combining biomarkers of reproduction with those of stress
physiology—as it could be tempting to interpret these high
GCs as an indicator of a major disturbance or anthropogenic
stressor in the absence of collocated progesterone and estrogen
concentrations.

Estrous is poorly defined in mysticetes (Boness, 2009).
However, odontocete reproductive studies show estrous cycles
as spikes in urinary estrogen conjugates closely followed by
luteinizing hormone surges, and cycles lasting between 30
and 41 days in Pacific white-sided dolphins (Lagenorhynchus
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obliquidens), bottlenose dolphins (Tursiops truncatus), and killer
whales (Orcinus orca) (Robeck et al., 2004, 2005, 2009).
Additionally, Robeck et al. (2004) observed sequential,
natural estrous cycles within a season for one individual L.
obliquidens, which entailed continuously elevated urinary
progesterone and detection of a corpus luteum—with no
ultrasound evidence of pregnancy—for 86 days (and 103
days in the following year). In the context of these findings,
we recommend expanding the baleen hormone panel to
include a suite of progesterone and estrogen conjugates
or metabolites. The interactions among these hormones
could provide a more detailed assessment regarding the
reproductive physiology of right whales. Future studies should
consider non-target analysis using high performance lipid
chromatography (HPLC) to accommodate a wider range of
prospective analytes.

According to the timeline of baleen growth and stable
isotopes, Eg2301 was 8 years old during the proposed period of
estrous, became pregnant just before age 9, and was 10 years
old just after parturition. These observations are in agreement
with population-wide estimates for mean age of sexual maturity
(9 years) and mean age at first calving (10.1 years; Kraus et al.,
2001, 2007). In addition to a period of potential estrous, a failed
pregnancy, pseudopregnancy, or delayed implantation may have
occurred during this time. Delayed implantation, a temporary
diapause of the embryonic blastocyst, is widespread among the
mammalian orders Rodentia and Carnivora, but only one known
species of Cetartiodactyla (the roe deer, Capreolus capreolus)
exhibits this life history strategy (Renfree and Shaw, 2000; Ptak
et al., 2012). Previous studies commonly observed low estrogen
concentrations during diapause and then implantation was
indicated by a surge in circulating estrogens and progesterone in
northern fur seals (Callorhinus ursinus, Daniel, 1981), roe deer
(Aitken, 1981) and giant pandas (Ailuropoda melanoleuca, Zhang
et al., 2009). If right whales undergo the delayed implantation
observed in other marine mammals, our hormone panel suggests
that active gestation could have begun as early June/July
2001 (when progesterone peaks) or September 2001 (when
estradiol surges above baseline after protracted low levels)—
meaning that the estimate of gestation period would increase to
approximately 16–19 months. Future studies could investigate
this further using a broader hormone panel or additional tissue
matrices.

Food Limitation
Right whales feed via continuous ram filtration, which is
accomplished with a complex mouth anatomy that filters prey-
laden water via hydrodynamic pressure differentials across
the baleen plates (Werth, 2004). The entanglement of Eg2301
included rope obstructing the mouth, with extensive, knotted
wraps through the right and left baleen plates (Figures 1B–D).
This gear configuration likely inhibited feeding ability and/or
significantly decreased filtration efficiency, potentially leading to
a prolonged fasting. Asmigratory capital breeders with seasonally
abundant prey, right whales are well adapted to periods of
food limitation, and will catabolize stored energy reserves (e.g.,
subdermal adipose tissue or blubber) during fasting (Lockyer,

1981). Blubber thickness measurements correspond to a whale’s
onboard energy balance, and fluctuate with foraging success and
reproductive state (Miller et al., 2011; Irvine et al., 2017). At
necropsy, the carcass of Eg2301 had extremely thin dorsal blubber
(8.5 cm observed, in contrast to 13.4 ± 1.8 cm in non-entangled
adult whales; NARWC, 2006b; Miller et al., 2011; van der Hoop
et al., 2016). The baleen stable isotope and hormone profiles
support these observations, suggesting that Eg2301 experienced
severe, prolonged fasting conditions prior to death.

δ15N is an indicator of trophic position in traditional food web
studies, since the heavy isotope of nitrogen (15N) is preferentially
incorporated into consumer tissues from their diet, which results
in a systematic enrichment in nitrogen isotope ratio (15N/14N)
with each trophic step (Kelly, 2000). Thus, elevations in δ15N
may correlate with dietary shifts to 15N-enriched prey, at higher
trophic levels. Fasting conditions can mimic trophic enrichment,
since an animal is essentially metabolizing muscle tissue during
periods of fasting, thereby causing elevated tissue δ15N (Castellini
and Rea, 1992; Hobson et al., 1993). Given their significant
adaptations to seasonal fasting and ability to increase lipid stores,
baleen whales usually do not display trophic enrichment (Lysiak,
2008; Aguilar et al., 2014; Matthews and Ferguson, 2015) with
periodic food limitation and migration. Eg2301 baleen δ15N
values exhibit an annual oscillating pattern similar to those
observed in other North Atlantic right whales, with the exception
of the last few months of the record where δ15N increases to
12.78‰, the highest value recorded in any North Atlantic right
whale (Lysiak, 2008). This shift from the regular oscillations
could indicate the severe depletion of blubber lipids and a heavier
reliance on protein (muscle) catabolism as a means to meet
ongoing energetic demands (Fuller et al., 2005; Aguilar et al.,
2014).

The thyroid hormones triiodothyronine (T3) and thyroxine
(T4) are important regulators of metabolic rate in mammals
(Norris, 2006; Mullur et al., 2014; McAninch and Bianco, 2015).
During fasting, the hypothalamic-pituitary-thyroid (HPT) axis
is depressed, which decreases circulating thyroid hormones,
basal metabolic rate, and energy expenditure—which could
serve as a survival mechanism (Mullur et al., 2014). Contrary
to this paradigm, we observed elevated concentrations of
immunoreactive T3 and T4 in the baleen of Eg2301 prior
to her death, when we know that her blubber layer became
extremely thin and lipid depleted. Lipolysis, fat oxidation, or
catabolism of the blubber lipids in fasting marine mammals
serves two major roles; mobilizing stored energy (Pond, 1978;
Lockyer, 1981) and generating metabolic water (Ortiz et al., 1978;
Ortiz, 2001) in the absence of active feeding. Thyroid-promoted
lipolysis could be a mechanism to meet osmotic and energetic
demands during periods of prolonged nutritional stress. For
example, captiveWest Indianmanatees that experienced reduced
food intake (i.e., a diet switch from lettuce to sea grass)
exhibited increased serum T4 levels and decreased body mass
(up to 17%, primarily due to loss of fat; Ortiz et al.,
2000).

Blubber is a tissue that also reduces thermal conductance and
is a critical adaptation to maintain thermal homeostasis (Dunkin
et al., 2005; Samuel and Worthy, 2005)—a constant battle for
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endothermic homeotherms living in seawater. Loss of blubber
thickness can correspond to a concomitant loss of thermal
insulation. When under thermal stress, thyroid hormones are
secreted to promote adaptive or facultative heat production in
brown adipose tissue (BAT) (Silva, 2003; Norris, 2006; Mullur
et al., 2014; Santini et al., 2014). In odontocete cetaceans, BAT
is located at the innermost blubber layer and enveloping the
entire body, exclusive of the thermal windows (Hashimoto et al.,
2015). Periods of fasting could represent a negative feedback
loop, where thyroid-promoted lipolysis degrades the integument
for the sake of water balance and energetic homeostasis, which
then necessitates elevated thyroid hormones to promote BAT-
mediated thermogenesis.

The thyroid panel of Eg2301 during the entanglement period
is also surprising because stress is generally thought to inhibit
thyroid secretions (Eales, 1988; Norris, 2006). However, different
patterns in thyroid output have been reported for some stressors
that increase energetic output (e.g., exercise stress), contrary to
what is seen during simple fasting (Uribe et al., 2014; Hunt
et al., 2016b). For example, entangled distressed leatherback
sea turtles had higher serum T4 than healthy wild individuals,
presumably from the added energetic cost of carrying gear (Hunt
et al., 2016b). Eg2301 would have likely expended additional
energy for locomotion to compensate for the drag associated
with the entangling gear (van der Hoop et al., 2013, 2015, 2016),
which could be an example of exercise stress promoting thyroid
function.

Acute or periodic fasting may be indicated in right whale
baleen by isolated and discrete rises in thyroid hormones T3

and T4 (occurring sporadically across the baleen record) and
longer-term fasting may be indicated by prolonged T3 and/or
T4 elevations (occurring on three occasions: 2001, late 2002-early
2003, and mid 2004–2005; Figure 3D). In 2001, elevated T3 and
T4 concentrations in the baleen coincide with the first half of
the 2001–2002 progesterone peak (Figure 3). While right whales
can travel significant distances, undetected, sighting records for
this animal do not indicate a migration to the southeast U.S.
in 2001. However, in late 2002, sighting records do indicate
Eg2301migrated approximately 1,500 km from the Gulf of Maine
to the southeast US calving ground to give birth and nurse a
new calf, with a subsequent return trip several months later
(NARWC, 2006a). Interestingly, T3 is elevated during this period,
with peaks circa November 2002 and February 2003, when
Eg2301 presumably would be traveling during southbound and
northbound migrations, respectively (Figure 3D). Finally, T3

elevated above baseline beginning in June 2004, 3 months prior
to the detection of the entanglement in the field (Figure 3D).
This suggests that Eg2301 experienced significant, chronic fasting
leading to loss of blubber, and associated thermal stress over a
period of approximately 9 months.

Entanglement
Entanglement Duration and Location
Eg2301 was initially observed with a gear entanglement on
September 6, 2004 (minimum entanglement duration= 178 days
or 6 months in Figure 3), however the baleen hormone panel
suggests that the animal first interacted with gear several months

earlier (mid-2004; see red line in Figure 3). Field observations
of an extensive mouth/baleen entanglement plus low blubber
thickness documented at necropsy support the hypothesis that
Eg2301 experienced an extensive period of compromised feeding.
In the hormone panel, we observed persistent T3 elevations in
baleen beginning in June 2004 (NARWC, 2006b; Figures 1B,C,
3D). By September 2004, all hormones except for cortisol were
elevated above baseline (Figure 3). At the September 6, 2004
field sighting (when the entanglement was first discovered),
researchers noted that the skin on the left pectoral flipper
appeared white underwater—suggesting that the entanglement
must have already persisted long enough for the flipper tissue to
become necrotic from being tightly wrapped in line (NARWC,
2006b; Figure 1B). By the end of the baleen hormone record
(February 2005), cortisol also elevated above baseline and
δ15N increased to a level indicating [fasting-induced] trophic
enrichment (Figure 2A). Given these observations and our
estimation of uncertainty of the baleen timeline, we propose that
Eg2301 carried the chronic gear entanglement for a minimum of
9 (±1) months, potentially first encountering the entangling gear
as early as June 2004. At that time, there are no field sighting
records available for Eg2301 in late spring 2004, so we can only
speculate as to her location when becoming entangled. Eg2301’s
baleen δ13C reaches a minima at this time, which is consistent
with depleted δ13C values of zooplankton collected in the Great
South Channel (southern Gulf of Maine) in May/June, as well
as trends in population-wide migration behavior and baleen
isotopes for other individual right whales (Hamilton et al., 2007;
Lysiak, 2008). Though Eg2301 was not observed in this area in
2004, she was seen in the Great South Channel habitat in previous
years (i.e., April/May/June 1999–2002 and July 2003; NARWC,
2006a). Additional isotopic markers, such as sulfur, oxygen, or
deuterium (deHart and Picco, 2015; Matthews and Ferguson,
2015) could provide more spatial resolution in the baleen isotope
profile to better assess the location of gear acquisition for this
animal.

Stress Physiology
After the carcass of Eg2301 was recovered, researchers confirmed
that entangling rope had sliced down to the left humerus bone
as well as cut into the skin of the head and blowhole (NARWC,
2006b). These wounds likely caused pain and significant stress
(Moore and van der Hoop, 2012). Despite these persistent
injuries during the entanglement, we observed paradoxically
low cortisol (June 2004—February 2005). This is unexpected
since chronic stress, and thus higher cortisol concentrations,
should have resulted from this entanglement, as seen in
previous studies. Rolland et al. (2017) documented high cortisol
in the feces of North Atlantic right whales due to chronic
entanglement as well as exposure to noise from vessel traffic
(Rolland et al., 2012). We suspect that either baleen is not truly
reflective of circulating cortisol levels, or this could indicate
insufficient adrenal gland function (i.e., hypothalamic-pituitary-
adrenal axis dysfunction or “adrenal fatigue”)—the mechanisms
of which are poorly understood in mammals (Edwards et al.,
2011). The highest cortisol concentrations in Eg2301 baleen
were observed during the proposed estrous cycle, rather than
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during the entanglement, suggesting that baleen cortisol may
not be the best biomarker to use for studying large whale
response to chronic anthropogenic stressors (Figure 3B). In
contrast, corticosterone was elevated during proposed estrous,
gestation, and entanglement (Figure 3B), with the highest
values observed in the last 4 months of the baleen record—
indicating that this hormone might be more informative when
studying stress response in large whales. Furthermore, B/F
ratios are consistently >1.0 beginning in 2002 (coinciding with
the proposed beginning of gestation), meaning that greater
concentrations of immunoreactive corticosterone were detected
in these samples than immunoreactive cortisol (Figures 3B,C).
Hunt et al. (2017a) noted 4-fold higher corticosterone vs.
cortisol concentrations in North Atlantic right whale baleen and
suggested that this species might conform to a dual GC signaling
model (Koren et al., 2012), where cortisol is a better index
of acute stress and corticosterone better reflects chronic stress.
Though untested in this study, future hormone panels might also
include the adrenal hormone aldosterone as a stress biomarker.
Aldosterone was elevated in the feces of pregnant North Atlantic
right whales (Burgess et al., 2017) and is detectable in right whale
baleen (Hunt et al., 2017b).

In summary, we used elevations of female gonadal steroids
progesterone and estradiol to identify a reproductive event in
Eg2301’s baleen hormone record. Beginning in September 2004,
when she was first seen entangled, both of these hormones
were again elevated above baseline and continued to rise until
the death of Eg2301. This could be physiological evidence of
a second estrous cycle or pregnancy. As capital breeders, right
whales need to secure sufficient onboard energy stores in their
blubber to support gestation and lactation (Irvine et al., 2017).
Miller et al. (2011) observed that right whales had the thickest
blubber just prior to becoming pregnant. Body condition for
Eg2301 was declining during her entanglement, and would likely
not meet the energetic threshold required to become pregnant
or carry a fetus to term. Due to the remote location of the
carcass, an internal examination was not undertaken; therefore
the presence or absence of a fetus was not determined. In tandem
with the visual decline in body condition during entanglement,
baleen T3 and T4 concentrations showed sustained increases
potentially indicating significant lipolysis or increased energy
expenditure, providing another indicator to rule out a pregnancy
event. Elevated progesterone in late 2004 could be attributed
to the adrenal glands, which release progesterone (the parent
hormone to GCs) in response to stress (reviewed in Herrera et al.,
2016). This may contribute to a greater bioavailability of cortisol
during the stress response, providing the body with glucose
(via gluconeogenesis in the liver) and restoring homeostasis
(Kudielka and Kirschbaum, 2005). This physiological response
could be considered part of an unsustainable “emergency life-
history stage” brought on by entanglement (Wingfield et al., 1998;
van der Hoop et al., 2016) in a last ditch attempt to prolong
survival. Anecdotally, in 2010–2011, increasing progesterone (R.
Rolland, pers. comm.) and very high cortisol (Rolland et al.,
2017) were observed in the longitudinal fecal samples of an
entangled, juvenile [non-pregnant] female right whale (catalog
number Eg3911).

CONCLUSIONS

The panel of biogeochemical markers from Eg2301 baleen
allowed us to investigate the longitudinal physiological response
of a large whale to a chronic gear entanglement in its
industrialized ocean habitat. With a panel of adrenal and
gonadal steroid hormones, thyroid hormones, and stable
isotopes, we were able to establish a timeline of baleen
tissue growth and examine the fluctuations of hormones
in response to: a calving event, an approximately 3,000 km
seasonal migration, prolonged periods of food limitation, and
stress associated with entanglement-induced serious injury.
These observations support an updated estimate of minimum
entanglement duration for Eg2301 from 6 to 9 months, which
enhances our understanding of the timeline of this event and
provides insight into where it may have occurred. With the
biological validation provided in this study, we can apply
this method to future forensic studies where the cause of
death of a large whale is uncertain or undetermined, or the
timeline of events is not known. This novel study illustrates
the value of using baleen to reconstruct recent temporal
profiles and as a comparative matrix in which key physiological
indicators of individual whales can be used to understand
the impacts of anthropogenic activity on threatened whale
populations.
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