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A Seismic Refraction Experiment in the Central Banda Sea
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A seismic refraction experiment in the central Banda Sea is interpreted by using both slope intercept
and delay time function methods. The crustal structure is shown to be oceanic, with velocities (4.97, 6.47,
7.18, and 7.97 km/s) typical of oceanic layers 2, 3A, and 3B and the mantle. Individual layer thicknesses
vary systematically along the line, though the range of thicknesses observed for layers 2 (1.5-2.0 km) and
3A (2.0-3.5 km) falls well within the range observed for normal oceanic crust. Layer 3B is unusually thick
(2.5-4.6 km), the result being slightly greater than normal depths to Moho of 9-10 km below the sea floor.
Shear head waves from layers 3A and 3B are identified on two receivers. In both cases, shear wave
conversion occurred at the sediment/layer 2 interface. The observed shear wave velocities and intercepts
indicate a Poisson’s ratio of 0.25-0.28 in layer 3 and ~0.33 in layer 2. These and earlier results from the
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southern Banda basin indicate that the entire Banda Sea is underlain by oceanic type crust.

INTRODUCTION

The island arcs, trenches, and marginal basins of Indonesia
form one of the most tectonically active and complex regions
of the world. The Banda arc, in eastern Indonesia, is the
apparent eastward continuation of the Sunda arc system,
which separates the Indian-Australian- plate from Eurasia
[Fitch, 1972; W. Hamilton, 1973]. The Banda arc (Figure 1)
consists of a volcanically active inner arc and an outer, non-
volcanic arc extending northeastward from Wetar and Timor
through the Tanimbar and Aru islands around to Seram and
Buru on the north. The inner and outer arcs are separated by
the Weber Deep, a trough with depths in excess of 7 km.
Within the inner volcanic arc lies the.Banda Sea, a marginal
basin characterized by typical oceanic water depths (4-5 km),
low uniform heat flow [Jacobson et al., 1977], and a relatively
thin sediment cover (<1 km).

While the entire Sunda-Banda arc system is believed to have
originated from the Cenozoic convergence of the Eurasian,
Indian, and Pacific plates [Fitch, 1972], the nature of the crust
within the Banda Sea and its tectonic evolution are not well
understood. It is not known, for example, whether the Banda
Sea is an active interarc basin of the type described by Karig
[1971], an inactive one, or a trapped piece of older oceanic
crust. The only published information on the crustal structure
in the Banda Sea is from a single reversed refraction line shot
in the early 1960’s in the southern Banda basin (Figure 1).
Results from this line indicate a typically oceanic crustal struc-
ture with a slightly shallower than normal depth to mantle
[Curray et al., 1977]. It is important to determine whether this
type of crust exists throughout the Banda Sea, and if not,
where the major structural discontinuities are.

In this paper we describe a reversed refraction experiment
carried out in the central Banda Sea during October 1976.

DATA

The receivers used were modified Select International SLF-
73 megahertz radio sonobuoys and the newly developed
Woods Hole Oceanographic Institution ocean bottom hydro-
phone (OBH) instrument. The line was oriented N-S and was
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approximately 74 km long (Figure 1). The OBH (OBH2) was
deployed at the southern end of the line, a sonobuoy at the
northern end (SB22), and a second sonobuoy (SB10) approxi-
mately midway between OBH2 and SB22.

A total of 68 shots were fired, ranging in size from | to 240
pounds. All travel times were corrected for the shot to ship
travel time (‘shot instant correction’) and drift of the OBH
chronometer relative to the shipboard master clock (~0.1 ms/
h). Shot-receiver ranges were determined from direct and re-
flected water wave travel times. At OBH2, direct water waves
were received at ranges out to 34 km, but on the sonobuoy
records, such arrivals were rarely received beyond 10 km.
Ranges were computed for the OBH water wave travel times
and the sonobuoy first and second multiple reflected water
wave travel times by using a sounding velocity of 1507 m/s for
the water column, as determined at nearby hydrographic sta-
tions. A near-surface water velocity of 1535 m/s was used for
the sonobuoy direct water wave arrivals.

The insert in Figure 1 shows that the two shooting runs were
separated by ~8 km owing to navigational inaccuracies. Ini-
tially, the data from these two subparallel lines were treated
separately, but as no significant difference was seen between
them, they were merged into a single data set.

Record sections were constructed for each receiver and used
to pick refracted wave arrival times (Figures 2a, 2b, and 2c).
These travel times were corrected for water delay at both shot
and receiver, the resulting data set of corrected travel times
being as if all shots and receivers were on the sea floor. This
data set was then interpreted by using both conventional slope
intercept techniques and the delay time function method.

RECORD SECTIONS

The record section for OBH2 (Figure 2a) shows clear first
refracted arrivals out to ranges of 70 km. The main refracted
wave energy is generally concentrated in the first second after
the first arrival, although there is considerable variation in the
amplitude and character of these arrivals from shot to shot.
The prominent second arrival, G’ in Figure 2a, is a reflection
at the sea surface above the receiver.

The sonobuoy record sections (Figures 26 and 2¢) also show
clear first arrivals at intermediate ranges. However, refracted
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The Banda Sea. The locations of the seismic refraction line reported in this paper (station 23) and of an earlier

refraction line (M 12) in the southern Banda Sea reported by Curray et al. [1977] are shown. Inset shows receiver locations
and shooting lines for station 23. Bathymetry contour interval is 1 km.

arrivals at ranges of less than 10 km are obscured by the water
waves, and oniy weak first arrivals exist on SB22 beyond 50
km. The character of the sonobuoy records at ranges less than
30 km differs markedly from the character of those at OBH2.
The sonobuoy records show strong reverberations and the
persistence of energy for many seconds after the first arrival,
while at the OBH, relatively little energy was received between
the first arrival and the G’ multiple.

A prominent second arrival (PSP) is apparent on OBH2
between 6- and 10-s reduced travel time at ranges of 13-41 km
and on SB22 between 12- and 15-s reduced travel time at
ranges of 30-47 km. Precise identification of the initial onset of
this low-amplitude phase is difficult owing to interference from
earlier arrivals. It is clearly visible, however, on shots 1073-
1075 and 1084 on OBH2 and shots 1076 and 1079 on SB22
(Figures 2a and 2b). Its apparent velocity of 3.6-3.9 km/s
suggests that it is a shear head wave propagating in layer 3.

SLOPE INTERCEPT INTERPRETATION

Corrected time-distance graphs for the three receivers are
shown in Figures 3a, 3b, and 3c. The apparent velocities and
intercepts are listed in Table 1.

Four apparent velocities are identified at OBH2; 4.98, 6.65,
7.23, and 8.08 km/s, which we associate with layers 2, 3A, 3B,
and Moho, respectively. Both sonobuoys yield layer 3A and
3B type velocities, but only weak mantle arrivals were ob-
served at SB22, and no layer 2 type velocities were identified at
either sonobuoy. By using the layer 2 thickness determined at
OBH2 (which is poorly constrained by only four first arrivals),
simple calculations show that layer 2 refractions would not be
observable as first arrivals at a sea surface receiver. In our
structural interpretations we have therefore assumed that the
4.98-km/s layer 2 exists beneath both sonobuoys and have
computed its thickness from the layer 3A intercepts.

Sediment thickness and velocity are also poorly controlled.
Although continuous air gun seismic reflection data were not
obtained along the shooting line, reflection data obtained en-
tering and leaving the area indicate a local sediment cover of
about 0.5-s two-way travel time. When a sediment velocity of
2.0 km/s is assumed, the intercept of the 4.98-km/s layer at
OBH2 is consistent with a sediment thickness of 0.77 km. For
lack of better information we assume a sediment layer of this
thickness and velocity along the entire line.

Table 2 lists the true velocities and layer thicknesses ob-
tained when OBH2 and SB22 are reversed. These velocities
and layer thicknesses are typical of normal oceanic crust. The
validity of this treatment is questionable, however, as the re-
verse points for the well-determined 3B refractor disagree by
0.18 s. This is a significant discrepancy considering the stan-
dard errors on the intercepts of these two segments, and it
suggests that the requirement for planar interfaces is not satis-
fied. Additional control is provided by SB10, located midway
along the line. The apparent velocities and intercepts of layers
3A and 3B at SB10 are significantly less than those observed at
either end of the line. The reversed solution of SB10 and SB22
(Table 2) shows that the top of layer 3A is shallower near the
middle of the line and the computed dip, 1.8° down to the
north, is in the opposite direction to that computed by revers-
ing OBH2 and SB22.

The structural solution most consistent with the observed
apparent velocities and intercepts is shown by the dashed lines
in Figure 4. A 1- to 2-km-thick layer 2 overlies a 2.5- to 3.0-
km-thick layer 3A with a velocity of 6.4 km/s. The layer 2/
layer 3A interface is shallower beneath SB10 than at either end
of the line, a fact that explains the lower apparent velocity
observed for layer 3A at SB10. Layer 3B, with a velocity of 7.1
km/s, is 2.7-3.9 km thick at either end of the line and appears
to thicken beneath SB10. Mantle velocities of about 8.0 km/s
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Fig. 2c:

Composite record section for SB10. Caption is the same as for Figure 2a except that seismograms are low pass

filtered at 20 Hz. The PSP phases cannot be identified on this record section.

are present, and the depth to Moho varies between 9 and 10
km below the sea floor.

DELAY TIME FUNCTION INTERPRETATION

In order to better define the apparent undulations in the
refracting interfaces suggested by the slope intercept inter-
pretations, the delay time function technique [Morris et al.,
1969; Raitt et al., 1969] was applied to these data. In this
method the layer boundaries are not required to be planar
surfaces but are allowed to undergo gentle undulations as
described by low-order polynomial or Fourier functions of
position. The general analytical procedure used was that de-
scribed by Morris [1972].

Travel times from all receivers were combined into a single
data set, and delay time surfaces of progressively higher order
were calculated for layers 3A and 3B, and the Moho. An
increase in the number of terms in the polynomial expansion
representing the delay time surface allows the surface to vary
more rapidly and thus corresponds to more complicated struc-
tures. The time differences R, between observed travel times
and solution-predicted travel times were used to calculate the
standard error about the regression, ¢, from

o= ln; [R*/(N — M)]?

where N is the number of observed travel times and M is the

TABLE I. Apparent Velocities, Intercepts, and Layer Thicknesses for Slope Intercept Solution
OBH2 SBI10 SB22
Velocity, Intercept,  Thickness, Velocity, Intercept,  Thickness, Velocity, Intercept,  Thickness,

Layer km/s s km km/s s km km/s s km

1 (2.00) (0.00) 0.77 (2.00) (0.00) 0.77 (2.00) (0.00) 0.77

2 498 +£0.20 0.71 £0.07 2.18 (4.98) 0.71) 1.14 (4.98) 0.71) 1.77

3A 6.65+0.07 1.32+0.03 3.05 6.23 £0.12 1.01 £0.05 2:59 6.55+0.16 1.20+0.07 3.08

3B 7.23£0.05 1.74 £0.04 3.87 691 £0.15 1.42+0.08 6.99 £ 0.05 1.57£0.05 2.74

4 8.08 £0.13 2.44+0.12 7.84+£0.16 2.17+0.13

Values are determined by least squares regression of the travel time picks shown in Figures 3a, 3b, and 3c. Parentheses indicate assumed

velocities and intercepts.
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Fig. 3b. Time-distance graph for sonobuoy SB22. Caption is the same as for Figure 3a.
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Fig. 3¢. Time-distance graph for sonobuoy SB10. Caption is the

same as for Figure 3a.

total number of coefficients in the least squares solution [Mor-
ris, 1972]. The quantity ¢ indicates the overall quality of the fit
and was used to judge whether higher-order polynomials sig-
nificantly improved the solution. In this treatment we have
assumed lateral and vertical velocity homogeneity within lay-
ers.

A comparison of the delay time surfaces computed for each
layer is shown in Figures Sa, 5b, and 5c¢. The first-order poly-
nomial solution (M = 3) for layer 3A, which corresponds to a
simple plane layer solution, shows large negative travel time
residuals (R < R a1c) at SB10 and large positive residuals (R >
Rcaic) for the same shots at SB22 (Figure 5a). This is consistent
with our earlier observation that the intercept of layer 3A is
less at SB10 than at SB22. The second-order polynomial solu-
tion (M = 4) reduces the standard error about the regression
from 0.055 to 0.036 s, and the travel time residuals show no
systematic variation from receiver to receiver or shot to shot.
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Fig. 4. Depth section based on unreversed slope intercept inter-
pretation (dashed lines) and delay time function method (solid lines).
All depths are below the sea floor. The thickness (0.77 km) and
velocity (2.0 km/s) of the sediment layer are assumed. Apparent
velocities at each receiver are shown in parentheses. Delay time solu-
tion velocities are shown in boldface numbers.

The delay time surface bows gently upward: the delay time at
SB10 is about 0.1 s less than at either end of the line. The
solution velocity (6.47 km/s) is intermediate between that
determined by reversing OBH2/SB22 and SB10/SB22. The
next higher-order solution (M = 5) reduces the standard error
slightly; however, we do not believe that the shot and receiver
coverage for arrivals from this layer is adequate to justify this
higher-complexity solution.

The delay time surface for layer 3B is well determined by
over 50 travel time observations (Figure 5b). Again, large
systematic residuals exist for the lowest-order solution (M =
3), positive for OBH2 and SB22 and negative for SBIO.
Higher-order solutions are significantly better fits to the data,
and standard errors are reduced from 0.060 to 0.042 s. Because
of the large number of travel times the higher-order solutions
are stable; there is almost no difference between the third- and
fourth-order polynomial representations of the delay time sur-
face (M = 5 and 6 in Figure 5b). Like that of layer 3A the
delay time surface of layer 3B bows upward, with delay times
~0.2 s less beneath SB10 than at either end of the line.

A delay time surface has also been computed for the Moho
(Figure Sc); however, because so few mantle arrivals were
observed and since they are only associated with shots at either
end of the line, the solution is limited to a first-order poly-
nomial (equivalent to a reversed slope intercept solution of
OBH2 and SB22).

TABLE 2. True Velocities and Layer Thicknesses Determined by Reversing OBH2/SB22 and
SB22/SB10
OBH2/SB22 SB10/SB22
OBH2 SB22 SB10 SB22
Velocity, Thickness, Thickness, Dip, Velocity, Thickness, Thickness, Dip,
Layer  km/s km km deg km/s km km deg
1 (2.00) 0.77 0.77 0 (2.00) 0.77 0.77 0
2 4.98 2.21 1.75 0.50 (4.98) 1.09 1.85 1.79
3A 6.60 3.24 2.89 1.15 6.38 3.03 2.52 3.30
3B 7.11 3.55 3.02 1.06 6.94
4 7.97

Parentheses indicate assumed velocities and intercepts.
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Fig. 5a. Delay time surfaces for different values of M for layer 3A. M is the number of coefficients in the least squares
solution. (For example, M = 3 corresponds to a first-order polynomial, M = 4 a second-order polynomial, etc.) Dots and
triangles show locations of shots and receivers. Vertical bars indicate magnitude and sign of difference between observed
travel times and solution-predicted travel times.
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Fig. 5b. Delay time surfaces for different values of M for layer 3B. Caption is the same as for Figure Sa.
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Fig. 5c. Delay time surfaces for different values of M for the Moho. Caption is the same as for Figure 5a.
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These delay times may be converted into depths if the veloci-
ties and delay time surface of the overlying crustal layers are
known. Z,(x), the depth to the nth layer, is

n=1
Zy(x) = ), rdx)Vi(l = V/V,2)
i=1
where 7,(x) is the delay time and V; is the velocity of the ith
layer.

Using the velocities and delay time surfaces computed for
layers 3A (M = 4) and 3B (M = 6) and the mantle (M = 3), we
have computed a depth section. As was done in the slope
intercept interpretation, we have assumed the existence of a
sediment layer 0.77 km thick with a velocity of 2.0 km/s
overlying a 4.98-km/s layer of variable thickness. These as-
sumptions naturally introduce some uncertainty into our solu-
tion. The resulting depth section is shown in Figure 4 superim-
posed on the unreversed slope intercept interpretation.

There is good agreement between these two structural solu-
tions, particularly for the well-determined layer 2/layer 3A
and layer 3A/layer 3B interfaces. They indicate that the top of
layer 3A is ~1 km shallower and the top of layer 3B is ~2.5
km shallower beneath SB10 than at either end of the line. This
structural solution is consistent with the observed apparent
velocities for layers 3A and 3B, which are lower at SB10 than
at the other two receivers. The most striking feature of the
delay time solution is the thickening of layer 3B from less than
2.5 km beneath OBH2 and SB22 to almost 6 km beneath SB10.
The thickness of this layer depends, of course, on the depth to
Moho, which is not well constrained, particularly beneath
SB10 (Figure 5¢). However, the low apparent mantle velocities
observed at both SB22 (7.84) and OBH2 (8.08) require the dip
of the layer 3B/mantle interface to be in the opposite sense of
the dip of the shallower layer 2/layer 3A and layer 3A/layer
3B interfaces. Consequently, layer 3B must thicken from about
2.5 km to probably 4-6 km beneath SB10, and the depth to
Moho is probably not shallower than 9-10 km below the sea
floor anywhere along this line.

PSP PHASE

The structural solution shown in Figure 4 can be used to
examine the origin of the PSP phase identified at OBH2 and
SB22 (Figures 2a and 2b). The apparent velocities and inter-
cepts of these phases are poorly constrained by the data. The
apparent velocity of this phase on OBH2 is about 3.6 km/s,
consistent with propagation as a shear head wave in layer 3A.
However, on SB22 the apparent velocity is significantly higher:
about 3.9 km/s. The intercepts also differ, being about 0.84 s
larger at SB22 than at OBH2 (after the OBH intercept has
been corrected to the sea surface). There is no corresponding
difference between OBH2 and SB22 in apparent velocities or
intercepts of the layer 3A P wave arrivals (Table 1). Thus we
conclude that we are observing two different phases: a shear
head wave propagating in layer 3A on OBH2 and a shear head
wave propagating in a deeper layer, probably layer 3B, on
SB22.

We have computed model time-distance curves for these
phases using a simplified version of the structural solution
shown in Figure 4 and the apparent velocities of 3.6 and 3.9
km/s determined from the record sections (Figures 2z and 2b4).
In making these calculations we assumed that P to S con-
version took place at the sediment/layer 2 interface beneath
the shot and S to P conversion at that same interface beneath
the receiver.
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Fig. 6. (a) Computed differences in intercept time (Ts — Tp) of P
and PSP phases propagating through layer 3B with shots and receivers
corrected to the sea surface. These differences were computed for
various sediment thicknesses by using a simplified version of the
crustal model shown in Figure 4 and reasonable values of Poisson’s
ratio (see text). The solid lines are for shear wave conversion at the
sediment/layer 2 interface, and the dashed lines are for conversion at
the water/sediment interface. Poisson’s ratio in layer 2 is o,, and
Poisson’s ratio in the sediments is o,. The shaded square shows the
observed limits of observed intercept time difference and sediment
thickness for OBH2. This figure together with Figure 65 shows that
shear wave conversion must take place at or near the sediment/layer 2
interface. (b) Computed differences in intercept time (Ts — T5) of P
and PSP phases propagating through layer 3B with shots and receivers
corrected to the sea surface. The shaded square shows the observed
limits of observed intercept time difference and sediment thickness for
SB22.

This assumption is justified by a study of différences in
intercept time between the PSP phases and the corresponding
compressional wave arrivals. The magnitude and sign of this
time difference depend upon where shear wave conversion
occurs. Figures 6a and 6b show the computed differences in
intercept time (7s — Tp) between shear and compressional
waves refracted in layer 3A (Figure 6a) and layer 3B (Figure
6b).

Ts — Tp is plotted against sediment thickness and for rea-
sonable limiting values of Poisson’s ratio ¢: (1) in the sedi-
ments, g, = 0.40-0.49 [Sutton et al., 1971; E. L. Hamilton et
al., 1970; Davis et al., 1976], and (2) in layer 2, o, = 0.25-0.35
[Francis, 1976; Christensen, 1972]. In these figures the shaded
box shows the observed differences in intercept time between
the PSP and the P phase for SB22 (Figure 6b) and OBH?2
(Figure 6a). Study of seismic reflection data close to this
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Fig. 7. Summary of crustal structures determined from this experiment and the southern Banda Sea [Curray et al.,

1977] compared with the normal oceanic crustal section of Peterson et al. [1974]. Average delay time function solution
section calculated by averaging the layer thicknesses at 10-km intervals along the line.

refraction line shows the sediment thickness to vary between
0.5 and 1.0 km.

The intercept of the PSP phase at OBH2 (corrected to the
sea surface) is 7.4 s, about 0.2 £ 0.2 s greater than the intercept
of the 6.5-km/s P wave arrival (see shaded box in Figure 6a).
This figure shows that this observed difference in intercept
time cannot be explained by P to S conversion at or close to
the water/sediment interface but is in good agreement with the
model involving P to S conversion at the sediment/layer 2
boundary. The same conclusion is reached from study of Fig-
ure 6b showing the calculated and observed 75 — T» for the
layer 3B PSP shear head wave recorded at SB22.

Thus the model time-distance curves for the PSP arrivals
shown in Figures 2a and 2b were computed on the assumption
that conversion took place at the sediment/layer 2 interface. A
Poisson’s ratio of 0.33 in layer 2 gave a reasonable fit to the
seismograms for the layer 3A PSP curve on OBH2 (Figure 2a)
and the layer 3B PSP curve on SB22 (Figure 2b).

For a surface receiver the crossover distance for layer 3A
and layer 3B PSP waves is about 35 km. Figure 2b shows that
on SB22 the layer 3A PSP phase is obscured at ranges less
than 30 km by other unidentified high-amplitude arrivals.
Thus on SB22, only the layer 3B PSP phase is observed.

For a sea floor receiver the crossover distance for layer 3A
and layer 3B PSP waves is about 40 km. Only the layer 3A
PSP phase is observed on OBH2 because the 3B phase at
ranges greater than 40 km is masked by the sea surface reflec-
tion (G, in Figure 2a).

A noteworthy feature on the OBH record section is the
large-amplitude PSP arrivals on shots 1073, 1074, and 1075.
We suggest that this is due to either the onset of a Moho PSP
phase (critical distance of ~32 km) or constructive inter-
ference between 3A and 3B PSP arrivals.

We conclude that the observed PSP phases suffered con-

version at or near the sediment/layer 2 boundary, that the
apparent shear wave velocities indicate Poisson’s ratios of 0.25
and 0.28 in layers 3A and 3B, and that the observed intercepts
of both the 3A and the 3B PSP phase suggest a Poisson’s ratio
in layer 2 of about 0.33. ’

DiscussioN

Our results from the central Banda Sea may be compared
with those of Curray et al. [1977] from the southern Banda Sea
and an ‘average’ oceanic crustal section (Figure 7). The shal-
low crustal structure determined in this study is almost identi-
cal to that reported by Curray et al. They, however, did not
identify a 7.2-km/s refractor. This layer is often difficult to
identify at surface receivers without close shot spacing [Sutton
et al., 1971]. Since the shot spacing in the experiment reported
by Curray et al. was about 3 km, few first arrivals would be
expected from this layer, and it could have been easily over-
looked. This is particularly likely if the thickness of layer 3B
were less in their area than in the central Banda Sea. The
presence of an unidentified layer intermediate in velocity be-
tween the 6.6-km/s layer and the mantle would explain the
slightly shallower than normal mantle depths determined for
their experiment.

The results reported in this paper and those of Curray et al.
[1977] indicate that the crust of the central and southern
Banda Sea is typically oceanic in character, with velocities and
layer thicknesses falling within the range of those given by
Peterson et al. [1974] for layers 2B, 3A, and 3B for normal
oceanic crust (Figure 7). The unusually thick layer 3B ob-
served in the central Banda Sea and the smaller thickness or
absence of this layer in the southern Banda Sea suggest some
local variability in crustal structure; however, there is no
reason to suspect that this variability is any greater in the
Banda Sea than elsewhere in the world’s oceans.
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CONCLUSIONS

1. The crustal structure in the central Banda Sea is typi-
cally oceanic in character, with a well-developed basal oceanic
layer (layer 3B) and normal mantle depths of 9-10 km below
the sea floor.

- 2. Excellent agreement was found between the layer thick-
nesses and velocities determined by a traditional slope inter-
cept solution and those calculated by using a multilayer gener-
alization of the delay time function technique.

3. Prominent second arrivals apparent on both OBH and
sonobuoy record sections have been identified as shear head
waves propagating in layer 3A (OBH2) and layer 3B (SB22).
The difference in intercept time between these phases and the
corresponding P wave arrivals indicates that shear wave con-
version occurred at the sediment/layer 2 interface. The shear
wave velocities indicate normal Poisson’s ratios of 0.25-0.28
for layer 3; however, the shear wave intercepts require a signif-
icantly higher Poisson’s ratio (¢ = 0.33) in layer 2.
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