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1 Summary11

1. Electronic tagging of marine fishes is commonly achieved with archival tags that rely on light levels12

and sea surface temperatures to retrospectively estimate movements. However, methodological issues13

associated with light-level geolocation have constrained meaningful inference to species where it is14

possible to accurately estimate time of sunrise and sunset. Most studies have largely ignored the15

oceanographic profiles collected by the tag as a potential way to refine light-level geolocation estimates.16

2. Open-source oceanographic measurements and outputs from high-resolution models are increasingly17

available and accessible. Temperature and depth profiles recorded by electronic tags can be integrated18

with these empirical data and model outputs to construct likelihoods and improve geolocation estimates.19

3. The R package HMMoce leverages available tag and oceanographic data to improve position estimates20

derived from electronic tags using a hidden Markov approach. We illustrate the use of the model and21

test its performance using example blue and mako shark archival tag data. Model results were validated22

using independent, known tracks and compared to results from other geolocation approaches.23

4. HMMoce exhibited as much as 6-fold improvement in pointwise error as compared to traditional light-level24

geolocation approaches. The results demonstrated the general applicability of HMMoce to marine animals,25

particularly those that do not frequent surface waters during crepuscular periods.26
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2 Introduction29

Electronic archival tags have been widely adopted by ecologists to track movements of wide-ranging species30

that are difficult to monitor using other techniques. In ocean environments, implanted archival and pop-up31

satellite archival transmitting (PSAT) tags have proved particularly valuable in the study of life history32

patterns (e.g. Thorrold et al., 2014), biophysical interactions and habitat use (e.g. Braun et al., 2015b; Lam33

et al., 2014), horizontal and vertical movements (e.g. Braun et al., 2014; Lam et al., 2016; Werry et al., 2014),34

and the spatial structure of populations (Skomal et al., 2009; Galuardi et al., 2010; Galuardi and Lam, 2014)35

in a number of commercially important fishes (Block et al., 2011) and species of conservation concern (Braun36

et al., 2015a). Yet, tracks provided by electronic tags that rely on light-level geolocation often exhibit large37

error in daily position estimates (Musyl et al., 2011; Braun et al., 2015b) that may hinder inferences drawn38

from the tag data. Approaches that provide more certainty in movement estimates derived from light level39

data (Galuardi and Lam, 2014; Luo et al., 2015) would increase the power of ecological hypotheses tested40

using tag data.41

Electronic archival tags typically use light levels to estimate position when it is not possible for the tag to42

interrogate geo-location satellites (Sibert et al., 2003; Nielsen and Sibert, 2007). Accuracy of geolocation using43

light levels, however, is limited (± 100-200 km; ~10,000 km2) even for surface-oriented species where good light44

data is available (Wilson et al., 2007; Braun et al., 2015b). While several studies have incorporated ancillary45

data, including sea surface temperature (Smith and Goodman, 1986; Lam et al., 2010), tidal fluctuation46

(Pedersen et al., 2008) or ocean heat content (Luo et al., 2015) to help improve geolocation estimates, only47

one used all data collected from archival tags within a rigorous statistical framework to improve geolocation48

estimates (Sumner et al., 2009). Although excursions from the photic zone, including diel vertical migration49

(Neilson et al., 2009) and extended mesopelagic occupation (Skomal et al., 2009) may render light geolocation50

impossible, the depth-temperature profiles recorded by the tags provide diagnostic oceanographic signatures51

that can be leveraged to help constrain position (Skomal et al., 2009; Aarestrup et al., 2009).52

Hidden Markov Models (HMMs) have gained popularity in recent years as a tool for analyzing animal53

movement data and have been applied to understand movements of a number of organisms (Holzmann54

et al., 2006; Thygesen et al., 2009; Pedersen et al., 2011). Much of the progress in ocean environments55
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stems from a HMM used to track cod in the North Sea using tidal information (Pedersen et al., 2008). The56

approach combined a number of desirable features, including inference about the underlying behavioral57

state of the animal, mobilization of oceanographic data in a spatial likelihood framework (Nielsen et al.,58

2006), and later incorporated formal treatment of barriers to movement (Pedersen et al., 2011). Generally,59

the Bayesian HMM approach uses a model of animal movements (e.g. Brownian motion) and a model or60

observations of the environment (e.g. in situ oceanography) to estimate the posterior distribution of the61

state (e.g. animal position and behavior). Several R packages exist for analyzing movement data with HMMs,62

including ctmm (Calabrese et al., 2016) and moveHMM (Michelot et al., 2016), but none are designed for63

geolocating marine fishes with archival tag data. An electronic tag manufacturer (Wildlife Computers, Inc.)64

recently updated their proprietary software (GPE3) to geolocate archival tag data based on light levels and65

sea surface temperature (SST) in a HMM framework following Pedersen et al. (2008). However, GPE3 is66

limited by a lack of behavior state-switching dynamics and does not include functionality for non-surface67

oriented species. GPE3 is also proprietary software that cannot be modified by the user and is limited to68

tags built by Wildlife Computers.69

Our primary objective was to build an analysis toolkit to improve geolocation estimates from electronic70

archival tags deployed on marine animals that alleviates many of the limitations imposed by previous71

approaches. The new R package HMMoce uses available electronic tag data and oceanographic data mined72

from ocean observing system portals to estimate animal movements, behavior, and residency from uncertain73

and temporally correlated movement data. We modify and expand a hidden Markov approach (Thygesen74

et al., 2009; Pedersen et al., 2008, 2011) that, in addition to estimating animal movements, allows behavior75

state estimation and provides information about the posterior distribution of the modeled states that can76

be used as a residency metric (Pedersen et al., 2011). The modeling framework we developed is sufficiently77

flexible to accommodate other tag types and animal movement questions, can be applied in any geographic78

location, and benefits from the transparency of a widely-used open source platform. Here we describe the79

model framework and demonstrate its applicability using example data. For specific details on package use80

and functions and a full tutorial with an example dataset, please refer to the package and its accompanying81

vignette, available on CRAN.82
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3 Overview of HMMoce83

3.1 Model formulation84

We present a process-based approach to estimate residency and behavior from movement data collected with85

electronic archival tags. The logic of this approach involves calculating gridded observation likelihoods at86

each time point based on tag and environmental data, forming the state-space model, estimating model87

parameters and model selection and interpretation. The application of grids to explicitly resolve space is a88

key component that allows state estimation (location and behavior, in this case) to be supplemented by or89

based entirely on environmental data (e.g. temperature at depth). The details of the discretized grid HMM90

approach are thoroughly explained elsewhere (e.g. Thygesen et al., 2009; Pedersen et al., 2011). A detailed91

methodology for our approach can be found in the supplement.92

Briefly, observation-based likelihoods (Eq. S1) were derived from in situ SST (Eq. S2), light-based longitude93

and depth-temperature profile data (Eqs. S3, S4, S5) collected by the tags using five separate likelihood94

calculations: 1) An SST likelihood (Eq. S2) was generated for tag-based SST values integrated according95

to an error term (± 1%, based on tag sensor accuracy) and compared to remotely-sensed SST from daily,96

optimally-interpolated SST fields (OI-SST, 0.25° resolution; Banzon et al., 2016). 2) Light-based longitude97

likelihood was derived using estimates of longitude from GPE2 software (Wildlife Computers, Inc.), which98

facilitated visual checking of light curves. Depth-temperature profiles recorded by the tag were compared99

to 3) monthly climatological mean depth-temperature data from the World Ocean Atlas 2013 (WOA, 0.25°100

resolution; Locarnini et al., 2013) and 4) daily reanalysis model depth-temperature products from the HYbrid101

Coordinate Ocean Model (HYCOM, 0.08° resolution; Chassignet et al., 2007) at standard depth levels102

available in these products (Eq. S5). Individual likelihood surfaces for each depth level were then combined103

for an overall profile likelihood at that time point (Eq. S6). 5) Ocean Heat Content (OHC, Eq. S3) was104

obtained by integrating the heat content of the water column above the minimum daily temperature recorded105

by the tag for both the tag profiles and HYCOM fields (Eq. S4; Luo et al., 2015). Start and end locations106

were considered known in all cases and model runs.107

The resulting observation likelihoods (in various combinations; Eq. S1) were used in a two-step Bayesian108

state-space approach to estimate the posterior distribution of the state (in this case, a joint probability109

distribution of location and behavior at each time point). Probability distributions were first calculated110

forward in time using alternating time and data updates of the current state estimate using a HMM filter111

(for a detailed methodology of the HMM filter see Appendix 2 in Pedersen et al., 2011). The filter recursions112
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also returned a likelihood measure indicating how well the model fit the data, which facilitated calculating113

model parameters (e.g. behavior state-switching probabilities). In Bayesian statistics, the maximum a priori114

(MAP) estimate of the model parameters is typically used to calculate the posteriors; however, in practice,115

ample a priori information is rarely available and maximum likelihood (ML) estimates are often very similar116

to MAP estimates (Jonsen et al., 2005). Thus, we implemented recent advances by Woillez et al. (2016) that117

further exploited the discretization of space in this model by employing a joint ML estimation of all model118

parameters using an iterative Expectation-Maximization framework (Supp. 1.4.1).119

Model selection in this context would typically use Bayesian Information criterion (BIC), but this approach120

requires approximation that imposes restrictions on the priors. Instead, we used Akaike’s Information criterion121

(AIC) for model selection following Pedersen et al. (2011). The HMM smoother recursion was the final step122

that worked backwards in time using filtered state estimates and all available observation data to determine123

smoothed state estimates. This step provided the time marginal of the probability distributions based on124

observations (posterior distributions).125

Results from the final smoothing step represent the posterior distribution of each state over time. Distributions126

are summed for each behavior state and time step to determine the most likely behavior state through time.127

HMMoce can calculate the mean or mode of the posterior distribution grid, at each time step, to estimate the128

animal’s position. The posteriors can be further analyzed for additional inference including uncertainty and129

residency. A residency distribution (RD) is conceptually similar to the utilization distribution (UD), but130

the concept of UD (and other space-use metrics) is often vaguely defined (Royle and Dorazio, 2008). In this131

case, RD is interpreted as the estimate of the time spent in a given space within a time interval (see Eq. 5 in132

Pedersen et al., 2011).133

3.2 Computational improvements and requirements134

While the basic framework of HMMoce was based on previous work (Pedersen et al., 2008; Thygesen et al.,135

2009; Pedersen et al., 2011), several improvements were made to accommodate user needs. We focused several136

enhancements on improving computation efficiency, which was a limitation of previous techniques (SPHMM137

code for R; Pedersen et al., 2011). Image processing routines replaced sparse matrix convolution yielding138

orders of magnitude improvements in computation time, particularly for large, high-resolution grids that139

characterize geolocation approaches for highly migratory species. In addition, all likelihood routines (except140

simple light-based likelihood calculations) were parallelized, yielding marked performance improvements,141

particularly for likelihoods comparing 3D depth-temperature profiles to high-resolution 3D HYCOM grids.142
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Despite these improvements, HMMoce remains relatively computationally intensive; however, cloud computing143

is becoming more inexpensive and accessible to a broad user group. The HMMoce package includes a vignette144

demonstrating simple plug and play functionality for the model using Amazon Web Services’s computational145

resources and an associated machine image containing RStudio Server and all the required dependencies for146

running HMMoce with user-provided tag data.147

4 Case study: pelagic shark movements148

To illustrate the application of HMMoce, we analyzed tag data from three blue sharks (Prionace glauca) and149

one shortfin mako (Isurus oxyrinchus) that were double-tagged with satellite-linked radio telemetry tags150

(Wildlife Computers finmount SPOT5 tags) and PSAT tags (Table 1). Full tagging methods are provided in151

the supplement. We considered the resulting Argos-based tracks as “known” because errors on geolocation152

estimates from the SPOT tags are much lower (typically < 10 km; Witt et al., 2010; Patterson et al., 2010)153

than PSAT-based outputs (> 50 km; Winship et al., 2012). The PSAT tags were deployed for an average of154

150 days (range 107-180) in the northwest Atlantic with overall movements of 5403-12122 km. The PSAT155

data contained depth-temperature profiles for 53-72% of days at liberty and SPOT locations were recorded156

for 72-96% of deployment days (Table 1).157

Blue sharks made frequent dives to the mesopelagic zone (~600-800m, max 680-1688m) but also frequented158

the surface-air interface where the PSAT tags collected good quality light and SST data (94-100% deployment159

days with light, 82-92% SST)(Fig. 1). The mako occupied a restricted area (~200 km latitudinal distance)160

near Cape Hatteras during the winter months and spent relatively little far from the edge of the continental161

shelf compared to the more nomadic blue sharks. The mako also had high quality light and SST data (96%162

and 69%, respectively) while regularly diving shallower than the blue sharks (~400m). Consistent exposure of163

the dorsal fin allowed the SPOT tag to acquire Argos positions throughout the duration of each deployment164

(Table 1).165

We calculated movements of the sharks from PSAT tag data using three modeling approaches that are166

currently available (Ukfsst, Trackit, GPE3) and HMMoce (Supp. 1.6). Results for the mako are shown in167

the main text (Fig. 2), and blue shark figures are provided in the supplement (Figs. S2, S3, S4). In168

general, HMMoce and GPE3 produced the most accurate tracks while those from Ukfsst and Trackit were often169

unrealistic with errors as high as >1300 km (Table 2). For 3 of 4 individuals, HMMoce tracks had the lowest170

pointwise error and correspondingly lowest root-mean-square error (RMSE) values. For the fourth individual171

(blue shark 141259), the mean error and RMSE in latitude for GPE3 ouput was lower than HMMoce, which had172

6

Page 6 of 18Methods in Ecology and Evolution



a lower RMSE in longitude. The traditional approaches (light only, Trackit; light and SST, Ukfsst) yielded173

much larger error than HMMoce in all cases and only one Trackit output (blue shark 141254 without SST)174

exhibited marginally smaller error than GPE3 (with SST). In 3 of 4 cases, HMMoce demonstrated the best175

fitting model by leveraging either OHC (n=1) or HYCOM profiles (n=2) (Table 2) in addition to light-based176

longitude and SST data used in the other geolocation approaches. The movements of blue shark 141259, in177

which the HMMoce model did not use profile-based observations to build the final estimated track, included178

time in both dynamic Gulf Stream water and the more homogenous Sargasso Sea. It proved difficult in179

both areas to match water column profiles recorded by the tag (or integrated OHC) with an accurate and180

constrained position in the climatological (WOA) or model-based (HYCOM) oceanographic data (Fig. S5).181

While HMMoce was designed to improve geolocation estimates for all tagged marine organisms, the main182

impetus for the work was to fulfill a need for improving track estimates in cases where light and SST data183

were lacking due to minimal surface occupation. We tested the ability of HMMoce to recover accurate tracks184

with only limited light-level data by randomly removing (using sample in base R, without replacement) 75%185

and 50% of deployment days with adequate light and SST data, respectively, from the shark PSAT data while186

keeping the depth-temperature profile data for these days. The removals approximated PSAT data quality187

typical of swordfish tag deployments in the Atlantic Ocean due to crepuscular diving behavior and light188

avoidance (Braun et al., 2015a; Neilson et al., 2009). The data removal experiment (Fig. 1) demonstrated189

the power of incorporating the depth dimension in likelihood calculations when light and/or SST data is190

poor. In all 4 cases, HMMoce estimated tracks with lower mean error than corresponding GPE3 results (Table191

2), but model selection favored including depth-temperature profile information in only 2 of 4 final models.192

Error in the removal experiment for HMMoce was only marginally higher as compared to the full dataset for 3193

of 4 individuals (Table 2).194

Both GPE3 and HMMoce provide estimated residency distributions (RD; a form of utilization distribution)195

(Pedersen et al., 2011). However, only HMMoce incorporates a state-switching component that facilitates196

explicit modeling of distinct animal behaviors (Fig. 3). The state-switching is governed by movement kernels197

(based on speed) and probability of switching between states is calculated by the EM algorithm (Table S1).198

For the mako, the RDs indicated areas of core use focused largely where resident behavior was most probable.199

The RD for the migratory state showed the offshore movement to the SE into the Gulf Stream region before200

the fish returned to the shelf break and moved SW toward Cape Hatteras. The most notable features of the201

migratory RD are the overlap areas where the fish transitioned from migratory to resident behaviors (Fig. 4).202
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5 Conclusions203

We present a flexible, customizable and transparent HMM framework that may be applied to nearly any204

marine species utilizing electronic archival tags through a novel use of oceanographic data. Tests of the model205

demonstrated that HMMoce is a valuable tool for estimating movements from low quality PSAT data through206

consideration of the vertical structure of the water column in the state estimation. This can be especially207

beneficial for tag data that is lacking adequate light-level data or other measurements.208

For further development, we anticipate several improvements to the HMMoce package. Current priorities include209

support for other tag types, direct versus derived use of light data, and additional algorithms (e.g. Viterbi) to210

calculate the most probable track (Pedersen et al., 2011). Behavior state estimation could be expanded to211

include advection or modified to update probability with respect to environmental data (Patterson et al.,212

2009).213

We anticipate user feedback will help prioritize further improvements, and we welcome bug214

reports, feedback, and suggestions for the development of HMMoce via our Github repository215

https://github.com/camrinbraun/HMMoce. Additional usage information, including an example216

dataset and a tutorial for using HMMoce on Amazon Web Services, can be found by installing HMMoce in R217

(install.packages("HMMoce")) and accessing the package vignette.218
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9 Figure captions239

Figure 1. Example blue shark data demonstrating the deployment days with [A] light, [B] sea surface240

temperature and [C] depth-temperature profile data used as the observation portion of the HMM. Full (F)241

and removal (R) datasets for light and SST are shown [A,B].242

Figure 2. Calculated tracks for mako shark 141257 using the 4 different geolocation approaches (Ukfsst,243

purple; Trackit, blue; GPE3, green; HMMoce, yellow) compared to the “known” Argos-based track (red, black244

crosses). Latitudinal and longitudinal estimates through time are shown in panels B and C, respectively.245

Lines appear broken when a resulting track is missing daily data.246

Figure 3. Movements (A) and behavior (B) calculated using HMMoce for mako 141257. The tagged individual247

is considered resident where probability of residency is greater than 0.5 (grey points and bars in panels A248

and B, respectively). Green and red points indicate tag and pop-up location respectively. Black line follows249

predicted daily locations of tagged shark.250

Figure 4. Residency distributions for the overall HMMoce modeled movements (A) and for individual behavior251

states (B, C). Shaded circles indicate residency behavior, white circles indicate migratory behavior, green252

triangle is tagging location and red triangle is pop-up location. Residency distributions show the expected253

proportion of time spent in various grid cells over the course of tag deployment.254

9

Page 9 of 18 Methods in Ecology and Evolution

https://github.com/camrinbraun/HMMoce


Table 1: Tagging summary for double-tagged blue (BSH) and shortfin mako (MKO) sharks used in this
study. PDT, Light, SST and SPOT = percent of deployment period with depth-temperature profile (PDT),
light and sea surface temperature (SST) data from the PSAT tag and percent of deployment period with
Argos-based positions (SPOT), respectively.

Species Tag ID Start Date End Date Duration (d) PDT (%) Light (%) SST (%) SPOT (%)
BSH 141254 2015-10-21 2016-02-05 107 72 100 92 96
BSH 141256 2015-10-13 2016-02-24 134 66 94 88 87
BSH 141259 2015-10-13 2016-04-10 180 53 94 82 85
MKO 141257 2015-10-15 2016-04-12 180 58 96 69 72

Table 2: Validation metrics for double-tagged blue (BSH) and shortfin mako (MKO) shark tracks estimated
using HMMoce, GPE3, Trackit (TI) and Ukfsst. Reported error values (mean, sd, median, range) are pointwise
distance calculations (mean great circle distance) from known positions (km). Root-mean-square errors
(RMSE) are Lat, Long (degrees). HMMoce.r and GPE3.r indicate fit metrics for data removal experiments in
which 75% of daily light and 50% of daily SST data was randomly removed. Input indicates input data type:
light (L), SST (S), ocean heat content (O), World Ocean Atlas profiles (W) and HYCOM profiles (H). All
runs were performed on a 0.08° grid with fixed migratory speed of 2 m/s (except 141259 used 4 m/s).

Species Tag ID Type Mean (SD) Median Range RMSE Input
BSH 141254 HMMoce 117.4(96.7) 92.4 0.5-443.6 1.21, 0.81 LSO

GPE3 175.8(117.1) 164.3 3.2-424.7 1.4, 1.64 LS
TI 162.3(71.6) 158.2 1-328.2 0.97, 1.65 L
KF 179.5(99.5) 178.5 1-435.2 1.29, 1.24 L
HMMoce.r 131.2(96.2) 101.9 0.5-440.5 1.23, 1.01 LS
GPE3.r 157.6(100.6) 143.5 1.4-408.9 1.25, 1.44 LS

BSH 141256 HMMoce 83.8(63) 63.7 4.9-297.4 0.52, 0.93 LSH
GPE3 84.9(68.8) 66.9 5.9-345 0.66, 0.89 LS
TI 474.2(244.1) 459.9 0-854.3 1.98, 4.84 L
KF 192.7(152.4) 172.6 0-699.8 1.35, 0.65 L
HMMoce.r 93.4(57.8) 79.1 4.2-286 0.59, 0.92 LSH
GPE3.r 423.5(432) 197.8 2.1-1394 4.25, 3.96 LS

BSH 141259 HMMoce 179.4(126) 150.3 4.4-575.2 1.79, 1 LS
GPE3 158.1(109.6) 139.5 4.9-434.5 1.44, 1.17 LS
TI 367.5(239.1) 291.4 2.4-861.5 3.3, 2.36 L
KF 245.8(225.5) 194.5 1.7-1078.7 2.31, 0.88 L
HMMoce.r 183.3(132.2) 140.5 4.4-560.5 1.9, 0.88 LS
GPE3.r 198(129.5) 162.0 6.1-625.8 1.61, 1.77 LS

MKO 141257 HMMoce 99.8(90.7) 66.8 3.8-426.9 0.92, 0.99 LSH
GPE3 151.1(161.1) 93.0 6.8-675.2 0.65, 2.38 LS
TI 462.6(347.7) 320.5 0-1332.7 4.6, 2.79 L
KF 220.4(151.2) 173.7 0-614.6 1.3, 1.32 L
HMMoce.r 157.9(128.2) 119.1 3.8-494.4 1.05, 1.92 LSH
GPE3.r 182.3(171.8) 136.4 0.3-711.2 0.88, 2.62 LS
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