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ABSTRACT: 

The Kane Megamullion oceanic core complex located along the Mid-Atlantic Ridge (23°30’N, 

45°20’W) exposes lower crust and upper mantle directly on the ocean floor. We studied chalcophile 

elements and sulfides in the ultramafic and mafic rocks of the crust-mantle transition and the mantle 

underneath. We determined mineralogical and elemental composition and the Cu isotope composition of 

the respective sulfides along with the mineralogical and elemental composition of the respective 

serpentines. The rocks of the crust-mantle transition zone (i.e., plagioclase harzburgite, peridotite-gabbro 

contacts, and dunite) overlaid by troctolites are by one order of magnitude enriched in several chalcophile 

elements with respect to the spinel harzburgites of the mantle beneath. Whereas the range of Cu 

concentrations in spinel harzburgites is 7-69 ppm, the Cu concentrations are highly elevated in 

plagioclase harzburgites with a range of 90-209 ppm. The zones of the peridotite-gabbro contacts are even 
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more enriched, exhibiting up to 305 ppm Cu and highly elevated concentrations of As, Zn, Ga, Sb and Tl. 

High Cu concentrations show pronounced correlation with bulk S concentrations at the crust-mantle 

transition zone implying an enrichment process in this horizon of the oceanic lithosphere. We interpret 

this enrichment as related to melt-mantle reaction, which is extensive in crust-mantle transition zones. In 

spite of the ubiquitous serpentinization of primary rocks, we found magmatic chalcopyrites [CuFeS2] as 

inclusions in plagioclase as well as associated with pentlandite [(Fe,Ni)9S8] and pyrrhotite [Fe1-xS] in 

polysulfide grains. These chalcopyrites show a primary magmatic δ
65

Cu signature ranging from -0.04 to 

+0.29 ‰. Other chalcopyrites have been dissolved during serpentinization. Due to the low temperature 

(<300 °C) of circulating fluids chalcophile metals from primary sulfides have not been mobilized and 

transported away but have been trapped in smaller secondary sulfides and hydroxides. Combined with the 

Cu deposits documented in the crust-mantle transition zones of various ophiolite complexes, our results 

indicate that the metal enrichment, increased sulfide modes, and potentially formation of small sulfide 

deposits could be expected globally along the petrological Moho. 

1. INTRODUCTION 

Sulfide ores are the major source of many base and precious metals (Ag, As, Au, Bi, Cd, Cu, Ge, In, 

Mo, Pb, Rh, Se, Tl, Zn; U.S. Geological Survey, 2016). Industry demand (e.g., building construction, 

electrical components, transportation equipment) for these metals is growing dramatically, which is 

causing surface reserves to shrink. To estimate the subsurface resources of the above metals, it is 

necessary to understand the distribution of sulfides throughout the lithosphere. 

The estimated mode of sulfide in the primitive mantle is between 0.07 vol.% (Fellows and Canil, 

2012) and 0.10 vol.% (Harvey et al., 2016). Sulfides melt in relatively low temperatures during partial 

melting of the mantle (Hart and Gaetani, 2006; Zhang and Hirschmann, 2016). The depleted mantle is 

thus poorer in sulfides than the primitive mantle (Lee et al., 2012). The crust in return is enriched in 

sulfides with respect to both the depleted and primitive mantle (Lorand et al., 2013; Patten et al., 2013; 

Harvey et al., 2016). 

On the other hand, many studies performed over the last few decades indicate that a reaction between 

the mantle and melt ascending through the lithosphere is another magmatic process that strongly affects 

sulfide distribution (Lorand and Luguet, 2016). In a reaction of melt with a depleted mantle, the melt, 

typically enriched with sulfur and chalcophile elements, impregnates the mantle with sulfides. This 

process belongs to melt refertilization processes (e.g., Niu, 2004). Examples of melt refertilization 

involving sulfides have been found in mantle xenoliths (Wang et al., 2009; Michalak and Nowak, 2010; 

Chen et al., 2014; Bukała et al., 2015), orogenic peridotites (Garuti et al., 1984; Lorand, 1989a; 1989b), 
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and abyssal peridotites (Rehkämper et al., 1999; Luguet et al., 2003). Although melt-mantle reaction may 

occur deep within the mantle (Kelemen et al., 2000), it seems to be most prominent at the crust-mantle 

boundary (Jousselin et al., 1998; Kelemen et al., 2000). Typical products of such reactions are dunites 

(Dick, 1977a; 1977b; Kelemen, 1990; Jousselin et al., 1998; Braun and Kelemen, 2002), and often 

olivine-rich troctolites (Suhr et al., 2008; Drouin et al., 2009; 2010; Sanfilippo et al., 2013; 2015) or 

plagioclase peridotites (Dick, 1989; Rampone et al., 1997; Piccardo et al., 2007; Tamura et al., 2008; 

Dick et al., 2010). These rocks typically form the crust-mantle transition zone, which can be from several 

meters to over 2 km thick (Karson et al., 1984; Benn et al., 1988; Boudier and Nicolas, 1995; Canales et 

al., 2000; Nicolas et al., 2000; Bosch et al., 2004; Nedimović et al., 2005). It forms a heterogeneous zone 

between the lower crust and the upper mantle on a global scale. Due to extensive refertilization processes, 

the crust-mantle transition zone, and not the crust, could be the layer that is richest in sulfides in the entire 

lithosphere. 

Unfortunately, little material from the crust-mantle transition zones is available. The crust-mantle 

transition on land is only accessible via ophiolites, which represent the remnants of the ancient oceanic 

lithosphere tectonically emplaced onto continental margins. In the northern part of the world’s largest 

ophiolites in Oman, dunites of the Moho transition zone are often rich in igneous sulfides (Negishi et al. 

2013). In addition, sulfide deposits of economic importance have been found in the crust-mantle transition 

zones of several ophiolites including Oman and Troodos (Panayiotou, 1978; Akinci, 2009; Begemann et 

al., 2010; Saalmann and Laine, 2014; 2015). The sulfide deposits, however, are seen as late secondary 

formations (Goettler et al., 1976). Whether or not primary sulfides had been formed may be unclear due 

to the ophiolites’ complex history. Subduction-related processes with an additional period of magmatic 

activity (Dilek and Furnes, 2014), and post-emplacement supergene processes most likely overprint the 

original sulfide occurrence. 

Alternatively, crust-mantle transition zones are exposed on the ocean floor. Although a typical 

thickness of the fast-spreading oceanic crust is 6-7 km (Klein, 2003), the slow-spreading oceanic crust is 

usually thinner by 2-4 km than the fast-spread oceanic crust (Nicolas, 1995; Cannat, 1996; Muller, 1997). 

In addition, the lower oceanic crust and mantle along slow-spreading ridges are often exposed on the 

surface of the ocean floor along detachment faults. Detachment faults are long-lived low-angle normal 

faults that form during waning periods of magmatism along slow-spreading ridges (Dick, 1981; Tucholke 

and Lin, 1994; Cann et al., 1997; Tucholke et al., 1998; for an overview see Ciazela et al., 2015). The 

footwall of a detachment fault that exposes the lower crust or mantle is defined as an oceanic core 

complex (OCC). Crust-mantle transition zones exposed on the ocean floor are well-documented in three 

OCCs. The most extensively sampled crust-mantle transition zone is located at the Kane Megamullion 
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OCC along the Mid-Atlantic Ridge (MAR; Dick et al., 2010). The other two are located at the Atlantis 

Bank along the Southwest Indian Ridge (SWIR; Dick et al., 2015) and at the Uraniwa Hills along the 

Central Indian Ridge (Sanfilippo et al., 2015; 2016). Ultramafic rocks in all the three OCCs are heavily 

serpentinized. Therefore, primary sulfide modes in the local rocks cannot be determined.  

In this study, to trace the fate of primary sulfides we focus on chalcophile metals (Cu, Zn, As, Sb, Tl, 

Pb, Ga, Se, Ge, Bi, Ag, Au, Ni) and sulfur concentrations both in rocks and minerals of the Kane 

Megamullion crust-mantle transition zone (i.e., plagioclase harzburgite, peridotite-gabbro contacts, and 

dunite). We find a strong enrichment of most chalcophile elements within the crust-mantle transition 

zone. Using petrological indicators (i.e., inclusions in plagioclase, and pyrrhotite-chalcopyrite-pentlandite 

assemblages after monosulfides) and the Cu isotopic signature of chalcopyrites, we show that the 

observed enrichment of chalcophile elements was caused by a primary magmatic process. 

2. GEOLOGICAL SETTING AND PETROGENESIS OF THE STUDIED SAMPLES 

2.1. Geological setting 

The Kane Megamullion OCC is located south of the Kane Fracture Zone (23°30’N, 45°20’W) on the 

MAR (Fig. 1). Between 3.3 Ma and 2.1 Ma, rifting caused the formation of a detachment fault at the base 

of the rift valley wall exposing a ~900 km
2
-large plutonic footwall on the ocean floor west of the 

spreading axis at a depth of ~3 km below sea level. The OCC is 40 km long in a N-S direction and 23 km 

wide in a E-W direction (Dick et al., 2008). In conjunction with a dozen of smaller OCCs, the Kane 

Megamullion forms a triangular core complex terrain with one vertex at the Kane Fracture Zone – MAR 

inside corner, and the other two vertices ~150 km to the west along the transform fault, and 100 km to the 

south along the MAR (Cann et al., 2015). Ocean Drilling Program (ODP) Expeditions 109 and 153 have 

drilled in seven sites (i.e., 669-670, and 920-924, respectively) in the eastern part of this terrain close to 

the MAR (Fig. 1), yielding mostly peridotite and gabbro (Detrick et al., 1988; Cannat et al., 1995). 

The predominance of plutonic rocks in the Kane Megamullion is well documented over the entire 

complex by sampling the detachment fault surface as well as outward facing high-angle normal fault 

scarps and slide-scar headwalls (Tivey et al., 2004; Dick et al., 2008; Dick et al., 2010; Hansen et al., 

2013). Two independent gabbro bodies are located in the northern and southern parts of the complex: one 

at Babel Dome and one at the Adam-and-Eve Dome complex (Canales et al., 2008). These two gabbro 

bodies are divided by a peridotite massif composed of the Abel and Cain Domes in the central part of the 

complex (Dick et al., 2008; Xu et al., 2009). The southern gabbro body lies above troctolites, dunites, and 
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harzburgites (Dick et al., 2008). This suite of rocks represents the oceanic crust-mantle transition zone 

that we investigate here. 

2.2. Petrogenesis of the studied samples 

In this study, we compare the residual mantle samples represented by spinel harzburgites with the 

melt-modified mantle samples represented by plagioclase peridotites, mantle-gabbro contacts and dunites 

(Fig. 2). The detailed petrographic description of these rocks is provided by Dick et al. (2010). 

Plagioclase-free spinel harzburgites are typical serpentinized abyssal peridotites. They are similar to 

protogranular harzburgites from many ophiolites with an average pyroxene grain size of ~4 mm. Most 

spinels show Cr-numbers (molar Cr/(Al+Cr) x 100) of 28 to 35 indicating a degree of mantle melting on a 

level of 11-14% (Dick et al. 2010).  

The plagioclase harzburgites represent former residual mantle subsequently impregnated by a 

trapped or transient mid-ocean ridge basalt (MORB)-like melt. About 14% of the Kane Megamullion 

harzburgites contain accessory plagioclase but modal plagioclase is only <2%. Considering that 

normative plagioclase in MORB is between 55% and 60%, only <4% of trapped melt would be needed to 

yield peridotites with <2% plagioclase. Such a small amount of trapped melt could not, however, explain 

the low forsterite (Fo) content (down to 78.6) of the olivine rims in these plagioclase peridotites. 

Transient and not trapped melt are thus more likely to form the plagioclase peridotites (Dick et al., 2010).  

Peridotite-gabbro contacts represent sections of peridotite within 2 cm from margins of gabbroic or 

troctolitic veins. They represent yet higher degree of melt modification than the plagioclase harzburgites 

as displayed by visible halos (Fig. 2) and low Fo contents on olivine rims (Dick et al., 2010). Our dunites 

are also interpreted as products of melt-rock reaction as in ascending melts the phase field of olivine 

expands at the expense of pyroxene (Dick et al., 2010).  

Local hydrothermal products discussed in Section 5.4 are composed of either hydrothermally altered 

breccias from mounds, or chalks associated with hydrothermal Fe-Mn precipitates. Both are products of 

mostly low-temperature (<100°C), or occasionally higher-temperature (>100°C) hydrothermal venting 

(Kaim et al., 2012; Tucholke et al. 2013). In addition, some hydrothermal products are covered by 

hydrogenous Fe-Mn precipitates on their surface (Tucholke et al., 2013). 

3. METHODS 

3.1. Sample collection 
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The Kane Megamullion OCC was investigated with extensive magnetic, bathymetric, and sampling 

surveys during R/V Knorr Cruise 180, Leg 2 (Tivey et al., 2004; Dick et al., 2008). Samples were 

collected by 25 dredges, and 8 Jason II ROV dives. A total of 2,666 kg of rock were recovered, mostly 

comprising peridotite, dunite, gabbro, diabase, and basalt. A representative suite of 19 spinel harzburgites, 

4 plagioclase harzburgites, 3 peridotite-gabbro contacts, 1 dunite, and 1 olivine websterite (Table 1) were 

selected from the headwalls of a large landslip and high-angle normal faults that cut below the 

detachment fault damage zone. 

3.2. Whole-rock analyses 

The major elements were analyzed with X-ray Fluorescence (XRF) spectroscopy at the 

Bundesanstalt für Geowissenschaften und Rohstoffe (BGR) in Hannover, Germany. To fuse beads for 

analysis, 1 g of sample powder and 5 g LiBO2 were mixed and melted for 20 min at 1200°C. The fused 

beads were analyzed with a wavelength dispersive PANalytical AXIOS X-ray spectrometer equipped 

with a rhodium X-ray tube. More than 100 international standards are used for the calibration of the X-ray 

spectrometer. Data get automatically internally corrected for matrix effects and spectral interferences 

using the de Jongh method. The relative uncertainty is in a range of 1-2 relative percent. The volatile 

concentrations were estimated as loss-on-ignition (LOI) by heating the samples in a muffle furnace for 10 

min at 1030°C (Table 1). 

An ELTRA CS 800 carbon-sulfur analyzer (Institut für Mineralogie, Leibniz Universität Hannover) 

was used to determine the sulfur concentrations. The analytical procedure is described by Lissner et al. 

(2014). Six to eight blanks were analyzed per analytical session, and the means of the blanks that were 

measured before and after a sample measurement were subtracted from the results. The limit of detection 

calculated as three standard deviations of the blank is 6 ppm S. Six sample replicates indicate an average 

precision of 11.8% (double relative standard deviation; 2 RSD) ranging from 1-5% in sulfur-rich samples 

to 20-30% in sulfur-poor samples. Sixteen analyses of the 033-1 reference material (Bundesanstalt für 

Materialprüfung, Germany) yielded a sulfur concentration of 217 ± 12 ppm. This implies an external 

precision of 11.1% (2 RSD). Given the certified sulfur content of the 033-1 reference material is 215 ± 22 

ppm (2 SD), our sulfur data are marked by a high analytical accuracy and improved precision. 

The concentrations of chalcophile elements were determined by a combination of instrumental 

neutron activation analysis (INAA), and inductively coupled plasma mass spectrometry (ICPMS) 

techniques, both conducted by Activation Laboratories Ltd., Ontario, Canada with the Ultratrace 5 

analytical package. The ICPMS equipment used for this package was a Perkin Elmer-SCIEX ELAN 

6000. Before the analysis, the samples were digested in a sequence of perchloric, hydrofluoric, 
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hydrochloric, and nitric acids. Gold is expected to be distributed heterogeneously, which is described as 

the “nugget effect” (Lorand et al., 2010). To provide reliable results for Au, up to 30 g of powder was 

used for INAA. Standards and measurement conditions are described in the Ultratrace 5 - Total Digestion 

- ICPMS, INAA subsection of the Methods section of the Actlab website (www.actlabs.com). Detection 

limits are given in Table 2. 

3.3. Electron microprobe analysis 

The major element composition of primary and secondary minerals were determined using a Cameca 

SX100 EPMA at the Institut für Mineralogie, Leibniz Universität Hannover, Germany. Standards include 

native metals (Cu, Co), pyrite (S and Fe), wollastonite (Si and Ca), albite (Na), orthoclase (K), and 

synthetic NiO, Cr2O3, Al2O3, TiO2, Fe2O3, MgO, and Mn3O4. A sample current of 15 nA and an 

acceleration voltage of 15 kV were used for all analyses. Raw data were corrected using the standard 

“PAP” procedure (Pouchou and Pichoir, 1991). A focused beam was used for primary minerals. A 

defocused beam of 10 µm was applied to serpentines as was proposed in several studies of serpentines 

(e.g., Andreani et al., 2007, 5 µm; Kodolányi and Pettke, 2011, 10 µm). However, few analyses were 

performed with a focused beam and the results indicate no systematic difference using different beam 

sizes. A sample current of 200 nA and a dwelling time of 5 to 15 ms were used for X-ray mapping.  

3.4. Laser Ablation - Inductively Coupled Plasma Mass Spectrometry 

3.4.1.  Trace element microanalysis  

For the trace element analyses, we used an Element XR (Thermo Scientific, Germany) fast-scanning 

sector field ICPMS coupled to a femtosecond laser ablation (fs-LA) system (Solstice, Spectra-Physics, 

USA) at the Institut für Mineralogie, Leibniz Universität Hannover, Germany. The laser unit operates in 

the deep UV at 194 nm and produces energy pulses of 70–90 mJ in the fourth harmonic. This ultrashort 

pulsed laser avoids elemental fractionation at the sample site and minimizes matrix effects (Horn et al., 

2006; Horn and Von Blanckenburg, 2007; Horn, 2008; Albrecht et al., 2014). We limited the rate of oxide 

formation by tuning the ICPMS to a low ThO/Th (typically 0.25% for this study). The laser beam had a 

diameter of 60 µm for the standards and non-sulfides (when possible). Smaller beam diameters down to 5 

µm were used for sulfides (Table A.1 in Appendix A). The repetition rate was 10 Hz for the standards and 

it was variable for the samples, typically 20-40 Hz for silicates and oxides, and 10-40 Hz for sulfides. 

Ablated particles were transported by He carrier gas. Then, Ar was admixed to the He carrier gas before 

entering the ICPMS unit. The NIST 610 reference material was used as an external standard. The SiO2, 

Ni, and Cu concentrations of the minerals determined by EPMA were used as internal standards for 
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quantification. For data reduction, including drift correction, we used the Matlab-based SILLS program 

(Guillong et al., 2008).  

3.4.2.  Copper isotope microanalysis  

The 
65

Cu/
63

Cu ratio of the samples and reference materials were measured using the aforementioned 

fs-LA system coupled to a Neptune Plus (Thermo Scientific, Germany) multi-collector-ICPMS. 

Measurements were performed in low-resolution mode. In addition to the two Cu isotopes, four Ni 

isotopes (
60

Ni, 
61

Ni, 
62

Ni and 
64

Ni) were simultaneously measured. For the Ni source, we used 1 ppm Ni 

NIST SRM 986 standard solution, which was added via a quartz glass spray chamber (double pass Scott 

design) and a PFA micro-flow nebulizer (uptake rate ~100 µl/min). The measured 
62

Ni/
60

Ni was used for 

the internal instrumental mass bias correction. For a detailed description, see Lazarov and Horn (2015).  

Samples have been measured against the NIST SRM 976 Cu-metal standard and are reported as 

δ
65

Cu (i.e., deviation 
65

Cu/
63

Cu from NIST SRM 976 expressed in ‰) . In addition, the cpy2 chalcopyrite 

from Lazarov and Horn (2015) was measured as an unknown to verify if the laser energy was set to the 

appropriated level and if the obtained δ
65

Cu values agree with the values for the solution reported by 

Lazarov and Horn (2015). All reference materials and samples were ablated along lines. A spot diameter 

of 40 µm and laser repetition rates of 5 Hz and 10 Hz for the NIST SRM 976 and cpy2, respectively, 

resulted in signal intensities of ~10 V on mass 65. However, the Kane Megamullion chalcopyrites are 

very small and need to be measured with aperture sizes of 10 to 20 µm. Consequently, the laser repetition 

rates were increased to a maximum of 100 Hz during the sample measurements to match the signal 

intensities between the reference materials and samples. Still some of the sample measurements were 

performed at low Cu intensities (~1 V on 
65

Cu). Molecular interferences induced by a sulfide matrix such 

as (
32

S
33

S)
+
 or (

32
S

16
O

17
O)

+
 on 

65
Cu can be significant at such low intensities. The cpy2 standard was 

therefore measured with similarly low Cu intensities four times. The resulting δ
65

Cu values matched 

within error the δ
65

Cu values obtained by measuring the cpy2 standard with higher intensities (Table 3). 

Even at low Cu signal intensities, the cpy2 standard showed a double relative standard error (2 RSE) 

<0.1‰ (Table 3). Due to the small sizes of chalcopyrites in the samples, and a high laser-repetition rate, 

an individual analysis consisted of only ~20 cycles with a cycle integration time of 1.05 s. Hence, the 2 

RSE of δ
65

Cu attains a maximum of 0.18‰ in our study. The overall RSE for samples is calculated by the 

propagation of the within-run RSEs of a sample and its two bracketing standards (see also the caption for 

Table 3). 

4. RESULTS 
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4.1. Petrographic characteristic of sulfide assemblages 

At the Kane Megamullion OCC, peridotites are partially to fully serpentinized, and primary sulfides 

(chalcopyrite [CuFeS2], pyrrhotite [Fe1-xS], and pentlandite [(Fe,Ni,Co)9S8]) are commonly replaced by 

secondary sulfides (secondary pentlandite, pyrite [FeS2], violarite [FeNi2S4], millerite [NiS], godlevskite 

[Ni9S8], and heazlewoodite [Ni3S2]). Primary sulfides are thus rare and only occur in the melt-modified 

mantle rocks. Pyrrhotite is the predominant primary sulfide (Table 4). When chalcopyrite and primary 

pentlandite occur they coexist with pyrrhotite. Chalcopyrite is sometimes altered to a Fe-Cu hydroxide, 

and primary pentlandite is occasionally weathered to violarite. In other assemblages, pentlandite occurs as 

a secondary phase along with heazlewoodite, godlevskite, and millerite. These secondary assemblages are 

also rare in the depleted harzburgites and more abundant in the melt-modified mantle rocks. In the three 

spinel harzburgites investigated in thin sections we found only two sulfide grains (Table 4). 

Thin sections of samples 21-9 and 19-11 have linear contact zones between peridotite and gabbro 

veins (2 mm and 15 mm wide zone, respectively; Fig. 3). By using reflected light microscopy, we have 

estimated the abundance of large (>40 µm) sulfides in these contact zones to be ~3.3 grains/cm
2
. The 

abundance decreases to ~0.3 grains/cm
2
 in the background peridotite (Fig. 3a). No large sulfide grains 

occur in the gabbro veins. The abundances of medium-sized sulfides (10-40 µm) are ~13 grains/cm
2
 for 

the contact zone (orange boxes II and III on Fig. 3a), ~4 grains/cm
2
 for the background peridotite (orange 

box I on Fig. 3a) and ~2 grains/cm
2
 for the gabbro veins (orange box IV on Fig. 3a). In addition, we X-ray 

mapped three 20-to-60-mm
2
-large areas (one is presented on Fig. 3b-c) crossing the contact zones in both 

thin sections. The S distribution map (Fig. 3b) shows that <10-µm sulfides are yet more abundant than the 

medium-sized sulfides. The main crystallization front of all the sulfides is ~1 mm wide, and is located on 

the margins of the contact zones adjacent to the mafic veins (Fig. 3b). 

4.2. Bulk-rock major-element compositions 

Most of the peridotites studied here are heavily serpentinized, which is often the case for abyssal 

peridotites (Luguet et al., 2003; Boschi et al., 2006; Miller, 2007; Klein and Bach, 2009; Morishita et al., 

2009). This is also reflected in a high LOI content of our peridotites (Table 1) ranging from 4.9 to 16.2 

wt% (Table 1). Harzburgite SiO2 contents vary between 37.6 and 42.2 wt%. The Mg-number, defined as 

molar Mg/(Mg + Fe) x 100, spans a narrow range of 87 to 90 for most of the harzburgites. Our LOI 

values, SiO2 contents, and Mg-numbers are similar to their ranges for abyssal peridotites known from the 

literature, which are 5-15 wt%, 34-46 wt%, and 0.88-0.92, respectively (Luguet et al., 2003; Boschi et al., 

2006; Paulick et al., 2006; Morishita et al., 2009).  
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The peridotite-gabbro contacts show high modal iron oxides resulting in high bulk-rock FeO 

contents and low Mg-numbers (42-64) in comparison to typical mantle values. The Al2O3, CaO and P2O5 

contents are elevated in the peridotite-gabbro contacts compared to the spinel harzburgites (Table 1, Fig. 

4). Such Al2O3, CaO and P2O5 enrichments are not evident in the bulk plagioclase harzburgites (Table 1, 

Fig. 4), although they are observed in the plagioclase harzburgite serpentines in situ (Table B.1 in 

Appendix B). This irregular enrichment of Al2O3, CaO, and P2O5 in the plagioclase peridotites is probably 

due to inhomogeneous melt percolation and/or post-magmatic serpentinization (Section 5.5). 

4.3. Bulk-rock trace-element contents 

The chalcophile element contents of the serpentinized spinel harzburgites (Table 2) are in the 

compositional range of primitive mantle estimates (Sun, 1982; McDonough and Sun, 1995) and most 

fresh peridotites from orogenic and ophiolitic massifs (Garuti et al., 1984; Lorand, 1989a; Lorand, 1991; 

Lorand et al., 1993) (Fig. 5). Notably, our chalcophile element contents are higher than those found in 

peridotites from the Atlantis Massif OCC. Boschi et al. (2006) reported average concentrations of 13 ppm 

Cu, 36 ppm Zn, and 2 ppm Ga for 24 serpentinized peridotites from the Atlantis Massif OCC. These 

values are by 54%, 57% and 25% lower than the average concentrations of 28 ppm Cu, 84 ppm Zn and 

2.5 ppm Ga in the Kane Megamullion serpentinized spinel harzburgites. The Atlantis Massif peridotites 

have been, however, highly deformed in the detachment fault damage zone. The corresponding peridotites 

from the damage zone of the Kane Megamullion detachment fault are also depleted in chalcophile 

elements, with a mean Cu concentration of 15 ± 5 ppm (2 RSE). Due to tectonically induced alteration, 

the latter peridotites are considered as non-representative and discarded from further discussion in this 

study. The serpentinized depleted spinel harzburgites from the 15°20’ Fracture Zone along the MAR also 

show lower Cu content (4 ppm; Marchesi et al., 2013) compared to the Kane Megamullion serpentinized 

depleted spinel harzburgites. In this case, however, the reason for the low Cu concentration is the higher 

degree of partial melting (15-20%) in the 15°20’ Fracture Zone harzburgites (Marchesi et al., 2013). 

 The mean sulfur concentration of 184 ppm in the Kane Megamullion spinel harzburgites is within 

the sulfur content range (150-330 ppm) of fresh orogenic peridotites. The Kane harzburgites, however, 

show a broader range of 32 to 561 ppm S (Table 2). In addition, harzburgite 114-9, which has been 

further altered to talc, falls below this range with no detectable sulfur.  

All chalcophile elements except for Bi and Ni are enriched in the melt-modified peridotites 

compared to the spinel harzburgites representing depleted mantle. This difference is most pronounced for 

Cu and Zn (Table 2; Fig. 4; Fig. 6). The mean concentrations of Cu and Zn are 294 and 354 ppm in the 

peridotite-gabbro contacts, and 131 and 91 ppm in the plagioclase harzburgites, respectively. In contrast, 
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spinel harzburgites contain only 28 ppm Cu and 84 ppm Zn (Table 2, Fig. 4). The depleted harzburgites 

contain on average more Ni (1631 ppm), than the melt-modified mantle (1360 ppm), even if the Ni-poor 

brecciated dunite 113-41 is not taken into account (Fig. 4). The low Ni content here could have been 

caused by veining related to brecciation of this dunite in a calcium carbonate matrix. Miller et al. (2011) 

have demonstrated that limestone systems are effective at removing Ni from circulating fluids. Therefore, 

Ni from 113-41B could have been lost to the calcium carbonate during fluid circulation. We determined 

that the Ni concentration in the associated calcium carbonate was 89 ppm Ni, which matches enhanced Ni 

contents (25-740 ppm) from ultramafic-hosted carbonates from the equatorial MAR (Bonatti et al., 1974). 

In contrast, marine limestones not associated with ultramafic rocks contain only 3 to 20 ppm Ni (Barber, 

1974). 

In addition to the rocks of the crust-mantle transition zone, we have determined chalcophile element 

contents in eight local seafloor hydrothermal products previously documented by Tucholke et al. (2013). 

These contain up to 3500 ppm Cu, 1150 ppm Zn, 795 ppm Pb, and 570 ppm As (Table C.1 in Appendix 

C), and are further discussed in Section 5.4 

4.4. Major-element compositions of sulfides 

Sulfur, Ni, Fe, Cu and Co contents of pentlandite, millerite, godlevskite, and heazlewoodite, violarite, 

chalcopyrite, pyrrhotite, and pyrite have been measured using EPMA. The pentlandite is the only Kane 

Megamullion sulfide mineral that occurs both in the depleted and the refertilized mantle. Notably, the 

refertilized mantle pentlandites are Co-rich with respect to an average pentlandite (0.6 wt% Co; see Table 

D.1 in Appendix D). The average Co content is 1.8 wt% for the pentlandites from the plagioclase 

harzburgites and 1.9 wt% for the pentlandites from the peridotite-gabbro contacts, with one pentlandite 

containing 8.1 wt% Co. The Ni/(Ni+Fe) molar ratio is typically between 0.44 and 0.51 (90% of the 

population), but the full range spreads from 0.34 to 0.59. A similar range of the Ni/(Ni+Fe) ratio (0.38-

0.58) was observed by Misra and Fleet (1974) ins pentlandites associated with pyrrhotite and chalcopyrite 

in several magmatic sulfide deposits in Canada. Interestingly, many of the pentlandites showing extreme 

Ni/(Ni+Fe) values occur in the sample 21-7 peridotite-gabbro contact.  

In addition, we observed a gradient of sulfide Ni-content in the group of pentlandites, 

heazlewoodites, godlevskites, and millerites located across the peridotite-gabbro contact in sample 21-9 

(Fig. 7a). Two sulfides from the gabbro side of the contact contain 69 wt% Ni, seven sulfides from the 

middle of the contact zone contain between 32 and 39 wt% Ni, and five sulfides from the peridotite side 

of the contact 31 to 32 wt% Ni. The clear Ni gradient is thus observable, from higher-Ni sulfides in the 

gabbro to lower-Ni sulfides in the peridotites. 
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Altogether four violarites, all replacing pentlandites, have been found in two of the samples studied 

in thin sections. Three violarites occur in olivine websterite 5-31B, and show a stoichiometric Ni/(Fe+Ni) 

ratio of 0.66-0.69 and a relatively low Co content (0.5-0.6 wt%). One violarite occurs in the sample 21-7 

peridotite-gabbro contact, showing a higher Co content (1.2 wt%) and a non-stoichiometric Ni/(Fe+Ni) 

molar ratio of 0.52. Notably, the violarites retained the compositional features from the original 

pentlandites since the refertilized peridotite pentlandites also show a non-stoichiometric Ni(Fe+Ni) ratio, 

and higher Co contents than the depleted peridotite pentlandites.  

The Kane Megamullion chalcopyrites show nearly stoichiometric (i.e., 0.47-0.52) ratios of 

Cu/(Cu+Fe). The metal/sulfur ratio is however slightly higher than the stoichiometric ratio of 1 (Table 

D.1 in Appendix D). Here, the Ni contents range from 0.0 to 3.9 wt%. The highest Ni contents are likely 

caused by fine-scale intergrowths of associated pentlandite (e.g., Fig. 8b). Nickel was also detected in 14 

of 75 analyzed pyrrhotites with a maximum of 0.6 wt%, where neither Cu nor Co are present on a wt% 

level. Pyrrhotites exhibit a typical metal/sulfur ratio of 0.83 to 1.00. Few outliers with 1.02 and 0.76 have 

also been found. 

4.5. Chalcophile element contents of sulfides 

We measured Ni in pyrrhotite and chalcopyrite, Cu in pyrrhotite and Ni sulfides, as well as Zn, Ga, 

Ge, As, Se, Ag, Cd, Sb, Te, Tl, Pb and Bi in all the sulfides using fs-LA-ICPMS (Table A.1 in Appendix 

A; Fig. 9). 

Pentlandite is the only sulfide phase that is abundant both in the depleted and the refertilized 

portions of the mantle. Notably, pentlandites from the refertilized peridotites are enriched in chalcophile 

elements with respect to the pentlandites from the depleted peridotites (Fig. 9c). For example, Cu contents 

are typically <200 ppm in the depleted peridotites pentlandites and up to ~1000 ppm in the pentlandites 

from peridotite-gabbro contacts. Two pentlandites from the peridotite-gabbro contact show even >2000 

ppm Cu. We think, however, that these Cu contents were enhanced by small chalcopyrites that were 

hidden under the surface of the pentlandites and have been ablated together. Elevated Zn contents have 

also been found in these pentlandites (54 and 151 ppm). Otherwise, the Zn content is very low in 

pentlandites, typically below 35 ppm. One pentlandite from a peridotite-gabbro contact, however, 

contains 512 ppm Zn, which is likely a value inherent to this pentlandite and not an intergrowth. Arsenic 

is typically below 35 ppm in the depleted peridotite pentlandites. Some grains from peridotite-gabbro 

contacts, however, contain up to 1028 ppm As. The Pb concentrations in pentlandites are variable but 

generally much higher than those in the pyrrhotites and chalcopyrites, exceeding 20 ppm in many grains, 

especially in the peridotite-gabbro contact from sample 21-9. Pentlandites from the spinel harzburgites 
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typically contain between 4 and 31 ppm Te. Two sulfides from a peridotite-gabbro contact have elevated 

Te concentrations (49 and 139 ppm). Antimony is generally high in the pentlandites from the peridotite-

gabbro contact. However, due to the small sizes of these pentlandites we were able to determine Sb 

concentrations (3.2, 4.2, and 12 ppm) in only three grains. Outside the contact zone, Sb is barely 

distinguishable from the detection limit. 

In addition, we analyzed in detail the gradient of sulfide Cu content in the nickeliferous sulfides 

(pentlandite, heazlewoodite, millerite, and godlevskite) from sample 21-9 in relation to their distribution 

around the peridotite-gabbro contact. Notably, the sulfide Cu contents are related to the location of 

sulfides and the Ni concentrations (Fig. 7b). Two higher-Ni sulfides located on the gabbro side of the 

contact contain only 1 ppm Cu. Seven sulfides from the middle of the contact zone, containing between 

32 and 39 wt% Ni, show high Cu concentrations of 71 to 405 ppm. Five lower-Ni sulfides from the 

peridotite side of the contact contain 5 to 14 ppm Cu. Therefore, a clear “Cu peak” is observable in the 

middle of the contact zone, associated with the intermediate Ni concentrations. 

Pyrrhotite and chalcopyrite occur only in the refertilized peridotites. In pyrrhotites, Cu is present as 

a trace element with a median of 61 ppm and a maximum of 1268 ppm. Zinc and Se are also abundant, 

but never above 100 ppm. Thallium is an element typical for pyrrhotite (Table A.1 in Appendix A; Fig. 

9), and detectable in most of the grains, typically on a level of 0.2 to 8 ppm. Lead is typically <1 ppm, but 

there are two pyrrhotite grains with values of 6.3 and 13 ppm. Arsenic is usually below the detection limit 

of ~5 ppm, but it is abundant in several grains with a maximum of 128 ppm. 

Ten chalcopyrite grains have been measured for chalcophile element concentrations. The 

chalcopyrites are either adjacent to pentlandite or contain small intergrowths of pentlandite. Thus, no 

analysis returned a completely pure chalcopyrite signal. The least contaminated analysis still shows 1.6 

wt% Ni (Table A.1 in Appendix A; Fig. 9). In comparison, only 0.2 wt% Ni have been detected by 

EPMA, which has a higher resolution than the LA technique. We can thus assume that approximately 1.4 

wt% of the Ni derives from a pentlandite intergrowth. Nickel accounts for ~32% wt% in a typical 

pentlandite. These two assumptions imply that about 4% of the pentlandite and 96% of the chalcopyrite 

were consumed in this ablation crater. Such a minor amount of pentlandite can only affect the measured 

concentrations of Co (176 ppm) and perhaps Pb (3.0 ppm). The concentrations of Zn (859 ppm), Cd 

(13 ppm), Ga (3.8 ppm), Se (138 ppm), and Bi (1.5 ppm) in pentlandites are too low to effectively 

contaminate chalcopyrites. A value of 859 ppm for Zn well represents the spectrum of values obtained in 

the nine other chalcopyrite analyses (127, 362, 397, 881, 891, 1304, 1481, 1528, 1691 ppm). The Cd 
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content of 13 ppm is also consistent with several other chalcopyrites that contain from 10 to 20 ppm Cd. 

The Cd concentration is, however, below the detection limits in few other grains. 

4.6. Chalcophile element contents of matrix minerals 

Chalcophile elements were measured in matrix minerals along a laser ablation profile composed of 

18 parallel lines across the peridotite-gabbro contact 21-9T (Fig. 10). These lines were placed in order to 

avoid larger sulfides and oxide phases. They should thus mostly represent the silicate matrix (i.e., 

lizardite, antigorite, chrysotile, tremolite, chlorite, and prehnite, see Figs. 4, 6, and Figs. B.1 and B.2 in 

Appendix B).  

The silicates of the peridotite-gabbro contact are enriched in most of the chalcophile elements with 

respect to the silicates of the peridotite and of the gabbro vein. This enrichment occurs in a narrow zone, 

as typically visible only in one of the laser ablation lines. Considering the distance between lines is ~250 

µm, the width of this enrichment front is <500 µm. Most of the elements including Cu, Pb and Ge are 

enriched in the part of the contact zone directly abutting to the gabbro (Fig. 10). Cobalt and Au are most 

enriched ~500 µm away from the margin of the gabbro towards the peridotite, and Sb is the most enriched 

~1 mm away from the gabbro towards the peridotite. Two exceptions are Zn and As. Zinc is enriched in 

the contact zone but on the gabbro side. Arsenic is largely enriched in two sites, one corresponding to the 

Cu, Pb, and Ge enrichment front, and one corresponding to the boundary between the chlorite and 

prehnite zones on the gabbro side of the contact (Fig. 10).  

In addition to the LA-ICPMS profile through the matrix minerals of the peridotite-gabbro contact, 

we measured the chalcophile element contents in matrix minerals of the plagioclase and spinel 

harzburgites. Matrix minerals from the plagioclase peridotites contain more chalcophile elements with 

respect to the matrix minerals of the spinel harzburgites but less than the matrix minerals of the peridotite-

gabbro contacts (Table B.1 in Appendix B and Fig. 11). 

4.7. Isotopic composition of Cu in chalcopyrites 

To further constrain the sulfide-forming processes we measured Cu isotopes in the largest four 

chalcopyrites in the 21-7 peridotite-gabbro contact. Independent of a variable analytical error (up to 

0.18‰; Table 3), the δ
65

Cu signatures of all the four chalcopyrites fall in a range of -0.04 to +0.29‰ 

(Section 5.1). 

5. DISCUSSION 

5.1. Evidence for melt refertilization 
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The mean of 28 ppm Cu found in the Kane Megamullion spinel harzburgites is close to typical 

depleted mantle values (Garuti et al., 1984; Lorand, 1989a; 1991; Lorand et al., 1993; Fig. 5). The entire 

range for the spinel harzburgites investigated here is however from 7 to 69 ppm Cu. Such a large range of 

Cu concentrations is typical for mantle samples (Jagoutz et al., 1979; Niu, 2004), and may result from 

partial alteration of primary sulfides (Lorand, 1990) or simply a nugget effect. Note that 30 mg of 

peridotite with 30 ppm Cu contains only five as much Cu as a 30-µm-large spherical chalcopyrite 

(~0.5 µg) with 35 wt% Cu. A random inclusion or omission of such a chalcopyrite in a 30-mg-large 

analytical sample implies thus a difference of ~20% in the measured Cu concentration. In the case of our 

study, the higher Cu concentrations might also be caused by melt-rock reaction. One example is sample 

19-11, which is composed of a spinel harzburgite and a gabbro vein. Although both the vein and its halo 

(subsample 19-11B) were cut out from the spinel harzburgite (subsample 19-11A), the melt-rock reaction 

might have reached beyond the halo, for example along smaller apophyses, and enriched the spinel 

harzburgite in Cu. 

The pairs of Cu and S concentrations in the spinel harzburgites scatter around the section of mantle 

depletion curve limited by 6% and 17% (Fig. 6) representing the minimum and maximum mantle melting 

degrees at the Kane Megamullion (Dick et al., 2010). The start of this theoretical depletion curve (Fig. 6) 

is anchored at the primitive mantle values of 30 ppm Cu and 250 ppm S from McDonough and Sun 

(1995). The S and Cu concentrations in the peridotite residue derived from differing degrees of melting 

have been calculated by a fractional melting model of Lee et al. (2012), assuming a temperature of 1400 

°C, a pressure of 2 GPa, and an oxygen fugacity buffered by quartz-fayalite-magnetite. Note that Cu is 

incorporated into melt slower than S (Fig. 6). In contrast to S, a portion of Cu inventory is controlled by 

spinel with a partition coefficient of 0.2 and silicates (i.e., olivine, orthopyroxene, clinopyroxene) with 

partition coefficients between 0.034 and 0.048 (Lee et al., 2012).  

The range of Cu-S compositions observed in the melt-modified mantle could be explained by 

impregnation of previously depleted harzburgites with Cu-rich sulfides (Fig. 6). The correlation between 

Cu and S concentrations shows a coefficient of determination (R
2
) of 0.66 in the group of melt-modified 

mantle rocks, whereas little correlation is found amongst the spinel harzburgites. All seven melt-modified 

mantle rocks exhibit high Cu values ranging from 88 to 294 ppm Cu. This is remarkable as in the 

primitive mantle the Cu concentration is estimated as 30 ± 12 ppm (Sun, 1982). A primitive MORB melt 

formed from a sulfur-depleted mantle source can contain >150 ppm Cu (Lee et al., 2012). We found 157 

ppm Cu (Table 2) and abundant chalcopyrite associated with pyrrhotite and pentlandite (Tables 3, 4, and 

A.1) in an olivine websterite hosted by harzburgite. Dick et al. (2010) interpreted this olivine websterite 

to likely represent a frozen melt. 
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In principle, the enrichment of the chalcophile elements in the crust-mantle transition zone could 

result from primary magmatic or secondary hydrothermal processes. To distinguish between these 

processes we use the measured Cu isotopic compositions of analyzed chalcopyrites. The δ
65

Cu range (-

0.04 to +0.29‰; Table 3) we found is entirely within the terrestrial δ
65

Cu range for igneous rocks (Fig. 

12) typically reported as -0.3 to 0.3 ‰ (Larson et al., 2003; Ben Othman et al., 2006; Ikehata and Hirata, 

2012; Liu et al., 2015), and exceptionally as -0.6 to 0.4‰ (Zhu et al., 2000). In contrast, the terrestrial 

δ
65

Cu range for non-igneous rocks is >9‰ (Larson et al., 2003; Mathur et al., 2010; Mathur and Fantle, 

2015). For example, δ
65

Cu of peridotites metasomatized by LREE-enriched fluids varies from -0.6 to 

1.8‰ (Savage et al., 2014; Liu et al., 2015). The δ
65

Cu signature of seawater ranges from 0.5 to 1.4‰ 

(Vance et al., 2008). Considering that seawater is an agent during serpentinization, copper sulfides formed 

of the seawater-derived Cu would have the higher δ
65

Cu values than the Kane Megamullion 

chalcopyrites. The δ
65

Cu signature of Cu-rich minerals in supergene systems overlaps the igneous 

signature extending to much higher and much lower values (Mathur et al., 2009; 2010; 2012; Mirnejad et 

al., 2010; Mathur and Fantle, 2015). This is the case for both the enrichment zone (δ
65
Cu of −6 to +8‰) 

and the leached zone (-9 to +2‰; Mathur and Fantle, 2015) of supergene systems. The only sulfide type 

that shows a similar range of δ
65

Cu to the igneous sulfides is the group of marine sedimentary sulfides (-

0.1 to +0.4‰; Maréchal et al., 1999; Rouxel et al., 2004). The relatively narrow δ
65

Cu range we find is 

thus likely of magmatic origin (Fig. 12). Although the narrow range itself cannot entirely exclude a fluid-

metasomatism or even supergene origin, the probability of those is relatively low. This can be 

demonstrated using probability density functions of normal distributions anchored on literature data. For 

example, the probability for one sample showing δ
65

Cu of -0.1 to 0.3‰ to be of fluid-metasomatism 

origin (with a mean of 0.15‰ δ
65

Cu, and an SD of 0.4‰ δ
65

Cu based on Liu et al. (2015) data for 32 

samples) is ~38%, and for a set of four samples only ~2%. The probability for these samples to be of 

supergene origin is clearly yet lower. 

The obtained δ
65

Cu signatures of -0.04 to 0.29‰ could also result from mixing of two different 

components. For example, a combination of altered mantle and seawater could produce the reported δ
65

Cu 

values, despite neither of these individual reservoirs having a δ
65

Cu of -0.04 to 0.29‰ (Fig. 12). A mixing 

scenario is often proposed for bulk rock signatures, which can preserve various processes that all 

contribute to one bulk signature. However, δ
65

Cu signatures were measured in cogenetic chalcopyrites. 

Yielding such a mixed δ
65

Cu signature in cogenetic chalcopyrites would then require a Cu-rich seawater 

(the first endmember) to enter a serpentinized mantle elsewhere, dissolve local secondary copper phases 

(the second endmember), and precipitate the chalcopyrites afterwards during the ascent of seawater to the 

surface. Such a scenario cannot be completely excluded but it is not supported by the petrographic 
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features of our chalcopyrites that survived as inclusions in silicate phases (Fig. 8a) or in larger sulfide 

grains (Fig. 8b). The chalcopyrites in the polysulfide grains show exsolution textures with pentlandite and 

remain in close association with pyrrhotite (Fig. 8b), hence suggesting formation from a sulfide liquid. 

The wide range of (Ni/(Ni+Fe) we observe in these pentlandites (Section 4.4) is typical for high-

temperature sulfides (Kaneda et al., 1986), which further supports their magmatic origin. Similar 

pyrrhotite-pentlandite-chalcopyrite assemblages that exsolved from a sulfide liquid are found in many 

magmatic sulfide deposits (Ballhaus and Sylvester, 2000; Mao et al., 2008; Song et al., 2009; Dare et al., 

2010; Prendergast, 2012) and are common in the mantle (Kiseeva et al., 2017; Vaughan and Corkhill, 

2017). Such magmatic sulfides are also known also from abyssal peridotites (Luguet and Lorand, 1999). 

Magmatic pyrrhotite-pentlandite-chalcopyrite assemblages occur not only in the melt-modified 

mantle but also in the residual mantle. In the residual mantle, however, pentlandite predominates (Garuti 

et al., 1984), which contrasts with our sulfides dominated by pyrrhotite (Table 4 and Fig. 8b). A MORB-

like melt has the potential to yield Fe-rich monosulfides, which then exsolve to polysulfide grains with 

predominant pyrrhotite. Sulfide globules from MORBs are composed of 44 wt% Fe, 11 wt% Ni, 7 wt% 

Cu, and 38 wt% S (Francis, 1990). Similar sulfides are ubiquitous in the world’s most extensively 

sampled in situ section of the lower oceanic crust at Atlantis Bank as revealed in long ODP Holes 735B 

(Miller and Cervantes, 2002) and U1473A (Ciazela et al., 2016; Pieterek et al., 2017; Ciazela et al., 

2017a). Higher modes of pyrrhotite than pentlandite, and chalcopyrite, have also been found in the melt-

modified mantle from ODP Site 1268 (Miller, 2007). Other authors pointed out the close association of 

pentlandite and chalcopyrite in the melt-modified abyssal peridotites (Luguet et al., 2003; Seyler et al., 

2007; Marchesi et al., 2013), which is revealed also in our study (Fig. 8b). Studies of mantle xenoliths 

indicate that chalcopyrite in the residual sulfides occurs mainly in sulfide rims. In contrast, in the sulfides 

delivered by percolating melt chalcopyrite may occur in the middle of sulfide grains (Alard et al., 2002; 

Wang et al., 2009) as is the case for the Kane Megamullion (Fig. 8b). In addition, sulfide melt may 

occasionally be rich in Cu allowing chalcopyrite to dominate the sulfide grains (Wang et al., 2009; cf. 

Fig. 8a). The Kane Megamullion magmatic sulfides from the melt-modified mantle are thus likely formed 

due to melt percolation, and could not be residual as already demonstrated by the enhanced high bulk-

rock Cu and S contents of the melt-modified mantle rocks (Fig. 6). 

The moderate enrichment of other chalcophile elements in the melt-modified peridotites can also be 

explained by impregnation with a Cu-rich monosulfide. Chalcopyrite can contain Zn, Se, Cd, Pb, Au, and 

Ag as trace elements. For example, magmatic chalcopyrites from Sudbury in Canada contain 370-1100 

ppm Zn, 3-6 ppm Cd, 30-150 ppm Se, and 2-8 ppm Pb (Dare et al., 2011). The Kane Megamullion 

chalcopyrites contain up to 1700 ppm Zn and 20 ppm Cd (Section 4.5). Pentlandite and pyrrhotite also 
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contribute to the high budget of some trace elements. Kane Megamullion pentlandites, especially those 

which occur at the peridotite gabbro-contact (Fig. 9c), are considerably enriched in Co, As, Ge and Te 

(Fig. 9). Pyrrhotite is usually enriched in Tl and As (Fig. 9a). 

5.2. Mechanism of melt refertilization  

Melt refertilization of the mantle peridotites seems to be a process that occurs over a broad range 

of pressures and temperatures within the suboceanic and subcontinental mantle. Sulfides are documented 

in many high pressure (up to 2.5 GPa) mantle xenoliths that experienced melt metasomatism (Lorand et 

al., 2003; Wang et al., 2009; Michalak and Nowak, 2010; Chen et al., 2014; Bukała et al., 2015). The 

metasomatic sulfides in xenoliths can be distinguished by their interstitial positions and radiogenic 

187
Os/

188
Os (Alard et al., 2002; Harvey et al., 2011; 2016). A lower pressure range is recorded in some 

refertilized orogenic mantle sections (Rehkämper et al., 1999). In addition, melt metasomatism yields 

sulfides in abyssal peridotites (Rehkämper et al., 1999; Luguet et al., 2003; Alard et al., 2005; Miller, 

2007; Seyler et al., 2007). These sulfides are also interstitial, and may show radiogenic 
187

Os/
188

Os 

(Harvey et al., 2006; Burton et al., 2012) and potentially radiogenic 
207

Pb/
204

Pb (Burton et al., 2012).  

Considering this broad spectrum of tectonic settings likely encompassing a broad range of pressures 

and temperatures, neither pressure nor temperature seems to be a key factor responsible for melt 

refertilization of chalcophile elements in the mantle. Instead, a decreasing Fe content is consistent with 

lowering the level of sulfur concentration at sulfide saturation (SCSS; Haughton et al., 1974; O’Neill and 

Mavrogenes, 2002; Tsujimura and Kitakaze, 2005; Ariskin et al., 2013), and could play a major role for 

sulfide precipitation from percolating melt. Iron loss is likely efficient in narrow melt channels (Ciazela et 

al., 2017b), where Fe in melt is buffered by the exchange reaction with large amount of olivine and 

pyroxene on conduit walls (Dick and Natland, 1996). Sulfide crystallization on a scale of the crust-mantle 

transition zone may though require a more extensive mechanism. Other researchers proposed that the Fe 

loss results from olivine (Luguet and Lorand, 1999) or spinel (Luguet et al., 2003) crystallization. Melt-

rock reaction to form dunite consumes pyroxene, while precipitating olivine, or forms it by incongruent 

dissolution of orthopyroxene (Kelemen et al., 1995). The most prominent example of such dunite can be 

found in the Oman ophiolite (Braun and Kelemen, 2002), where dunite constitutes most of the Moho 

transition zone (MTZ). The MTZ can be several to several hundred meters thick. The thickest MTZ 

occurs above mantle diapirs (Boudier and Nicolas, 1995). These sections of MTZ are considered to be 

major collecting zones for mantle melts (Godard et al., 2000). More than 20 sites of ancient Cu 

excavations have been found at the MTZ of the Oman ophiolite (Begemann et al., 2010). Although Cu 

has been partially redeposited by secondary processes (Goettler et al., 1976; Begemann et al., 2010), the 
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data from our study and the characteristic distribution of the ancient mining sites imply that the first stage 

of Cu enrichment may have been magmatic. In the ophiolitic peridotites from the Lanzo massif in Italy, 

dunitic bands that are a product of melt percolation in the mantle are enriched in Cu (Lorand et al., 1993). 

Notably, the mean Cu concentration of 14 Kane Megamullion dunites and olivine-rich troctolites formed 

after dunites (Dick et al., 2010; Sanfilippo et al., 2015) is 118 ± 17 ppm Cu (1 SE). This is four times 

higher than the average for our spinel harzburgites. 

Considering that melt-mantle reaction seems to be most extensive within the crust-mantle transition 

zones as suggested by the distribution of reactive dunite (Jousselin et al., 1998; Kelemen et al., 2000), we 

expect a global peak of chalcophile element concentrations at the crust-mantle boundary. However, we 

suppose that the degree of enrichment in chalcophile elements depends on tectonic setting. The most 

enhanced chalcophile element concentrations may occur at the crust-mantle boundaries at the sections of 

slow-spreading oceanic lithosphere with higher thickness and lower temperature. Here, the degree of 

refertilization reflected in amount of plagioclase peridotites is the highest (Dick, 1989). Furthermore, 

where the crust-mantle boundary is shallow, conductive cooling brought by hydrothermal circulation 

accelerates melt solidification upon its reaction with the mantle (Ciazela et al., 2017b). In addition, the 

Kane Megamullion mantle is heavily serpentinized, and contains up to 15 wt% H2O (Table 1), which may 

be partially stored in the serpentinized peridotites already before melt-mantle reaction. A serpentinite-

melt reaction is suggested by the high water content of the Kane Megamullion MORBs (Ciazela et al., 

2017b) and a distinct zone of contact metamorphism in sample 21-9. Here, approaching the contact with 

the gabbro, lizardite is replaced by antigorite and then tremolite (Fig. 7 and Section 5.5). The wet gabbro 

solidus at a pressure of 0.2 GPa is only 840°C (Collins et al., 2016) and ~15 wt% H2O in the surrounding 

serpentinites is likely sufficient to saturate even large amount of melts. Water can be released into the 

melt once antigorite breaks down which occurs at a temperature of ~520 °C at 0.2 GPa (Ulmer and 

Trommsdorff, 1995). The water lowers the solidus temperature of the melt-mantle reaction allowing an 

even larger amount of melt to react with the conduit walls, and consequently a yet more efficient Fe loss 

(Ciazela et al., 2017b). This is probably the reason why the Cu content of the Kane Megamullion 

refertilized mantle is so elevated (up to 300 ppm) with respect to the refertilized mantle sections reported 

elsewhere (e.g., 50 ppm Cu reported by Lorand et al. 2013). 

5.3. Mantle-melt reaction affects the Cu budget in the oceanic crust 

The effect of the melt-mantle reaction on the Cu budget of a melt can be considered on a local, 

regional or global scale. To estimate this effect on a local scale, we compare the Cu concentrations of a 

single gabbroic vein that reacted with the mantle to the Cu concentrations within an average massive 
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gabbro that underwent no or a limited reaction with the mantle. The 2-cm-wide olivine gabbro vein in 

sample 21-9 (Fig. 3a) contains 15 ppm Cu. In contrast, the massive olivine gabbro and troctolites from the 

Kane Megamullion OCC contain on average 82 ppm Cu. A similar average Cu content (74 ppm) is shown 

by the fresh massive olivine gabbro from the 810-m deep Hole U1473 at the Atlantis Bank OCC (Ciazela 

et al., 2016; Dick et al., 2016). Assuming the massive gabbro would be free of any melt-mantle 

interaction, the Cu loss from a vein succumbed to an extensive reaction with the mantle would be thus 

~80%. 

The effect of melt-mantle reaction on a regional scale can be estimated from the Cu concentrations in 

MORBs that extensively interacted with the mantle. Ciazela et al. (2017b) showed that MORBs from the 

Kane Megamullion and a broader area of the entire Kane Fracture Zone between 22 and 25°N along the 

MAR (Bryan et al., 1981) were subjected to extensive interaction with the mantle. Due to this interaction, 

the MORBs have left behind ~50% of their initial Cu load during the ascent through the mantle and crust-

mantle transition zone (Ciazela et al., 2017b). 

The effect of melt-mantle reaction on the global scale may be estimated from the mass balance 

between primitive MORBs representing the bulk oceanic crust, and their products, that is erupted MORBs 

representing the upper crust, and gabbro cumulates representing the lower crust. The primitive MORBs 

probably contain 100-120 ppm Cu (Jenner and O’Neill, 2012; Lee et al., 2012). Erupted MORBs show a 

global average Cu concentration of 81 ± 25 ppm (White and Klein, 2013). Taking a ratio of 1:2 between 

basalts and gabbro we could thus expect 125 ± 12 ppm Cu in the gabbro cumulates. This is however not 

the case as the global average gabbro Cu concentration is 71 ± 19 ppm (Coogan, 2014). This discrepancy 

implies that 20 to 62% of the Cu load would be precipitated below the crust, for example at the crust-

mantle transition or melt-modified mantle rocks below. Although this global estimate is likely lower than 

the regional estimate of 50% for the Kane Megamullion, it is still considerably high. 

5.4. Crust-mantle transition zones and related sulfide ore deposits 

In addition to the southern Oman ophiolite (Section 5.2), large sulfide deposits are mined in the 

crust-mantle transition zones of the Outokumpu Ophiolite in Finland, the Troodos Ophiolite in Cyprus, 

and the Taurids Ophiolite in Turkey. The Outokumpu ore district in Finland is spatially related to dunites 

and serpentinites of the Outokumpu Ophiolite (Saalmann and Laine, 2014; 2015). The nature of the 

primary Cu enrichment at the Outokumpu Ophiolite is not entirely clear due to complex on-land 

processes after the obduction of the ophiolite. The recent petrogenetic models indicate, however, a proto-

ore Cu enrichment at the slow-spread mantle-dominated lithosphere (Peltonen et al., 2008) similar to that 



  

21 
 

of the Kane Megamullion. Furthermore, Peltonen et al. (2008) demonstrated that the mantle was 

extensively metasomatized already before the obduction. 

Sulfide enrichment at the crust-mantle boundary of the Troodos ophiolite is easier to interpret as 

post-obduction processes did not obscure the primary processes to the same extent as at the Outokumpu 

Ophiolite. The Cu-Ni-Fe-Co sulfide ores from the Limassol Forest Plutonic Complex in Troodos occur 

within dunites of the local crust-mantle transition zone (Panayiotou, 1978). The sulfide ores are associated 

with magmatic podiform chromite deposits (Panayiotou, 1978; Panayiotou, 1980), which typically form 

through peridotite-melt reaction (Arai and Miura, 2015). Similar to the Kane Megamullion, the Limassol 

Forest primary sulfides are composed of pyrrhotite, troilite, chalcopyrite and pentlandite exsolved 

together from a sulfide liquid. Although the sulfides occur within the ultramafic rocks, the sulfide Cu/Ni 

and Pt/Pd are similar to those from magmatic sulfides hosted within gabbroic intrusions (Foose et al., 

1985). This further suggests the first step of ore-formation was related to melt-mantle reaction. As is also 

seen in abyssal peridotites, hydrothermal processes related to serpentinization redistributed primary 

sulfides and perhaps yielded additional chromites (ferrichromites rims accreted on chromite cores) and 

sulfides (formation of secondary pentlandite after decomposition of olivine) (Thalhammer et al., 1986).  

Sulfide deposits associated with magmatic podiform chromites have also been found at the Ergani 

mine in the Taurids Ophiolite in Turkey (Bamba, 1976). These deposits have been completely reworked 

by hydrothermal processes and pyrite currently predominates. However, relictic pyrrhotite-pentlandite-

chalcopyrite polysulfides co-existing with the chromites (Akinci, 2009) suggest a magmatic pre-

enrichment. In fact, four of five Cu mineralization fields from this region lie at the contact between 

massive serpentinites and crustal rocks; the fifth one is located only 200 m from such a contact (Akinci, 

2009). The high spatial relationship of all the aforementioned sulfide deposits to the crust-mantle 

transition zones is thus likely caused by melt-mantle reaction. 

If penetrated by high-temperature hydrothermal fluids sulfide-rich crust-mantle transition zones 

might represent source rocks for overlying hydrothermal sulfide deposits on the surface. This seems to be 

the case for the hydrothermal Aarja sulfide deposits in the northern Oman Ophiolite. Negishi et al. (2013) 

demonstrated that sulfide-rich dunite from the Moho transition zone is the most likely source of metals 

and S in the Aarja sulfide deposits. They revealed the same nearly-mantle S isotope signature in both the 

sulfide groups. 

At the Kane Megamullion OCC, several hydrothermal vents have been documented by Tucholke 

(2013). Their hydrothermal products are highly enriched in all the chalcophile elements (Section 4.3; 

Table C.1 in Appendix C). A fossil provannid gastropod found in the associated sediments indicates that 
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this hydrothermal venting contained high-temperature fluids in the past (Kaim et al., 2012). The Kane 

Megamullion crust-mantle transition zone might be the source rock for these hydrothermal products as it 

is easy for the hydrothermal fluids to access the crust-mantle transition zone. These zones of magmatic 

enrichment related to melt refertilization might be one of the reasons why large massive sulfide deposits 

form mostly at the slow spreading ridges and not at the fast spreading ridges (Hannington et al., 2011). 

Many seafloor massive sulfides in the recent oceans, including the largest and those with the highest Cu 

grade (Petersen and Hein, 2013; Hein et al., 2013), are hosted in the peridotite-dominated lithosphere with 

a thin and heterogeneous crust (Gràcia et al., 2000; Kelley et al., 2001; Petersen et al., 2009; Pertsev et al., 

2012; Kostitsyn et al., 2013; Tucholke et al., 2013; Andreani et al., 2014; Ciazela et al., 2015), where 

melt-mantle reaction is likely more enhanced (Ciazela et al., 2017b). In on-land prospecting, the search 

for chalcophile deposits seeks regions with both an appropriately enriched source rock, and a mechanism 

for concentrating those elements in a deposit. Until now explanations for the massive sulfide deposits at 

slow-spreading ridges have emphasized the hydrothermal systems associated with long-lived faults 

needed to build large deposits, but having the appropriate source rocks is demonstrably as important. Our 

work shows that the latter exists in the crust-mantle transition zones at slow spreading ridges where it is 

brought to shallow levels by detachment faulting. 

5.5. Effect of low-temperature alteration. 

The melt-modified peridotite Cu/S are too high to be reproduced by simple sulfide impregnation even 

if the sulfides are Cu-rich (Fig. 6). Such high Cu/S imply that sulfur was partially lost from the melt-

modified mantle rocks due to later low-temperature processes. Desulfurization commonly occurs during 

mantle serpentinization (Delacour et al., 2008a; Wittke et al., 2016). Specifically, higher mobilization of 

sulfur than chalcophile elements during serpentinization has been documented in the Cemetery Ridge 

peridotites, Arizona, USA (Wittke et al., 2016). Here, sulfur declines by a factor of 5 to 10 between the 

most fresh and the most serpentinized harzburgites, whereas the concentrations of chalcophile elements 

remain at the same level (Wittke et al., 2016). An additional loss of sulfur seems to be caused by 

subsequent talc alteration of serpentinized peridotites (Section 4.3; cf. Paulick et al., 2006; Harvey et al., 

2014).  

Serpentinization leads to alteration of primary sulfide minerals. For example, pentlandite is 

commonly altered to heazlewoodite and magnetite, and potentially godlevskite and awaruite (Klein and 

Bach, 2009). Serpentinization seems to cause faster dissolution of chalcopyrite, which is never retained in 

the presence of heazlewoodite in our samples (Table 4). In contrast, chalcopyrite is often retained when 
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pentlandite is altered to violarite (Table 4). This may be related to weathering-related aerated oxidizing 

conditions, in which violarite is typically formed (Watmuff, 1974). 

Due to ubiquitous serpentinization the elevated concentrations of chalcophile elements (Table 2) do 

not match with the low chalcopyrite modes in the melt-modified peridotites (Table 4). Copper and 

chalcophile elements have been incorporated into other minerals. Some Cu is retained in Fe-Cu 

hydroxides formed after chalcopyrites. One of them documented in the 21-7 peridotite-gabbro contact 

(Fig. 8b) contains 13 wt% Cu and only 0.3 wt% S. Similar hydroxides but with lower Cu and higher S 

contents were found in altered mantle xenoliths by Lorand (1990). 

The Fe-Cu hydroxides are, however, too scarce to account for the entire high Cu budget of the melt-

modified mantle zone in the Kane Megamullion. Searching for alternatives we investigated matrix 

minerals of peridotite-gabbro contacts and some plagioclase peridotites that are enriched in Al2O3, CaO 

and P2O5 (Section 4.6; Table B.1 in Appendix B). This enrichment is likely owed to melt-mantle reaction. 

Using X-ray mapping (Fig. 3b-c) we detected a dense front of S-rich phases along peridotite-gabbro 

contacts in samples 21-9 (Fig. 3b) and 19-11. Although the trace element composition of only a few of the 

largest secondary grains could be determined (Co and Cu-rich pentlandites; Fig. 7), the laser ablation 

profile of the matrix minerals show that most chalcophile elements are enriched at this zone (Fig. 10). The 

same is true for the matrix measurements of plagioclase peridotites (Fig. 11; Table B.1 in Appendix B). 

Using the ore microscope and electron microprobe we investigated the area abutting the lines of the laser 

profile with the highest chalcophile element concentrations. We found abundant submicron-to-5-µm 

diameter pentlandites that likely cause the high chalcophile element LA-ICPMS signal detected in this 

area (Fig. 10). The high signal results from two factors. Firstly, pentlandites occur more densely here. 

Secondly, all chalcophile element concentrations are enhanced in these pentlandites (Table A.1 in 

Appendix A), and their Pb, Bi, Cu, As and Te contents (Fig. 9c) are up to one order of magnitude higher 

than in pentlandites elsewhere. 

Secondary sulfides and post-sulfide phases are known from other serpentinized peridotites. In abyssal 

peridotites from ODP Hole 1274A near to the 15°20’ Fracture Zone along the MAR, Marchesi et al. 

(2013) found heazlewoodite, jaipurite (CoS), awaruite (Ni3Fe), wairauite (CoFe), and native copper that 

replaced magmatic pentlandite and chalcopyrite. At the Kane Megamullion, not only secondary 

pentlandites (Fig. 9c) but also heazlewoodite, millerite and godlevskite (Fig. 9b) seem to follow the trace 

element pattern of primary pentlandites. In addition, the secondary Ni sulfides contain considerable 

amount of Bi and Cu (Fig. 9), which have probably been inherited from former chalcopyrites dissolved 

during serpentinization.  
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Chalcophile metals seem thus to be retained in submicron phases, including secondary sulfides, metal 

hydroxides, and potentially native metals or alloys, embedded in the matrix of low-temperature silicate 

minerals. Tiny sulfides (Alt and Shanks, 2003; Delacour, 2008b; Marchesi et al., 2013), alloys (Lorand et 

al., 2010; Marchesi et al., 2013), and native Cu grains (Luguet et al., 2003; Seyler et al., 2007; Marchesi 

et al., 2013) embedded in serpentine matrices are commonly reported in abyssal serpentinized peridotites.  

The entrapment of chalcophile elements in secondary phases in situ is likely caused by the fact that 

fluids <350 °C are unable to maintain significant concentrations of metals, including Zn and Cu (Seewald 

and Seyfried, 1990). The only high temperature alteration we found is the narrow zone of contact 

metamorphism between the mafic vein and the peridotite in sample 21-9. Here, tremolite (Fig. 10) is 

proximal to the vein and is followed by the symplectite of Al and Fe-rich antigorite and chrysotile 

identified by X-ray Diffraction (XRD) (Figs. 4 and 7 and Fig E.1 in Appendix E). Otherwise, the most 

common alteration phases are prehnite in gabbro and lizardite in peridotite identified by XRD (Fig. E.2 in 

Appendix E), which are both low-temperature silicates. Lizardite in <0.8 GPa is typically stable at <280 

°C (O’Hanley and Wicks, 1995; Evans, 2004; Schwartz et al., 2013) and prehnite is stable between 150 

and 300 °C (Bucher and Grapes, 2011). Therefore, most of the chalcophile metals have not been 

transported away neither from the peridotite nor from the peridotite-gabbro contacts. Similarly, MORBs 

altered to low-temperature facies retain primary contents of all chalcophile elements (Bach et al., 2003; 

Alt et al., 2010). 

6. CONCLUSIONS 

1. The crust-mantle transition zone exposed in the Kane ocean core complex is highly enriched in 

chalcophile metals. This enrichment is most pronounced along centimeter-scale peridotite-gabbro 

contacts but is spread throughout the entire zone as documented in the plagioclase harzburgites and 

dunites. Copper, As, Zn, Sb, and Tl are typically enriched by one order of magnitude, whereas the 

enrichment of Ga, Pb, and Se is modest. Nickel, which is largely controlled by olivine, and Bi are the 

only two chalcophile elements that show no sign of enrichment at the crust-mantle boundary. 

2. The enrichment in chalcophile metals is related to the crystallization of sulfides during extensive 

melt-mantle reaction throughout the transition zone. Importantly, partial dissolution of sulfides 

during serpentinization does not mobilize the metals from the rocks. The portion of chalcophile 

elements that was released from primary sulfides has been trapped in submicron secondary sulfides, 

hydroxides and perhaps native metals embedded in the silicate matrix. 
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3. Our results combined with Cu deposits documented in the crust-mantle transition zones of various 

ophiolites may indicate that the enrichment of chalcophile elements could be expected globally along 

the oceanic crust-mantle boundary. 

4. The crystallization of sulfides from melt interacting with peridotite can influence melt evolution. The 

precipitation of sulfides is caused by lowering sulfur concentration at sulfide saturation upon FeO 

loss during melt-mantle reaction, which could not be achieved by fractional crystallization processes 

alone. We estimate that 20% to 80% of the chalcophile metal inventory in a melt can be lost from the 

melt during reaction with mantle peridotite. This is a significant loss determining further melt 

evolution and should be considered in melt modelling. 
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FIGURE CAPTIONS 

Fig. 1. Geology of the Kane Fracture Zone (KFZ) and the Kane Megamullion ocean core complex 

(OCC). Our samples have been collected along the walls of the Eastern and Western Faults. ODP – Ocean 

Drilling Program, MAR – Mid-Atlantic Ridge. 

Fig. 2. Representative samples of basement rocks from below detachment shear zones used in our study: 

spinel harzburgite (112-71), plagioclase harzburgite (28-9A), peridotite-gabbro contact (19-11) and dunite 

(113-41B).  

Fig. 3. Sample 21-9 showing the mantle-gabbro contact 21-9T. A) Microphotography of the entire thin 

section in plane-polarized transmitted light. The red hexagons show the location of large sulfides (40-120 

µm). Orange boxes (I-IV) outline selected areas where we investigated for the presence of medium 

sulfides (10-40 µm; yellow dots). B & C) X-ray map of orange box II for S and Al. The colors correspond 

to the X-ray intensity on the S Kα and Al Kα lines. The brightest points on the S image forming the ~1-

mm-wide subvertical band are tiny sulfides dispersed in the antigorite-chrysotile matrix (see Section 5.5). 

Note that most of these sulfides crystallize where the Al-concentration gradient is the steepest. The Al 
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concentration measured by EPM in the dark orange/brown area corresponding to ~30 counts (see the side 

bar) is 2.5 wt%. This area corresponds to the yellow part of the contact zone visible in Picture A.  

Fig. 4. MgO, Al2O3, Ni and Zn versus Cu and S contents of the Kane Megamullion spinel and plagioclase 

harzburgites, dunite, and peridotite-gabbro contacts. 

Fig. 5. Mean Cu concentration of the Kane Megamullion (KM) plagioclase (Pl) harzburgites compared to 

the mean concentration of the KM spinel (Sp) harzburgites and various orogenic spinel harzburgites. 

Primitive mantle estimate is also plotted as a reference line (30 ppm; Sun 1982). Error bars represent 1 

standard error of the mean (SE). Where the bars are not visible, 1 SE is <4 ppm. Source of data for 

orogenic peridotites: Lanzo (Lorand et al., 1993), Western Pyrenean Massif (Lorand, 1991), Eastern 

Pyrenean Massif (Lorand, 1989a), Baldissero, Balmuccia, and Finero (Garuti et al., 1984). 

Fig. 6. Whole-rock Cu versus S concentrations of the Kane Megamullion spinel (Sp) and plagioclase (Pl) 

harzburgites, mantle-gabbro contacts, and dunites. PM is the theoretical primitive mantle (Sun, 1982). 

DMM is theoretical depleted mantle (see Section 5.1). The pink dots labeled with 6% and 17% represent 

the maximum and minimum degree of melting in the Kane Megamullion spinel harzburgites. RM is the 

theoretical refertilized mantle defined as formed through addition of melt-derived sulfides containing 

between 3.5 (~10% of chalcopyrite in sulfide grains) and 35 wt% Cu (~100% chalcopyrite) into DMM. 

Note that even the addition of Cu-rich sulfides would not reproduce the observed Cu-S concentrations in 

the refertilized mantle. These can only be explained with subsequent desulfurization during 

serpentinization (see Section 5.5). 

Fig. 7. Nickel and Cu contents of pentlandites (Pn) and heazlewoodites (Hz) from the mantle-gabbro 

contact in sample 21-9 (see Fig. 3). Lizardite, antigorite, chrysotile, tremolite, chlorite and prehnite have 

been identified by optical microscope and X-ray diffraction. The Ni content of the sulfides attains the 

maximum value on the gabbro side and gradually lowers towards the peridotite side. Although the 

sulfides are secondary their Cu contents seem to match the whole-rock Cu concentrations. Hence, the Cu 

concentrations are the highest in the sulfides from the contact zone (the antigorite/chrysotile and chlorite 

domains), whereas those from the gabbro and peridotite are very low. 

Fig. 8. Photomicrographs of our two most common chalcopyrite parageneses in our sample suite in cross-

polarized (A) and plane polarized reflected light (B): A) Inclusion of chalcopyrite (inset) in plagioclase 

from a peridotite-gabbro contact in sample 21-7. The broad picture is taken in transmitted cross-polarized 

light. The inset image is taken in reflected plane-polarized light. B) Polysulfide composed of chalcopyrite 

(Ccp), pyrrhotite (Po) and pentlandite (Pn) from a peridotite-gabbro contact in sample 21-7. Note that 
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chalcopyrite in the middle of the grain is preserved, whereas chalcopyrite in the rim has been altered to a 

Fe-Cu hydroxide (31.8 wt% Fe, 13.0 wt% Cu, but only 0.3 wt% S). 

Fig. 9. Primitive mantle-normalized multi-element diagram of Kane Megamullion sulfides. The 

normalization values are from McDonough and Sun (1995). A) Pentlandite compared to primary sulfides 

(chalcopyrite and pyrrhotite). Note that Cu, Zn, Bi, Ga, Cd show affinity to chalcopyrite, whereas Pb, Co, 

Ni, Ag, Sb, Ge, and As show affinity to pentlandite, and As and Tl to pyrrhotite. The concentrations of 

As, Sb, Ge, As and Tl in chalcopyrite are under detection limit. B) Pentlandite compared to secondary Ni 

sulfides (heazlewoodite, millerite, and godlevskite). C) Secondary pentlandite from peridotite-gabbro 

contacts compared to the secondary pentlandites away from the contact zones and the primary 

pentlandites. Note that the three types represent the similar pattern but the secondary pentlandite from 

peridotite-gabbro contact is most enriched in chalcophile elements. 

Fig. 10. Concentrations of selected chalcophile elements along the laser ablation profile composed of 18 

parallel lines across the mantle-gabbro contact in sample 21-9. Note that all chalcophile elements show 

higher concentrations within the contact. Most of them are highly concentrated in the peridotite portion of 

the contact (yellow lithology). Zinc is unique as it is enriched in the gabbro part of the contact (white 

lithology). Arsenic is anomalous as it shows two major peaks. 

Fig. 11. Copper and zinc concentrations in serpentine minerals of spinel (Sp) harzburgites, plagioclase 

(Pl) harzburgites, and peridotite-gabbro contacts from the Kane Megamullion measured with LA-ICPMS. 

Fig. 12. The δ
65

Cu range of the Kane Megamullion chalcopyrite measured in this study compared to Mid-

Ocean Ridge Basalts (MORB; Ben Othman et al., 2006, Rouxel et al., 2004), fresh and altered mantle, as 

well as other settings. Sea-floor hydrothermal vents data from Rouxel et al. (2004). Marine sediments data 

from Marechal et al. (1999). Pore waters data from Mathur et al. (2012). Seawater data from Vance et al. 

(2008). Supergene systems from Mathur and Fantle (2015).The grey field indicates the terrestrial range 

for igneous copper (after Ikehata and Hirata, 2012). 

Table 1. Major element contents (wt%) and Mg#s of Kane Megamullion peridotites. 

Label Material SiO2 TiO2 Al2O3 Fe2O3* MnO MgO CaO Na2O K2O P2O5 LOI Total Mg# 

Depleted mantle samples 

            5-1 Sp harzburgite 38.6 0.02 1.21 9.07 0.13 36.0 1.25 0.07 0.01 0.04 12.9 99.3 0.89 

5-31A Sp harzburgite 38.9 0.12 1.41 10.15 0.13 36.4 0.56 0.02 0.02 0.02 11.6 99.3 0.88 

14-44 Sp harzburgite 39.1 0.01 1.33 8.29 0.09 36.2 0.62 0.11 0.02 0.01 13.3 99.3 0.90 

14-70 Sp harzburgite 40.0 0.05 2.06 9.83 0.12 34.7 1.12 0.15 0.05 0.01 11.1 99.3 0.87 

17-17 Sp harzburgite 38.7 0.02 1.33 8.00 0.10 36.8 0.29 0.06 0.02 0.02 13.8 99.3 0.90 

19-10A Sp harzburgite 34.8 0.02 1.06 8.54 0.17 32.5 5.87 0.08 0.02 0.03 16.1 99.3 0.88 

19-11A Sp harzburgite 39.3 0.02 1.68 8.31 0.13 35.9 0.34 0.10 0.03 0.03 13.3 99.2 0.90 



  

44 
 

19-18A Sp harzburgite 37.6 0.04 1.58 11.31 0.16 33.5 1.81 0.14 0.03 0.07 12.9 99.2 0.85 

19-31 Sp harzburgite 36.5 0.02 1.71 9.38 0.15 31.6 5.28 0.15 0.01 0.07 14.1 99.1 0.87 

112-44A Sp harzburgite 39.4 0.01 1.04 8.20 0.12 37.7 0.30 - - 0.01 12.5 99.3 0.90 

112-49 Sp harzburgite 39.7 0.02 1.37 8.47 0.11 37.1 0.54 0.02 0.01 0.02 11.9 99.3 0.90 

112-71 Sp harzburgite 40.4 0.02 1.35 8.25 0.15 36.0 0.33 0.11 0.03 0.03 12.6 99.3 0.90 

112-84 Sp harzburgite 42.2 0.02 1.45 8.51 0.13 40.3 1.16 - 0.01 0.00 5.4 99.2 0.90 

113-40 Sp harzburgite 36.1 0.01 1.09 7.80 0.07 34.3 4.66 0.07 0.03 0.02 15.1 99.3 0.90 

113-55A Sp harzburgite 40.4 0.12 1.78 15.09 0.20 33.8 1.79 0.16 0.02 0.09 5.8 99.3 0.82 

113-57A Sp harzburgite 39.3 0.02 1.37 8.16 0.12 37.6 0.06 0.08 0.01 0.01 12.6 99.3 0.90 

113-59A Sp harzburgite 38.5 0.01 1.07 10.52 0.14 36.9 0.03 0.05 0.01 0.01 12.2 99.4 0.87 

114-9 Sp harzburgite 57.8 0.01 0.95 7.06 0.02 28.6 0.01 0.08 0.01 0.01 4.9 99.4 0.89 

114-19A Sp harzburgite 39.3 0.02 1.33 8.23 0.11 37.5 0.40 0.02 0.01 0.01 12.4 99.3 0.90 

Melt-modified mantle samples 

            19-11B m-g contact 25.7 0.35 3.00 39.33 0.56 14.0 3.50 0.40 0.06 0.85 11.2 98.9 0.41 

21-7 m-g contact 31.6 0.16 4.04 25.70 0.36 23.1 3.62 0.36 0.04 0.36 9.8 99.1 0.64 

21-9A Pl harzburgite 38.7 0.03 1.10 8.78 0.10 37.3 0.30 0.05 0.01 0.02 12.8 99.3 0.89 

28-9A Pl harzburgite 37.6 0.03 1.54 11.75 0.14 34.3 0.88 0.13 0.05 0.07 12.7 99.2 0.85 

112-10 Pl harzburgite 39.3 0.03 1.09 8.25 0.08 37.1 0.08 0.05 0.02 0.02 13.4 99.4 0.90 

112-116 Pl harzburgite 39.2 0.02 1.48 8.15 0.11 37.3 0.04 0.04 0.01 0.01 12.9 99.3 0.90 

113-41B dunite 29.4 0.00 0.66 8.06 0.15 29.5 11.48 0.04 0.01 0.04 19.7 99.2 0.88 

Early mantle veins              

5-31-B Ol websterite 48.4 0.00 3.36 8.69 0.13 30.1 6.05 0.12 0.02 0.01 3.5 98.7 0.90 

Fe2O3* = Total Fe as Fe2O3. LOI – loss-on-ignition. Mg# = [molar Mg/(molar Mg + molar Fe)] x 100. Sp – spinel, Pl 

– plagioclase, m-g – mantle-gabbro, Ol – olivine. (-) below detection limit. 
Table 2. Chalcophile element contents of Kane Megamullion peridotites. 

    Concentration (ppm)  Concentration (ppb) 

Label Material S Cu As Zn Ga Pb Se Sb Tl Ni  Au Ag Bi Cd 

Depleted mantle samples 

          

 

    5-1 Sp harzburgite 159 40 35 68 1.6 0.5 2.6 1.5 0.24 1860  - - - 100 

5-31-A Sp harzburgite 142 17 3 56 11.7 0.6 0.5 - 0.06 1120  - - - - 

14-44 Sp harzburgite 142 7 11 47 1.9 - 0.4 0.4 0.36 2050  - - - - 

14-70 Sp harzburgite 81 9 5 43 3.9 - 0.3 - 0.13 1800  - - - - 

17-17 Sp harzburgite 210 47 29 101 2 - 0.6 0.5 0.24 1590  - - - - 

19-10A Sp harzburgite 188 39 22 91 1.8 - 0.2 0.7 1.96 1810  - - 20 100 

19-11A Sp harzburgite 283 69 20 110 2.2 0.8 0.8 0.9 0.39 1720  - - - - 

19-18A Sp harzburgite 81 52 45 126 2.3 1.1 1.2 1.4 1.58 1870  - - 70 - 

19-31 Sp harzburgite 215 59 45 111 2.4 0.7 - 2.1 1.71 1900  - - 30 - 

112-44A Sp harzburgite 241 11 5 72 1.2 0.7 1.6 0.3 0.14 1930  - - - - 

112-49 Sp harzburgite 332 52 17 69 1.4 0.8 0.7 0.8 0.26 1670  - - 20 - 

112-71 Sp harzburgite 84 21 23 82 2.1 0.9 - 1.4 0.28 1300  - - - - 

112-84 Sp harzburgite 184 38 3 67 1.5 1.5 - - - 2030  - - - - 

113-40 Sp harzburgite 129 14 25 50 1.2 0.6 0.1 0.3 0.63 1230  - - - - 

113-55A Sp harzburgite 561 21 22 127 3 1.0 - 1.8 3.30 1600  - - - - 

113-57A Sp harzburgite 32 25 10 115 1.8 0.8 - 0.4 0.41 1110  - - - - 

113-59A Sp harzburgite 45 23 9 171 1.6 0.9 - 0.4 0.70 1400  - - - - 

114-9 Sp harzburgite - 8 5 36 2 0.6 0.2 0.3 - 1380  - - 20 - 

114-19A Sp harzburgite 212 24 13 55 1.8 1.2 - 0.5 0.58 1610  - 90 100 - 

Melt-modified mantle samples 

         

 

    19-11B m-g contact 488 284 371 462 8.2 1.2 1.4 22.0 9.87 1180  - - - 500 

21-7A m-g contact 283 304 134 246 5.4 1.0 0.5 7.9 2.36 1050  - - - 200 
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21-9A Pl harzburgite 182 139 18 66 1.9 1.0 0.6 0.8 0.88 1620  - - - - 

28-9A Pl harzburgite 206 147 44 125 2.4 1.6 1.2 1.8 3.21 1400  - 80 70 100 

112-10 Pl harzburgite 159 155 9 75 1.3 0.8 0.9 0.6 0.27 1680  7 - - 100 

112-116 Pl harzburgite 90 82 5 96 2.1 0.7 - - 0.23 1230  11 - - - 

113-41B dunite 226 118 26 124 1.6 1.0 - 1.8 0.62 669  - 60 - - 

Early mantle veins                

5-31-B Ol websterite n/a 157 3.1 54 3.6 0.7 1.1 - - 1950  - - 20 - 

Detection limit: 9 0.2 0.5 0.5 0.1 0.5 0.1 0.1 0.05 0.5  2 50 20 100 

Sp – spinel, Pl – plagioclase, m-g – mantle-gabbro, Ol – olivine; (-) below detection limit.  
 

Table 3. Copper isotope values of chalcopyrite from sample 21-7 from the Kane Megamullion OCC  

Sulfide ID δ65Cu (‰) ± 2σ (‰)a Beam size (µm) Laser frequency (Hz) n 

Sample      

cb3 0.26 0.16 10 83 1 

cb23 0.18 0.09 10 100 1 

ha3 -0.04 0.15 10 100 1 

ha4 0.29 0.18 10 100 1 

Standard      

cpy2 0.11 0.05 40 10 4 

cpy2 0.10 0.08 10 10 4 
a calculated by the propagation of the within-run relative standard error of the sample and the within-run relative 

standard errors of the two bracketing standards (Cu NIST SRM 976). 

Table 4. Summary of sulfide phases based on ore microscopy. 

Lithology Sample Ccp Po Pn Py Viol Hz Gs Mi 

spinel harzburgite 5-1 − − + − − − − − 

 

14-44 − − − − − − − − 

 

19-11A − − − − − − − − 

plagioclase harzburgite 21-9A − − + + − − − − − 

 

28-9A − − + − − − − − 

 

112-10 − + + + + − − − − 

mantle-gabbro contacts 19-11T − + + + − − − − − − 

 

21-7 + + + + + + + + − + − − − 

 

21-9T − − + + + − − + + + + 

dunite 113-41B − − − − − − − − 

olivine websterite 5-31B + + + + + + + + − + − − − 

gabbro  19-11B − − − − − − − − 

  21-9B −  −   −  − −  + − − 

Sulfide abbreviations: Pn, pentlandite; Po, pyrrhotite; Ccp, chalcopyrite; Hz, heazlewoodite; Viol, violarite; Py, 

pyrite; Gs, godlevskite; Mi, millerite. A number of sulfide grains in a thin section: (−) absent, (+) 1-4 sulfide grains, 

(+ +) 5-20 sulfide grains; (+ + +) >20 sulfide grains. The samples with a letter suffix occupy only a fraction of the 

standard thin section size, i.e. 19-11A (~25%), 19-11B (~40%), 19-11T (~35%), 21-9A (~65%), 21-9B (~30%), 21-

9T (~5%), 28-9A (~25%). Note that sulfides are least abundant in spinel peridotites, medium abundant in 

plagioclase peridotites and most abundant in mantle-gabbro contacts. 
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APPENDIX 

A. Trace element compositions of the Kane Megamullion sulfides 

Table A.1. Chalcophile element concentrations (ppm) of selected Kane Megamullion sulfides determined by a femtosecond-laser ablation-inductively coupled 

plasma-mass spectrometer. 
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  5-31A   19-11B 

  ca29/30 cb12 cc20-23 oa19-21 oa17 oa18 oa27-29 sa3/4 sa5/6 sa20   od1 od2 odn1 odn2 

Mineral Pn Ccp Pn Pn Po Po Po Pn Pn Pn 

 

Po Po Po Po 

Co 6445 176 6667 4318 13 11 62 4794 4843 5242 

 

87 180 104 91 

1σa 881 26 203 34 4 2 4 127 73 36 

 

5 11 9 10 

Nib 31.0% 16472 32.4% 35.2% 1718 1616 6666 32.4% 32.6% 33.5% 

 

324 1309 132 <141 

1σ 

 

2558 

  

306 49 320 

    

38 109 13 

 Cub 11 37% 22 15 <6.7 3.5 1167 12337 2291 348 

 

25 55 67 128 

1σ 3 

 

2 1 

 

1.3 168 900 252 26 

 

3 7 8 18 

Zn <8.9 859 <2.8 2.3 <14 <6.7 <3.5 151 54 5.3 

 

4.2 11 33 29 

1σ 

 

122 

 

0.3 

   

8 4 0.5 

 

1.1 3 4 5 

Ga <1.3 3.8 <0.42 <0.093 <2.4 <1.1 <0.60 0.14 <0.22 <0.095 

 

<0.40 <1.1 2.8 2.1 

1σ 

 

1.3 

     

0.05 

     

0.4 0.6 

Ge <6.7 <13 3.2 2.7 <15.1 <6.7 <3.4 3.0 2.1 2.7 

 

<2.7 <7.5 1.6 <7.4 

1σ 

  

0.9 0.2 

   

0.3 0.5 0.2 

   

0.4 

 As 6.8 <7.7 6.7 2.4 <7.7 <3.4 <1.7 7.7 8.3 5.8 

 

26 <5.9 128 <5.6 

1σ 1.9 

 

0.5 0.1 

   

0.3 0.3 0.1 

 

2 

 

27 

 Se 108 138 109 101 81 94 86 121 113 92 

 

40 <59 40 <61 

1σ 24 25 6 2 33 12 7 4 4 1 

 

8 

 

4 

 Ag 3.0 <3.0 3.1 3.3 <2.0 <0.95 1.0 4.3 5.3 3.4 

 

<0.44 <1.4 0.50 <1.3 

1σ 0.7 

 

0.2 0.1 

  

0.2 0.1 0.2 0.1 

   

0.12 

 Cd <1.6 13 <0.62 <0.14 <3.6 <1.5 <0.61 5.1 1.8 <0.10 

 

<1.1 <3.3 0.51 <4.2 

1σ 

 

4 

     

0.2 0.2 

    

0.18 

 Sb <0.8 <3.6 <0.26 0.088 <2.5 <1.0 <0.43 <0.090 <0.14 <0.047 

 

<0.69 <1.7 0.41 <1.5 

1σ 

 

1 

 

0.024 

         

0.09 

 Te 11 <10.1 4.1 17 <8.1 <5.6 <2.4 14 20 7.6 

 

<2.5 <7.3 <0.90 <7.4 

1σ 3 

 

0.7 1 

   

1 1 0.3 

     Tl <0.20 <0.28 <0.048 0.030 <0.49 <0.32 <0.11 0.075 0.050 0.016 

 

2.2 0.3 1.5 0.7 

1σ 

   

0.008 

   

0.012 0.013 0.004 

 

0.2 0.1 0.2 0.1 

Pb 1.7 3.0 3.5 0.63 <1.2 1.7 6.3 6.2 7.4 1.4 

 

0.14 <0.33 0.96 <0.29 

1σ 0.5 1.0 0.2 0.0 

 

0.2 0.4 0.1 0.3 0.1 

 

0.05 

 

0.20 

 Bi 0.40 1.5 0.64 0.12 0.55 0.83 3.7 0.70 0.68 0.15 

 

<0.10 <0.25 <0.028 <0.20 

1σ 0.10 0.4 0.22 0.01 0.20 0.12 0.1 0.02 0.04 0.01 

     Frequency (Hz) 36 20 33 42 33 42 36 42 36 36   20 20 20 20 

Beam sizec (µm) 30 10 (l) 20 (l) 340 (l) 5 5 105 (l) 190 (l) 180(l) 240 (l)   40 20 50 20 
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  19-11-T   21-9-A 

  sa1c sa2 sa3 m2sa1 m2sa2 m2sb1 m2sb3 m2sc m2sd1 m2sd2 m2sg1 m2sg2   cb1 cb2 

Mineral Po Po Po Po Po Po Po Po Po Po Po Po 

 

Pn Pn 

Co 117 80 128 107 93 66 34 111 66 65 53 45 

 

nd nd 

1σa 13 7 36 3 3 5 3 3 7 9 4 3 

   Nib <152 546 <5038 81 95 129 70 97 135 274 <45 119 

 

30.2% 29.7% 

1σ 

 

102 

 

9 11 16 14 17 22 37 

 

18 

   Cub 405 473 1286 8.7 212 460 134 51 47 46 29 36 

 

52 32 

1σ 31 56 313 2.6 20 61 12 8 5 5 8 10 

 

11 6 

Zn 41 87 <382 <6.2 34 95 19 <11 15.3 <7.4 <11 <11 

 

29 29 

1σ 7 13 

  

5 10 5 

 

4.0 

    

11 10 

Ga <1.2 1.8 <43 <1.1 1.9 <1.6 2.7 <2.0 <1.6 <1.3 <2.1 <2.0 

 

<5.7 <5.9 

1σ 

 

0.7 

  

0.5 

 

0.8 

        Ge <7.9 <12 <270 <7.1 <7.4 <10 <13 <12 <9.6 <7.7 <13 <12 

 

<35 <35 

1σ 

               As 10 46 <196 <4.4 16 41 9.6 <6.9 <5.5 <4.4 <7.2 <6.5 

 

<21 30 

1σ 3 6 

  

3 4 3.4 

       

8 

Se <64 100 <2184 40 52 <53 <69 <66 57 <43 <70 <63 

 

<267 <261 

1σ 

 

30 

 

14 16 

   

22 

      Ag <1.4 <2.1 <52 <0.85 <0.88 <1.2 <1.5 <1.5 <1.1 <0.95 <1.5 <1.3 

 

<4.0 <4.2 

1σ 

               Cd <3.8 <5.2 <138 <1.7 <1.9 <2.2 <3.8 <2.2 <2.6 <2.9 <3.0 <3.5 

 

<11 <10 

1σ 

               Sb <1.5 2.7 <56 <1.5 <1.5 2.0 <2.1 <2.0 <1.5 <1.2 <1.9 <1.8 

 

<7.5 <7.6 

1σ 

 

0.8 

   

0.6 

         Te <6.9 <10 <303 <4.1 <4.3 <4.9 <7.0 <6.5 <4.3 <4.2 <6.2 <5.9 

 

<30 <30 

1σ 

               Tl 1.2 2.6 8.0 <0.16 1.8 6.9 1.7 <0.26 1.5 0.24 <0.26 <0.28 

 

<1.3 <1.3 

1σ 0.2 0.5 3.9 

 

0.2 0.5 0.3 

 

0.2 0.09 

     Pb <0.32 <0.50 13 <0.63 <0.63 <0.84 <1.0 <0.92 <0.79 <0.68 <1.1 <0.93 

 

29 50 

1σ 

  

7 

          

5 7 

Bi <0.21 <0.27 <7.8 <0.21 <0.20 <0.26 <0.29 <0.27 <0.21 <0.15 <0.26 <0.26 

 

<1.3 <1.2 

1σ 

               Frequency (Hz) 20 20 20 15 12 12 20 20 18 12 15 16   14 8 

Beam sizec (µm) 20 20 10 13 (r) 10 10 5 10 10 10 5 5   5 5 
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  21-9A         21-9B         21-9T     

  u1 ckn ckm ckl cji   cg1 cg2 st sk1 sk2   sr ss ckp cko 

Mineral Pn Pn Pn Pn Pn 

 

Mi Gs Hz Hz Hz 

 

Pn Pn Pn Pn 

Co nd nd nd nd nd 

 

nd nd nd nd nd 

 

nd nd nd nd 

1σa 

                Nib 33.2% 33.4% 32.8% 32.1% 33.5% 

 

62.4% 66.0% 72.3% 71.7% 72.1% 

 

39.4% 36.2% 32.7% 32.2% 

1σ 

                Cub 10 <2.7 2.9 4.2 15 

 

59 27 <5.2 1.7 7.0 

 

228 80 148 181 

1σ 2 

 

0.5 0.7 3 

 

6 2 

 

0.4 1.9 

 

17 19 61 62 

Zn <10 <5.2 <2.6 <5.3 <15 

 

<12 <6.5 <11 <2.2 <12 

 

8.6 <8.1 <170 <22 

1σ 

            

1.2 

   Ga <2.4 <1.2 <0.8 <1.7 <3.1 

 

<2.6 <1.4 <2.8 <0.48 <2.7 

 

<1.3 <1.9 <56 <8.2 

1σ 

                Ge <20 <11 <6 <13 <18 

 

<16 <7.8 <25 <2.7 <15 

 

<10 <16 <47 <64 

1σ 

                As 22 29 27 23 31 

 

8294 1641 458 816 1219 

 

45 48 <227 <30 

1σ 4 6 3 7 5 

 

677 97 98 83 43 

 

3 10 

  Se <165 130 158 157 <157 

 

215 354 <191 125 <137 

 

130 <121 <3645 <490 

1σ 

 

30 20 46 

  

48 29 

 

19 

  

17 

   Ag <3.0 <1.4 <0.8 <1.8 <2.2 

 

<1.5 <0.82 <3.0 <0.35 <1.8 

 

<1.3 <2.0 <59 <7.5 

1σ 

                Cd <7.6 <3.9 <2.4 <6.1 <5.0 

 

<4.5 <1.9 <7.1 <0.83 <4.6 

 

<2.9 <5.1 <135 <22 

1σ 

                Sb <4.6 <2.1 <1.2 <2.7 <3.1 

 

48 6.0 <5.1 2.2 <2.5 

 

4.2 12 <86 <12 

1σ 

      

5 0.8 

 

0.3 

  

0.6 3 

  Te <21 21 17 12 26 

 

102 100 34 133 107 

 

31 13 <319 <45 

1σ 

 

4 2 5 6 

 

13 7 10 14 8 

 

3 4 

  Tl <0.43 <0.20 <0.097 <0.20 <0.57 

 

<0.49 <0.28 <0.44 <0.089 <0.53 

 

0.45 <0.37 <5.0 <0.78 

1σ 

            

0.05 

   Pb 7.9 3.1 0.8 5.1 16 

 

26 13 1.8 0.68 <0.61 

 

9.1 5.3 22 23 

1σ 2.0 0.4 0.2 1.0 3 

 

2 1 0.5 0.09 

  

0.5 1.2 8 8 

Bi <0.70 <0.30 <0.19 <0.42 <0.48 

 

8.4 3.0 0.81 <0.078 <0.50 

 

<0.29 <0.50 <13 <1.9 

1σ 

      

0.7 0.2 0.27 

       Frequency (Hz) 50 50 50 50 10   10 17 50 42 10   10 50 50 50 

Beam sizec (µm) 5 5 5 5 5   5 5 5 5 5   30 5 5 5 
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  21-9T     28-9A 

  cjg cjh cjj   ca1 ca2  

Mineral Pn Pn Pn 

 

Pn Pn 

Co nd nd nd 

 

8784 9555 

1σa 

    

717 173 

Nib 40.1% 34.8% 33.6% 

 

239576 333664 

1σ 

    

18128 5886 

Cub 463 130 133 

 

910 598 

1σ 87 8 26 

 

109 57 

Zn 31 512 <74 

 

<201 <100 

1σ 6 87 

    Ga <0.99 <5.5 <16.4 

 

<18 <8.7 

1σ 

      Ge <5.5 <31 <92 

 

<76 <38 

1σ 

      As 1028 33 <55 

 

96 31 

1σ 103 7 

  

24 7 

Se 250 <274 <835 

 

<699 407 

1σ 38 

    

138 

Ag <0.70 <3.9 <12 

 

<20 <10 

1σ 

      Cd <1.7 <9.6 <31 

 

<25 <11 

1σ 

      Sb 3.2 <5.4 <16 

 

<15 <7.3 

1σ 0.6 

     Te 139 49 <82 

 

<80 <38 

1σ 16 13 

    Tl <0.18 <0.94 <2.9 

 

<4.0 <2.2 

1σ 

      Pb 29 26 50 

 

21 <4.9 

1σ 5 2 8 

 

4 

 Bi 0.80 <0.96 <2.8 

 

<2.7 <1.5 

1σ 0.15 

     Frequency (Hz) 25 10 10   8 8 

Beam sizec (µm) 5 5 5   5 5 
a 1σ: within-run error;  
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b Ni in pentlandite, and Cu in chalcopyrite were measured by the electron microprobe;  
c when line (l) or raster (r.) were made, the length of the line/diameter of the raster is given instead the size of the beam size.  

Sulfide abbreviations: Pn, pentlandite; Po, pyrrhotite; Ccp, chalcopyrite; Hz, heazlewoodite; Gs, godlevskite; Mi, millerite.  

B. Chemical compositions of the Kane Megamullion serpentines 

Table B.1. Selected EPMA analyses of serpentines from the Kane Megamullion OCC 

Lithology (sample ID) spinel harzburgite (14-44)         plagioclase harzburgite (19-11A)   mantle-gabbro-contact (21-9T) 

Analysis code ca5 ca6 ca10 ca11 ca12 ca13 ca14   oaa1 oaa2 oaa3 oab1   ck1 ck2 ck3 ck4 

major elements [wt%] 

               SiO2 42.0 42.3 38.5 42.2 40.4 41.7 39.9 

 

39.4 39.9 40.3 36.7 

 

42.1 42.3 42.9 41.7 

Al2O3 1.4 1.4 3.1 0.2 0.3 0.1 0.2 

 

3.6 3.8 3.7 4.1 

 

0.6 0.9 0.5 0.5 

CaO 0.1 0.1 0.2 0.1 0.0 0.1 0.2 

 

0.1 0.1 0.2 0.1 

 

0.1 0.2 0.0 0.1 

K2O 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

 

0.1 0.1 0.2 0.0 

 

0.0 0.0 0.0 0.0 

TiO2 0.0 0.0 0.1 0.0 0.0 0.0 0.0 

 

0.0 0.0 0.0 0.0 

 

0.0 0.0 0.0 0.0 

FeO a 3.9 4.0 6.6 6.0 4.4 8.4 8.3 
 

7.1 7.1 7.5 7.1 
 

7.6 7.7 3.7 2.4 

MnO 0.0 0.0 0.0 0.0 0.0 0.2 0.3 

 

0.3 0.2 0.2 0.0 

 

0.0 0.0 0.5 2.4 

Cr2O3 0.0 0.0 0.7 0.0 0.0 0.0 0.0 

 

1.2 1.0 1.2 1.1 

 

0.0 0.0 0.0 0.0 

Na2O 0.1 0.1 0.1 0.1 0.0 0.0 0.1 

 

0.1 0.1 0.1 0.1 

 

0.1 0.0 0.0 0.0 

MgO 36.7 36.5 31.7 35.0 36.9 35.1 33.1 

 

25.5 32.1 29.0 28.8 

 

35.8 33.1 38.8 38.9 

NiO 0.0 0.0 0.0 0.3 0.3 0.4 0.4 

 

0.3 0.2 0.2 0.4 

 

0.4 0.4 0.0 0.4 

TOTAL 84.2 84.4 81.1 83.9 82.3 86.0 82.4 

 

77.6 84.6 82.5 78.5 

 

86.7 84.6 86.4 86.4 

trace elements [ppm] 

               Cu (63)b 11 7.0 5.9 10 8.9 8.5 8.6 
 

117 69 39 91 
 

306 281 931 813 

Zn (66) 28 33 74 28 28 27 26 

 

55 47 29 69 

 

168 139 287 175 

Ga (69) 2.2 2.1 2.7 1.8 1.6 1.8 1.7 

 

4.8 4.5 4.2 4.6 

 

56 65 276 333 

Ge (74) 0.48 0.53 0.84 0.93 1.0 <0.99 <0.99 

 

1.9 <1.6 <1.7 <1.7 

 

<61 <13.2 <247 <315 

As (75) 2.0 2.9 1.5 12 11 17 20 

 

580 601 568 551 

 

<28 14 <111 <145 

Se (77) 2.8 2.7 2.9 2.7 3.0 <9.2 <8.8 

 

<21 <20 <21 <21 

 

<463 <101 <1866 <2313 

Ag (107) 0.057 0.027 0.053 0.097 0.090 <0.068 <0.052 

 

<0.35 <0.31 <0.34 <0.33 

 

<8.7 <1.5 <33 <44 

Cd (111) 0.044 0.031 0.042 0.038 0.038 <0.20 <0.21 

 

<1.0 <0.97 <0.95 <1.0 

 

<27 <3.2 <91 <138 

Sb (121) 0.092 0.087 0.11 0.35 0.33 0.43 0.88 
 

0.49 <0.35 <0.34 0.38 
 

<12 <2.1 <47 <65 

Te (125) 0.082 0.080 0.093 0.07 0.15 <0.55 <0.63 

 

<1.9 <1.6 <1.8 <1.9 

 

<53 <8.2 <212 <310 

Tl (205) 0.063 0.056 0.12 0.083 0.086 0.085 0.079 

 

0.11 0.12 0.10 0.29 

 

1.2 0.61 17 14 

Pb (208) 0.66 0.56 0.53 0.62 0.58 0.54 0.56 

 

2.6 2.6 2.4 2.2 

 

20 15 137 166 

Bi (209) 0.39 0.23 0.26 0.34 0.34 0.31 0.26   <0.051 <0.045 <0.042 <0.042   <2.1 <0.32 <8.3 <11 
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a All iron calculated as FeO 
b isotope mass
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C. Chalcophile element contents of the Kane Megamullion hydrothermal products 

Table C.1. Chalcophile element contents of the Kane Megamullion hydrothermal products determined by INAA 

and ICPMS. 

Label Cu As Zn Ga Pb Se Sb Tl Ni Ag Bi Cd 

112-54 228 237 116 1.5 1.7 2.0 9.6 10.1 774 <0.05 0.02 0.9 

112-75 5.3 14.3 6.6 <1.0 0.5 0.7 2.1 0.23 72.9 <0.05 <0.02 0.2 

112-95 717 332 536 <1.0 795 6.7 49.9 103 1730 3.22 9.06 3.2 

112-96 242 98.9 76.4 2.3 16.9 1.1 8.0 2.3 221 0.38 0.25 0.3 

112-97 3500 89.7 1150 16.4 32.1 3.0 22.9 211 3630 0.32 0.61 4.9 

112-98 84.5 14.0 31.5 1.1 8.1 1.0 2.6 2.6 296 0.09 0.19 0.4 

112-104 1790 21.8 617 5.2 27.8 0.8 98.6 152 1650 0.09 0.22 21.1 

116-30-(1) 1840 14.4 44.1 0.9 4.2 0.1 6.4 8.1 2030 <0.05 0.05 0.7 

116-30-(3) 2280 159 139 2.7 9.7 <0.1 22.1 45.7 6040 <0.05 0.08 1.7 

116-46 489 570 772 2.5 1.4 0.6 50.8 29.7 884 0.05 0.20 5.7 
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D. Major element compositions of the Kane Megamullion sulfides 

Table D.1. Major element compositions (wt%) of the Kane Megamullion sulfides determined by an electron probe microanalyzer. 

Sample No. Minerala Fe Co Ni Cu S Total Me/Se Ni/(Ni+Fe)e Cu/(Cu+Fe)e 

5-1 sa1 Pn 32.5 n/ad 33.8 0.0 32.9 99.2 1.13 0.50 

 spinel harzburgiteb sa2 Pn 32.0 n/a 33.9 0.0 32.6 98.5 1.13 0.50 

 5-31B cb9 Pn 36.8 0.4 30.6 0.0 31.5 99.3 1.21 0.44 

 olivine websterite cb10 Pn 33.4 0.4 32.2 0.0 31.4 97.5 1.18 0.48 

 

 

cb11 Ccp 31.8 0.0 0.2 36.6 32.9 101.5 1.12 

 

0.50 

 
cb12 Ccp 31.4 0.0 0.2 37.0 32.7 101.4 1.13 

 
0.51 

 

cb13 Pn 33.8 0.4 31.6 0.0 30.0 95.8 1.23 0.47 

 

 

cb14 Pn 33.2 0.8 32.1 0.0 31.2 97.3 1.19 0.48 

 

 

cb15 Pn 33.3 0.8 32.4 0.0 30.6 97.1 1.22 0.48 

 

 

cb16 Ccp 31.3 0.0 0.3 36.1 32.2 99.9 1.13 

 

0.50 

 

cb17 Pn 31.5 0.4 34.6 0.0 30.3 96.9 1.23 0.51 

 

 

cb18 Pn 31.4 0.4 34.7 0.0 30.6 97.1 1.22 0.51 

 

 

cb19 Pn 32.5 0.4 34.0 0.0 30.1 97.0 1.24 0.50 

 

 
cb20 Pn 32.6 0.4 33.3 0.0 29.9 96.1 1.24 0.49 

 

 

cb21 Pn 36.2 0.6 30.5 0.0 29.8 97.1 1.27 0.44 

 

 

cb22 Pn 35.2 0.5 31.1 0.0 30.1 97.0 1.24 0.46 

 

 

cb23 Pn 35.5 0.5 31.2 0.0 30.1 97.3 1.25 0.46 

 

 

cb24 Pn 36.1 0.6 30.2 0.0 30.1 97.0 1.25 0.44 

 

 

cb25 Pn 36.4 0.6 29.2 0.0 30.1 96.2 1.23 0.43 

 

 

cb26 Pn 32.1 0.7 33.7 0.0 30.8 97.3 1.21 0.50 

 

 

ca17 Pn 33.4 0.4 32.7 0.0 30.5 97.1 1.22 0.48 

 

 
ca18 Pn 33.3 0.5 32.2 0.0 30.9 96.8 1.20 0.48 

 

 

ca19 Pn 32.6 0.5 31.1 0.0 30.3 94.5 1.19 0.48 

 

 

ca20 Pn 35.6 0.5 30.3 0.0 30.2 96.5 1.24 0.45 

 

 

ca21 Pn 35.4 0.5 30.6 0.0 30.0 96.5 1.24 0.45 

 

 

ca22 Pn 32.4 0.4 34.1 0.0 29.5 96.4 1.27 0.50 

 

 

ca23 Pn 31.9 0.4 34.8 0.0 29.7 96.8 1.26 0.51 

 

 

ca24 Pn 32.0 0.4 33.1 0.0 29.9 95.3 1.23 0.50 

 

 

ca25 Ccp 30.9 0.0 0.3 34.9 32.0 98.1 1.11 

 

0.50 
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Sample No. Minerala Fe Co Ni Cu S Total Me/Se Ni/(Ni+Fe)e Cu/(Cu+Fe)e 

 

ca26 Pn 33.2 0.4 32.2 0.0 29.8 95.6 1.24 0.48 

 

 

ca27 Pn 32.8 0.4 31.6 0.0 29.8 94.5 1.22 0.48 

 

 

ca28 Pn 32.5 0.6 32.0 0.0 29.1 94.2 1.26 0.48 

 

 

ca30 Pn 34.1 0.7 31.0 0.0 30.1 95.9 1.23 0.46 

 

 

ca31 Ccp 29.9 0.0 3.9 30.6 34.5 99.0 1.01 

 

0.47 

 
ca32 Pn 33.1 0.5 32.3 0.0 29.7 95.7 1.24 0.48 

 

 

ca33 Pn 34.4 0.3 32.0 0.0 29.6 96.3 1.26 0.47 

 

 

ca34 Pn 34.5 0.3 31.8 0.0 30.1 96.6 1.24 0.47 

 

 

ca35 Pn 32.2 0.4 33.6 0.0 30.1 96.3 1.23 0.50 

 

 

ca36 Pn 31.9 0.3 33.2 0.0 29.9 95.4 1.23 0.50 

 

 

ca37 Pn 33.5 0.4 32.0 0.0 32.4 98.2 1.14 0.48 

 

 

cc11 Pn 35.3 1.0 30.4 0.0 29.8 96.6 1.26 0.45 

 

 

cc12 Ccp 29.8 0.0 0.6 35.5 34.0 100.0 1.04 

 

0.51 

 
cc13 Pn 33.9 1.0 30.7 0.0 32.2 97.8 1.14 0.46 

 

 

cc14 Pn 33.8 0.9 30.6 0.0 32.3 97.7 1.13 0.46 

 

 

cc15 Pn 34.7 0.8 30.1 0.0 29.9 95.6 1.23 0.45 

 

 

cc16 Ccp 29.6 0.0 1.2 33.4 35.0 99.2 0.99 

 

0.50 

 

cc17 Pn 33.8 1.0 30.6 0.0 31.7 97.2 1.16 0.46 

 

 

cc18 Pn 31.8 1.0 33.9 0.0 32.4 99.0 1.15 0.50 

 

 

cc19 Pn 32.1 0.5 33.7 0.0 32.8 99.2 1.13 0.50 

 

 

cc20 Pn 32.6 0.6 33.1 0.0 32.8 99.2 1.13 0.49 

 

 
cc21 Pn 33.3 0.6 31.6 0.0 29.5 95.0 1.25 0.47 

 

 

cc22 Pn 33.5 0.7 31.8 0.0 30.2 96.1 1.22 0.47 

 

 

cc23 Pn 31.7 0.6 32.2 0.0 31.0 95.4 1.17 0.49 

 

 

cc24 Pn 31.3 0.8 34.2 0.0 32.7 98.9 1.14 0.51 

 

 

oa8 Ccp 30.0 0.0 0.2 36.2 34.8 101.2 1.02 

 

0.51 

 

oa9 Po 60.0 0.0 0.0 0.0 39.3 99.3 0.88 

  

 

oa10 Po 61.0 0.0 0.3 0.0 38.9 100.2 0.90 

  

 

oa11 Po 60.3 0.0 0.0 0.0 38.2 98.6 0.91 

  

 
oa12 Pn 36.0 0.3 30.3 0.0 30.1 96.8 1.24 0.44 

 

 

oa13 Pn 34.7 0.4 31.9 0.0 32.6 99.6 1.15 0.47 

 

 

oa14 Pn 33.8 0.4 30.3 0.0 32.3 96.8 1.12 0.46 

 

 

oa15 Pn 33.4 0.3 32.2 0.0 32.5 98.4 1.14 0.48 

 

 

oa16 Pn 33.0 0.4 32.6 0.0 32.8 98.8 1.13 0.48 

 

 

oa17 Po 63.2 0.0 0.2 0.0 36.3 99.7 1.00 
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Sample No. Minerala Fe Co Ni Cu S Total Me/Se Ni/(Ni+Fe)e Cu/(Cu+Fe)e 

 

oa18 Po 62.7 0.0 0.2 0.0 36.2 99.1 1.00 

  

 

oa19 Pn 34.6 0.3 32.2 0.0 30.6 97.8 1.23 0.47 

 

 

oa20 Pn 34.4 0.5 31.7 0.0 30.4 97.0 1.23 0.47 

 

 

oa21 Pn 35.2 0.4 31.2 0.0 30.0 96.8 1.25 0.46 

 

 

oa22 Ccp 31.7 0.0 0.2 35.8 31.9 99.6 1.14 

 

0.50 

 
oa23 Po 62.5 0.0 0.3 0.8 35.9 99.4 1.02 

  

 

oa24 Pn 37.3 0.4 28.3 0.0 30.4 96.4 1.22 0.42 

 

 

oa25 Po 62.1 0.0 0.6 0.0 35.2 97.8 1.02 

  

 

oa26 Pn 36.8 0.3 30.9 0.0 30.5 98.6 1.25 0.44 

 

 

oa27 Po 62.6 0.0 0.3 0.0 35.9 98.8 1.01 

  

 

oa28 Po 63.3 0.0 0.3 0.0 35.8 99.3 1.02 

  

 

oa29 Po 62.5 0.0 0.4 0.0 36.0 99.0 1.00 

  

 

oa30 Pn 36.5 0.3 30.2 0.0 30.3 97.4 1.24 0.44 

 

 
oa31 Pn 36.5 0.4 30.6 0.6 29.9 97.9 1.28 0.44 

 

 

oa33 Pn 29.3 0.4 35.3 0.0 32.8 97.8 1.11 0.53 

 

 

oa34 Ccp 29.2 0.0 2.9 33.0 35.2 100.2 0.99 

 

0.50 

 

oa35 Pn 34.7 0.3 31.3 0.0 30.0 96.4 1.24 0.46 

 

 

oa36 Pn 35.0 0.5 32.0 0.0 30.1 97.6 1.26 0.47 

 

 

oa37 Pn 33.5 0.4 33.0 0.0 32.3 99.2 1.16 0.48 

 

 

ob12 Pn 34.5 0.5 31.0 0.0 32.3 98.2 1.15 0.46 

 

 

ob13 Pn 34.4 0.5 30.9 0.0 32.8 98.6 1.12 0.46 

 

 
ob14 Pn 32.5 0.6 33.5 0.0 32.8 99.4 1.14 0.49 

 

 

ob15 Pn 32.6 0.5 32.9 0.0 32.4 98.5 1.14 0.49 

 

 

ob16 Pn 32.8 0.5 32.1 0.0 32.2 97.6 1.14 0.48 

 

 

ob17 Pn 33.4 0.3 31.6 0.0 32.8 98.1 1.12 0.47 

 

 

ob18 Pn 32.5 0.4 32.2 0.0 32.9 98.0 1.11 0.49 

 

 

ob19 Ccp 29.6 0.0 0.2 36.0 34.6 100.6 1.02 

 

0.52 

 

ob20 Pn 34.1 0.4 31.6 0.0 32.7 98.9 1.13 0.47 

 

 

ob23 Pn 31.8 0.3 33.5 0.0 32.4 98.0 1.13 0.50 

 

 
oc15 Pn 30.0 0.7 35.2 0.0 32.3 98.2 1.14 0.53 

 

 

sa1 Ccp 30.4 0.0 0.3 33.2 33.6 97.5 1.02 

 

0.49 

 

sa3 Pn 33.0 0.5 33.1 0.0 33.5 100.1 1.12 0.49 

 

 

sa4 Pn 33.1 0.5 32.3 0.0 33.5 99.4 1.10 0.48 

 

 

sa5 Pn 33.6 0.6 32.5 0.0 33.9 100.6 1.10 0.48 

 

 

sa6 Pn 33.9 0.5 32.7 0.0 33.4 100.5 1.13 0.48 
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Sample No. Minerala Fe Co Ni Cu S Total Me/Se Ni/(Ni+Fe)e Cu/(Cu+Fe)e 

 

sa7 Pn 36.2 0.6 30.5 0.0 33.4 100.7 1.13 0.44 

 

 

sa8 Pn 36.1 0.6 30.1 0.0 33.8 100.5 1.11 0.44 

 

 

sa9 Pn(+Ccp) 31.5 0.3 21.1 13.7 34.3 100.9 1.07 

  

 

sa10 Pn(+Ccp) 35.3 0.5 29.2 1.6 34.0 100.5 1.10 

  

 

sa11 Ccp 30.5 0.0 0.4 35.1 35.5 101.5 1.00 

 

0.50 

 
sa12 Pn 36.1 0.5 30.4 0.0 33.5 100.5 1.12 0.44 

 

 

sa14 Pn 33.0 0.5 33.1 0.0 33.3 99.9 1.12 0.49 

 

 

sa16 Pn 33.1 0.6 31.9 0.0 33.1 98.7 1.11 0.48 

 

 

sa17 Ccp(+Pn) 29.9 0.0 1.7 34.3 35.2 101.2 1.01 

  

 

sa18 Ccp(+Pn) 30.7 0.0 1.2 35.4 34.5 101.9 1.05 

  

 

sa20 Pn 32.8 0.6 33.5 0.0 33.6 100.5 1.11 0.49 

 

 

sa21 Pn 33.0 0.6 32.6 0.0 32.7 98.8 1.13 0.48 

 

 

sa22 Pn 32.9 0.5 33.6 0.0 33.0 99.9 1.14 0.49 

 

 
sb1 Pn 34.2 0.4 31.6 0.0 32.0 98.2 1.16 0.47 

 

 

sb2 Pn 33.8 0.5 32.1 0.0 32.2 98.6 1.15 0.47 

 

 

sb3 Pn 34.8 0.6 31.9 0.0 33.0 100.2 1.14 0.47 

 

 

sb4 Ccp 30.6 0.0 0.6 34.8 34.3 100.3 1.03 

 

0.50 

 

sb5 Pn 34.4 0.6 30.7 0.0 33.0 98.7 1.12 0.46 

 

 

sb6 Pn 33.7 0.5 30.9 0.0 31.9 97.1 1.14 0.47 

 

 

sb7 Pn 35.4 0.5 30.0 0.0 33.3 99.2 1.11 0.45 

 

 

sb8 Pn 35.5 0.5 31.2 0.0 32.7 100.0 1.15 0.46 

 

 
sb9 Pn 35.1 0.5 31.0 0.0 32.6 99.2 1.14 0.46 

 

 

sc1 Ccp 30.4 0.0 0.7 37.0 34.6 102.7 1.05 

 

0.52 

 

sc2 Pn 32.2 0.5 31.0 0.0 32.2 95.8 1.11 0.48 

 

 

sc3 Pn 33.8 0.5 33.3 0.0 33.3 100.9 1.14 0.48 

 

 

sc4 Pn 33.2 0.5 32.0 0.0 33.3 99.0 1.11 0.48 

 

 

sc5 Viol  16.0 0.5 37.6 0.0 40.2 90.0 0.75 0.69 

 

 

sc6 Viol 18.0 0.5 38.5 0.0 43.2 95.5 0.73 0.67 

 

 

sc7 Pn 32.2 0.6 33.1 0.0 33.1 99.0 1.11 0.49 

 

 
sc15 Viol 17.7 0.6 36.9 0.0 42.3 93.0 0.73 0.66 

 

 

sd5 Ccp(+Pn) 30.1 0.0 3.9 28.7 33.7 96.5 1.01 

  

 

sd6 Pn(+Ccp) 33.8 0.4 30.3 0.9 31.7 97.1 1.16 

  

 

sd7 Ccp(+Pn) 30.0 0.0 0.4 36.2 34.3 100.8 1.04 

  

 

se1 Pn(+Ccp) 31.4 0.3 33.3 1.6 33.1 99.7 1.12 

  

 

se2 Pn 31.1 0.4 35.3 0.0 33.0 99.8 1.13 0.52 
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Sample No. Minerala Fe Co Ni Cu S Total Me/Se Ni/(Ni+Fe)e Cu/(Cu+Fe)e 

 

se3 Pn 31.0 0.2 34.2 0.0 32.4 97.8 1.13 0.51 

 

 

se4 Pn 32.1 0.2 34.0 0.0 32.6 99.0 1.14 0.50 

 

 

sf1 Pn 34.0 0.9 31.3 0.0 30.6 96.6 1.21 0.47 

 

 

sf2 Ccp 29.9 0.0 0.5 35.1 32.0 97.5 1.10 

 

0.51 

 

sf3 Ccp 30.4 0.0 0.3 35.4 32.5 98.6 1.09 

 

0.51 

 
sf4 Pn 36.9 0.8 28.7 0.0 31.1 97.4 1.20 0.43 

 

 

sf5 Pn 32.7 0.7 33.0 0.0 29.9 96.3 1.24 0.49 

 

 

sg1 Pn 34.7 0.5 32.0 0.0 30.8 97.9 1.22 0.47 

 

 

sg2 Pn 32.7 0.6 33.1 0.0 30.3 96.6 1.23 0.49 

 

 

sg3 Pn 30.4 0.0 0.4 34.1 32.9 97.8 1.06 0.01 

 

 

sg4 Pn 32.8 0.4 32.9 0.0 30.3 96.4 1.22 0.49 

 

 

sh1 Pn 34.4 0.4 31.2 0.0 29.8 95.8 1.24 0.46 

 

 

sh2 Ccp 30.5 0.0 0.5 36.2 32.0 99.2 1.13 

 

0.51 

 
sh3 Pn 34.9 0.4 31.5 0.0 29.9 96.6 1.25 0.46 

 

 

sh4 Ccp 30.5 0.0 0.5 34.9 32.1 98.0 1.10 

 

0.50 

 

sh5 Po 60.2 0.0 0.3 0.0 35.6 96.1 0.98 

  

 

sh6 Po 59.1 0.0 0.4 0.0 35.6 95.1 0.96 

  

 

sh7 Po 60.3 0.0 0.3 0.0 36.0 96.6 0.97 

  

 

sh8 Pn 34.2 0.2 30.8 0.0 30.1 95.3 1.22 0.46 

 

 

si1 Pn 35.1 0.6 30.6 0.0 30.4 96.6 1.22 0.45 

 

 

si2 Pn 34.0 0.6 31.0 0.0 30.2 95.8 1.22 0.46 

 

 
si3 Pn 34.7 0.5 31.0 0.0 30.8 97.0 1.20 0.46 

 

 

si4 Ccp 29.4 0.0 0.2 34.5 31.7 95.8 1.09 

 

0.51 

 

sj1 Ccp 30.3 0.0 0.2 35.4 31.5 97.4 1.12 

 

0.51 

 

sj2 Pn 58.8 0.0 0.3 0.0 36.7 95.9 0.93 0.01 

 

 

sj3 Pn 32.3 0.5 31.9 0.0 30.2 94.9 1.20 0.48 

 

 

sj4 Pn 35.6 0.5 29.3 0.0 30.0 95.3 1.23 0.44 

 

 

sj5 Ccp 29.9 0.0 0.0 35.4 31.6 96.9 1.11 

 

0.51 

 

ga6 Pn 31.0 0.4 32.9 0.0 30.1 94.3 1.20 0.50 

 

 
ga7 Ccp 30.0 0.0 1.9 35.9 31.0 98.7 1.17 

 
0.51 

 

ga8 Pn 33.1 0.6 32.5 0.0 29.0 95.2 1.28 0.48 

 

 

ga9 Ccp 29.5 0.0 0.0 34.6 31.6 95.7 1.09 

 

0.51 

 

gc1 Pn 32.0 0.3 32.6 0.0 29.3 94.2 1.24 0.49 

 

 

gc2 Pn 32.2 0.4 33.1 0.0 29.3 95.0 1.26 0.49 

 

 

wa9 Pn 33.6 0.4 31.6 0.0 29.2 94.9 1.26 0.47 
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Sample No. Minerala Fe Co Ni Cu S Total Me/Se Ni/(Ni+Fe)e Cu/(Cu+Fe)e 

 

wa10 Pn 33.0 0.5 31.8 0.0 29.6 94.9 1.24 0.48 

 

 

yb10 Ccp 29.1 0.0 0.8 35.4 30.6 96.0 1.14 

 

0.52 

 

yb11 Ccp 29.7 0.0 0.7 34.9 30.4 95.6 1.15 

 

0.51 

 

yb14 Pn 32.7 0.5 31.9 0.0 29.3 94.5 1.25 0.48 

 

 

xa8 Pn 32.8 0.0 33.3 0.0 33.4 99.5 1.11 0.49 

 

 
xa15 Pn 32.3 0.4 31.8 0.0 29.3 93.8 1.23 0.48 

 

 

xb10 Pn 32.5 1.0 31.3 0.0 30.4 95.2 1.19 0.48 

 

 

xb11 Ccp 30.0 0.0 0.0 35.2 32.4 97.7 1.08 

 

0.51 

 

xb12 Ccp 29.2 0.0 0.0 32.8 31.2 93.2 1.07 

 

0.50 

 

ca17 Pn 31.8 0.0 31.0 0.0 31.8 94.7 1.11 0.48 

 

 

ca18 Pn 31.5 0.0 31.4 0.0 31.3 94.1 1.12 0.49 

 

 

ca19 Pn 31.5 0.0 31.4 0.0 32.3 95.2 1.09 0.49 

 

 

sa13 Pn 35.5 0.5 28.0 0.0 33.7 97.8 1.07 0.43 

 

 
sa15 Pn 32.7 0.5 32.2 0.0 32.8 98.2 1.12 0.48 

 19-11T od1 Po 62.3 n/a 0.0 0.0 36.9 99.2 0.97 

  mantle-gabbro contact od2 Po 62.4 n/a 0.0 0.0 36.7 99.2 0.98 

  

 

od5 Po 62.8 n/a 0.0 0.0 37.3 100.2 0.97 

  

 

odn1 Po 60.9 n/a 0.0 0.0 38.1 99.0 0.92 

  

 

odn2 Po 62.4 n/a 0.0 0.0 37.1 99.5 0.97 

  

 

sa1c Po 61.3 0.0 0.0 0.0 38.1 99.4 0.92 

  

 

sa2 Po 63.3 0.0 0.0 0.0 36.3 99.5 1.00 

  

 
sa3 Po 60.9 0.0 0.0 0.0 36.7 97.6 0.95 

  

 

m2sa1 Po 57.3 0.0 0.0 0.0 40.7 98.0 0.81 

  

 

m2sa2 Po 57.8 0.0 0.0 0.0 37.9 95.7 0.88 

  

 

m2sb1 Po 56.5 0.0 0.0 0.0 35.9 92.3 0.90 

  

 

m2sb3 Po 58.6 0.0 0.0 0.0 40.1 98.7 0.84 

  

 

m2sc Po 59.1 0.0 0.0 0.0 39.8 98.9 0.85 

  

 

m2sd1 Po 58.9 0.0 0.0 0.0 38.0 96.9 0.89 

  

 

m2sd2 Po 57.2 0.0 0.0 0.0 38.1 95.3 0.86 

  

 
m2sg1 Po 58.1 0.0 0.0 0.0 36.5 94.7 0.91 

  

 

m2sg2 Po 60.7 0.0 0.0 0.0 39.6 100.3 0.88 

  21-7 ca1 Po 58.4 0.0 0.0 0.0 36.3 94.7 0.93 

  mantle-gabbro contact ca2 Pn 37.4 0.8 25.9 0.0 30.9 95.1 1.17 0.40 

 

 

ca7 Po 59.3 0.0 0.0 0.0 38.7 98.0 0.88 

  

 

ca8 Po 58.4 0.0 0.0 0.0 39.9 98.3 0.84 
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Sample No. Minerala Fe Co Ni Cu S Total Me/Se Ni/(Ni+Fe)e Cu/(Cu+Fe)e 

 

cb3 Ccp 29.6 0.0 0.5 34.9 33.6 98.6 1.04 

 

0.51 

 

cb4 Po 60.3 0.0 0.0 0.0 37.5 97.8 0.92 

  

 

cb5 Po 61.3 0.0 0.0 0.0 36.7 98.0 0.96 

  

 

cb8 Pn 32.9 2.5 29.6 0.0 31.7 96.7 1.15 0.46 

 

 

cb9 Po 59.4 0.0 0.0 0.0 39.9 99.3 0.86 

  

 
cb14 Po 59.4 0.0 0.0 0.0 37.4 96.7 0.91 

  

 

cb15 Po 59.3 0.0 0.0 0.0 37.6 97.0 0.91 

  

 

cb16 Po 59.8 0.0 0.0 0.0 38.0 97.9 0.90 

  

 

cb23 Ccp 30.8 0.0 0.0 37.6 32.1 100.5 1.14 

 

0.52 

 

cb24 Po 60.6 0.0 0.0 0.0 36.6 97.2 0.95 

  

 

cb25 Po 62.0 0.0 0.0 0.0 37.0 99.0 0.96 

  

 

cb26 Po 54.8 0.0 0.0 0.0 41.6 96.4 0.76 

  

 

cb27 Pn 41.3 0.7 22.6 0.0 32.8 97.4 1.11 0.34 

 

 
cb29 Po 58.7 0.0 0.3 0.0 42.8 101.8 0.79 

  

 

cb30 Pn 35.7 1.4 29.2 0.0 32.5 98.8 1.14 0.44 

 

 

cb31 Po 61.1 0.0 0.0 0.0 40.2 101.3 0.87 

  

 

cc19 Po 60.2 0.0 0.0 0.0 37.1 97.2 0.93 

  

 

cc20 Po 56.4 0.0 0.0 0.0 38.5 95.0 0.84 

  

 

cc22 Po 60.8 0.0 0.0 0.0 36.3 97.1 0.96 

  

 

cc23 Pn 37.4 1.5 24.3 0.0 32.0 95.3 1.11 0.38 

 

 

na1 Viol 24.3 1.2 27.7 0.0 40.4 93.6 0.74 0.52 

 

 
of1 Pn 39.4 1.2 24.0 0.0 31.6 96.2 1.15 0.37 

 

 

of2 Po 61.9 0.0 0.0 0.0 36.0 97.9 0.99 

  

 

og1 Pn 25.0 0.8 38.0 0.0 31.3 95.1 1.14 0.59 

 

 

og2 Pn 26.3 0.9 37.8 0.0 31.7 96.7 1.14 0.58 

 

 

oh1 Po 61.2 0.0 0.0 0.0 36.2 97.4 0.97 

  

 

oi1 Po 61.5 0.0 0.0 0.0 35.5 97.0 0.99 

  

 

oi2 Pn 40.7 1.2 24.7 0.0 32.9 99.5 1.14 0.37 

 

 

cj1 Po 62.8 0.0 0.0 0.0 35.5 98.3 1.02 

  

 
cj2 Po 61.6 0.0 0.0 0.0 36.2 97.8 0.98 

  

 

cj3 Po 61.0 0.0 0.0 0.0 35.0 96.0 1.00 

  

 

cj4 Pn 33.9 8.1 21.3 0.0 32.3 95.6 1.10 0.37 

 21-9A cb1 Pn 33.7 n/a 31.7 0.0 32.7 98.1 1.12 0.47 

 Pl harzburgite cb2 Pn 32.4 n/a 31.2 0.0 33.4 97.0 1.07 0.48 

 

 

ccn1 Pn 31.3 1.5 32.3 n/a 33.3 98.5 1.10 0.50 
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Sample No. Minerala Fe Co Ni Cu S Total Me/Se Ni/(Ni+Fe)e Cu/(Cu+Fe)e 

 

ccn2 Pn 32.5 1.3 31.5 n/a 33.6 99.0 1.09 0.48 

 

 

s1 Pn 31.1 2.2 31.7 n/a 31.6 96.7 1.15 0.49 

 

 

cd1 Pn 30.3 1.1 32.2 n/a 33.5 97.1 1.06 0.50 

  cji Pn 29.8 n/a 33.5 0.0 33.3 96.6 1.06 0.52  

 ckm Pn 31.3 n/a 32.8 0.0 33.0 97.1 1.09 0.50  

 ckn Pn 32.0 n/a 33.4 0.0 33.1 98.5 1.11 0.50  

 ckl Pn 31.4 n/a 32.1 0.0 32.3 95.8 1.10 0.49  

 u1 Pn 30.2 n/a 33.2 0.0 32.5 95.9 1.09 0.51  

21-GB cg1 Mi 0.3 n/a 62.4 0.0 33.9 96.7 1.01 1.00 

 olivine gabbro vein cg2 Gs 0.5 n/a 66.0 0.0 31.6 98.1 1.15 0.99 

  sk1 Hz 0.6 n/a 71.7 0.0 25.9 98.2 1.53 0.99  

 sk2 Hz 0.6 n/a 72.1 0.0 26.7 99.3 1.49 0.99  

 sk3 Hz 0.7 n/a 71.9 0.0 26.3 98.8 1.51 0.99  

 st Hz 0.3 n/a 72.3 0.0 26.5 99.1 1.50 0.99  

21-9T sw1 Hz 0.5 0.0 71.9 n/a 26.1 98.5 1.52 0.99 

 mantle-gabbro contact sw2 Hz 0.6 0.0 71.6 n/a 26.3 98.5 1.50 0.99 

 

 

sw3 Hz 0.4 0.0 71.8 n/a 26.8 99.0 1.47 0.99 

 

 

cje Pn 30.9 n/a 31.8 0.0 32.9 95.5 1.07 0.49 

 

 

cjg Pn 27.5 n/a 40.1 0.0 32.6 100.2 1.15 0.58 

 

 

cjg2 Pn 27.4 n/a 39.6 0.0 33.4 100.4 1.12 0.58 

 

 

cjh Pn 28.8 n/a 34.8 0.0 31.8 95.3 1.12 0.53 

 

 
cjj Pn 29.9 n/a 33.6 0.0 33.1 96.6 1.07 0.52 

 

 

cko Pn 33.2 n/a 32.2 0.0 32.4 97.9 1.13 0.48 

 

 

sr Pn 26.8 n/a 39.4 0.0 32.7 99.0 1.13 0.58 

 

 

ss Pn 30.5 n/a 36.2 0.0 33.1 99.8 1.13 0.53 

 28-9A (Pl harzburgite) ca2 Pn 33.5 n/a 33.4f 0.0 32.1 99.0 1.17 0.49 

 112-10 vb12 Pn 32.4 2.4 28.8 0.0 30.4 94.0 1.17 0.46 

 Pl harzburgite xa5 Pn 31.0 2.3 30.5 0.0 29.8 93.6 1.20 0.48 

 

 

sa1 Po 53.7 n/a 0.5 0.0 39.5 93.7 0.79 

  

 
sa3 Po 55.6 n/a 0.0 0.0 39.7 95.3 0.81 

  

 

sa2 Po 55.2 n/a 0.0 0.0 39.8 94.9 0.80 

  

 

sa4 Py 46.5 n/a 0.1 0.0 47.6 94.1 0.56 

    sa5 Py 46.9 n/a 0.2 0.0 47.9 95.0 0.56     
a Pn, pentlandite; Po, pyrrhotite; Ccp, chalcopyrite; Hz, heazlewoodite; Viol, violarite; Py, pyrite; Gs, godlevskite; Mi, millerite; Pn(+Ccp), Pn with intergrowths 

of Ccp; Ccp(+Pn), Ccp with intergrowths of pentlandite 
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b lithology of host rock indicated under sample name 
c does not include impurities, which occur in 96 of 274 records. Total impurities, mostly Si and Mg, make up >1 wt% in 8 records, but never >2 wt%. They are 

typically caused by small sizes of analyzed sulfides. The beam interacts with neighbor phases in such a case 
d n/a – data is not available 
e molar ratio 
f we measured this value using LA-ICPMS
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E. X-ray diffraction diffractograms of the Kane Megamullion silicates 

 

Fig. E.1.  X-ray diffraction (XRD) diffractogram of subsample 21-9T. Srp – serpentine, Atg – Antigorite, Ctl- 

chrysotile, Lz- lizardite, Chl – chlorite, Amp- amphibole. Interplanar spacing (d) is given in brackets in Å. 
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Fig. E.2.  X-ray diffraction (XRD) diffractogram of subsample 21-9A. Srp – serpentine, Atg – Antigorite, Lz- 

lizardite, Chl – chlorite. Interplanar spacing (d) is given in brackets in Å. 
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