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ABSTRACT

McDougall and Ferrari have estimated the global deep upward diapycnal flow in the boundary layer

overlying continental slopes that must balance both downward diapycnal flow in the deep interior and the

formation of bottomwater aroundAntarctica. The decrease of perimeter of isopycnal surfaces with depth and

the observed decaywith height above bottom of turbulent dissipation in the deep ocean play a key role in their

estimate. They argue that because the perimeter of seamounts increases with depth, the net effect of mixing

around seamounts is to produce net downward diapycnal flow.While this is true along much of a seamount, it

is shown here that diapycnal flow of the densest water around the seamount is upward, with buoyancy being

transferred from water just above. The same is true for midocean ridges, whose perimeter is constant with

depth. It is argued that mixing around seamounts and especially midocean ridges contributes positively to the

global deep overturning circulation, reducing the amount of turbulence demanded over the continental slopes

to balance the buoyancy budget for the bottom and deep water.

Attention has been drawn recently to the implications

of a positive divergence of buoyancy flux prevailing in

much of the interior of the deep ocean estimated from

vertical profiles of turbulent kinetic energy dissipation

(DeLavergne et al. 2016; Ferrari et al. 2016). The dia-

pycnal flow in the interior is therefore to greater neutral

density (i.e., downward), in the opposite direction to

that needed to balance the production of bottom water

around Antarctica. Convergence of buoyancy due to

turbulent buoyancy flux and geothermal heating in a

boundary layer along the abyssal plains and along con-

tinental slopes and other topographic features must

therefore be strong enough to balance the interior

downward diapycnal flow, in addition to balancing the

production of bottom water.

McDougall and Ferrari (2017, hereinafter MF17), fol-

lowing up on this work, estimate how large this upward

diapycnal flow in the bottom boundary layer must be,

and they estimate the order of magnitude of the average

diapycnal diffusivity needed at the top of the bound-

ary layer over the continental slopes. They also show

clearly how the hypsometry of ocean basins facilitates

overturning of the deep water by offering increasing pe-

rimeter with height. Since seamounts offer decreasing

perimeter with height, MF17 argue from an idealized

geometry that the effect of mixing around seamounts is to

increase the density of the water around them. Here I

argue that while this is true along much of a seamount,

near the base of a seamount the fluid is made lighter.

In steady state, the total rate of change of buoyancy in a

cylindrical control volume enclosing a seamount is

slightly positive, equal to the diffusive flux through a

neutral density surface delimiting the top of the control

volume, plus the geothermal flux at the bottom. Thus, loss

of buoyancy by fluid along the seamount at middepths is

balanced by gain of buoyancy by the fluid in the bottom

layer at the base of the seamount.

There are many seamounts in the global ocean.

Abyssal waters may move from one seamount to an-

other, becoming more buoyant as they travel farther

from their source. Hence, seamounts may play a positive

role in lightening bottom water in the deep cell of the

meridional overturning circulation. More importantly,

the same is true of diapycnal mixing on the flanks of

midocean ridges, whose gross perimeter is roughly

constant with depth. Mixing along the flanks of mid-

ocean ridges may in fact carry a large part of the burdenCorresponding author: James R. Ledwell, jledwell@whoi.edu
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of lightening the bottom water, reducing the burden

inferred by MF17 for mixing along continental slopes.

To clarify the situation around a seamount, consider a

cylindrically symmetric seamount around which the

density field and mean flow field are also cylindrically

symmetric and steady. Consider the cross-slope fluxes of

mass and buoyancy in the domain shown in Fig. 1a. Ig-

nore the details of the isopycnal lines for themoment. At

the top of the domain is a neutral density surface

through which there is a diffusive buoyancy flux and an

advective mass flux due to convergence of this diffusive

flux. These fluxes are weak, so let us ignore them for

simplicity, as done by MF17. At the sides, at radius R,

isopycnal surfaces enter the volume; I will not yet specify

their shape inside the volume, or the flow along them

and across them, except to note that if the stratification is

FIG. 1. Idealized circulation along the deep flankof a radially symmetric seamount. (a) The heavy black curve shows thebottom.The light lines

show isopycnal surfaces, which are horizontal outside of the topof the boundary layer and then dip down in the 49-m-deep boundary layer at right

angles to the bottom (angles are distorted by vertical exaggeration). The vertical line at r5 20 km shows the left edge of themodel domain. Line

segments represent velocity vectors, with a dot at their tails. The inward horizontal velocity of22.5 cm s21 52m off the bottom at r5 20 km is

confined to the 7-m-thickmodel layer just above theboundary layer. The lengthof this vector has been attenuated by a factor of 50 comparedwith

the lengths of the vectors representing theflow in the interior. The vectors in theboundary layer havebeen attenuated by 10 and are all toward the

seamount (maximum5 0.4 cm s21 near 18 km).Diapycnal diffusivity, and therefore the boundary layer velocity, is 0 at r5 20 kmand beyond, by

construction. Velocities between 4000m and the seamount top at 2461m are small. (b) Radial velocity u at the outer boundary of the domain is

shown as a black line (top axis; the fine vertical line is at u = 0 for reference). The neutral density used in the calculation is shown as a gray curve

(bottom axis). Fluid is exported between z 5 24877 and 25444m and weakly imported above 24877m. (c) The gray line shows the area-

integrated diffusive buoyancy flux FB (bottom scale), and the black line shows the net upward diapycnal volume flux «NET (top scale), with a fine

line at «NET 5 0 shown for reference.
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stable the geometry of the situation requires the deeper

of these isopycnal surfaces to intersect the sloping bot-

tom on the flanks of the seamount so that density de-

creases along the bottom toward the seamount. Let

there be a layer of height hb just above the bottomwithin

which isopycnal surfaces are perpendicular to the bot-

tom and at the top of which there is a nonnegative

downward turbulent flux of buoyancy. Make the rea-

sonable assumption that convergence of buoyancy flux

by along-bottom eddy mixing is negligible compared

with this quasi-vertical flux, as in MF17. In that case,

fluid in this boundary layer must flow toward regions of

lighter density to balance the sum of the downward

buoyancy flux from above and the geothermal buoyancy

flux from below. So, in this steady-state, cylindrically

symmetric situation, the radial flow in the boundary

layer must be upslope. Let FV be the boundary layer

volume flux in the radial direction along the perimeter at

the outer edge of the control volume at r 5 R. To con-

serve mass we must have

ðzt
zb1hb

u(R, z) dz52F
V
, (1)

where the integral is from the top of the boundary layer at

zb 1 hb to the top of the control volume at zt, and u(R, z)

is the radial velocity, defined to be positive outward, at

the outer wall of the control volume at radius R.

Neglecting changes in density in the interior of the

control volume associated with mixing in the face of

the nonlinearity of the equation of state, and again

neglecting also the geothermal flux and the weak fluxes

at the top of the control volume, we have the following

equation for the buoyancy budget for the control

volume:

ðzt
zb1hb

u(R, z)b(R, z) dz52F
V
b
B
, (2)

where b(R, z) is the buoyancy at the wall and bB is the

velocity-weighted mean buoyancy in the boundary layer

at r 5 R.

Combining (1) and (2) we have

ðzt
zb1hb

u(R, z) b(R, z)2 b
B

� �
dz5 0: (3)

Since the buoyancy in the boundary layer is less than the

buoyancy above it, the quantity in brackets is positive.

Thus, there must be places along the wall, above the top

of the boundary layer, at which u is negative (i.e., toward

the seamount) and other places where u is positive

(away from the seamount). The net effect of mixing in

the region around the seamount is to lighten water en-

tering at the greatest densities and to export and import

fluid of various densities at higher levels, such that mass

and buoyancy are conserved.

This analysis does not contradict the general formulas

of MF17. There, the net flow through a neutral surface

around a seamount is given by their (A10) and (12) [see

also (26) in Klocker and McDougall (2010)]:

«
NET

5 dF
B
/db , (4)

where FB is the downward diffusive buoyancy flux in-

tegrated over the neutral density surface. This flux is

dominated by downward buoyancy flux in what MF17

call the stratified mixing layer above the boundary layer,

with the flux decreasing with height above the top of the

boundary layer.

In MF17, the buoyancy flux is integrated over an area

that is large enough that the buoyancy flux becomes very

small at large distance along isopycnal surfaces from the

sloping bottom, because in the configurations they

consider the height above the bottom becomes large,

and so buoyancy flux becomes small. They have ana-

lyzed the situation for a conical seamount whose slope is

constant from the peak of the seamount down to in-

definite depth. Also constant in the analysis are the

vertical buoyancy gradient, the buoyancy flux at the top

of the bottom boundary layer, and the scale height for

the decay of the buoyancy flux with height above bot-

tom. These simplifications bring out the effect of the

decreasing perimeter of the seamount with height. Since

FB is dominated by the buoyancy flux in an annulus with

decreasing area with height, dFB/db is negative and «NET

is downward across isopycnal surfaces and is inversely

proportional to the square of the bottom slope, which I

will call a [see (32) in MF17]. The diapycnal volume flux

«NET is constant on the flanks of this conical seamount.

At the top, where the slope and radius both go to zero,

there must be an epipycnal influx of fluid from the sur-

roundings to feed the downward volume flux, as pointed

out by McDougall (1989). There is no bottom, so the

constant downward diapycnal flow goes on forever.

A more realistic case for a seamount whose slope

becomes small near the peak and near the base is dis-

cussed qualitatively by MF17 (see their Fig. 6; see also

McDougall 1989), by invoking the formula for the sim-

plified conical seamount case with constant slope just

described. They argue from the 1/a2 dependence that

because the slope is small near the top and bottom, the

downward diapycnal flow of fluid near the top and bot-

tom would be larger than midway along the seamount.

For isopycnal surfaces around the base of the seamount,
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this argument relies on the buoyancy flux remaining

large at large distance from the seamount so that the

area of the annulus of significant mixing on an isopycnal

surface increases with increasing depth, leading to net

downward flow, through (4).

However, a real seamount typically sits on an abyssal

plain. At large enough distance two effects are likely to

disturb the scenario above. One is that buoyancy flux at

the top of the boundary layer above an abyssal plain is

likely to be much weaker than near the seamount where

topographic effects enhance turbulence generation. The

other is that at some distance from the seamount

the slope must go through zero, and some aspect of the

analysis must break down. Possibilities are that the

density field is not cylindrically symmetric or that neu-

tral density surfaces cannot be regarded as flat so that

extrapolating the buoyancy flux into the interior using

the local bottom slope is not accurate. As an alternative,

I offer the following analysis of mixing on the flanks of a

seamount bounded by a cylindrical control volume. An

important difference from the scenarios of MF17 is that

buoyancy fluxes are specified to vanish at the edge of the

control volume and beyond.

For such a seamount confined within a cylindrical

control volume, the area of integration of the buoyancy

flux would be that of an annulus between an inner radius

ri at the intersection of the isopycnal surface and the top

of the boundary layer and the lesser of the radius R of

the control volume and an outer radius ro at which the

buoyancy flux becomes negligible because the height

above the bottom of the isopycnal surface becomes

large. When ro , R the area of this annulus is p(ro
2 2 ri

2)

and the situation is as envisioned by MF17. But when

ro . R, ro is replaced by R in this formula. As noted

above, MF17 argue that dFB/db is likely to be less than

zero because of the shrinking area of the annulus of

significant mixing with height, so that «NET is negative

(i.e., flow is downward). This is likely to be true at

midlevels along a seamount where ro , R. However,

in the neighborhood of the buoyancy surface that en-

ters the region at the top of the boundary layer at r5 R,

dFB/db is positive, dominated by the rapidly increasing

area of buoyancy surfaces with height. The absolute

value of any contribution to dFB/db from the boundary

layer is smaller by a factor on the order of lBL/R, where

lBL is the length of the curve of intersection of the iso-

pycnal surface with the r–z plane in the boundary layer.

At greater heights, as ro becomes less thanR, the area of

the annulus decreases with height, as in MF17, and FB is

likely to decrease with height; where this happens de-

pends not only on the area of the annulus but also on the

details of the turbulent buoyancy flux within that an-

nulus. Thus, we anticipate a deep region where the

overall effect of mixing is to lighten the water. Above

that, the overall effect is to transfer buoyancy to

deeper water.

To illustrate, consider the simplified case of flat iso-

pycnals everywhere except in a bottom boundary layer

of uniform depth in which the isopycnals are perpen-

dicular to the bottom (Fig. 1a). The equations for con-

servation of mass and of density anomaly for such a

situation (see appendix) require the flow in the r–z plane

to be that shown in Fig. 1a. The small contribution to

dFB/db within the boundary layer has been neglected in

this calculation.

No attempt is made here to satisfy the momentum

equations. There is a venerable series of studies of flow

associated with mixing in the neighborhood of sloping

boundaries on a rotating planet, reviewed, for example,

by Garrett et al. (1993). Analytical solutions have been

obtained for simple situations, such as constant stratifi-

cation in the far field, uniform slope, and independence

of the field in the along-slope direction. Distortion of

isopycnal surfaces associated with cross-slope and

along-slope flows arise, which depend on the choice of

eddy diffusivities and viscosities. However, the simple

geometry chosen here is taken as a crude approximation

to more realistic geometries. Diffusive and advective

fluxes across these surfaces must conserve mass and

buoyancy. These fluxes depend on the rather arbitrary

choice of how the diffusivity varies as a function of

buoyancy. We shall see that the main features of the

cross-slope flow in the dynamical models are present in

this simplified model, as they depend primarily on the

continuity and buoyancy equations.

The vertical profile of turbulent buoyancy flux used

here is a decaying exponential function of height above

the top of the boundary layer, with scale height 500m, as

for some of the cases treated by MF17. However, in the

present case we specify that the buoyancy flux at the top

of the boundary layer be proportional to cos(pr/2R)

within the domain and zero beyond the domain, to be

clear about the effect of negligible buoyancy flux far

from the seamount. The vertical density profile used

(Fig. 1b, dashed line) is typical of the deep ocean.

A bottom boundary layer with zero potential density

gradient normal to the bottom and of uniform thickness

of 49m is imposed. The thickness of the boundary layer

chosen and even along-slope variations in thickness

have no influence on the volume flux in the bound-

ary layer or on the interior flow in this model (see

appendix); a constant boundary layer thickness has been

chosen for convenience. The upslope flow entering the

bottom boundary layer at radius R is zero because the

buoyancy flux at the top of the boundary layer is zero

there; geothermal flux being ignored. The bottom flow

742 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 48



increases toward the seamount at first owing to the

increasing buoyancy flux at the top of the boundary

layer, reaching a maximum of 0.4 cm s21 at a radius of a

little less than 18 km, but within that radius the bottom

flow decreases as the seamount is approached because

of increasing slope and increasing vertical buoyancy

gradient.

The divergence of bottom flow between R and the

radius of maximum bottom flow is balanced by a thin

layer of inflow just above the boundary layer, exempli-

fied by the large horizontal velocity vector at r5 20 km,

z5 5450m in Fig. 1a. Convergence of fluid in the bottom

boundary layer within the radius of maximum bottom

flow is balanced by an outward flow in the layers above

the boundary layer. The flow in the interior, shown in

Fig. 1a as lighter vectors, has a downward, diapycnal

component everywhere except at the outer edge, as

expected. Themagnitude of the flow diminishes strongly

with height. Above 4700m, the flow is very weak, still

with a downward component and generally toward the

seamount. As Figs. 1a,b (solid line) show, fluid is im-

ported into the domain just above the boundary layer,

exported in a layer above that, and weakly imported

again further aloft. Thus, the density of bottom water

is decreased at the expense of buoyancy of the fluid in

the interior.

The mass leaving the control volume is within 1% of

the mass entering in the numerical calculation. The

velocity-weighted neutral density leaving the control

volume through the sides is within 1024 kgm23 of the

velocity-weighted neutral density entering through the

sides and top of the control volume. As already noted,

these two velocity-weighted neutral densities should be

the same because, other than a very weak turbulent flux

at the top of the domain and geothermal heat that is

ignored here, turbulent mixing around the seamount can

only redistribute density within the domain. The small

departures from mass and density conservation are due

to approximations inherent in the numerical calculation.

Figure 1c shows the vertical profile of FB, the total

downward turbulent buoyancy flux across isopycnal

surfaces outside the boundary layer, and the total flow

through isopycnal surfaces «NET from (4). The graph of

«NET is dominated by the spike of upward flow in the

layer just above the boundary layer. The layer in which

the flow is to lighter density is about 290m thick. The

«NET continues to decrease above this layer, becoming

more negative until it reaches a minimum at around

4900-m depth. In this layer of convergence of «NET mass

conservation requires the radial component of the ve-

locity at r5R to be outward. Let us call this the ‘‘export

layer.’’ Above this export layer «NET is still downward,

as argued by MF17, but its magnitude decreases with

height so that the flow at r 5 R is inward. Thus, bottom

water, flowing toward the seamount, is lightened at the

expense of buoyancy from the layer just above it, in

which flow is away from the seamount. The velocity-

weighted density of the water in the export layer in this

simple model is 0.002 kgm23 less than the density of the

water entering in the thin layer above the bottom

boundary layer. This imbalance of density flux is com-

pensated by the very weak inward flow of light water

above the export layer.

Some of the key features of the cross-slope flow de-

rived in the dynamical analytical models of the circula-

tion in the neighborhood of a sloping bottommentioned

earlier (Garrett et al. 1993) are evident here. There is a

cross-slope secondary circulation, with diapycnal flow

generally toward the seamount and to lighter isopycnals

in a bottom layer and flow generally away from the

seamount and to denser isopycnals above this layer. The

integrals of the fluxes of mass and buoyancy integrated

along any cylindrically symmetric surface from the

bottom to the top of the control volume are zero. Dia-

pycnal diffusive fluxes within the boundary layer are not

specified beyond that this flux go from its value just

above the top of the boundary layer to zero at the bot-

tom of the boundary layer, and so the question of

whether stratification and diffusivity within the bound-

ary are important is moot. Important features that are

included here but generally not in the analytical models

are that the slope and the buoyancy flux at the top of the

boundary layer vary with cross-slope distance. Also, the

buoyancy gradient in the far field is not independent of

z. Because of radial variations of the slope and diffu-

sivity at the top of the boundary layer, fluid is variously

drawn into the boundary layer and expelled from it, and

modification of water masses by mixing within the con-

trol volume is thereby communicated to the interior.

Omitted from the present analysis, however, is dis-

tortion of isopycnal surfaces associated with dynamical

balances between Coriolis, pressure gradient, and vis-

cous forces. As already noted, the present analysis for

volume fluxes is insensitive to along-slope variations in

the boundary layer thickness. Convergences of turbu-

lent buoyancy flux in the boundary layer not balanced by

the mean along-slope diapycnal flow are neglected here,

as well as in MF17, and in the analytical models, the

latter of which generally have uniform fluxes in the

along-slope direction. The present results would be

sensitive to vertical distortions of isopycnal layers in the

interior in that if dissipation (and therefore diapycnal

velocity) is prescribed as a function of z then such dis-

tortions will influence the mass budgets of isopycnal

layers through the divergence of the diapycnal velocity.

In particular (A15) in the appendix would have to be
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changed to an equation for mass conservation in an

isopycnal layer rather than a horizontal layer. This

would change the details of the interior circulation.

However, given the uncertainty in the actual spatial

distribution of the dissipation, this does not seem to be a

serious shortcoming for the present purpose. A sensible

refinement that is beyond the present scope might be to

use actual observed isopycnal surfaces and best esti-

mates from internal wave dynamics and measurements

of turbulent dissipation to infer the cross-slope circula-

tion. Then one might try to insist that the eddy viscosity

and along-slope velocities be such that the momentum

equations are satisfied.

The volume flux entering just above the boundary layer

in this simple illustration is 0.022Sv (1Sv [ 106m3 s21).

Hence the effect of mixing around the seamount is to

reduce the density of this amount of water by about

0.002 kgm23. One can imagine water exported from one

seamount becoming bottom water for another, to be

further lightened, and thus seamounts can collectively

contribute positively to the overturning circulation of

the deep water. For example, if this simple model had

quantitative validity, 100 such seamounts could reduce

the density of 2.2 Sv of bottom water by 0.002 kgm23,

which is a sizable fraction of the spread in density of

northward-flowing bottom water in the lower cell of

the global meridional overturning circulation pre-

sented by Lumpkin and Speer (2007, their Fig. 2).

Thus, 100 seamounts could conceivably contribute

significantly to conversion of deep northward-going

water to less deep southward-going water in the

deep cell.

The same pattern of bottom water modification as for

the seamount case can occur along a linear midocean

ridge, a consideration that motivated the present com-

ment because of experience from the Brazil basin (see

Polzin et al. 1997; Ledwell et al. 2000; St. Laurent et al.

2001). MF17 considered the case of a linear ridge (their

section 6), showing that for a constant slope (all the way

to infinite depth) and constant scale height for the

buoyancy flux, there is no net flow («NET 5 0) unless the

buoyancy flux at the top of the boundary layer increases

with increasing buoyancy (i.e., upward along the

boundary layer). The following illustration shows that,

like the seamount case, amore realistic ridge shape leads

to lightening of bottom water. Again, it is assumed that

diapycnal mixing and advection go to zero at the edge of

the control volume, and this again is an important dif-

ference from MF17. This approximation is supported in

the case of the Brazil basin, by the observation that

turbulent dissipation rates are very small over the

abyssal plain west of the region of abyssal ridges and

canyons at that site (Polzin et al. 1997).

Figure 2a shows the circulation near a ridge in the

cross-ridge plane that satisfies mass and buoyancy con-

servation, again with the simple cross-slope shape of

isopycnal surfaces used for the seamount and no attempt

made to satisfy momentum equations. The shape of the

bottom is a smoothed version of the western flank of the

Mid-Atlantic Ridge in the Brazil basin, where canyon

walls and abyssal hills can serve as baffles and strong

sources of friction. The bottom boundary layer thickness

and profiles of buoyancy flux and density have all been

taken to be the same as for the seamount case. Buoyancy

flux at the top of the boundary layer is again taken to fall

to zero at the edge of the control volume as cos(px/2L)

(where x 5 2L 5 21000km delimits the control vol-

ume) and to be zero beyond x 5 2L. Such a ridge is

muchmore effective at lightening bottomwater than the

seamount. The influx in a 440-m-thick layer above the

boundary layer at the left edge of the control volume is

0.0019Svkm21. The fluid leaving the region in the

520-m-thick layer above is lighter by about 0.028 kgm23.

In this scenario, a 1000-km stretch of ridge could lighten

1.9 Sv of bottom water by 0.028 kgm23. This would be a

major contribution to the deep overturning cell esti-

mated in Lumpkin and Speer (2007). Of course, the

above calculations are only illustrations, as the density

field and buoyancy flux field have been oversimplified.

The ridge in Fig. 2 could be viewed as a linear stretch

of continental slope up to about 3000-m depth. Most of

the water-massmodification takes place below this level.

Hence, a stretch of continental slope might have an ef-

fect on the bottom water similar to that of a midocean

ridge. Bottom water would be imported and slightly

lighter ‘‘deep water’’ would be exported. To balance

the buoyancy budget, a relatively small amount of water

above the export layer would be imported. It seems

that regardless of whether a seamount, a ridge, or a

continental slope is considered, the effect of mixing is

confined mostly to the bottom water, which becomes

lighter, and the deep water overlying the bottom water,

which becomes denser. Thus, with downward-increasing

buoyancy flux, mixing near the bottom contributes

positively to the lightening of bottom water and densi-

fication of water just above (i.e., to homogenization of

the bottom and deep water), as recognized in a more

global context in the work of de Lavergne et al. (2016).

Perhaps density in the deep cell is lightened by water

moving from one locale to another along a ridge or

continental slope, deep water from one site becoming

bottom water at the next site, to be further lightened, as

envisioned above for the seamount case. It is worth

noting as an aside that steady-state flow along a flat or

gently sloping bottom can be a continuous, simple ex-

ample of this progressive lightening of bottom water if
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the flow is perpendicular to isopycnal surfaces that

approach the bottom at a glancing angle. These effects

can in fact be seen in the global analysis of de

Lavergne et al. (2016, e.g., in their Fig. 6a), where

deep neutral density surfaces slope downward to the

north and zonally integrated buoyancy fluxes through

those surfaces, estimated from a simple formula for

the dissipation of turbulence generated by internal

tides, increasingly shift from upward to downward

from south to north.

These considerations lead one to conclude thatmixing

around seamounts and ridges can contribute positively

to the deep cell of the overturning circulation. They also

suggest that it may be misleading to focus too much

on the behavior of the perimeter of the ocean basins

with depth in understanding the deep overturning

FIG. 2. Idealized flowon the flanks of a linear ridge. (a) The heavy black line shows the bottom,while the light lines show isopycnal surfaces. The

vertical line at x521000kmshows the left edgeof themodel domain. Line segments represent velocity vectors, with a dot at their tails. The length

of the vectors in the bottomboundary layer have been reducedby a factor of 10 comparedwith those showing the flow in the interior. For scale, the

velocity represented by the arrow at the left edge at z525330m is 0.63 cm s21 and themaximumbottom velocity, near x52440km, is 6 cms21.

The depth of the bottom boundary layer is uniform at 49m. (b) The horizontal velocity u at the outer boundary of the domain is shown as a black

line (top axis; the vertical line is at u5 0 for reference). The neutral density used in the calculation is shown below 3800 m as a gray line (bottom

axis). Diapycnal diffusivity, and therefore the boundary layer velocity, is 0 at x5 21000km, by construction. Between 5450- and 5000-m depth

bottomwater is imported into the domain.Above this layer, up to 4500m, fluid is exported.Above 4500mfluid is weakly imported. Flows near the

level of the peak are enhanced because of the small slope, large dissipation rate, and condition that u5 0 at the top. (c) The gray line shows the

integral in the x2z plane of the diffusive flux FB (bottom scale), and the black line shows the integrated upward diapycnal volume flux «NET (top

scale), with a fine line at «NET 5 0 shown for reference.
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circulation. As MF17 recognize, what is important is the

perimeter of isopycnal surfaces, for which the perimeter

of level surfaces is sometimes a poor approximation.

Although the isopycnal surfaces drawn in the examples

here are flat, it is easy to imagine similar cases for which

the bottom is flat and the isopycnal surfaces are sloped

to meet it. The important angle is that of mean isopycnal

surfaces relative to the bottom, in combination with the

spatial distribution of turbulent buoyancy fluxes.

MF17 show convincingly that the net global flow

across isopycnal surfaces is a rather small difference

between large diapycnal flow to high density in the in-

terior and larger diapycnal flow to low density in the

boundary layer. The average diapycnal diffusivity re-

quired at the top of the boundary layer to close the deep

cell of the overturning circulation was estimated by

them to have the rather large value of 5 3 1023m2 s21,

based on the gross perimeter of the continents, esti-

mated at 5 3 107m. It seems, however, that the perim-

eter of midocean ridges was not included in this

estimate, and mixing around seamounts were argued to

increase the demand for mixing along the continental

slopes rather than reduce it. If midocean ridges are

included, a revised estimate of the perimeter of iso-

pycnal surfaces below 2500-m depth is perhaps 23 108m,

4 times greater than used by MF17. This reduces the

required diffusivity at the top of the boundary layer

proportionally. Seamounts might reduce the required

diffusivity further, as noted above. Also, as noted above,

isopycnal surfaces can approach the bottom over abyssal

plains at a glancing angle, leading to a strong increase in

area of isopycnal surfaces with increasing buoyancy,

though, admittedly, turbulent buoyancy fluxes over

abyssal plains are probably small. [More importantly for

abyssal plains, de Lavergne et al. (2016) found that

geothermal heating provides a large fraction of the

buoyancy gain required for ‘‘consumption’’ of Antarctic

Bottom Water.] Thus, recognition of turbulent fluxes

around seamounts and especially midocean ridges, and

perhaps even along abyssal plains, can reduce the av-

erage diapycnal diffusivity at the top of the boundary

layer over the continental slopes required to close the

deep cell of the meridional overturning circulation. In

particular, mixing on the flanks of the global midocean

ridge system seems especially likely to play a crucial

positive role, given, for example, the observational evi-

dence for enhanced mixing over the broad eastern flank

of the Mid-Atlantic Ridge in the Brazil basin.
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APPENDIX

Idealized Model for the Flow Toward a Seamount
and Ridge

The bottom around the seamount of Fig. 1 was given

an analytical form for convenience:

z
b
5 ar1H

s
exp[2r2/(2L2

s )] , (A1)

where the radial coordinate r ranges from 0 to R 5
20km, which is the outer radius of a control volume

enclosing the seamount. The above equation describes a

Gaussian peak added to a uniformly sloping bottom.

The parameters chosen for the seamount example (un-

derlying slope a5223 1023; peak heightHs 5 3000m;

and rms peak width Ls 5 5000m) were based on

the shape of an unnamed seamount southwest of the

Hawaiian Ridge at approximately 179.88W, 26.38N,

which seemed typical for midocean seamounts.

The dissipation of turbulent kinetic energy « is a

function of height above bottom and distance from the

peak of the seamount, with the following form:

«5 «
b
exp 2(z2 z

b
)/H

«

� �
cos

�p
2

r

R

�
. (A2)

We use «b5 1028Wkg21 andH«5 500m, guided by the

results from the Brazil basin (St. Laurent et al. 2001).

Thus, « falls off exponentially with height above bottom,

but here « also falls to zero at the boundary of the

control volume, as a cosine function. The downward flux

of buoyancy above the bottom boundary layer is as-

sumed to be given by the formula of Osborn (1980),

with a constant value for the mixing efficiency G 5 0.2:

kN2 5G« , (A3)

where N2 is the square of the buoyancy frequency,

given by

N2 52
g

r

dg

dz
5

db

dz
, (A4)

where g is the acceleration due to gravity, r is a reference

seawater density, g is the neutral density, and b is the

buoyancy.

Thus, the diapycnal diffusivity k for buoyancy or

density is given by

k52
r

g

�
dg

dz

�21

G« . (A5)

Neutral density above the boundary layer is taken to

be a function only of z:

g5 g
b
2Dg exp(z/H) . (A6)
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Values of gb 5 28.27 kgm23, Dg 5 7.4 kgm23, and H 5
1000m give a realistic density profile in the bottom and

deep water of interest here. The density in a bottom

boundary layer of uniform thickness hb 5 49m is ap-

proximated as constant along the normal to the bottom

and equal to the density given by (A6) at the top of the

boundary layer. Lines of constant neutral density are

thus level above the top of the boundary layer. At the

top of the boundary layer, isopycnal lines bend down

abruptly to intersect the bottom at right angles (Fig. 1;

the angle of intersection with the bottom is distorted by

the vertical exaggeration of the figure).

A steady-state flow confined to the two dimensions of

the r–z plane of Fig. 1 is determined from the continuity

equation, the density equation, and (A5) for diapycnal

diffusivity, for the specified density field and spatial

distribution of «. The momentum equations are not in-

voked but can be imagined to be satisfied by unspecified

friction and slight pressure gradients associated with

small slopes of isopycnals above the boundary layer.

The diapycnal velocity above the top of the boundary

layer satisfies the steady-state density equation:

w5

�
dg

dz

�21
›

›z

�
k
dg

dz

�
52

r

g

�
dg

dz

�21

G
›«

›z
, (A7)

where (A5) has been used in the second equality. It is

this last equation from which it is argued that if

« decreases upward then the diapycnal velocity must be

downward.

The density within the boundary layer is approxi-

mated as being equal to the density gt at the top of the

boundary layer. The steady-state density equation in-

tegrated from the bottom to the top of the bottom

boundary layer along an isopycnal is then

d

dr
(ru

b
h
b
g
t
)52rw

t
g
t
1 rk

t

�
dg

dz

�
t

, (A8)

where ub is the along-slope velocity in the boundary

layer, averaged over the isopycnal for which g 5 gt; wt is

the vertical velocity at the top of the boundary layer,

approached from below; kt is the diapycnal diffusivity

from (A5) at the top of the boundary layer; and (dg/dz)t
is the density gradient at the top of the boundary layer,

approached from above. Geothermal flux has been ig-

nored. Note that in (A8) and (A9) the attenuation of

vertical fluxes by the sine of the angle between the

vertical axis and the sloping top of the boundary layer is

exactly compensated by the increased length of an area

element between r and r 1 dr owing to the slope.

The product of gt and the mass conservation equation

for the boundary layer, given by

g
t

d

dr
(ru

b
h
b
)52rg

t
w

t
, (A9)

is subtracted from (A8) to obtain

u
b
h
b

dg
t

dr
5 k

t

�
dg

dz

�
t

. (A10)

The geometry of the lines of constant density is such that

dg
t

dr
5a

�
dg

dz

�
t

, (A11)

where a is the bottom slope, obtained by differentiating

(A1) with respect to r.

Thus we arrive at this simple result:

u
b
h
b
5

k
t

a
. (A12)

That is, the volume flux in the bottom boundary layer is

simply proportional to the diffusivity at the top of the

boundary layer and inversely proportional to the bottom

slope. If the bottom were flat (i.e., a 5 0) anywhere in the

system, then some feature of this illustration must be

abandoned. For example, steady-state, cylindrical symme-

try, or flat isopycnal surfaces, could be given up. Note that

ub and hb appear in the above development only as their

product, the volume flux. The development and the interior

circulation does not depend on ub and hb separately. In fact,

the thickness of the boundary layer could vary along the

bottom in the radial direction; the onlymodification needed

would be that a should be the slope of the top of the

boundary layer rather than of the bottom [see (A11)].

From (A9) and (A12) we have the following:

w
t
52

1

r

d

dr

�
rk

t

a

�
52

d

dr

�
k
t

a

�
2

1

r

k
t

a
. (A13)

In the present case the volume flux 2prubhb in the

boundary layer is toward the seamount everywhere and

increases from zero at r 5 20 km to a maximum at r a

little less than 18km, so that wt is negative in that range

(i.e., fluid must be supplied to the boundary layer from

above). At smaller radii the volume flux decreases as

r decreases so that wt is positive there; the boundary

layer is a source of fluid to the interior. The vertical

velocity just above the top of the boundary layer, which

will be called w1, is given by (A7) and is always down-

ward. The discontinuity in vertical velocity at the top of

the boundary layer between wt and w1 that results must

be balanced by a horizontal (i.e., epipycnal) flow en-

tering or emanating from the sloping top of the bound-

ary layer, given by the following (see Fig. A1; note that

a , 0 as it is defined):
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u
0
52(w

t
2w

1
)/a . (A14)

The horizontal velocity at radius r at a given depth is

then given by integrating the divergence of the vertical

velocity, as calculated from (A7), which in cylindrical

coordinates gives

u(r, z)5 u
0
2
1

r

ðr
r0

›w

›z
r0dr0 , (A15)

where r0 is the value of r where the top of the boundary

layer is at z. Symmetry requires u5 0 at r5 0 above the

boundary layer at the top of the seamount, so (A15) is

used at those levels with u0 5 0 and r0 5 0. The velocity

field has been calculated numerically, with a simple

finite-difference scheme, from the above equations and

parameter choices with a grid of 400 vertical layers by

2400 radial intervals, giving the flow pattern shown in

Fig. 1.

The equations for the flow in the ridge case are the

same as those above, except that cylindrical coordinates

are no longer needed so that r may be set to a constant

and eliminated in (A8) and (A9); then rmay be replaced

by x, the cross-ridge distance, throughout, and the ana-

log of (A15) is

u(x, z)5 u
0
2

ðx
x0

›w

›z
dx0 . (A16)

Figure 2 shows the results of the numerical calculation,

again with 400 vertical layers and 2400 horizontal in-

tervals. The setup for the ridge case was the same as for

the seamount case, except that the distance from the

outer edge of the control volume to the ridge crest is

1000km, and in (A1) for the bottom shape the values

used were a 5 1023, Hs 5 2000m, and Ls 5 100 km,

roughly appropriate for the eastern flank of the Mid-

Atlantic Ridge in the Brazil basin.
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FIG. A1. Geometry justifying (A14). The heavy line is the bot-

tom, with slope dzb/dr5a. The top of the boundary layer is parallel

to the bottom at height hb. Volume flow per radian in the boundary

layer is rubhb. Convergence of this flow must be balanced by the

vertical flow rwtDr. But just above the top of the boundary layer

there is downward flow rw1Dr. This convergence at the lid of the

boundary layermust be balanced by ru0Dz. So u0Dz5 (wt2w1)Dr,
which gives (A14) since Dz/Dr 5 2a.
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