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ABSTRACT 

A total of four moorings from POL YMODE array I and II were analyzed in an investigation of the 
interaction of wavefields and mean flow. In particular, evidence for internal wave-mean flow interac­
tion was sought by searching for time correla tions between the vertically acting Reynolds stress of the 
wavefield (estimated using the temperature and velocity records), and the mean shear. No signifi­
cant stress-shear correlations were found at the less energetic moorings (ii :S 10 em s- 1), indicating 
that the magnitude of the eddy viscosity was under 200 cm2 s- 1, with the sign of the energy transfer 
uncertain. This is considerably below the 0(4500 cm2 s- 1) predicted by Miiller ( 1976). An extensive 
error analysis indicates that the large wave stress predicted by the theory should have been observable 
c learly under the conditions of measurement. At moorings typified by a higher mean velocity (t:i = 25 
em s- 1

) , statistically significant stress-shear correlations were found , and the wavefield energy level was 
observed to modulate with the strength of the mean shear. The observations were consistent with 
generation of short ( - I km horizontal wavelength) internal waves by the mean shear near the thermocline , 
resulting in an effective eddy viscosity of - 100 cm2 s- 1• 

Theoretical computations indicate that the wavefield "basic state" may not be independent of the 
mean flow as assumed by Miiller (1976) but can actually be modified by large-scale vertical shear 
and still remain in equilibrium. In that case , the wavefield does not exchange momentum with a 
large-scale vertical shear flow and , excepting critical-layer effects, a small vertical eddy viscosity is to 
be expected . Using the Garrett-Munk (1975) model internal wave spectru m, estimates were made of 
the maximum momentum flux (stress) expected to be lost to critical-layer absorption. This stress 
was found to increase almost linearly with the velocity difference across the shear zone , correspond­
ing to a vertical eddy viscosity of - 100 cm2 s- 1 . Stresses indicative of this effect were not observed 
in the data. 

1. Introduction 
Natural internal waves have been observed in 

water for some time now (cf. Murray, 1892) and 
even longer in the atmosphere. However, it has 
only been in recent years that the observations 
have been quantitatively interpreted. Present day 
oceanic internal wave measurements can be inter­
preted in a common framework, the w-k spectral 
model of Garrett and Munk (1972, hereafter GM72). 
[Two updated versions are Garrett and Munk 
(1975 , 1976; hereafter GM75 and GM76) described 
in Desaubies (1976) and Cairns and Williams 
(1976).] These models bridge the gap between 
theory and observation, enabling the prospective 
experimenter to ask in advance of a particular 
experiment, "Am I likely to see anything that 
gives new information?" and get an answer. This 
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awareness of which information was missing has 
prompted the development of many new ways to 
measure the internal wavefield (cf. Briscoe, 1975a). 
These measurements have tightened up knowledge 
of the frequency and wavenumber shape of the uni­
versal spectrum to a high degree, and allowed infer­
ences to be made about the cause and nature of 
the mechanisms which shape the spectrum. 

While major inroads are beginning to be made 
regarding the internal shaping processes of the spec­
trum, Wunsch (1975a) has pointed out that there 
are major gaps in the knowledge of the relative im­
portance of various possible sources and sinks for 
internal wave energy. One potentially important 
source (or sink) of energy is interaction with the 
(usually) larger scale, low-frequency flow, which 
tends to be more energetic than the internal wave-
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field and so at least has a lot of energy to give to the 
wavefield. Whether the low-frequency flow gives or 
takes energy on the average, and how rapidly , are 
the primary questions asked in this work . 

Most theoretical studies of propagation of inter­
nal waves in the presence of a mean shear current 
(cf. Garrett, 1968) indicate that an internal wave 
can propagate through a vertical shear flow with no 
exchange of momentum unless the wave is dissi­
pated , such as at a critical level (Booker and 
Bretherton, 1967). A scenario in which internal lee 
waves are generated at the lower boundary of the 
atmosphere, propagate upward and are dissipated 
at a critical level is described by Bretherton (1969b) . 
The net effect is the distribution of the topographic 
drag over a much greater depth, which can be 
described in terms of a kinematic viscosity . A simi­
lar computation has been performed for the ocean 
by Bell (1975) who estimates a vertical momentum 
flux of 0.5 cm2 s-2 (more propertly, dyn cm- 2

) 

for a bottom current of 5 em s- 1• Dissipation of the 
energy of these waves at a critical level would re­
sult in a vertical mixing coefficient of order 10 cm2 

s- 1 at the level of dissipation. 
Muller (1976, 1977) has studied the interaction 

of a field of internal gravity waves with a large-scale 
mean flow. Using the concept of an equilibrium 
spectral shape (with that of Garrett and Munk in 
mind), Muller investigates a balance between the 
tendency of the mean shear flow to distort the spec­
trum and the internal relaxation tendencies of the 
wavefield , which tend to restore the equilibrium 
shape. Assuming that this equilibrium shape is inde­
pendent of the mean · flow, Muller finds that the 
balance of tendencies (distortion and relaxation) 
lead to asymmetries in the wavefield such that the 
field exerts a stress which opposes the mean shear. 
The interaction may, in a local limit, be param­
eterized by eddy viscosities, both horizontal 
[0(105) cm2 s- 1] and vertical [0(103 ) cm2 s- 1]. Be- . 
cause of the large aspect ratio of the mean flow, the 
vertical eddy viscosity is more important than the 
horizontal to the energy balance of the wavefield . 
Muller estimates that the interaction results in an 
energy exchange rate of 10-5 erg cm-3 s- 1 from the 
mean flow to the wavefield. This is probably the 
dominant source of energy for the internal wavefield 
if the Muller interaction is as strong as predicted. 
An eddy viscosity this large will cause decay times 
for baroclinic motions comparable to those observed 
for Gulf Stream rings, so the interaction may also 
be of importance to the mean flow. 

Observations of internal wave-mean flow interac­
tion are somewhat sparse. Frankignoul (1974, 1976) 
discovered in internal wave records a tendency for 
the wave velocities to be more intense in a direc­
tion perpendicular to a strong mean current than 
parallel to it. He tentatively identified critical-layer 

wave absorption as a possible cause for this effect. 
He also found that the horizontal anisotropy of 
the currents was related to the large-scale mean 
shears, in a manner consistent with some of the pre­
dictions of the Muller theory. However, Frankignoul 
was only able to verify that horizontal variations in 
the medium (i.e . , the shear flow) will distort the 
wavefield; this is a propagation effect. Direct estima­
tion of the horizontal eddy viscosity effects pre­
dicted by Muller proved impossible with the data at 
hand , because of the relatively short data length and 
the high statistical noise level of the horizontally 
acting wave stress. Frankignoul found that the in­
ternal wavefield energy level and the magnitude 
squared of the mean vertical shear were correlated, 
suggesting an energy exchange; however, the hypoth­
esized energy exchange mechanism (vertical eddy 
viscosity) was inferred and not directly observed. 

The central point of the observations presented 
here is a direct test of the vertical eddy viscosity 
aspect of the Muller (1976) interaction. Using 
horizontal current and temperature data from long­
term POL YMODE array I and II moorings in the 
North Atlantic, estimates of the vertically-acting 
Reynolds stresses of the wavefield and low-fre­
quency vertical shear (often referred to as " mean" 
because it appears so to the wavefield) were esti­
mated as slowly varying time series. Statistical 
correlation analyses were performed to see if the 
wavefield has any tendency to exert stresses which 
oppose or reinforce the mean shear, thereby ex­
tracting energy from or giving it up to) the shear. 
To the extent that Reynolds stresses can be ac­
curately estimated using temperature records, the 
observations of momentum exchange with the shear 
flow are direct. 

The effect of the Coriolis force on horizontal wave 
velocities couples the momentum and buoyancy 
fluxes exerted by a wave. The effect of these fluxes 
on a quasi-geostrophic mean flow is discussed in 
Section 2, where it is argued that the near-inertial 
frequency waves contribute little to the vertical flux 
of vorticity, and so should be eliminated from the 
estimate of "effective" wave stress. In Section 3 
the data and their analysis are described, and the ob­
servations are presented in Section 4. 

A major finding in Section 4 is that the interac­
tion between the wavefield and a vertical shear 
flow must be much weaker than predicted by Muller. 
In Section 5, the Muller interaction theory is dis­
cussed, and an extremely simple equilibrium wave 
field solution is presented. This equilibrium state is 
"flexible" in the sense that it can be modified by 
the mean shear, and except for the effects of criti­
cal-level absorption, does not exchange momentum 
with the mean flow. It is argued that an equilibrium 
field with similar balances (and which is non-inter­
acting) may exist in the ocean. 
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2. Momentum and buoyancy fluxes in a geostrophic 
shear flow 

The effect of internal waves on a mean flow is 
measured by the divergence of the momentum and 
buoyancy flux tensors which the wavefield sets up. 
In the presence of rotation, the momentum and 
buoyancy fluxes of the wavefield are related, and 
combine in the vorticity equation to form a single 
"effective" stress tensor. This stress tensor can 
be rather simply related to the actual . stress tensor 
and turns out to be easier to estimate accurately 
than the actual stress. At near-inertial frequencies, 
the momentum and buoyancy fluxes cancel in their 
effect on a geostrophic flow and so do not contribute 
to the "effective" stress . For this reason, an ac­
curate estimate of the "effective" stress is obtained 

where 

by integrating the cospectrum Ca3 from 2/to N (i.e., 
by eliminating the frequency range f-2! from the 
integration). 

As discussed in Rhines (1973), ocean current 
spectra nearly always exhibit a relative lack of 
energy (a "gap") at periods between one and ten 
days. Because of this, the data may be uniquely 
separated into high-frequency (inertial frequency 
and above) and low-frequency (below inertial fre­
quency) components. The high-frequency com­
ponents are consistent with internal wave dy­
namics (Fofonoff, 1969) . Mi.iller (1976) decomposes 
the Eulerian equations of motion into separate, 
coupled sets of equations for the mean (low-fre­
quency) flow and for the wavefield. (Because of the 
spectral gap, space-time averages may be replaced 
by time averages.) The equations for the mean 
flow are 

(2.1) 

(2 .2) 

F;j 

Mj 
u, 
u; 
6 

mean wave-induced momentum flux [ = uiu/ + Pwaii] 
mean wave-induced buoyancy flux [ = b 'u J] 

b' 
Pe(X3) 
N~(x3 ) 

Eulerian mean velocity 
Eulerian perturbation velocity 
mean buoyancy field { = -(glpo)[p(x, t) - PeH 
perturbation buoyancy field { = -(glpo)[p'(x,t) - PeH 
equilibrium density stratification 
equilibrium buoyancy frequency [ = -(glpo)apelax3]. 

The pressure has been decomposed into four parts: 1) the hydrostatic pressure associated with the 
equilibrium stratification; 2) the mean pressure field associated with the mean flow (p); 3) the mean wave­
induced pressure (fJ w); which is steady on the short time scale; 4) and the perturbation wave-induced pres­
sure (p;0 ), which has zero mean. 

The effect of the wave field on the mean flow is given by the divergence of the various wave-induced 
fluxes on the right-hand side of the equations. If the fluxes are linearly related to certain mean flow gradients, 

au a 
Fa/3 = -vu 

ax/3 
(vu = horizontal eddy viscosity), (2.3) 

Fa3 = -vv 
au a 

ax3 

a6 

(vv =vertical eddy viscosity), (2.4) 

Ma = -Du­
axa 

(Du = horizontal eddy diffusivity), (2.5) 

where 
M3 = 0 for internal waves. (2.6) 

The indices i,j vary over 1-3; a, f3 vary over 1, 2. 
Then the mean flow equations are closed, and the 
effects of the wavefield on the mean flow are similar 
to the analogous molecular viscosity and diffusivity 
effects. The theoretical analysis by Muller (1976) 
suggests that in the limit of a local interaction, 
the relations above should be observable, with 

Vn = 7 X 104 cm2 s-1 , (2.7) 

Vv = 4 X 103 cm2 s-1 , (2.8) 

Dn = -2 X 104 cm2 s- 1• (2.9) 

The vertical eddy viscosity predicted by Muller is 
two orders of magnitude larger than the values 
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typically used in ocean circulation models, and so 
the effect may be important to both the mean flow 
and the wavefield. It is the observational verifica­
tion of this aspect of the interaction that is the 
primary concern of this paper. 

a. The "eff ective" wave stress 

The low frequency motions are, to a first approxi­
mation, geostrophically balanced (the MODE-l 
Dynamics Group , 1975) . As discussed by Muller 
( 1976) , the equation of motion for a quasigeostrophic 
flow is the potential vorticity equation . The effects 
of a field of internal waves on the quasi-geostrophic 
flow appear in the vorticity equation as 

wave which is locally plane in the horizontal is 
valid (WKB in the horizontal direction , to lowest 
order). Note that no assumptions about vertical 
scales are necessary as long as ii 3 is small. In what 
follows we shall drop the primes which denote the 
wave variables. 

We rotate the coordinate system so that the x, axis 
is aligned with the horizontal wavenumber component 
of a single wave [cos(k ,x, - wt) dependence] . 
The equation for the cross-wavenumber velocity is 
then 

Du 2 -- + fu1 = 0. 
Dt 

(2 .14) 

Defining quasi-Lagrangian horizontal particle dis­
(2 .10) placements, ~" by 

where 

So , in terms of their effect on a geostrophically 
balanced mean flow , the vertically acting momentum 
flux and horizontal buoyancy flux appear together , 
in what can be termed an effective stress. The 
buoyancy flu x might be thought of as the ability to 
tilt the isopleths of the mean flow field , and through 
the thermal wind relation, affect the mean shear in a 
perpendicular direction . Jones (1967) has shown 
T"3 to be proportional to the vertical flux of angular 
momentum of the wave , while Bretherton (1969b) 
has identified T"3 as the vertical flux of horizontal 
momentum across a material surface . 

b. The relation between R eynolds stress and" effec­
tive" stress 

The equations of motion for the fluctuating field 
are (Muller , 1976) 

Du~ 1 ap' 
--' + fEi3kuk- b'o;3 + - -
Dt Po ax; 

, a _ a 
+ uj - u; = --a (u ;u; - u[uj) , 

axj Xj 
(2 .11) 

D~" Dt = u", ~" = 0, (2.15) 

then it can easily be shown from (2.11) that 

(2. 16) 

where w0 = w - k ·ii (intrinsic frequency). 
We can now relate the buoyancy fluxe s, M i of the 

wave to the momentum fluxe s Fu: 

M 2 = u2b 

The two terms on the right in curly brackets were 
estimated from current meter observations (Rud­
dick, 1977) and found to be negligible compared to 
the first term, as they must be for self-consistency 
of the WKB approximation. Thus, 

f N 2 

M2 = --F13 · (2.18) 
Wo

2 Db ' 
2

, , ah a -
- - + N u3 + uj - = - - (u jb ' - ujb ' ), (2.12) Similarly, 
Dt axj axj 

where 
D a 

- =- + ii ·V. 
Dt at (2 .13) 

The terms on the right-hand side represent the 
effects of wave-wave interactions. These are a 
higher order effect and will be ignored here. Since 
the horizontal scale of the mean velocity field 
( -100 km) is much larger than the horizontal scale 
of oceanic internal waves ( =10 km), the concept of a 

(2 .19) 

Note that the reiationship between F 13 and M2 is dif­
ferent from the relationship between F 23 and M 1 • We 
can divide the wave into two parts: one involved in 
vertical propagation of ' 'effective' ' momentum (ray) 
and one which is not (mode) . 

The part of the wave associated with F 13 is ray­
like. The effective stress exerted by this part of 
the wave is 
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FIG. l. Actual (solid line) and effective (dashed line) vertical 
flux of horizontal momentum as a function of frequency, 
estimated from the Garrett and Munk (1975) model internal 
wave spectrum. 

(2.20) 

This part of the wave is associated with vertical 
phase propagation , vertical propagation of energy 
(Jones , 1967) , and in the case of a plane wave, is 
called a ray. 

The part of the wave associated with M 1 is 
modelike. The effective stress exerted by this part 
of the wave is 

(2.21) 

= 0. 

Hence the vertical flux of cross-wavenumber mo­
mentum F 23 is not associated with a vertical flux 
of vorticity . This part of the wave has the properties 
of a mode (i.e., no vertical energy flux) and is char­
acterized by a mass flux M 1 in the direction of the 
wavenumber. The mome ntum flux F 23 is due to the 
effect of the Coriolis force on the horizontal veloci­
ties , and represents a body force , 8F23/8x3 , which 
oscillates rapidly with depth, integrating to zero . 
(F 23 = 0 at top ; bottom and one or more inter­
mediate depths .) The theoretical formulation of 
Muller (1976) does not allow modes unless the orthog­
onality conditions [Muller , 1976, Eq. (2.37)] are 
altered to account for the phase-locking of upward 
and downward waves (Ruddick, 15177) . 

The multi-wave generalization of (2.20) gives an 
estimate of the effective wave stress 

(2 .22) 

where C"'3 is the cospectrum between u"' and u 3 • 

We have approximated w0 = w due to lack of in­
formation about the Doppler shift k · u. In the Ap­
pendix, we show that this term is small for waves 
comprising the Garrett and Munk (1975) spectrum, 
but we see in Section 4 that the Doppler effect 
is important for some waves observed in addition to 
that spectrum. In estimating the effective stress 
this way, we are ignoring the "noise" stress associ­
ated with the presence of modes. The cospectral 
density predicted by the Garrett and Munk (1975) 
model internal wave spectrum if the wave field 
were fully anisotropic is 

-- 2Eof 
(ui2ul)l f2 = -- w-' 

71'2N ' 

where E 0 = 30 cm2 s- 2
• The frequency dependence 

of the above cospectrum (solid line) and the quantity 
C"'3(w)(1j2/w2)(dashed line) are plotted in Fig. 1. The 
two integrands differ primarily near the inertial 
frequency. A fair estimate of T"'3 is attained using 

IN dwC"'3(w) 
21 

(2.24) 

(i.e. by eliminating the frequency rangef-2ffrom the 
integration). For the frequency dependence shown, 
this estimate is only 7% below the effective stress. 
The frequency range eliminated is strongly domi­
nated by inertial oscillations , which do not con­
tribute to the interaction, and the semidiurnal 
tidal motions, which are beyond the scope of the 
Muller theory. We denote the wave stress inte- · 
grated over the frequency range 2f-N as the 
"continuum band" stress; this is a fair estimate of 
the effective wave stress . The more conventional 
estimate , integrated from f to N, is called the 
"total band" stress. 

3. Data description and analysis 

The data used were a subset of the moored cur­
rent and temperature timeseries collected for the 
POL YMODE array I and array II experiments. 
POLYMODE is a joint U.S.- U.S.S .R. project 
whose scientific objectives are to study the kine­
matics and dynamics of low-frequency motions 
("eddies") in the North Atlantic Ocean. The Array 
I and II measurements were designed to study the 
geographical variation of kinematic properties of the 
eddy field, such as the strength and time scale. The 
location of the arrays and of the four moorings used 
in this study are shown in Fig. 2. The southern 
moorings, 545 and 543 , tended to have relatively 
slow currents: typically 5 em s- 1 or less. The two 
northerly moorings, 565 and 566, were in a region of 
stronger currents: typically 25 em s-1 • 

At each mooring, observations of temperature 
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MODE-l 

543 

565 
• 566 

PM ARRAY 2 

PM ARRAY I 545 

FIG. 2. Location in the North Atlantic Ocean of 
the moorings analyzed. 

and horizontal current were taken every 15 min at 
several depths throughout the deep ocean. (To 
avoid surface wave contamination, the top of the 
moorings were at least 500 m below the ocean sur­
face.) The resulting time series were typically 220 
days in duration, generally containing information 
about several eddies. The primary measuring instru­
ment used was the VACM (Vector Averaging Cur­
rent Meter1), which records a vector average of the 
current velocity measured during the preceding 15 
min period. 

a. Mean shear estimation 

The depths used for the current meters are shown 
in Fig. 3 (1 db pressure corresponds to -1 m depth). 
Also shown is a realization of the low-frequency 
shear profile measured by Sanford (1975) in the 
MODE-l region (see Fig. 2). The east component 
is on the upper left, the north is on the lower left. 
Recent computations (Sanford , personal communi­
cation, 1976) on this profile and on an independent 
profile indicate that - 95% of the current shear is 
in the first baroclinic mode which is shown to the 
right of the shear profiles for comparison. The 
best simple estimate of the thermocline shear is from 
a first difference of the uppermost and 1000 m mean 
(low-pass-filtered) velocities. Owens and McWil­
liams (1976, personal communication) estimate the 
rms error in shear measurement to be 20% for instru­
ments at the above depths. Assuming a local wave-

' Model 605 , American Machine and Foundry , Alexandria, 
VA22314. 

mean flow interaction, we expect the strongest 
mean shear, and so the largest wave stresses, to 
occur in the vicinity of the 1000 m instrument. 

b. Stress estimation 

The "wave" time series were obtained by sub­
tracting the low-passed time series from the original 
series and then analyzed using a method similar to 
that used by McWilliams (1972) and Frankignoul 
and Strait (1972). The data were broken into short 
pieces of 75 h length, which overlapped by - 50%. 
(The time origin of piece n + 1 was 37 h later than 
that of piece n.) Each piece was then fast Fourier 
transformed under a Hanning data window (full 
cosine arch) which was applied as a convolution 
filter in the frequency domain. The window allows a 
time resolution of -50 h, and is essential for pre­
venting spectral leakage from the energetic low 
frequencies to the higher frequencies. The vertical 
velocity was estimated in frequency space by 
assuming the temperature variations are primarily 
due to vertical advection 

(3.1) 

where the mean temperature gradient estimate is 

at 
f = - = C , + C2 T, 

ax3 

an exponential fit to the mean temperature profile. 
The u"u3 stress was estimated by integrating the 
a, 3 cospectrum over· the "continuum" (2f- N) 
and "total" (f- N) internal wave frequency bands . 
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FIG. 3. Profile of baroclinic mea n velocity obtained .by 
Sanford ( 1975) at left , with best-fit first baroclinic mode , at 
right , for comparison. The depths of the current meters on 
the moorings which were analyzed a re shown at the lower right. 

Details of the filtering, windowing and Fourier trans­
forming operations are given in Ruddick (1977). As 
a "by-product" of the analysis, the autospectra and 
cross-spectra of all other pairs of velocity com­
ponents were available as slowly-varying time series. 

c. Errors in stress estimation 

Surprisingly , the largest single error in a wave 
stress estimate is the random error associated with 
the fact that the stress estimate is a sample of a 
stochastic process. A rough estimate of the standard 
deviation of the stress estimates about the true 
value is given by Jenkins and Watts (1969) 

oF = (2utu3
2/n) 112 = 0.06 cm2 s-2

, (3.2) 

where n = 300 is the number of points in the data 

piece. This estimate is. rough, since it is based on 
the assumption that u 1 and u3 are uncorrelated 
white-noise processes. However, the two effects 
(Ruddick, 1977) arising from u 1 and u 3 being non­
white tend to cancel, so the estimate is at least 
correct in order of magnitude. 

The remaining errors in estimating the wave 
stress in this manner arise through the use of 
the simplified heat equation to estimate the verti­
cal velocity 

aT/ u3 =- & r. (3.3) 

These errors have been estimated in the Appendix. 
The estimated random (shear-independent) errors 
are 0.08 cm2 s-2

, while the systematic errors (pro­
portional to shear) could affect the eddy viscosity 
estimated by ±38 cm2 s-•. Thus only stress observa­
tions with statistically significant regressions and 
estimated eddy viscosities 0(100 cm2 s- 1) or greater 
can be considered as meaningful. 

4. Results 

The observations from moorings 543 and 545 
("quiet" moorings) are discussed separately from 
the more energetic moorings (565 and 566) be­
cause the former satisfy the conditions for validity 
of the Muller theory. At the latter moorings , the 
mean currents are higher than allowed in the Muller 
theory, and Doppler effects are likely to be im­
portant. 

a. Moorings 543 and 545 (slow mean current) 

1) STRESS-SHEAR RELATIONS 

The vertically-acting wave stresses were com­
puted from temperature and current measurements 
as described in the previous section, integrated 
over the total internal wave frequency band 
(j-N) to estimate the total wave stress, and inte­
grated over the "continuum" band (2f-N) to esti­
mate the "effective" stress. The stress time series 
were compared with the mean shear to check for a 
stress-shear relationship of the form 

F b
ali,. . 

,.3 =.a + - + (noise). (4.1) 
ax3 

Muller (1976) estimates that b (=vv) = 4000 cm2 

s-1 for the oceanic internal wavefield. The regression 
was performed allowing a = 0 and a =F 0, with 
insignificant change to the results. The uncertainty 
of the slope b was computed following Lyttkens 
(1963) using a method which allows for non-white­
ness and slight deviations from normality in the 
time series. 

A typical regression (mooring 543) is shown in 
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Fig. 4, in which the dots show a scatterplot of con­
tinuum band stress (y axis) versus mean shear (x 
axis) . The slope of the regression is shown by the 
thin solid line, and the scatter of the dots about this 
line corresponds with the estimated stress error 
( - 0.06 cm2 s-2). The estimated error bounds for the 
regression are shown as dashed lines . For compari­
son, the regression predicted by Muller (1976) (de­
creased by 7% to allow for " continuum band" 
underestimation) is shown as a heavy black line . 
From the relatively small scatter of the data, it is 
apparent that the stresses predicted by Muller 
would have been clearly observable had they oc­
curred-the "signal" would have been clearly 
observable above the "noise" . The observed 
stresses were an order of magnitude smaller than 
predicted by Muller. The regression in Fig. 4 yields 

b = 29 ± 112 cm2 s- 1 • (4.2) 

All the regressions of this sort (continuum and 
total bands) at moorings 545 and 543 were consistent 
with Vv = 0 ± 200 cm2 s-1 • 

Also shown in Fig.:...±z as crosses, are the continuum 
band estimates of (u 1

2 u 3
2) 112 , the lower half of the 

u 1 , u3 coherence . This is the absolute maximum 
stress the wavefield could exert if u 1 and u 3 were 
perfectly coherent. It is readily seen that there is 
enough energy (if the wavefield were made asym­
metric by the Muller interaction) to enable the 
wavefield to exert the predicted stresses. Only for 
shear in excess of - 10- 4 s- 1 would the wavefield 
find it impossible to exert the predicted stresses 
without becoming more energetic. 

2) OTHER REGRESSIONS 

The kinetic energy of the internal wavefield was 
also estimated as a function of time and compared 
with the mean speed and the shear intensity. There 
were no changes coherent with the mean flow, which 
is consistent with the small observed values of 
eddy viscosity. In a more general search for wave­
mean flow correspondence, regressions were at­
tempted which involved 1) other shear estimates 
(i.e . , 500-1000 m) ; 2) mean velocities; 3) average 
of 500 and 1000 m stresses ; 4) stress divergence; 
and 5) " total band" stress estimates . All regressions 
were negative. In addition , the horizontal mean 
density gradients were estimated from the verti­
cal shear (assuming geostrophy) , and compared 
with the " total band" horizontal buoyancy flu x. 
From this, a horizontal diffusivity of 

D H = 0 ± 6 x J0+5 cm2 s- 1 (4. 3) 

was estimated. Note that the error bars are an order 
of magnitude larger than the diffusivity predicted 
by Muller , so no conclusions about the diffusivity 
can be drawn. 
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FIG. 4. (Dots) Scatter plots of eas t wave stress (y axis) 
versus east mean shear (x axi s) estimated from the velocity 
difference across the thermocline . The eddy viscosity estimate 
is shown as a thin , nearly horizontal line , with error bounds 
indicated as dashed lines . The heavy solid line is the stress­
shear relation predicted by Muller ( 1976). (Crosses) Scatter 
plot of the maximum wave stress which the wavefield could 
exert if the horizontal and vertical velocities were perfectly 
coherent , plotted against the east mean shear. 

The vertical eddy viscosity estimates are con­
siderably below the theoretical values predicted by 
Muller. The predicted wave stresses should have 
been clearly observable, but were not. Possible rea­
sons for the discrepancy between theory and obser­
vation are discussed in Section 5. 

b. Moorings 565 and 566 (fast mean current) 

The mean velocity at these moorings was typically 
- 30 em s- 1 of the order of the phase speed of an 
internal wave. The expansion parameter 8wlw in 
the Muller theory was not small at these moorings , 
so the theory is not strictly valid . We also expect 
Doppler shift and associated effects (such as criti­
cal layers) to be important. 

1) STRESS-M EA N FLOW CORRE LAT IO N S 

Fig . 5 shows scatterplots of the continuum band 
north-vertical wave stress versus the north com­
ponent of the mean velocity, from mooring 565. 
The upper plot is the stress at 600 m depth , and 
the lower plot is the stress at 1000 m depth , both 
plotted against the 600 m mean velocity. The 600 m 
stress is positively correlated with the velocity, 
while the 1000 m stress is negatively correlated 
with the velocity. Both correlation coefficients are 
strongly significant , and a similar result holds at 
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stress versus 600 m velocity. R is the correlat ion coefficient 
obtained from the regression of stress on velocity. 

mooring 566. (Correlation coefficients exceeding 
0.35 are significant at the 95% confidence level.) 
In all cases, the stresses are more strongly correlated 
with the mean velocity than with the mean shear. 
Regression against the shear results in eddy 
viscosity estimates 

(Estimated) vv 

{ 
-100 cm2 s-1 at 600 m depth (±50 cm2 s-1) 

= +100cm2 s-1 at1000mdepth(±90cm2 s-1) (
4

.4) 

The change in sign with depth is not consistent with 
ideas of a local eddy viscosity nor with the ob-

. 
served changes in wavefield energy level, an ex­
ample of which is presented below. 

The mean flow at mooring 566 exhibited a non­
stationarity on a long (several months) time scale. 
For the first third of the 200-day record , the mean 
velocities were strong , typically 25 em s- 1

, and the 
shear was typically 1.7 x I0- 4 s- 1 • For the second 
third, they were - 6 em s- 1 and 4 x I0- 4 s- 1 • In 
Fig. 6 are shown two sets of spectra, with horizontal 
kinetic energy on the left and temperature on the 
right. The frequencies resolved cover the internal 
wave frequency band from 0.04 cph (near the inertial 
frequency) to 2 cph (near the buoyancy frequency) . 
The spectra computed using data from the first 
third of the record , when the mean velocities 
were quite high , are shown in dashes. The spectra 
computed using data from the second third of the 
record, when the mean velocity was slower , are 
shown as solid curves. Note that both the kinetic 
and potential energy levels of the wave-field de­
creased by a factor of 2 in association with the 
factor of 20 decrease in the mean kinetic energy. 
The wave energies increased again with the shear 
for the final third (not shown.) The changes are 
most pronounced at the higher internal wave 
frequencies . The particular data shown are from the 
600 m level on mooring 566. 

At both moorings 565 and 566, and at both the 600 
and 1000 m levels , the wavefield energy level was 
found (by means of regression methods) to vary 
with the intensity of the mean velocity and shear. 

The observed energy level changes at 600 m 
depth are inconsistent with the observed wave 
stresses at that level . The rate of working of the 
wave stresses against the mean shear, 

dE -
-wave= -(u"'u3)8u,,Jax3 
dt 

(4.5) 

shows that energy is transferred from the wave­
field to the mean flow at the 600 m level if the wave 
stresses are as observed. When the mean shear in­
creases, the wavefield energy level ought to de­
crease, but the opposite is observed. It is suspi­
cious that this inconsistency should occur at the 
600 m level, where mean velocities tend to be the 
strongest. This leads one to suspect that Doppler 
effects, discussed below, are affecting these ob­
servations. We now mention a few simple rules 
relating the vertical energy flux , and the true and 
temperature-observed momentum fluxes of a single 
internal wave. These will be helpful in interpreting 
the above observations. 

2) DOPPLE R E F F ECTS ON T H E ST RESS ESTIMAT ES 

As in Section 3, we assume a wavelike de­
pendence proportional to exp - i(k 1x 1 + k2x2 - wt ). 
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Then from Eq. (3.4), allowing for the Doppler­
shift term , we have from Eq. (3 .12) 

(4.6) 

where subscription M indicates the stress observed 
using the temperature. Hence the Doppler shift can 
change the sign of the stress, as observed using 
temperature, from its true value according to 
k, ii ~ w. We view this wave as an addition.al signal 
to the isotropic background spectrum, since in the 
Appendix we showed that Doppler effects on the 
background spectrum are weak. 

Jones (1967) investigated the propagation of hori­
zontally plane waves in a geostrophic vertical 
shear flow. From his equations (his k is minus our 
k) it is easy to show 

pu3 = Wo (UaU3 + Ef3a3 ~/3u3), (4.7) 
ka 

(no a summation; a either 1 or 2) 

where ~13 is defined by (2.15) as a Langrangian 
particle displacement. From Eqs. (2.17) and (2.18) 
we obtain, considering vertically propagating waves, 

(4.8) 

(4.9) 

(again, no a summation) 

Note that the above relations are for a single wave 
and do not allow a unique interpretation of the sign 
of the dominant energy flux or phase speed of 
many waves. A field of waves with both upward 
and downward propagating waves can give rise to a 
Reynolds stress of either sign, with the net energy 
flux and momentum flux not simply related. It is 
possible to find more than one interpretation that 
is consistent with the observations. We shall look 
for the simplest one, hypothesizing waves with a 
single, dominant wave phase speed. 

Suppose that the waves which are causing the ob­
served stresses at the 600 and 1000 m levels have 
the same horizontal phase speed . We define co­
ordinates such that the mean shear is in the x 1 

direction; then we have observed F~~ > 0 at 600 m 
and F1~ < 0 at 1000 m, correlated with the mean 
shear. Denoting C = w/k 1 as the component of phase 
speed in thex 1 direction, Eq. (4.9) becomes for a= 1 

w0
2

- f2 F1'~ 

kl 2 c ( 4.10) 

Then, since C is assumed the same at both levels , 
pu 3 must have opposite signs at 600 and 1000 m. In 
other words, if the observed stresses are caused by 
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FIG. 6. Horizontal kinetic energy and temperature spectra 
from data nos. 5661 , computed from two times : piece I (dotted 
line) iirms = 25 em s- 1 9 May to 24 July 1975; piece 2 (solid 
line) ii ,ms = 6 em s- 2 23 July to 2 October 1975. 

waves of a single horizontal phase speed, then the 
vertical energy flux associated with these waves 
must be either into or out of the region between 
600 and 1000 m. 

If the energy flux is in , C must oppose u. The 
only simple wave-mean flow interaction that occurs 
in that case is reflection about the vertical at a 
level where w0 = +N(z). Since this interaction re­
sults in vertical symmetry and zero net vertical 
energy flux, it cannot be the cause of the ob­
served wave-mean flow correspondences. 

A net energy flux out of the shear zone is con­
sistent with the observed wave stresses if C is in 
the direction of u. The simplest picture consistent 
with both the energy and stress observations is 
one of internal wave generation at the region of 
maximum shear, located between the 600 and 
1000 m levels. For gen·eration to occur, the shear 
Richardson number must be below 0.25, and yet 
the large-scale Richardson number was rarely below 
50. There are three ways in which wave genera­
tion may still occur and each of them may be im­
portant in the ocean: 

1) Shear-finestructure interaction: Stewart (1969) 
and Scorer ( 1969) argued that the shear tends to be 
concentrated at regions of high density gradient, 
such that the local Richardson number is much 
smaller than the large-scale value . Scorer goes on 
to describe how the density structure can be sus­
tained by interaction between the shear and the 
fi nestructure. 

2) The shear can be enhanced by the (intermit-
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tent) presence of inertial oscillations. There are 
hints in the observations of enhanced wave genera­
tion associated with inertial "events. " 

3) Neutrally stable "cat's-eye" billows (over­
turning regions) , maintained by the shear flow 
(Maslowe, 1973) may cause a disturbance to the 
mean flow, leading to generation of internal waves 
in much the same manner as generation of lee 
waves by flow over obstacles. 

Each of the above mechanisms leads either to 
Kelvin-Helmholtz billows or patches of turbulence 
which are advected by the mean flow . The shear 
flow relative to these will generate internal waves 
which propagate vertically away from the disturb­
ances. The generated waves will have horizontal 
phase speed equal to the speed of advection of 
the generating disturbances. We now consider in 
detail the hypothesis of internal wave generation at 
the shear zone. 

A picture of the wave generation process which 
is consistent with the observations is the following. 
We consider a positive u1(z), increasing upward 
and denote the mean- velocity at the level of maxi­
mum shear by U9 • At this level , the shear causes 
and/or maintains turbulent patches which are ad­
vected at speed U9 • The shear flow relative to the 
patches cause " lee" waves to be generated which 
are stationary in a frame of reference moving at 
Uy (see Fig. 7). If we adopt the sign convention 
that w is positive, then k1 = w/Ug is also positive. 

The wave with downward energy flux (negative 
pu3) has positive intrinsic frequency, since w0 

= w- k 1u1( z) and ii 1(z) < U 9 • From Eqs. (4.8) 
and (4.9), the wave exerts a negative Reynolds 
stress and a pegative stress is measured. The wave 
which travels upward is in a region where u 1(z) 
> U9 and has negative intrinsic frequency . From 
(4.8) the stress exerted by the wave is negative, 
but from (4 .9) the stress measured is positive. The 
Doppler effects in the temperature measurement 
have changed the sign of the measured stress for 
this wave, since the advection velocity is greater 
than the horizontal phase speed. Note that both 
the upward and downward traveling waves exert a 
negative Reynolds stress, thus effecting a transfer 
of mean momentum from above the shear zone 
to below it. 

Since the mean velocity tends to be about twice 
the velocity at maximum shear, then by Eq. (4.6) 
the magnitude of the observed stress is about the 
same as the true value, and so we estimate 

vv = + 100 cm2 s- 1 at 600 m and LOOO m, (4.11) 

i.e., both the upward and downward waves transfer 
.positive momentum downward. The negative eddy 
viscosity estimate (4.4) is in error because of the 
Doppler effect. 

The positive eddy viscosity estimate at 600 m 
is consistent with the observations of wavefield 
energy increase with shear intensity. A wavefield 
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energy model suggested by Frankignoul (1976) 
balances the energy input through the working of 
the wave stresses against the shear by dissipa­
tion processes modeled as - EfT , where Ti s a relaxa­
tion time for dissipative processes. Thorpe (1975) 
estimates T- 9 days . For the changes !1 £ of wave 
energy level observed , the model yields 

/1£ - V vT- · 

I 

au 1

2 

ax3 
( 4.12) 

Substitution of the values vv = + 100 cm2 s- 1
, 

T = 10 days, lau/ax312 = I0- 7 s- l suggests !J.E 
= 9 cm2 s- 2 , the same order of magnitude as the 
observed energy level change (9 cm2 s- 2 for the 
continuum frequency band, 26 cm2 s- 2 if the inertial 
frequencies are also included in the estimate.) The 
calculation is inexact because the estimate for T is 
only approximate, and because the eddy viscosity 
may be underestimated due to attenuation of the 
wave stresses before the waves reach the observa­
tion levels . 

The temperature spectrum in Fig . 6 shows that 
the wave energy level changes were greatest at 
periods of 1 to 8 h. This is , in fact , substantiated 
by performing the stress-mean velocity regres­
sion using stress estimated as a function of wave 
frequency (the u 1 - u 3 cospectrum) , in which the 
correlation is strongest at the above periods . Tak­
ing a typical Uq of 10 em s- 1

, we can estimate the 
length scales of the generated waves. Setting C 
= w/k = 10 em s- 1, and substituting w correspond­
ing to 1-8 h periods in Eq. (4.7), we find that the 
horizontal wave lengths are between 400 m and 3 
km , somewhat shorter than the dominant waves 
in the Garrett-Munk spectra. 

5. On the theory of wavefield-mean flow interactions . 

As discussed in Section 4a , the conditions for 
validity of the Muller theory were satisfied at 
moorings 545 and 543 , and the mean shear was 
sufficiently strong that the predicted wave stresses 
should have been clearly observable above the 
noise level. Yet no wave stress-mean shear correla­
tions were observed , leading to the conclusion that 
the vertical eddy viscosity is at least a factor of 20 
smaller than the predicted value. Under conditions 
of shear so intense that a correlated stress signal 
is observed, the observations are inconsistent with 
the predictions of the Muller theory. Whatever 
interaction occurs between the internal wave-field 
and the low-frequency flow is both different in na­
ture and weaker than the interaction predicted 
by Muller. 

In their investigation of some of the detailed ef­
fects of nonlinear interactions among a spectrum of 
internal waves, McComas and Bretherton (1977) 
touch on several possible reasons for the Muller 

interaction being weaker than predicted. One effect, 
denoted elastic scattering, describes the back­
scattering of a wave into its counterpart with the 
opposite vertical wavenumber by inertial frequency 
waves which have a vertical wavelength equal to 
half that of the scattered wave. At frequencies 
higher than inertial , the effect forces the wave­
field toward vertical symmetry, and so attenuates 
any vertical fluxes of wave momentum set up in re­
sponse to a mean shear. McComas and Bretherton 
also discovered that some of the relaxation proc­
esses act very strongly to maintain equilibrium, 
so the relaxation time may be much shorter than 
that used by Muller. The choice of a representa­
tive relaxation time and of its wavenumber de­
pendence is not obvious, but has a direct effect on 
the predicted strength of the interaction . McComas 
and Bretherton also point out that the GM76 spec­
trum, when written in terms of action density, 
has no vertical wavenumber gradient over much of 
the domain, and so in the Muller formalism should 
not be affected by a vertical shear. However, 
Muller shows that the vertical wavenumber de­
pendence in the interaction integrates out, be­
coming independent of the distribution of wave 
energy in wavenumber space. This is true even 
for a spectrum which is white over part of the 
wavenumber range , and so one would expect that 
the Muller interaction should still occur. 

An assumption implicit in the Muller theory is 
that the equilibrium wavefield, used as the basic 
state for a perturbation expansion , is independent 
of the mean flow , so that shear induced perturba­
tions to the wavefield will tend to relax to the orig­
inal (u = 0) spectral shape. By using a particular 
source term (induced diffusion) , which McComas 
and Bretherton have indicated dominates much of 
the spectrum, we will show by example that it is 
conceivable for the equilibrium wave state to depend 
on the mean velocity through the dispersion rela­
tion. This somewhat subtle difference drastically 
alters the strength and sense of the predicted 
momentum exchange, leading to a zero or nega­
tive vertical eddy viscosity , rather than the large 
positive value predicted by Muller. Therefore, the 
predictions of the interaction theory are very sensi­
tive to the details of the processes which main­
tain the equilibrium spectrum. 

a. The radiation balance equation 

The basis for the theory of interaction between 
the internal wavefield and a larger scale mean flow 
is the radiation balance equation (Muller and 
Olbers , 1975). The equation governs the time, 
space and wavenumber evolution of the wave ac­
tion density spectrum, YJ(k ,x ,t) 

(5.1) 
where 
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a a . a 
2 =- +x - +k -

at ax ak 

an 
x= -

ak 

an 
ax 

w0 = w- k·u 

YJ = Elw0 

E(k,x,t) 

The Liouville operator on the left side of (5.1) 
comes from the conservation law for wave action 
(Bretherton and Garrett , 1968) applied to a random 
field of waves. The source term Y represents, in a 
statistical sense, the increase or decrease in wave 
action density due to interaction with other waves, 
interaction with external fields, dissipation , etc . Y 
is a catch-all for the nonconservative processes 
which affect the wave in its travels. In his study of 
the effects of wave-wave interactions, Olbers 
(1976) introduced a valuable concept which char­
acterises the source term in a simple way: the 
equilibrium spectrum is determined by statistically 
irreversible processes such as resonant interactions, 
and deviations from this state will decay irre­
versibly toward equilibrium at a rate predetermined 
by the details of the process . The time scale 
of this decay is the relaxation time Tn· 

b. The Muller theory 

For the purposes oflater discussion , we briefly de­
scribe the assumptions and the perturbation expan­
sion used by Muller (1977). 

Muller regarded the solution of the radiation 
balance equation in the absence of mean flow as 
the equilibrium state YJo· He expanded the problem 
in a series, regarding as perturbations all changes 
in the solution and operators which are due to the 
mean flow 

2 = 2 0 + 82, (5.2) 

YJ = YJo + Y/1 + . . . ' (5.3) 

8Y 
.], (5.4) Y = Y(YJo) + - [YJI + 

OYJ 
where 

a aDo a aDo a 
.To =-+--

ax ax -ak' at ak 

Liouville operator 

group velocity 

rate of refraction 

intrinsic frequency 

wave action density 

wave energy density . 

_ a auj a 
8£' = U ; -- ki - -

ax; ax; ak; 

The lowest order balance 

.To( YJo) = Y ( YJo) (5 .5) 

gives the equilibrium state, regarded as known . The 
problem at first order is 

oY 
£'o(YJI) + 8£'(YJo) = - [YJI]. (5.6) 

OYJ 

At this point , Muller made a relaxation time ap­
proximation 

- = -TR-I · (5 .7) 
OYJ 

The effect of this assumed form of the source term 

oY YJ - YJo 
- YJI = -
8YJ Tn 

(5.8) 

is to cause the spectrum to relax to the original 
(u = 0) spectrum with time scale Tn. Muller then 
finds that the balance between mean flow induced 
perturbations to the propagation characteristics 
(distorting the spectrum) and the above relaxation 
effects cause wave stresses which oppose the shear. 
Since the predicted eddy viscosities vanish as 
Tn ~ oo, the relaxation effects are necessary for the 
interaction to occur. Because of the form of the 
perturbation source term (5.8), Muller has im­
plicitly assumed that the equilibrium state is inde­
pendent of the mean flow , and that relaxation ef­
fects will drive the spectrum toward this state, even 
in the presence of shear. However, if the equilibrium 
state can depend on the shear flow through the dis­
persion relation, the shear-altered spectrum is by 
definition in equilibrium, and so the relaxation 
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term (5 .8) is absent. In this case, the interaction 
is much weaker. We will. now demonstrate that such 
a "flexible" equilibrium state is possible. 

c. A simplified alternative theory 

We will consider the greatly simplified problem 
of a wavefield in a simple shear flow ii(xa,t), so 
that the dependence on x 1 and x 2 drops out of the 
problem. For a particular form for the relaxation 
term S , we will show the following: 

• The wavefield described by the solution to the 
radiation balance equation (5.1) for a steady mean 
flow ii(xa) has nondivergent momentum flux, 
and so is in equilibrium with the mean flow. This 
noninteracting state is in contrast to the interac­
tion predicted by Muller for the same situation. 

• The solution will continually adjust to a slowly 
varying mean flow, ii(xa,t) remaining nearly in 
equilibrium. Since the deviation from equilibrium 
is much smaller than that envisaged in the Muller 
theory, the interaction is much weaker. 

The particular relaxation mechanism we will use 
is from McComas and Bretherton (1977), who 
showed that over much of the internal wave spec­
trum (w;;::: 2/, k ;;::: 10 km- 1), the dominant effect of 
wave-wave interactions · is represented by a dif­
fusion of wave action in vertical wavenumber space 

(5.9) 

where 

a33 = 2(10)- 5 s- 1 1!:!._ !:.!_ lk32 

f kg' 

is the diffusion coefficient, and kg' = 6 km- 1 is the 
vertical wavenumber scale for the GM75 model. The 
internal waves have been approximated by Mc­
Comas and Bretherton as hydrostatic (w2 ~ N 2), 
and for this mechanism the inequality w2 ~ J2 is 
true. Therefore, .a valid approximation to the dis­
persion relation is 

(5 .10) 

When written in terms of k and V3 = aD/aka, the 
diffusion coefficient becomes 

aaa = -2(10)- 5 sec- 1[N:f- 1(k12 + k22)(kJ)- 1]sVa-1 

= F(k 1 ,k 2 ,z)Va-1
, (5.11) 

where V3 , the vertical group velocity, is 

an N(k 12 + k22)1 '2 
Va = - = -s -~--..::.....:.-

ak3 kl 

s = sign(k3 ) . 

We suppose that the source term (5.9) is the 
dominant one , and that the mean flow is a function 

only of time and k 3 • Then the radiation balance equa­
tion is greatly simplified: 

aYJ an aYJ an aYJ a ( aYJ) (5 _12) 
& + aka ax3 - ax3 aka = ak3 a

33 ak3 . 

For a steady mean flow ii(x3) the coefficients in­
volving n will also be steady, and so (5 .12) will have 
a steady solution obeying the equation 

an aYJ 

ax3 ak3 

= ~(-s F(k 1 ,k2,xa) ~) 
ak3 Va ak3 

(5.13) 

With the change of independent variables from 

w = n(k3,x3)} 

z = x3 

(5 .14) 

Eq. (5.13) becomes 

aYJ a2YJ 
- = -sF(k 1 k2 z) -- . az ' ' aw2 

(5 .15) 

This is a diffusion equation in which the diffusion 
coefficient F depends on the timelike variable z. For 
well-posedness, the boundary conditions at the top 
should apply to downward propagating waves, and 
those at the bottom to upward propagating waves. 
This is so the boundary layers decay in the direction 
of wave energy propagation. 

Superposing solutions obtained by separation of 
variables, the solution to (5 .15) is (in terms of ka, x 3 ) 

YJ = ~ exp( -sn 2 J dzF) 

x (A, sinnn + B, cosnn) + C + Dn, (5.16) 

where the various n (dimensions w- 1
) are separation 

constants chosen to form a complete set of func­
tions (such as a Fourier series). The constants A,, 
B "' C, D are chosen to fit the (unknown) boundary 
conditions . The An and B" terms decay away from 
the boundaries, representing an adjustment of the 
wave action flux input at the top and bottom to the 
diffusive equilibrium solution of the oceanic interior: 

(5 .17) 

Referring back to (5 .15) and using (5 .1 0), we see that 
the decay length of the adjustment is approximately 

w2F - 1 = fk~"/(2 x 10-s s- 1 kD 

= 3kg'!k§ . (5.18) 

At k 3 = 6 km- 1 (1 km vertical wavelength), the 
scale is 500 m, and the scale rapidly becomes 
shorter with decreasing wavelength. This is a very 
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rapid adjustment to the interior equilibrium solu­
tion (5.17). 

Note that the equilibrium state is flexible ; it 
depends implicitly on the mean flow through the 
'dispersion relation. A change in the mean flow af­
fects the dispersion relation, the propagation char­
acteristics, and so the equilibrium state. Because 
of this, any equilibrium solution of the form 7Jv(11), 
such as (5.17) , represents a solution with a constant 
(with depth) vertical flux of wave action, and so 
has a nondivergent effective momentum flux (which 
is equal to the horizontal wavenumber times the 
action flux). To see this, we compute the divergence 
of the effective vertical flux of momentum 

d 
-Tla 
dxa 

= d:a I I I dakk1 Va7Jv(kl,kz,11(k,xa),s) 

d J"' I"' JN+k·ii =- dk 1 dk 2 dw 
dxa -oo - oo f+k·ii 

X L k1S7Jv(k t ,kz,w,s) 
s 

au 
X (k 1, k2,f + k·u, +1)k·-. (5.19) 

ax a 

(We have assumed vertical symmetry (reflection) at 
w- k ·u = N;absorptionatw- k· u =f.)Theonly 
flux divergence is due to critical-layer absorption. 
The strength of this effect has been estimated using 
the GM76 spectrum (Ruddick, 1977) to be ap­
proximately 

(5.20) 

where 
V = 0.0028 em s-1 = 2.4 m day- 1 • 

Based on the shear profile of Fig. · 3, this stress-shear 
relation corresponds roughly to a vertical eddy 
viscosity of -100 cm2 s-1 • V is also the velocity at 
which the mean shear profile would move down­
ward due to wave momentum absorption , if all 
other effects were absent. Critical-layer absorption 
is a fairly weak effect. The signature of critical-layer 
absorption was not observed at any of the moorings 
studied. 

U)lder the assumptions of the Muller theory, 

the steady interior solution (5.17) would be ex­
pected to exert a steady and strong back interac­
tion on the mean shear. Except for critical layer 
effects, ignored in the Muller theory, the wave­
field (5 .17) does not exchange energy and mo­
mentum with a steady mean flow. 

However, the mean flow changes with time. The 
wavefield must adjust to these changes, and in so 
doing will interact with the mean flow. For a mean 
flow which changes slowly enough , the following 
heuristic argument will estimate the strength of the 
adjustment process. 

Consider a slowly varying mean flow , and a 
wavefield in equilibrium with it. We model the 
changes to the mean flow by large changes ou 
= O(u) spaced at intervals T ;.> T, where T = a:;lk§ 
is the relaxation time for the wavefield. After a 
change ou, the wave field decays toward the equi­
librium state represented by (5 .17) and approaches 
this state with timescale T. During this decay, the 
wave field interacts with the mean flow in the 
manner described by Muller, with ou replacing 
u. The interaction stops after a few relaxation 
times, but the next perturbation to the mean flow 
is not for time T. We note the following: 

• The average effect on the mean flow is weaker 
than predicted by the Muller interaction by a 
factor TIT, the fraction of time the interaction 
is occurring. 

• If the mean flow stops changing the wave field 
will, in timeT, relax to the equilibrium state (5 .17). 
The interaction will then stop . 

The mean flow actually changes smoothly and 
steadily on a timescale TM ;.> T. We then expect the 
solution to (5.12) to vary (after decay of initial 
transients) on the same time-scale. Accordingly, 
we expand the solution in a regular perturbation 
series allowing for variation on the slow time scale 
T. The small parameter used for the expansion is 
E = T!T,\1 . Thus, 

a a a 
2 - ~ - + E - + O(E ), 

at at aT 
(5.21) 

7J = 7Jo + E7J1 + 0(E2
), (5 .22) 

The problems for the lowest two orders are then 

an a7Jo an a7Jo a ( a7J o) 
aka axa - axa aka - ak3 aa3 ak3 = O, 

(5.23) 

(5 .24) 

The zeroth-order problem (5.23) is equivalent to 
the problem for a steady · mean flow (5 .13). This 
simply means that for T ;.> T, the wavefield sees 
the mean flow as steady. The lowest order solu-
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tion C'YJo) is given by (5.16), and by (5.17) away 
from boundaries . The earlier discussion for the 
solution (5 .17) is also valid for 'Y/o· 

To lowest order, the wavefield is in equilibrium 
with the mean flow , not interacting with it. The 
wavefield is also " flexible " in that it continually 
adjusts to a changing mean flow. 

The interaction occurs at first order, in the 
problem for 7J 1 • The forcing ·term in (5 .24) is 

a'YJo = - a'YJo k . au 
aT an aT 

(5 .25) 

Thus the forcing term is due to the necessity of the 
zeroth-order wavefield to adjust to the changing 
mean flow. Since 7J 1 = 'YJ - 'YJo = D.'YJ from the 
Muller theory , the forcing term m (5.24) may be 
written 

a'YJo D.'Y} 
- - = - (5 .26) 

aT TM 

The interaction (5 .24) is essentially the Muller 
interaction with the perturbation D.'YJ replaced by the 
deviation from the flexible equilibrium state . Com­
paring (5 .26) with the similar term (5 .8) from the 
Muller theory, 

'YJ - 'YJo 
(5 .27) 

T T 

we find that the forcing term is smaller by a fac­
tor of TM!T = 50. The interaction described by (5 .24) 
results in stresses a factor of 50 smaller than those 
predicted by the Muller theory . This is because 
the equilibrium state is allowed to vary with the 
mean flow , so the deviations from equilibrium 
are much smaller. 

d. Remarks 

The preceding theoretical arguments are not 
meant to be a replacement for the Muller theory·. 
They hold true fo r one particul ar relaxation mech­
anism, and were meant onl y to demonstrate in 
concrete terms the possibil ity of a fle xible equi­
librium spectrum. This noninteracting property 
may not hold true for all relaxation mechanisms 
which act on the internal wavefield . A perhaps 
more likely reason fo r the apparent absence of 
interaction in the observational data is the extremely 
short relaxation .times predicted by McComas 
and Bretherton (1977). These lead to a much 
weaker interaction than originally predicted by 
Muller. It is possible that the interaction does 
occur but is too weak to be observed. 

However, the idea of a flexible equilibrium state 
for the wavefield is not so speculative as it may 
seem at first sight. The " principle of detailed 
balance" in the kinetic theory of gases states 

(when translated to the wave problem) that the 
spectrum is in equilibrium when the net effects of 
the source mechanism cancel. This implies a sepa­
rate balance in the radiation balance equation 

::t(n) = 0} . 
Y (n) = 0 

(5.28) 

Muller and Olbers (1975) have suggested this as an 
approximate balance for the internal wavefield. It 
is also the balance assumed by the flexible equi­
librium solution (5 .17). For a steady mean flow, 
the equilibrium solution to (5.28) is 

'Y](k ,x) = 'Y][fl(k,x)]. (5 .29) 

An equili brium state of this form is consistent with 
free propagation of internal waves . It was shown in 
(5.19) that this equilibrium state cannot inter­
act with a mean vertical shear. 

As discussed by Muller and Olbers, a conse­
quence of the separate balance in (5 .28) is that the 
waves appear to be propagating freely , and so the 
wave field energy levels and length scales will vary 
according to the WKB approximation. This is true 
of the equilibrium forms (5.17) and (5.29) [trans­
forming 'YJ to E(k 1,k2 ,w,x 3) shows this], and has 
been observed in oceanic internal wave spectra 
(Leaman , 1976; Briscoe , 1975). 

Another point about the diffusive equilibrium 
solution (5.17) is that for zero mean flow it re­
duces to the diffusive equilibrium solution of 
McComas and Bretherton [1977 , Eq . (25)]. Using 
the dispersion relation (5 .10), the solution becomes 

(5.30) 

As pointed out by McComas and Bretherton, 
this form is realistic in that it matches the high 
wavenumber region of the empirical GM75 and 
GM76 spectra. 

Thus , a flexible equilibrium state such as (5.17) 
is plausible for the three following reasons: 

I) It is related to the " principle of detailed 
balance" which implies the separate balance (5.28) 
suggested by Muller and Olbers. 

2) The separate balance implies that the equi­
librium spectrum should sca le in the WKB manner , 
as the oceanic spectrum has been observed to do. 

3) The high wavenumber regions of the GM75 
and GM76 spectra are close to the form described 
by the equilibrium spectrum . 

It is not clear that the oceanic equilibrium spec­
trum must be flexible-only that it might be . 
Since a change in the form of the relaxation 
mechanism changes entirely the predicted strength 
of the wave-mean flow interaction, it is important 
to understand the mechanisms which shape the 
equilibrium wavefield. 
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6. Conclusions 

The primary conclusion to come out of this work 
is a negative one: the interaction between the inter­
nal wavefield and the mean vertical shear flow is 
very weak , a factor of about 30 weaker than the 
theoretical prediction of Muller (1976). The esti­
mated wavefield Reynolds stresses at all four 
~oori~gs analyzed indicated that the vertical eddy 
viscosity was less than 200 cm2 s- 1 in magnitude. 
At two of these moorings , the conditions for 
validity of the Muller theory were satisfied, and 
the wave stresses should have been clearly ob­
servable under the conditions of measurement. 
The stresses were much smaller than predicted, 
however, and not correlated with the mean shear. 
The observed changes in energy level were con­
sistent with the findings of a very weak interaction. 

Theoretical investigation of the interaction of the 
internal wavefield with a steady vertical shear 
flow demonstrated that it is possible for the wave­
field to have an equilibrium, steady state which 
is consistent with free vertical . propagation of the 
waves , and so gives many of the WKB characteris­
tics [strong inertial peak , change in energy level 
with N(z)] which have been observed. This 
equilibrium state is free to distort with the wave­
field characteristics , and except for critical layer 
effects , does not exchange momentum with the 
shear. This is in contrast to the equilibrium state 
pictured in the Muller theoty, in which the wave­
field attempts to return to its old , nonshear, state 
and in so doing, exchanges momentum very 
strongly with the mean flow. The only interaction 
of our equilibrium state with the mean shear 
comes in through the effects of critical layer ab­
sorption. The maximum expected strength of this 
effect was estimated, and found to be (for a 400 m 
thick shear zone) roughly equivalent to a vertical 
eddy viscosity of -100 cm2 s- 1• No evidence to 
support the hypothesis of critical layer absorption 
was found in the observations. 

No conclusions could be drawn about the hori­
zontal eddy viscosity aspects of the Muller theqry; 
the mechanisms which shape the spectrum are 
probably different in the horizontal and vertical 
wavenumber directions (note that all the MB 
interaction mechanisms act in the vertical wave­
number direction) , and so the nature of the crucial 
relaxation processes is likely to be different. 
Another difference between the horizontal and verti­
cal directions is that, to a large degree , the wave­
field is forced at the top or bottom boundary in a 
horizontally homogeneous fashion , and the propaga­
tion effects most strongly fe lt by the wavefield 
are in the vertical direction . Horizontally homo­
geneous forcing of a horizontally inhomogeneous 
medium will lead to horizontal energy and mo­
mentum transfers . · 

At the two moorings with more energetic low-

frequency fields, significant correlations of the 
wave stresses and energy levels with the mean 
flow were observed. These were inconsistent with 
ideas of a strictly local "eddy viscosity " type of 
interaction , involving primarily waves from the 
equilibrium spectrum. The correlations of energy 
and stress were instead consistent with generation 
of short internal waves of intense shear in the re­
gion of the main thermocline at - 800 m. When 
the large-scale shear ;:;::2 x I0- 4 s- 1 , the observed 
stresses are roughly proportional to the shear re­
sulting in an inferred vertical eddy viscosit~ of 
- 100 cm2 s- 1. This value for the eddy viscosity 
may be underestimated by up to a factor of 2 be­
cause of error in the shear estimation, and the 
tendency for the wavefield to become vertically 
symmetric (McComas and Bretherton, 1977) which 
is not considered here. 

So we m~y conclude that, on the average , the 
mean flow. IS a so_urce for internal wave energy, 
b~t a _relatively mmor one. From a vertical eddy 
VISCOSity of 100 cm2 s- 1, and a shear of 2 x J0-4 s- 1 
over the 400 m of the main thermocline, we estimate 
a depth-integrated energy input to the internal wave­
field of 0.16 erg cm- 2 s- 1, or - 16% of the tidal 
energy input estimated by Bell (1975). The dominant 
source (if there is one) has not been discovered . 
Experim~nts will have to gravitate to more likely 
source sites, such as the top, bottom and edges of 
the waveguide. 
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APPENDIX 

Errors in Wave Stress Estimates 

The full heat equation is 

aT _ 
- + u·VHT + u·VHT + fu3 
at 

+ (u·VT- u·VT) = KV2T. (AI) 

The approximate size of the neglected terms will 
now be estimated. 

We substitute "typical" wave dependence 
expi(k ·x - wt), multiply the equation by u 1 , and 
rearrange, denoting ~ = T/ f, to obtain 

u1u3 = iwu 1 ~ - i(k ·u)u 1 ~ 
CD . ® 

f - 2 au2 f .-- aij1 
- - u1 - + - u1u2 -

N2 ax3 N 2 ax3 
@ @) 

- [k1U1 2~ + k3u1u3~] + Kk32 ~u 1 • (A2) 
® ® 

It has been assumed that the mean flow is geo-
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strophic, and the mean isotherms and isopycnals 
are parallel, so that 

at f au/3 
- = fEa/33-- . (A3) 
ax"' N 2 ax3 

''Typical'' internal wave values substituted for the 
terms in Eq. A2 above are as follows: 

u 1 = 5 em s-1 , N = 2 cph 

u3 = 0.1 em s-1, 
f 
N 

1/50 

K = 1.4 x I0-3 cm2 s- 1 

k1 = 8 X IQ-S cm- l }bandwidths from 
k 3 = 1.2 x I0-4 cm- 1 Miiller (1976) 

. (A4) 

Starting with term 6, we will now estimate the size 
of the neglected terms, and compare them with a 
typical stress magnitude of 0.1 cm2 s- 2

• 

Term 6 measures the effect of molecular dif­
fusion of heat on the stress estimates. Direct sub­
stitution gives 

term 6 = 6 x 10- 10 cm2 s- 2
• (A5) 

This term is miniscule. 
The effect of wavefield nonlinearity is measured 

by term 5. If we define R 3 = u 1 u 3 ~/(u 1 2u32 f!) 112 as 
the triple correlation coefficient, then 

term 5 = R3 lu1llu 3 II~IR 3 
= 0.04 cm2 s-2 R 3:... (A6) 

R 3 is zero for either a linear (Gaussian) wavefield 
or a horizontally isotropic one. Since the internal 
wavefield appears to be both of these (Briscoe, 
1977; Wunsch, 1975b) we expect R 3 to be small, 
perhaps 0.1. In that case, term 5 = 0.004 cm2 s-2 , 

a negligible effect. Note that if the wavefield were 
to become strongly nonlinear and directional, a 
moderate stress error could be induced. 

Terms 3 and 4 arise because of horizontal ad­
vection of temperature by internal wave velocities 
across the tilted mean isopycnals. The terms were 
directly measured, assuming geostrophy, and found 
to be 5% or less when compared to the stress terms. 
However, since the errors are proportional to the 
mean shear, systematic errors can be induced in 
the eddy viscosity estimates. For term 3 we find, 
by direct substitution: · 

au2 
term 3 = -150 cm2 s-1 • - (A7) 

ax3 

This error affects the relation (if any) between 
U1U3 and au2/ax3; it does not directly affect the 
eddy viscosity estimates. Because u 1u 2 = 0 for a 
horizontally isotropic wavefield, term 4 should 
induce no systematic error. In practice , it was found 
that term 4 led to a change of <6 cm2 s- 1 in the eddy 
viscosity estimates . 

The effects of Doppler shift, or advection by the 
mean flow, on the wavefield, are embodied in term 2. 
The relative strength of this term is 

term 2 = 0 = k · ii = 0 ( ii ) . (AS) 
term 1 w c 

The ratio o is exactly the parameter 1,1sed by Miiller 
(1976) in his perturbation expansion of the radiation 
balance equation. Miiller argues that if most of the 
energy in the internal wavefield is confined to the 
first twenty modes , then the Doppler shift (and o) 
is small for I u I :s; 10 em s-1

• For small shear, the 
wave spectrum should not be greatly modified from 
its unperturbed (no shear) state . Assuming the GM76 
form for the spectrum with a constant 5% vertical 
asymmetry (52.5% of the total wave energy going 
downward, 47 .5% going upward), Ruddick (1977) 
estimates the size of term 2 to be: 

term 2 = -3 .5 x I0-4 cm2 s-1·ii 1 (A9) 

This is ordinarily negligible. However, a word of 
caution must be added. If the observed stresses are 
primarily caused by "slow" waves with phase 
speeds comparable to u, then the Doppler term 
can have a strong effect. Considering only terms 
1 and 2 in Eq . (A2) we find 

M _ /( k 'U) Fa3- F{.3 1 - ~ (A10) 

where F~. is the vertically-acting Reynolds stress 
inferred from the velocity and temperature meas­
urements , and F~" is the true value. Note that the 
sign of the observed stress can be changed 
from the true value according to u ~ c, where c is 
the component of phase speed in the direction of 
the mean flow . If I c I > Iii I , or c opposes ii, the sign 
is not changed. No information about the Doppler 
shift is available from the data presented here. 

In addition to the heat equation errors were 
three effects related to errors in estimating the 
local temperature gradient in Eq. (3.1). The error 
in estimating the mean temperature gradient is 
about ± 10%, inducing a corresponding error in 
the stress estimates. The effect of large-scale 
thermocline curvature which is advected verti­
cally by the wave motions appears as a time oscillat­
ing perturbation to the temperature gradient. The 
stress error due to this is estimated to be 

oF= 0.014 cm2 s-2.R 3 = 0.0014 cm2 s- 2 • (All) 

Vertical advection of a jagged temperature profile 
past the temperature sensor induces higher fre­
quency temperature "noise". The velocity shear 
is expected to have a similar, correlated micro­
structure , leading to error in the stress estimates. 
It is argued in Ruddick (1977) that the stress error 
due to microstructure effects is much less than 
0.04 cm2 s-2

, but not enough is known about 
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TABLE I. Stress error estimates (one standard deviation). 

Effect 

Statistical error 

Molecular diffusion of heat 

Wavefield nonlinearity 

Wave advection across 
tilted isopycnals 

Doppler shift by mean-flow 
(Have assumed otl !ox3 
"'" tl /500 m) 

Mooring motion 

Thermocline curvature 

Error in temperature 
gradient estimate 

Finestructure contamina­
tion 

Random 
error 

0.06 cm2 s-2 

6 x I0- 10 cm2 s-2 

0.004 cm2 s-2 

0.0014 em' s-2 

0.005 cm2 s-2 

0.04 cm2 s- 2 

Total (The various contribu- 0.08 cm2 s- 2 

tions are assumed 
independent) 

Systematic 
error 

(propor­
tional to 
au!ax3) 

10 cm2 s-l. 

otl!ax3 

15 cm2 s-1 · 

aa1ax3 

5 cm2 s-1 · 

ou!ax3 

19 cm2 s- 1 • 

au !ax3 

oceanic microstructure to enable a more accurate 
estimate. Microstructure contamination is felt not to 
be a problem, but cannot yet be given a clean bill 
of health. 

The effect of finite current meter rotor "stall 
speed" was also considered in Ruddick (1977). 
When the true current velocity is below the stall 
speed, u 8 (-2 em s- 1

), the rotor doesn ' t turn , and 
the measured speed is set to u8 • This causes a small 
error in velocity measurement. A "worst case" 
estimate of the error spectrum showed that for 
u - 5 em s- 1

, the error is only comparable to the 
signal in the frequency range of f-2f, and is 
negligible at higher frequencies. Therefore, the 
continuum band velocity measurements are not 
affected. For higher mean velocities, the speed 
rarely drops below stalf speed, and the error is 
negligible at all frequencies. Also, since the current 
error is uncorrelated with the temperature signal, 
the stress estimates are negligibly affected by this 
error. 

The final source of error considered was the effect 
of movement of the mooring in response to ocean 
currents. The vertical motions of the moorings were 
monitored through pressure recorders, so the 
effects of mooring motion could be, and were, 
corrected. At moorings 543 and 545 , where u 
= 5 em s- 1, the correction was found to be totally 
unnecessary, as the mooring motion was 1 m or less 
at internal wave frequencies. At the other two 

moorings, with u - 30 em s- 1
, the corrections 

were sizeable, and altered the eddy viscosity esti­
mates to be presentee! in Section 4 by up to ±33 
cm2 s- 1 • Assuming (conservatively) that the correc­
tion was only 85% accurate, the stress error is 
then about ±5 cm2 s-' -au,!ax3 or less . 

The various systematic and random stress errors 
have been listed in Table 1 to summarize the error 
analysis. The estimated random errors sum (in a 
mean square sense) up to 0.08 cm2 s-2 , about twice 
the observed stress standard deviation. , The 
systematic errors could ,affect the eddy viscosity 
estimates by ± 38 cm2 s-1 • (Two standard devia­
tions) Thus only stress observations with statisti­
cally significant regressions and estimated eddy 
viscosities 0(100 cm2 s- 1

) or greater can be con­
sidered as significantly different from zero. 
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