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ABSTRACT  33 
 Deep-water demersal fishes represent an understudied but ecologically important group 34 

of organisms. Select species of demersal fishes rely on pelagic prey items, representing a direct 35 

transport of surface carbon to greater depths. Barrelfish Hyperoglyphe perciformis (Mitchell, 36 

1818), which inhabit deep slope waters, are a species that has been suggested to fill this role, as 37 

congeners consume primarily pelagic gelatinous zooplankton; however, there is a dearth of 38 

information on the trophic ecology of barrelfish. Stomach content and stable isotope analyses 39 

were conducted on barrelfish caught by recreational fishers off Miami, Florida to improve our 40 

understanding of the feeding of this species. Pyrosoma atlanticum (Péron, 1804), a pelagic, 41 

vertically migrating tunicate, represented 89% of the barrelfish diet by weight. Mesopelagic fish 42 

and shrimp contributed much smaller proportions. Standard ellipse areas corrected for sample 43 

size (SEAc) showed a substantially smaller isotopic niche width for barrelfish (0.606 ‰2) than 44 

dolphinfish (2.16 ‰2), king mackerel (3.04 ‰2), or wahoo (1.97 ‰2).  Coupled with dependence 45 

on a singular prey item, the low SEAc of barrelfish suggests they occupy a limited trophic niche 46 

space. Overlap of barrelfish SEAc with dolphinfish (99.5% overlap) and king mackerel (100% 47 

overlap) indicate that the carbon sources as well as the number of trophic steps for barrelfish are 48 

similar to king mackerel and dolphinfish and are linked to surface waters. This trophic linkage 49 

suggests that barrelfish may play a role in carbon export and further study into their behavior and 50 

daily consumption rates is warranted for quantifying this role.  51 

 52 

 53 

 54 

 55 

 56 
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TEXT 57 

Pathways of carbon export have become an increasingly important area of research with 58 

the increased input of inorganic carbon into the ocean from anthropogenic activities (Sabine et 59 

al. 2004, Riebesell et al. 2007, Siegel et al. 2014). A primary interest in these pathways is the 60 

vertical transfer of carbon fixed by primary producers in the euphotic zone to deeper regions in 61 

the ocean basin (Ducklow et al. 2001). Key steps in understanding this process involve knowing 62 

the community structure of both primary producers and primary consumers (Steinberg et al. 63 

2000, Richardson and Jackson 2007, Laurenceau-Cornec et al. 2015, Siegel et al. 2016). While 64 

most research focuses on lower trophic levels, higher trophic levels such as fishes can play a 65 

significant role in the export and sequestration of carbon to deeper waters (Smith et al. 2009, 66 

Davison et al. 2013, Trueman et al. 2014).  67 

Deep-water fishes are critical components of oceanic ecosystems as they are the most 68 

abundant group of fishes on earth, with recent estimates of biomass representing 10,000 million 69 

tonnes (Irigoien et al. 2014). These fishes are predominantly zooplanktivorous and often display 70 

diel vertical migrations that follow their prey items (Merrett and Roe 1974, Sutton and Hopkins 71 

1996, Pusch et al. 2004, Catul et al. 2011). However, significant consumption of vertically 72 

migrating species can occur by demersal fishes that do not migrate but live near the bottom and 73 

feed in the midwater (making them more benthopelagic), thus providing a means to export 74 

carbon through consumption of vertically migrating organisms (Mauchline and Gordon 1991, 75 

Trueman et al. 2014).  76 

An example of such benthopelagic fishes are members of the Hyperoglyphe genus, which 77 

are known to consume vertically migrating gelatinous zooplankton. These fishes are poorly 78 

understood with most studies focused on Hyperoglyphe antarctica (Carmichael, 1919), the blue-79 
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eye trevalla, in the Indian and Pacific Oceans (Winstanley 1978, Bolch et al. 1993, Robinson et 80 

al. 2008, Fay et al. 2011). Barrelfish Hyperoglyphe perciformis (Mitchell, 1818) are an 81 

understudied congener present throughout the slope waters of the western central Atlantic Ocean 82 

(Filer and Sedberry 2008, Goldman and Sedberry 2011). Barrelfish, much like the blue-eye 83 

trevalla, are a demersal/benthopelagic fish that are caught at depths ranging from 200 to 400 m, 84 

grow slowly, reach maturity at six years of age, and may live as long as 85 years (Filer and 85 

Sedberry 2008). The diet of barrelfish has been examined along the Charleston Bump region (off 86 

South Carolina) where they primarily consume the tunicate Pyrosoma atlanticum (Péron, 1804; 87 

Goldman and Sedberry 2011). These pyrosome tunicates are an example of a gelatinous 88 

zooplankter that has substantial potential as a vector for carbon export. With filtering rates of 35 89 

l hr-1, pyrosomes can graze a considerable amount of primary productivity and return it to depth 90 

(~ 400 m) during daylight hours (Andersen and Sardou 1994, Perissinotto et al. 2007). 91 

Furthermore, pyrosome tunicates have one of the highest carbon contents of gelatinous 92 

organisms, enhancing its potential as a mechanism for carbon transport (Lebrato and Jones 93 

2009).  Large concentrations of pyrosomes can occur but are very patchy in time and space 94 

(Cowper 1960, Lebrato et al. 2013). These pyrosome “falls” can contribute substantially to 95 

carbon export, as the sinking of moribund pyrosomes are often consumed by benthic organisms 96 

(Lebrato and Jones 2009). Consumption of live tunicates by barrelfish may provide a means to 97 

export carbon outside of these falls but our understanding of this mechanisms is still limited.  98 

This study employs diet and stable isotope analysis to better understand the trophic 99 

ecology of barrelfish. The analysis of stomach content here provides improved geographic 100 

resolution to diet studies of this species, accounting for the second diet study ever completed on 101 

this species, while our analysis of the stable isotope signatures of barrelfish is the first for the 102 
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species. Stable isotope analysis was employed to compare carbon source and trophic level of 103 

barrelfish to that of epipelagic species in the same region, specifically the ubiquitous dolphinfish 104 

Coryphaena hippurus (Linnaeus, 1758), the oceanic wahoo Acanthocybium solandri (Cuvier, 105 

1832), and the more coastal king mackerel Scomberomorus cavalla (Cuvier, 1829).  106 

A total of 29 barrelfish, 46 dolphinfish, 18 king mackerel, and 14 wahoo were collected 107 

from fishers at Crandon Park Marina on Key Biscayne, Florida from November 2014 to 108 

November 2015. Each specimen was kept on ice after capture, and upon returning to shore, fork 109 

length, standard length, and sex were recorded. The gut cavity of each fish was opened and an 110 

incision was made at the base of the throat to remove the stomach and intestine from the fish. 111 

From this, the stomach was separated from the intestine through incisions made at the pyloric 112 

sphincter.  113 

 Upon returning to the lab, the stomach contents were immediately placed in 95% 114 

ethanol. Later, the stomach contents were identified to the lowest possible taxonomic unit and 115 

the mass of each item was recorded (tunicates were treated as one prey item despite being a 116 

colonial organism and often being broken into multiple pieces). These data were then used to 117 

calculate an index of relative importance (IRI) for each prey item using the formula  118 % % %  

where %N represents the numerical percentage of individuals of a particular prey type in relation 119 

to the total number of prey items. %W represents the percentage by weight of a particular prey 120 

type in relation to the total weight of all prey. %F represents the percent frequency that a prey 121 

type occurred in the total number of stomachs analyzed. The percentage of total IRI for each 122 

species was then calculated: 123 

 %IRI IRI∑ IRI 124 
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Where i represents a particular prey type and n represents the total number of unique prey types 125 

for a predator species.  126 

Dorsal muscle samples were also collected from fish specimens, and were stored on ice 127 

for approximately 30 minutes until they could be placed in a -20o C freezer. Samples were dried 128 

at 50°C in a drying oven for 48 hours, or until adequately dry for processing. Subsamples (1.2-129 

1.5 mg) were then analyzed with an Isoprime isotope ratio mass spectrometer (IRMS; GV 130 

Instruments, Manchester, UK), which yielded carbon to nitrogen ratios (C:N) and the isotopic 131 

ratios for both carbon (13C:12C) and nitrogen (15N:14N) in each sample. Values reported use the δ 132 

notation (e.g. Fry 2006) and are relative to the standards PeeDee belemnite (carbon) and 133 

atmospheric nitrogen. Using the C:N values from the mass spectrometry results, a lipid 134 

correction curve was applied to each sample following Logan et al. (2008): 135 

δ13C corrected = δ13C+ (7.489 - (7.489*3.097)/(C:N)) 136 

Muscle isotope ratios were successfully attained from 26 barrelfish, 36 dolphinfish, 17 137 

king mackerel, and 12 wahoo. Isotopic niche widths for each species were compared using 138 

standard ellipse areas with a sample size correction. The standard ellipse is the bivariate 139 

equivalent of standard deviation and the standard ellipse area is calculated using the variance and 140 

covariance of δ13C and δ15N values, encompassing 40% of the data for each species (Batschelet 141 

1981, Ricklefs and Nealen 1998). The area of this ellipse is then corrected through the following 142 

equation: 143 

SEAc=SEA*(n-1)/(n-2) 144 

Where SEA is the standard ellipse area, SEAc is the sample size corrected ellipse area, and n is 145 

the number of samples for a species (Jackson et al. 2011, Jackson et al. 2012). While SEAc 146 

values allow a comparison of isotopic niche breadth, comparisons in the overlap of these ellipses 147 

Justin
Sticky Note
The axes of these ellipses were then multiplied by the inverse of the square root of the chi-squaredistribution (df = 2), resulting in ellipses that represent a 95% probability of encompassingeach value (Chew 1966, Jackson et al. 2011). This changes the absolute size of the ellipses, but not their relative size, thus maintaining the sample size correction.



7 
 

quantifies the overlap in isotopic niche space between two species (Jackson et al. 2012). Further, 148 

Bayesian inference was used to create credible intervals around the Bayesian standard ellipse 149 

areas (SEAB). Details of this method are described in Jackson et al. (2011), but, briefly, vague 150 

normal priors are assigned to the means and an Inverse-Wishart prior is used as the covariance 151 

matrix of isotope values for each species. The isotope data are then used to form likelihood 152 

values, which are then combined with the priors to form posterior distributions (in this case the 153 

posterior estimate of the covariance matrix is simulated using the Markov Chain Monte Carlo 154 

method). From these posterior distributions, a set of 4000 estimates of the standard ellipse area 155 

are calculated to provide the mode of the Bayesian standard ellipse areas and credible intervals.  156 

Over 90% of the barrelfish’s diet IRI was attributed to a single species, P. atlanticum 157 

constituting 89% of the biomass of the barrelfish’s diet and 47% of the diet by number (Table 1). 158 

Other organisms consumed consisted of ruby red shrimp (Solenoceridae, IRI: 1.6%) and 159 

mesopelagic fishes (Stomiidae, IRI: 2.5%; Sternoptychidae, IRI: 0.4%; Tetragonuridae, IRI: 160 

0.1%). It is likely that some or all of the items identified as squid (IRI: 4.1%) were bait used by 161 

fishers.  162 

 Analysis of standard ellipses for each species revealed substantial differences in the SEAc 163 

values and substantial isotopic niche overlap of barrelfish with the three epipelagic fishes 164 

studied. The SEAc values were much lower for barrelfish (0.606 ‰2) than dolphinfish, king 165 

mackerel, and wahoo (2.16 ‰2, 3.04 ‰2, 1.97 ‰2, respectively), with the isotopic niche of 166 

barrelfish occupying an area less than a third the size of each of the other species. This was 167 

bolstered by substantial differences in the SEAB values between barrelfish and the three 168 

epipelagic species, with little difference in SEAB among the epipelagic species (Figure 1). 169 

Further, the SEAc for barrelfish overlapped with the epipelagic fishes, most prominently with 170 
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king mackerel, showing 100% of barrelfish’s isotopic niche overlapping with that of king 171 

mackerel (Figure 2). This was closely followed by overlap with dolphinfish (99.5%) but much 172 

less overlap with wahoo (26%).  173 

 The stomach contents of barrelfish analyzed in this study suggest an obligate connection 174 

with P. atlanticum. The IRI value (91.2%) is also deflated by the percent number metric, which 175 

was a conservative estimate because it was not possible to determine individual pelagic tunicates 176 

in barrelfish stomachs due to the breakdown from stomach action and the pharyngeal bones of 177 

barrelfish. Goldman and Sedberry (2011) found P. atlanticum to have an IRI of 87% for 178 

barrelfish using similar methods of enumeration, suggesting that dependence upon P. atlanticum 179 

by barrelfish is not unique to the waters off southeast Florida. A congener, the blue-eye trevalla 180 

Hyperoglyphe antarctica, has also been shown to primarily consume pyrosomids, leading to the 181 

possibility that an obligate connection with pyrosomids may extend to other members of the 182 

Hyperoglyphe genus (Winstanley 1978).  183 

The small isotopic niche of barrelfish substantiates that they are specialist consumers 184 

with a narrow range in their carbon source and trophic level. Their isotopic niche is also nearly 185 

entirely contained within the isotopic niche space of two of the epipelagic fishes, indicating that 186 

pyrosomes represent a vector of surface carbon to depth. 13C is often more labile, thus δ13C of 187 

particulate organic matter is often depleted during remineralization near the pycnocline and 188 

fluctuates with depth within 400 m of the surface, suggesting the δ13C signature of barrelfish is a 189 

result of consuming carbon transported to depth from the euphotic zone by pyrosomids (Jeffrey 190 

et al. 1983, Drits et al. 1992, Druffel et al. 1992, Andersen and Sardou 1994, Perissinoto et al. 191 

2007). This is further supported by the consumption of epipelagic organisms by king mackerel 192 

and dolphinfish in this study (and others) and their rather limited vertical range, rarely exceeding 193 
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200 m in the case of dolphinfish (Table 1; Finucance et al. 1990, Oxenford 1999; Oxenford and 194 

Hunte 1999, Rudershausen et al. 2010, Tripp-Valdez et al. 2010, Merten et al. 2014a, Moore 195 

2014, Teffer et al. 2015). However, dolphinfish exhibit highly migratory behavior and king 196 

mackerel exhibit seasonal migrations in southeast Florida which may lead to the substantially 197 

broader range in δ13C in these epipelagic species when compared to barrelfish (Sutter III et al. 198 

1991, Schaefer and Fable Jr. 1994, Merten et al. 2014b, Merten et al. 2016).  199 

Owing to the strong trophic coupling between barrelfish and P. atlanticum, fluctuations 200 

of P. atlanticum or barrelfish may affect the population of the other species. However, 201 

quantification of this coupling strength through incorporating barrelfish abundance, growth rates, 202 

rates of P. atlanticum consumption by barrelfish, and potential bottom up effects on barrelfish 203 

survival (manifested through changes in P. atlanticum growth) is necessary to determine if this 204 

interaction is excitable (oscillatory) or unstable, a result predicted by strong coupling strengths 205 

(Wootton 1997, McCann et al. 2011). Further, being a consumer of gelatinous zooplankton may 206 

have implications for carbon export, particularly with the consumption of a zooplankter known 207 

to have massive “falls” representing significant carbon export (Lebrato and Jones, 2009, Lebrato 208 

et al. 2013). While it is uncertain if there is enough top down pressure from barrelfish on P. 209 

atlanticum to affect P. atlanticum populations, this potential link warrants further study. More 210 

studies into diet seasonality and daily rations for barrelfish are also needed to estimate the 211 

biomass of P. atlanticum that barrefish consume. Given the site fidelity of barrelfish to deep 212 

water structure and their presence below fast moving Gulf Stream waters, it seems unlikely that 213 

barrelfish partake in vertical migrations to the surface, resulting in the possibility that barrelfish 214 

can serve as a mode of carbon export through consumption of pyrosomes in the aphotic zone 215 
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(Goldman and Sedberry 2011). However, there is a dearth of data on the movement of barrelfish 216 

and further studies into their vertical movements are warranted. 217 

 Observations from this study that barrelfish rely largely on a single prey item bolsters the 218 

connection between the Hyperoglyphe genus and pyrosome tunicates, representing a form of 219 

bentho-pelagic coupling near the shelf edge. Specifically, this insight into the strong connection 220 

between a demersal fish and a vertically migrating filter feeder—and thus potential implications 221 

for carbon export—provides a basis for learning more about such interactions and their role in 222 

carbon export in shelf break waters.   223 

 224 
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Table 1: Prey items (to family level) and diet metrics of barrelfish and dolphinfish. %F 
represents the frequency that a prey type occurred in the total number of stomachs analyzed. %N 
represents the number of items of a prey type in relation to the total number of prey items. %W 
represents the percentage by weight of a prey type in relation to the total weight of all prey types. 
%IRI represents the index of relative importance of a prey type expressed as a percentage of the 
sum of IRI values for all prey types. UNID = unidentifiable 

Consumer 
Species Prey Family %F %N %W %IRI 

Barrelfish  
(n=29) 

Pyrosomatidae 
(Pelagic tunicate) 85.7 47.4 89.4 91.2 

 Stomiidae 
(Viperfishes) 23.8 13.2 0.5 2.5 

 Solenoceridae 19 10.5 0.4 1.6 

 Sternoptychidae 
(Hatchetfishes) 4.8 10.5 0.9 0.4 

 Tetragonuridae 
(Squaretail) 4.8 5.3 0.1 0.2 

 UNID Squid 23.8 13.2 8.8 4.1 
Dolphinfish 

(n=46) 
Exocoetidae 

(Flying fishes) 29 14 28.7 28.6 

 Carangidae 
(Jacks) 16.1 8.1 11.5 7.3 

 
Clupeidae 

(Sardines and 
herrings) 

16.1 8.1 8.6 6.2 

 Belonidae 
(Needlefishes) 9.7 3.5 21.4 5.6 

 
Scombridae 
(Atl. chub 
mackerel) 

12.9 12.8 0.9 4.1 

 Nomeidae 
(Man-o-war fish) 3.2 10.5 4 1.1 

 Hemiramphidae 
(Ballyhoos) 6.5 2.3 4.4 1.0 

 Balistidae 
(Triggerfishes) 6.5 2.3 2.6 0.7 

 Lobotidae 
(Tripletail) 3.2 1.2 3.7 0.4 

 Diodontidae 
(Porcupinefishes) 3.2 1.2 0 0.1 

 UNID Fish 51.6 31.4 5.7 44.2 
 UNID Squid 3.2 1.2 8.5 0.7 

 
 



FIGURE LEGENDS: 
 
Figure 1: Density plot of Bayesian standard ellipse areas (SEAB) for barrelfish and three 
epipelagic species. Black dots represent the mode of posterior distribution of SEAB values with 
grey boxes presenting 50, 75, and 95% credible intervals. 
 
Figure 2: Stable isotope values (δ13C and δ15N) of barrelfish and three epipelagic species, along 
with each species’ standard ellipse.  
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