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The acoustic modes of an idealized three-dimensional model for a curved shelf-slope ocean front

[Lin and Lynch, J. Acoust. Soc. Am. 131, EL1–EL7 (2012)] is examined analytically and numeri-

cally. The goal is to quantify the influence of environmental and acoustic parameters on acoustic

field metrics. This goal is achieved by using conserved quantities of the model, including the dis-

persion relation and a conservation of mode number. Analytic expressions for the horizontal wave

numbers can be extracted by asymptotic approximations and perturbations, leading to accurate and

convenient approximations for their parameter dependence. These equations provide the depen-

dence on model parameter changes of both the real horizontal wavenumbers, leading to modal

phase speeds and other metrics, and the imaginary parts, leading to modal attenuation coefficients.

Further approximations for small parameter changes of these equations characterize the parameter

sensitivities and produce assessments of environmental and acoustic influences.
VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5022776

[JFL] Pages: 706–715

I. INTRODUCTION

Sound propagation near ocean fronts on the sloping con-

tinental shelf has been studied extensively, including the

PRIMER experiments in the Mid-Atlantic Bight,1,2 the

SW’06 experiments off the New Jersey coast,3,4 and the

Barents Sea Polar Front.5 Curved fronts are known to influ-

ence acoustic propagation, and there is particular interest in

the extent to which frontal environmental and acoustic

parameters contribute to this effect. Curved 3-D front envi-

ronments such as the shelf-slope front6,7 or shallow water

ducting by curved nonlinear internal waves8,9 have been

treated analytically using ocean feature models, as well as

computationally. The importance of data uncertainty is

examined by Jiang et al. in the context of analyzing data col-

lected along the New Jersey Shelf.10 When 3-D computa-

tional models of real ocean environments are employed for

acoustic propagation applications such as in the Integrated

Ocean Dynamics and Acoustics (IODA) project,11,12 esti-

mates should be obtained for how much the ocean feature

variability affects acoustic predictions. Our premise is that

parameter variations in idealized 3-D feature models generi-

cally correspond to the variability introduced into computa-

tional ocean model results, and consequently to a portion of

the uncertainty in observational data. Specifying the effects

of parameter variations on acoustic metrics, such as trans-

mission loss, modal wavenumbers, modal attenuations, and

modal cycle distances, is an important step toward identify-

ing uncertainty in computational predictions of 3-D ocean

acoustic propagation. In this paper, convenient formulas for

the dependence of feature model parameters in the idealized

3-D shelf-slope front of Ref. 6 are obtained and used to

determine their influence on acoustic quantities.

The primary approach by which these sensitivity equa-

tions are found is through conserved, or nearly conserved,

normal mode quantities. The latter are so effective because

they involve most or all of the model parameters, and specifi-

cally they include the implicit parameter dependence for

modal wavenumbers. The extraction of parameter dependence

from ocean waveguides has been performed previously, lead-

ing to linear approximations for small parameter changes.13

Early papers by Weston14 and by Pierce15 for adiabatic envi-

ronments developed waveguide invariants for rays and normal

modes. Requirements for using the adiabatic approximation

were formulated by Milder,16 Brekhovskikh and Lysanov,17

and Colosi,18 and typically these requirements need to be con-

sidered with a coastal front model or a sloping bottom.19,20

However, the choice of front representation, ocean bound-

aries, and coordinate system for the idealized front model of

Lin and Lynch6 described in Sec. II eliminates coupling terms

in the normal mode solution. As a result, the mode number

invariance derived in Refs. 14 and 15 is the most effective

starting point for calculating parameter dependence for the

curved shelf-slope front model. In Sec. VI, nonlinear expres-

sions for horizontal wavenumbers will be found to provide

accurate dependence over wide intervals of parameter val-

ues.21 In Sec. VII, local parameter approximations will be cal-

culated to show conveniently the sensitivity behavior.

II. THE IDEALIZED FRONT SOLUTION METHOD AND
CLASSIFICATION OF RADIAL MODES

The idealized coastal shelf front model is the same as in

Refs. 6 and 7 and is sketched in Fig. 1(a). Cylindrical coordi-

nates are ðr; h; yÞ, the y-axis is the shoreline, and h is thea)Electronic mail: decoub@rpi.edu
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angle from the horizontal surface h¼ 0. The curved front is

modeled by a sound speed jump at r¼ rI, with sound speed

c1 inshore (r < rI) and c2 offshore (r > rI). The coastal

ocean wedge has a constant bottom slope angle a, with a

pressure release surface and perfectly reflecting bottom. In

this paper the reference parameter values used for numerical

examples are6,7 rI¼ 4000 m, a¼ 3�, f¼ 25 Hz, c1 ¼ 1500 m/s,

c2 ¼ 1520 m/s.

Lin and Lynch provide a solution for acoustic pressure

Pðr; h; yÞe�ixt from a point source at ðr0; h0; 0Þ and fre-

quency x where P satisfies the Helmholtz equation

ðr2þk2ðrÞÞPðr;h;yÞ¼�4p
dðr�r0Þ

r
dðh�h0ÞdðyÞ: (1)

The wavenumber is kðrÞ ¼ kj with j¼ 1 inshore, j¼ 2 off-

shore, and kj ¼ 2pf=cj. A Fourier transform in y is applied to

Eq. (1) to obtain an equation for P̂ðr; h; kyÞ, where ky is

referred to as the horizontal wavenumber. The expression

for P̂ is obtained in Refs. 6 and 7, by expanding in a series

of angular and radial normal modes of the homogeneous Eq.

(1). The sloping bottom suggests that mode coupling might

occur in the solution. Examples of coupled modes in a

coastal wedge are described by Arnold22 and Hall,23 and an

assessment of their importance for a coastal shelf is given by

Knobles et al.24 However, in the idealized front here, no

cross terms arise from substituting a modal expansion for P̂
and using orthogonality. The coordinate geometry of the

front model means that the adiabatic approximation is

valid,15 and can be perturbed to investigate mode coupling.25

The solution for P requires a complex inversion of

P̂ðr; h; kyÞ. Then P can be represented by a sum of residues

and a branch line integral in the complex ky plane. The latter

is evaluated using a Pekeris cut, with the relevant branch lines

emanating from kj to kj þ i1. The branch line integral is an

important solution contributor for small y; for larger y the sum

of improper modes revealed as residues by the Pekeris cut

approximates the solution13,26 sufficiently well.13,27

Neglecting the branch line integral, P is approximately6

Pðr; h; yÞ �
X

n

X
m

QnmUnðh0ÞWnmðr0; ky;nmÞUnðhÞ

�Wnmðr; ky;nmÞeiky;nmy; (2)

where the radial modes Wnm are given by combinations of

Bessel and Hankel functions,6,7 and the angular modes are

UnðhÞ ¼ ð
ffiffiffiffiffiffiffiffiffiffi
2=ap

p
Þ sinðgnhÞ. The integers n and m are angu-

lar and radial mode numbers. The quantities krj;nm

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

j � k2
y

q
are wavenumbers that describe wavefront prop-

agation in any vertical ðr; hÞ plane. The quantity gn

¼ ðp=aÞðn� 1=2Þ is a dimensionless angular wavenumber.

The modal weight coefficient Qnm is expressed in Ref. 6 in

terms of the residue at pole nm in P̂. Integers m and n will be

omitted in subsequent formulas except where essential.

Modal behavior in the idealized front model is an

important consideration in analyzing parameter sensitivity.

For example, radial modes exhibit behaviors that classify

them as trapped, leaky, or “transition.” It is useful to quan-

tify the properties of each radial mode type, as well as the

parameter conditions for which a radial mode may undergo a

type change. The simplest specification of mode types is

based on radial wavenumbers jrj, where

jrjðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

j � k2
y �

g2

r2

r
: (3)

The jrj appear in the radial mode equation6

1

r

d

dr
r

dW
dr

� �
þ jrjðrÞ2W ¼ 0; j ¼ 1; 2: (4)

If the sign of the squared radial wavenumber j2
rj is positive

(or negative), the radial mode behavior is oscillatory (or

exponential). Note that the wavenumber in the water (kj) is

expressed in terms of the horizontal, radial, and angular

wavenumbers by the equation

k2
j ¼ k2

y þ j2
rjðrÞ þ

g2

r2
: (5)

Figure 1(b) is a prism constructed from wavenumber compo-

nents, with face (1) from radial and horizontal wavenumbers,

face (2) from radial and angular components, and face (3)

from horizontal and angular components.

Because j2
rj ¼ 0 provides the condition for a change (or

turning point) between oscillatory and exponential radial

mode behaviors, there are corresponding conditions on ky for

both regions j ¼ 1 and 2. If in Eq. (3) ky ¼ k�j , where

FIG. 1. (Color online) Idealized shelf-slope front model in cylindrical coordinates ðr; h; yÞ. Parameters are front location r¼ rI, source frequency f, inshore/off-

shore sound speeds c1/c2, bottom slope angle a. Boundary conditions are pressure release at h¼ 0 and perfectly reflecting at h ¼ a. (b) Schematic of prism

with three numbered faces that show components ðky; kh; j1Þ of the inshore medium wavenumber vector ~k1 . (c) Sketches of real parts (solid, blue) and imagi-

nary parts (dashed, red) versus radial distance r of the radial mode types: Whispering gallery (WG), transition (TR), and leaky for the front model.
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k�j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

j �
g2

r2

r
; (6)

then the r-dependent radial wavenumber jrj ¼ 0. First, let k�j
be evaluated at r¼ rI to examine radial mode behavior near

the front. Let ReðkyÞ < k�1; then oscillations will occur

inshore near the front, meaning a radial mode may exist. If

ReðkyÞ > k2, then from Eq. (3) with j¼ 2, no oscillations

occur offshore. Therefore, a ky value satisfying k2

< ReðkyÞ < k�1 is a trapped or whispering gallery (WG)

mode as illustrated in the first panel of Fig. 1(c). Next, if

ReðkyÞ < k�2, then from Eq. (3) with j¼ 2, oscillatory behav-

ior occurs offshore, so such modes satisfy requirements for a

leaky mode as shown in the third panel of Fig. 1(c). Finally,

transition modes (TR) are those with k�2 < ReðkyÞ < k2.

Transition modes are unusual in that they are not trapped,

but the range dependence of the dimensional azimuthal

wavenumber g=r ¼ kh in Eq. (3) prevents Reðjr2ðrÞÞ from

being positive close to the front. This results in weaker

energy transmission across the front compared to leaky

modes, and oscillations for large r in contrast with WG

modes. Note that it is possible for parameter combinations to

produce k�1 < k2, implying no WG modes, although this does

not occur for the reference parameters here.

III. PLANE-WAVE APPROXIMATION FOR
CALCULATING AN OCEAN-WEDGE INVARIANT
QUANTITY

An important step towards specifying parameter depen-

dence for the idealized front model is to identify conserved

quantities of the normal mode pressure solution. For adia-

batic propagation in a 2-D ocean, Weston14 derived an inte-

gral quantity conserving (vertical) mode numberðH

0

k sin / dZ ¼ pM � 1

2
ðHB þHSÞ: (7)

The quantity k is a local wavenumber, / is the ray path angle

with the horizontal, and Z is depth. Depth of the waveguide

is H, 0 denotes the top, and HB and HS describe phase

changes at the bottom and surface. In Eq. (7), integer M rep-

resents the depth mode number. For fixed values of HB and

HS, M is conserved as waveguide parameters in the integral

undergo changes. Equation (7) was derived by Weston from

a ray viewpoint, and Pierce15 and Harrison28 showed that it

applies in the case of normal modes. If the phase contribu-

tions HB and HS are not constant, but have small variations,

M can be considered conserved to leading order in Ref. 28.

Furthermore, the connection between rays and modes is

noted by Harrison29 in the coastal wedge environment.

Equation (7) is related to the idealized front model by

consideringðrI

rt1

jr1ðrÞdr ¼ pm� 1

2
ðHrt1

þHrI
Þ: (8)

The quantity rt1 ¼ g=Reðkr1Þ is the location of the inshore

turning point of the radial mode equation7 in Eq. (4) which

is either the zero of jr1ðrÞ for real ky, or an excellent approx-

imation to the zero for ImðkyÞ � ReðkyÞ. For r < rt1, the

radial modes decay exponentially, and for rt1 < r < rI they

oscillate. The waveguide integration region lies between the

inshore turning point r ¼ rt1 and the front r¼ rI. For the case

of WG modes, the phase change HrI
at the totally reflective

front is 2p. The phase change Hrt1
at the refractive turning

point is �p=2, which is calculated by examination of con-

nection formulas in the Wentzel-Kramers-Brillouin-Jeffreys

approximation.30

To evaluate the left side of Eq. (8), note that

jr1ðrÞ ¼ kr1l
0ðzÞ; (9)

where

lðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1
p

� cos�1 1

z

� �
; l0ðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
z2 � 1
p

z
; (10)

and z ¼ rkr1=g. Integrating both sides of Eq. (9) in z and

changing variables from z to r on the left side, Eq. (9) evalu-

ates toðrI

rt1

jr1ðrÞdr ¼ gðlðz1Þ � lð1ÞÞ ¼ glðz1Þ; (11)

where z1 ¼ rIkr1g�1. Finally, combining Eqs. (8) and (11),

glðz1Þ � pm� 3p
4
: (12)

An estimate for the radial mode number m for given model

parameters and ky can be approximated by solving for m in

Eq. (12) and rounding to the nearest integer. Since the mode

number m is conserved it follows from Eq. (12) that the

quantity glðz1Þ is invariant to leading order. In the case of

TR or Leaky modes, the quantities HrI
and Hrt1

are not con-

stant, but will vary on small scales, as noted in Ref. 28, such

that Eq. (12) will still hold.

IV. APPROXIMATION OF THE REFLECTION
COEFFICIENT AND DISPERSION RELATION

Parameter dependence was extracted directly from the

dispersion relation by Pierce,31 and in particular variations

of bottom slope angle have been treated for influence on

donwslope propagation loss by Koch et al.32 The approxi-

mate formula Eq. (12) is a key result for determining param-

eter dependence of acoustic quantities. It was derived by

hypothesizing that Weston’s integral formula for 2-D wave-

guides extends to the 3-D feature model of an idealized

front. The next two sections describe an alternative approach

that puts Eq. (12) on a firm basis, and additionally provides

other useful formulas. The dispersion relation relating fre-

quency x to wavenumber ky is another conserved quantity in

the normal mode formulation. It is computationally conve-

nient to use the dispersion relation in the form R¼ 1 as iden-

tified in Ref. 6, where R is the reflection coefficient at the

front r¼ rI. However, consistent with Ref. 7, expressing R as

ratios of Hankel functions and their derivatives is computa-

tionally convenient and will also allow simpler extractions

of asymptotic approximations,

708 J. Acoust. Soc. Am. 143 (2), February 2018 DeCourcy et al.



R¼� kr1

H
ð1Þ0
g ðkr1rIÞ

H
ð1Þ
g ðkr1rIÞ

� kr2

H
ð1Þ0
g ðkr2rIÞ

H
ð1Þ
g ðkr2rIÞ

 !

� kr1

H
ð2Þ0
g ðkr1rIÞ

H
ð2Þ
g ðkr1rIÞ

� kr2

H
ð1Þ0
g ðkr2rIÞ

H
ð1Þ
g ðkr2rIÞ

 !�1
H
ð1Þ
g ðkr1rIÞ

H
ð2Þ
g ðkr1rIÞ

:

(13)

Both orders and arguments of the Hankel functions and

derivatives in Eq. (13) are large for the reference values and

others of interest. For example, from g ¼ ðp=aÞðn� 1=2Þ
with a¼ 3�, g is at least 30, and increases with n. In the argu-

ments, rI¼ 4000 m, so provided ky is not close to k1 or k2,

then krjrI will also be large.

The quantities zj ¼ rIkrjg�1 for j¼ 1 and 2 are useful

ratios. Typically for reference parameters and for leaky

modes, zj is order Oð101Þ for n¼ 1 and no smaller than

Oð100Þ for other n values (order of magnitude specified

using the definition in Ref. 33). Consequently, asymptotic

approximations for large order and large argument Hankel

and Bessel functions are appropriate for approximating the

ratios of Hankel functions in Eq. (13). One of these approxi-

mations is34

H
ð1Þ0
g ðgzjÞ

H
ð1Þ
g ðgzjÞ

� � e2pi=3

zj

1� z2
j

fj

 !1=2

1

g1=3

Ai0ðe2pi=3g2=3fjÞ
Aiðe2pi=3g2=3fjÞ

;

(14)

where the Ai is the Airy function of the first kind. In Eq.

(13), the ratio with type two Hankel functions yields the

same as Eq. (14) with the sign of i changed. The quantity fj

is defined as a function of z,

2

3
ð�fjÞ3=2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
z2

j � 1
q

� cos�1 1

zj

� �
¼ lðzjÞ; ReðzjÞ 	 1;

(15)

where the function lðzÞ from Eq. (10) appears. For leaky

modes, the wavenumber condition ReðkyÞ < k�j ensures that

ReðzjÞ > 1 for both j¼ 1 and 2. The approximation has turn-

ing points at zj¼ 1, which correspond to ky ¼ k�j from Eq.

(6) and to the zeros of Eq. (3) when r¼ rI. These are inflec-

tion points in the radial modes which separate oscillatory

from exponential behavior at the front.

A large order approximation to the Airy functions fur-

ther simplifies Eq. (14) after which the ratios become35

H
ð1Þ0
g ðgzjÞ

H
ð1Þ
g ðgzjÞ

�

ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

j

q
zj

;
H
ð2Þ0
g ðgzjÞ

H
ð2Þ
g ðgzjÞ

� �

ffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

j

q
zj

;

Hð1Þ� ðkr1rIÞ
H
ð2Þ
� ðkr1rIÞ

� �iei2glðz1Þ: (16)

Substituting Eq. (16) into Eq. (13) leads to the expression

R �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2

1 � 1
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2

2 � 1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2

1 � 1
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2

2 � 1
p

" #
ei2ðglðz1Þ�p=4Þ: (17)

Applying the approach outlined here for Leaky modes to WG

modes produces the same approximation for R in Eq. (17).

V. CONVENIENT FORMULAS FOR PARAMETER
DEPENDENCE

Equation (17) gives a much simpler form of the disper-

sion relation R¼ 1 than Eq. (13), but it remains too compli-

cated to extract convenient expressions for the wavenumber

ky in terms of feature parameters. This section provides

expressions for both the real and imaginary parts of the hori-

zontal wavenumber ky, which confirm the invariance of

glðz1Þ from Eq. (7), and approximate the along-shore modal

attenuation. For this section, the dispersion relation will be

used as a starting point, but further approximations are

required.

Equation (17) is the starting point, along with the property

ImðkyÞ � ReðkyÞ, that is illustrated by Figs. 2(a) in both Refs.

6 and in 7. Specifically, ImðkyÞ is zero for WG modes in this

front model and is two or more orders of magnitude smaller

than ReðkyÞ for leaky modes. With the notation ky ¼ uþ iv,

the quantities zj for small v/u are well approximated by

zj � �zj �
rI

g

� �2 uv

zj
; (18)

where �zj ¼ zjðky ¼ uÞ. If AL is the term in square brackets of

Eq. (17) for leaky modes (�z2 > 1), then Eq. (18) can be used

to expand AL in a Taylor series for small v. This leads to an

approximation AL � �ALei2cL for leaky modes, and a corre-

sponding formula AWG � �AWGe2icWG for WG modes, contain-

ing real quantities �AL; �AWG, cL, and cWG. The expression

lðz1Þ can be treated similarly, so that the small v Taylor series

for leaky modes becomes an approximation for Eq. (17),

FIG. 2. (Color online) Parameter dependence of WG modes m ¼ 1–9, and

n¼ 1, comparing approximations from Eqs. (24), (25), and (27) (open

circles) to numerically exact curves from Eq. (17) (solid curves). Each curve

represents one radial mode number m. Vertical dashed lines are reference

parameter values. Thick solid curve is limiting value ky ¼ k�1. (a) Curves

kyðrIÞ, with reference value rI;0 ¼ 4000 m and r from 3000 to 5000 m. (b)

Curves kyðaÞ, with a0 ¼ 3�, and a from 1.5� to 4.5� (c) Curves cyðf Þ with

f0 ¼ 25 Hz, and f from 12.5 to 37.5 Hz.
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R �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�z2

1 � 1
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�z2

2 � 1
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�z2

1 � 1
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�z2

2 � 1
p e2guvðrI=gÞ2ð

ffiffiffiffiffiffiffiffi
�z2

1
�1

p
=�z2

1
Þ

" #

� eið2glð�z1Þþ2cL�ðp=2ÞÞ � 1: (19)

The phase term cL from Eq. (19) is calculated as

cL ¼ tan�1

rI

g

� �2

uvffiffiffiffiffiffiffiffiffiffiffiffiffi
�z2

1 � 1
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

�z2
2 � 1

p
0
B@

1
CA

� rI

g

� �2 uvffiffiffiffiffiffiffiffiffiffiffiffiffi
�z2

1 � 1
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

�z2
2 � 1

p � OðvÞ: (20)

Therefore the phase cL is O(v), and to leading order may

be ignored in Eq. (19). Consequently, the requirement

that the phase of R in Eq. (19) is an integer multiple of

2p for leaky modes leads to the requirement that lð�z1Þ is

approximately constant for fixed mode number. This is

equivalent to

glð�z1Þ � g0lð�z1;0Þ; (21)

where in Eq. (21) �z1;0 uses a known solution to the dispersion

relation with wavenumber ky;0 ¼ u0 þ iv0.

With an approximation for u from Eq. (21), setting the

amplitude in square brackets in Eq. (19) to 1 permits finding

an estimate for v. That is, multiply ½
� � 1 by the denomina-

tor ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�z2

1 � 1
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�z2

2 � 1
p

Þ, collect terms with
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�z2

1 � 1
p

andffiffiffiffiffiffiffiffiffiffiffiffiffi
�z2

2 � 1
p

terms separately and expand in small v to obtain

the approximation35

v �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

I ðk2
2 � u2Þ � g2

p
r2

I ðk2
1 � u2Þ � g2

ðk2
1 � u2Þ 1

u
: (22)

The quantity ImðkyÞ is the modal attenuation coefficient,

which describes decay of a radial mode in the along-front

direction. Equations (21) and (22) are used in Secs. VI and

VII for determining parameter dependence of ky and other

acoustic quantities.

Equation (21) is an approximation that applies to leaky

modes. For WG modes an analogous derivation can be per-

formed by calculating AWG and cWG by carefully accounting

for the sizes of �z1 and �z2 under the restriction

k2 < ReðkyÞ < k�1. The WG analogue to Eq. (21) is

glð�z1Þ þ cWG � g0lð�z1;0Þ þ cWG;0; (23)

where cWG is bounded by 6p=2 as is cL in Eq. (20). Because

g is large, the cWG terms in Eq. (23) may be neglected. The

final result is that ReðkyÞ for WG and leaky modes is approx-

imated to leading order by Eq. (21). Furthermore, this result

is in agreement with Ref. 14, which suggests that glðz1Þ is

invariant. For WG modes, note that in Eq. (22), the quantityffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

I ðk2
1 � u2Þ � g2

p
¼ rIjr2;0ðrIÞ. Since no energy oscillates

beyond the front for WG modes, the radial wavenumber off-

shore is zero, so Eq. (22) will evaluate to nearly zero, agree-

ing with the conditions on WG modes.

VI. FEATURES OF THE PARAMETER DEPENDENCE
AND FORMULA ACCURACY

With the basis of Eq. (12) confirmed by asymptotic

approximation methods, the invariance of mode number m,

and consequently the quantity glðz1Þ, can be used to calcu-

late parameter dependence of the horizontal wavenumber ky.

Given reference parameter values (rI;0 ¼ 4000 m, a0 ¼ 3�,
f0 ¼ 25 Hz, c1;0 ¼ 1500 ms�1, c2;0 ¼ 1520 ms�1) suppose a

corresponding set of wavenumber solutions ky0;nm to Eq. (13)

at the reference values is calculated or estimated for all m
and n. Then, Eqs. (21) and (22) can estimate how ReðkyÞ and

ImðkyÞ vary with parameter changes from the reference val-

ues. From the wavenumber approximations, changes in

modal phase speed, attenuation, group speed, and other

acoustic quantities with parameter variations can be

deduced. For u ¼ ReðkyÞ, Eq. (21) leads to the following

results that predict how u depends on the parameter in its

argument, assuming that the other parameters have their ref-

erence values,

uðrIÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 �
rI;0

rI

� �2

ðk2
1 � u2

0Þ

s
; (24)

uðf Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p
c1

� �2

ðf 2 � f 2
0 Þ þ u2

0

s
; (25)

uðc1Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

0 þ k2
1;0

c2
1;0

c2
1

� 1

 !vuut ; (26)

KðuðaÞ; aÞ � Kðu0ða0Þ; a0Þ;
KðuðaÞ; aÞ ¼ gðaÞlð�z1ðuða; aÞÞÞ: (27)

From Eq. (22) the imaginary component v (and modal atten-

uation coefficient) is expressed as a function of u and one

feature parameter in the form v � vðuð
Þ; 
Þ.
The parameter variation curves given by Eqs. (24), (25),

and (27) are plotted for a selection of radial modes. In Fig. 2

the wavenumbers or phase speeds of WG modes for angular

mode number n¼ 1 are shown over intervals of parameter

values. Each subfigure shows only curves for WG modes,

and the thick black curve represents k�1 beyond which no

inshore standing waves exist. The nine curves correspond to

radial mode numbers 1–9, with m¼ 1 closest to the k�1 cutoff.

In all three subfigures, highly accurate computational solu-

tions to Eq. (17) are plotted as solid curves. Solutions from

the parameter variation formulas are indicated by open

circles, and for all cases they are excellent visual and numer-

ical approximations.

In Fig. 2(a), the front location rI varies up to 1000 m

above and below the reference value 4000 m. As the front

moves further from (or nearer to) the shore, ReðkyÞ values

are squeezed together (or spread apart). Also in this situa-

tion, some modes exit the WG region to become transition

modes. Figure 2(b) illustrates the dependence of ReðkyÞ on

the bottom slope angle a, varying up to 1.5� above and

below the reference value 3�. The overall conclusions for a
correspond to those for Fig. 2(a), although the curvatures of

710 J. Acoust. Soc. Am. 143 (2), February 2018 DeCourcy et al.



all curves differ in comparison to those in Fig. 2(a). Figure

2(c) plots the dependence of the along-front modal phase

speed cy ¼ 2pf=ky on the source frequency f. The plot of

cyðf Þ illustrates a different acoustic quantity besides wave-

number, and suggests the straightforward transition between

two such plots. Note that all three subfigures show that an

increase in the parameter on the abscissa leads to compres-

sion of the WG modes into a smaller ordinate interval.

Smaller f also shows some WG modes exiting the WG

region to become TR and leaky modes. Note that in Figs.

2(a) and 2(b) the horizontal axis is the value k2 which divides

WG and TR modes, while in Fig. 2(c) it is the horizontal line

cy ¼ c2 ¼ 1520 ms�1. The parameter c1 is not illustrated, as

the physical limitations on acceptable variation in the sound

speed limits the effect of changes in c1 on ReðkyÞ. The rela-

tive change in the sound speed across the front is a value

change of 1.3%.

Next consider Fig. 3(a), which is analogous to Fig. 2

(a) with the important difference that the vertical scale is

expanded by a factor of 3. This larger range of wavenum-

bers includes modes of all three types at rI¼ 4000 m; three

WG modes for the top three curves, TR modes for the

middle two, and leaky modes for the three bottom. The

boundary between WG and TR modes is the thin black

line at k2, and between TR and leaky is the dashed curve

at k�2. The parameter dependence equations given by Eqs.

(24)–(27) are shown to hold in Sec. V for both WG and

leaky modes, but TR modes are not considered. Despite

this fact, Eq. (24) is capable of well approximating TR

modes and either WG or leaky modes as they change to

TR modes by crossing the transition boundaries k2 or k�2.

This strikingly smooth evolution of all the exact and

approximate curves is shown in Fig. 3(a). By using the

correct asymptotic approximations for TR modes as out-

lined in Ref. 35, the dispersion relation can be expressed

as R � ATRei2cTR � 1, where

ATR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
z2

1 � 1
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

2

p
cotsffiffiffiffiffiffiffiffiffiffiffiffiffi

z2
1 � 1

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

2

p
cots

;

s ¼ p
4
� ig ln

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

2

p
z2

 !
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2

2

q" #
: (28)

Also, z2 can be approximated as in Eq. (18), with the excep-

tion that the O(v) term will be imaginary, since �z2 < 1.

Using an expansion in small O(v), the quantity cots can be

estimated by 1 if �z2 � 1, and i if �z2 < 1. An expansion for

small v in ATR shows that Eq. (21) holds for TR modes as

well as WG and leaky modes.35 This explains why features

of Fig. 3(a) are independent of mode type, although the

ImðkyÞ approximation for TR modes will differ from Eq.

(22) which is designed for leaky modes.

Finally, the parameter dependence of the imaginary

part of ImðkyÞ is illustrated for the case of varying front

location rI. Figure 3(b) uses the same modes and rI values

as in Fig. 3(a); with the former’s vertical axis having values

at least 10�3 smaller. It is apparent that ImðkyÞ is well

approximated by Eq. (22) over the full spread of rI values.

The approximations even capture well the nonlinear behav-

ior over strongly variable mode transition regimes, between

WG to leaky as ImðkyÞ increases from nearly zero.

Furthermore, Fig. 3(b) shows that as rI decreases, ImðkyÞ
increases, which implies a higher decay rate in y the along-

shore direction.

VII. LOCAL APPROXIMATIONS FOR PARAMETER
DEPENDENCE

The formulas in Eqs. (24)–(27) accurately represent

wavenumber and modal phase speed changes that result

from feature model parameter variations. As indicated by

Figs. 2 and 3, they are effective even for relatively large

parameter displacements from chosen reference values and

across mode type transitions. Because one major goal is to

specify sensitivity to variations of parameters in the sharp

front feature model, linear approximations for relatively

small (“local”) parameter changes from reference values are

also examined. These provide additional information and

insight with lower accuracy for larger displacement from ref-

erence parameter variations.

Equation (21) is linearized in terms of quantities Dx that

represent small changes of a parameter x from its reference

value x0, for example, DrI ¼ rI � rI;0,

Dz1 �
Da
a0

lðz1Þ
l0ðz1Þ

� �
0

; (29)

where the notation ½
�0 denotes evaluation at the reference

values rI;0, a0, f0, and c1;0. Expanding the left side of Eq.

(29) which involves u ¼ ReðkyÞ, leads to

z1½ �0
DrI

rI;0
þ Da

a0

� �
þ rI

g

� �
0

k2
1

kr1

� �
0

Dk1

k1½ �0
� u2

kr1

� �
0

Du

u½ �0

 !

� Da
a0

lðz1Þ
l0ðz1Þ

� �
0

: (30)

FIG. 3. (Color online) Plots of 8 radial modes m ¼ 7–14 for angular mode

n¼ 1. Solid curves represent numerically exact dependence on rI from Eq.

(17). The vertical dashed line shows reference value rI;0 ¼ 4000 m. (a)

Open circles show approximations from Eq. (24) for ReðkyÞ. Solid horizon-

tal (and curved dashed) line represents ReðkyÞ ¼ k2 (and k�2). WG modes

occur above k2, leaky modes below k�2, and TR modes between. (b) ImðkyÞ
from Eq. (22). Curve behaviors are correlated with expected behavior of the

mode types.
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Rearranging Eq. (30) to solve for local changes in u,

sin2w
� �

0

Du

u½ �0
� cos2w
� �

0

DrI

rI;0
; (31)

sin2w
� �

0

Du

u½ �0
� c

tan c

� �
cos2w

� �
0

Da
a0

; (32)

sin2w
� �

0

Du

u½ �0
� �Dc1

c1;0
; (33)

sin2w
� �

0

Du

u½ �0
� Df

f0

; (34)

where

w ¼ tan�1 ky

kr1

� �
; c ¼ p

2
� sin�1 kh

kr1

� �
: (35)

Ratios u=½u�0 on the left sides of Eqs. (31)–(34) are changes

in u relative to ½u�0, and similarly for quantities x=x0 on the

right sides.

Angles w and c can be interpreted physically as illus-

trated in Fig. 4(a). In Fig. 1(b), the triangular prism sketches

the inshore medium wavenumber k1 as comprised of compo-

nents j1 � jr1ðrIÞ from Eq. (3), ky, and jh in the radial,

along-coast horizontal, and azimuthal directions. The three

components satisfy the identity Eq. (5). The quantity tan w is

the ratio of the along-shore wavenumber ky and the inshore

vertical plane wavenumber kr1, while tan c is the ratio of the

scaled azimuthal wavenumber jh and the range-dependent

inshore radial wavenumber at the front j1 ¼ jr1ðrIÞ.
Equations (31)–(34) have implications for specifying

local parameter sensitivity. In all four equations the relative

change in u is scaled by ½ sin2w�0 ¼ ½u2=k2
1�0. From the analo-

gous Eq. (31), relative changes in front location rI are scaled

by ½ cos2w�0 ¼ ½1� ðu=k1Þ2�0. For physical wavenumbers

this quantity is always less than 1 so Eqs. (31) and (34) show

that ky is more sensitive to relative changes in f than to

changes in rI. Furthermore, u will be least sensitive to

changes in rI for short along-coast wavelengths, with ReðkyÞ

closest to its largest value of k�1. To extract information about

slope angle sensitivity from Eq. (32), note that

c ¼ p
2
� sin�1 jh

kr1

� �
0

¼ p
2
� sin�1 1

z1

� �
0

: (36)

Because solutions of R¼ 1, where R is defined as in Eq. (17)

must satisfy ReðkyÞ < k�1, it follows from Eq. (6) and the def-

inition of z1 that Reðz1Þ > 1. As the radial mode number

increases, ReðkyÞ decreases and the quantity 1=z1 approaches

zero, such that c is between 0 and p=2. Therefore, c=tan c in

Eq. (32) is between 0 and 1, and Eqs. (31) and (32) show

that ky is less sensitive to relative changes in a than in rI.

For the frequency f, it is appropriate to specify the sensi-

tivity of the along-front phase speed cy as in Fig. 2(c). The

relative changes in along-front phase speed cy and frequency

f are related by

DC

C½ �0
� � cot2w

� �
0

Df

f0

; (37)

where C ¼ ReðcyÞ ¼ 2pf=u. By differentiating C with

respect to f, substituting the result into Eq. (34), and collect-

ing terms, Eq. (37) can be derived. For other parameters, it is

straightforward to show that the local sensitivity of u and C
are the same, with the exception of a minus sign.

When linearizations of Eqs. (31)–(34) and Eq. (37) are

used to approximate changes to ReðkyÞ based on known (ref-

erence) wavenumber solutions, predictions will lose accu-

racy as parameters increase from the reference values. A

maximum variation for Du is specified next to restrict the

sizes of displacements Dx. A choice for a maximum Du that

has a physical interpretation is Dkm=2:

Dkm¼Reðky;m�ky;mþ1Þ¼um;0�umþ1;0�
2p

Km;mþ1

; (38)

where Km;mþ1 is the horizontal modal interference length

between adjacent radial modes. The quantities Dkm; um;0,

and umþ1;0 are illustrated in Fig. 4(b). By requiring

Dum

um½ �0

					
					 < 1

2

Dkm

um½ �0
¼ p

Km;mþ1

1

um½ �0
; (39)

for a given um ¼ Reðky;mÞ, a direct relation can be made

between sensitivity of ReðkyÞ to model parameters and the

effect on the horizontal interference length. To obtain an

explicit equation for Dkm, Eq. (12) approximates the difference

lðz1Þjky;mþ1
� lðz1Þjky;m

� p
g
: (40)

The linear approximation z1ðky;mþ1Þ ¼ z1ðumÞ þ D�z1;m

þOðvÞ, where

D�z1;m �
rI

g

� �2 um

�z1;m
Dkm; (41)

relates the small quantities D�z1;m and Dkm. Substituting Eq.

(41) into Eq. (40) and expanding in Dkm provides the

approximation

FIG. 4. (Color online) (a) Planar projections of wavenumber components

and angles of k1 corresponding to Fig. 1(b). (b) Schematic illustrating region

of validity for local linear approximations. Notation um denotes the real part

of ky;mn, filled (blue) circles on the curves represent real components of ky

dispersion relation solutions for m – 1, m, and mþ 1 at reference values.

Straight solid (red) tangent line represents linear approximation.
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Dkm �
p
g

k2
1 � u2

m

um

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�z2

1;m � 1
q : (42)

For f sensitivity, DCm ¼ Cmþ1 � Cm is used instead of Dkm,

with the approximation DCm � CmðDkm=ky;mÞ.
The approximation of Dkm from Eq. (42), and the

restriction on Du=u0 from Eq. (39), along with Eqs.

(31)–(34) constrain the maximum relative changes from ref-

erence values as follows:

jDrIj
rI;0
 p

2g
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2
1;m � 1

q
2
4

3
5

0

; (43)

jDaj
a0

 p
2g cos�1ð1=z1;mÞ

� �
0

; (44)

jDc1j
c1;0

 p
2g

k2
r1;m

k2
1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2

1;m � 1
q

2
4

3
5

0

; (45)

jDf j
f0

 p
2g

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2

1;m � 1
q

2
4

3
5

0

: (46)

Note that the relative changes in rI and f are limited by

the same expression. Equations (43)–(46) depend on the

mode number under investigation and parameter intervals

for their use are readily determined. The largest deviations

from reference parameter values to use with local approxi-

mations are summarized in Table I for a selection of mode

numbers including all three mode types WG, TR, and

leaky.

The trends represented by values in Table I are that

increasing mode number m requires the parameter inter-

vals for a, rI, and f to decrease, while the opposite is true

for c1. The WG modes correspond to long-range acoustic

propagation along the front, while leaky modes describe

near-field behavior. It follows that the far-field behavior

in y will be less sensitive to changes in a, rI, and f com-

pared to the near-field, while the opposite is true for c1.

Overall the linear approximations in Eqs. (31)–(34) show

that ky is most sensitive to changes in f and c1, and least

sensitive to changes in a with rI sensitivity falling

between them. Of course, Eqs. (31)–(34) cannot give

comparably accurate predictions of the evolution of ky

that Eqs. (24)–(27) can; but within parameter intervals

specified by Eqs. (43)–(46) the linear approximations are

reasonably good.

VIII. SUMMARY AND CONCLUSIONS

Acoustic parameter sensitivity is quantified for a 3-D

ocean feature model of an idealized curved sound-speed

front over a sloping bottom. The conservation of radial

mode number is used to find nonlinear and corresponding

linearized approximations of environmental and acoustic

parameter variability of horizontal wavenumbers. The non-

linear results are shown to be numerically accurate over

quite broad parameter intervals, while the linear results

allow easy extraction of detailed parameter sensitivity

information for smaller parameter variations. It is con-

cluded that relative changes in model parameters affect

ReðkyÞ differently, with ReðkyÞ least sensitive to the bot-

tom slope angle, most sensitive to source frequency and

sound speed, and the influence of front location falling

between these two. Furthermore, the dependence on mode

number illustrates that acoustic behavior in the near-field

(in along-shore coordinate y) acoustic behavior is less sen-

sitive to bottom slope angle, front location, and source fre-

quency than is the far field, while the opposite is true for

inshore sound speed.

Using the sensitivity and parameter results derived

here, estimates could be made of how uncertainty in

experimental data influences the results of computational

models that include such data in their inputs. Another

potential use of these results is identifying effects of envi-

ronmental variations on acoustic metrics such as modal

wavenumber, phase speed, attenuation, and interference

length; the relative importance of each environmental vari-

able could be established, and acceptable uncertainty mar-

gins could be recommended for experimental data

collection. Further research should introduce realism to the

idealized model here, to increase applicability of results

and to incorporate improved physics, such as a continu-

ously varying front representation and the influences of

bottom topography and attenuation processes. Additionally,

the effect of parameter changes on other field metrics such

as transmission loss could be approximated, and the mode

number invariance approach could be applied to other

ocean features with fronts, such as nonlinear internal wave

ducts.
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TABLE I. Examples of maximum deviations from reference parameter val-

ues for allowed use of local linear approximations, Eqs. (31)–(33) and (37).

These deviations are dependent on radial mode number m, angular mode

number n, and are the maximum allowed deviation from reference parame-

ter values for a given parameter and mode number. Values are for WG

modes m¼ 1 and 5, TR mode m¼ 10, and leaky modes m¼ 20 and 50.

Mode type Mode # jDaj deg. jDrIj m jDfj Hz jDc1j ms�1

WG m¼ 1 0.28 328 2.05 0.89

m¼ 5 0.16 145 0.91 0.86

TR m¼ 10 0.14 99 0.62 1.04

Leaky m¼ 20 0.12 64 0.40 1.44

m¼ 50 0.11 32 0.20 2.71
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NOMENCLATURE

Ai Airy function of the first kind

C Real component of cy

c1 Inshore sound speed

c2 Offshore sound speed

cy Along-front modal phase speed

f Source frequency

H
ðiÞ
g Hankel function of the ith kind with order g

Im Imaginary component

j Index denoting inshore (1) or offshore (2)

k Wavenumber in the wedge

kj Inshore or offshore wavenumber

k�j (r, y) plane wavenumber, evaluated at the front

krj Vertical plane ðr; hÞ wavenumber

ky Horizontal wavenumber

ky;nm Horizontal wavenumber solution of dispersion

relation for nth angular mode and mth radial

mode

kh Dimensional angular wavenumber

m Radial mode number

n Angular mode number

Pðr; h; yÞ Acoustic pressure

P̂ðr; h; kyÞ Fourier transform of P
Qnm Modal weight coefficient

R Reflection coefficient

Re Real component

r Radial coordinate

r0 Radial location of source

rI Radial location of constant curvature front

rt1 Inshore turning point of the radial mode

equation

t Time

u Real component of ky

v Imaginary component of ky

y Horizontal coordinate

zj Dimensionless ratio of Hankel function argu-

ment to Hankel function order, krjrIg
a Constant bottom slope angle

Dkm Real difference between adjacent horizontal

wavenumber solutions of the dispersion relation

gn Angular wavenumber for nth angular mode

h Azimuthal coordinate

h0 Azimuthal location of source

j1 Inshore radial wavenumber evaluated at the front

jrj Radial wavenumber

Km;mþ1 Horizontal modal interference length between

adjacent radial modes

UnðhÞ Angular mode function

WnmðrÞ Radial mode function

x Angular source frequency
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