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Reprint from Journal of Marine Research, Volume 38, 3, 1980.

Relationships between oceanic epizooplankton distributions
and the seasonal deep chlorophyll maximum in the
Northwestern Atlantic Ocean

by Peter B. Ortner’, Peter H. Wiebe?, and James L. Cox?®

ABSTRACT

The potential significance of the Deep Chlorophyll Maximum (DCM) as a food resource
for pelagic food chains was studied in three hydrographic regimes of the Northwestern Atlantic
Ocean: the Slope Water, the Northern Sargasso Sea and a Gulf Stream cold core ring.
Samples for phytoplankton species, chlorophyll and related water chemistry were obtained
with a series of water bottle casts from the upper 200 m; microzooplankton and macrozoo-
plankton were also obtained in the upper 200 m with Clarke Bumpus (67 m mesh) and
MOCNESS (333 m mesh) net systems. Samples were obtained in the summer when the DCM
was well developed and in the fall when mixing had erased the DCM in most areas.

Total zooplankton biomass was significantly enhanced within depth intervals including or
adjacent to the seasonal thermocline in the three hydrographic areas. Hydrocast data show
the DCM in these regions was predictably associated with the seasonal thermocline. Thus
these data indicate zooplankton biomass was enhanced about the DCM when it was present.
In some cases, the zooplankton assemblage at DCM depths was distinguishable from those
both at deeper and more shallow depths and its composition appeared related to the food
available at DCM depths. Overall, in environments ranging from moderately rich near-shore
Slope Waters to the more oligotrophic open-ocean Sargasso Sea, our data suggest that the
DCM signals a depth zone of particularly intense trophic activity.

1. Introduction

Seasonal accumulations of chlorophyll at the bottom of the euphotic zone have
been shown to be characteristic features of three distinct hydrographic regimes in
the western North Atlantic Ocean; the Slope Water, the Northern Sargasso Sea,
and Gulf Stream cold core rings, whenever the upper water column remained
reasonably well-stratified for an extended period of time (Ortner, 1978). This
phenomenon has been called the Deep Chlorophyll Maximum (DCM) (Venrick,
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et al., 1973). A number of investigators have reported zooplankton species ap-
parently associated with the depth of a DCM (Anderson, et al., 1972; Mullin and
Brooks, 1972; Hobson and Lorenzen, 1972; Chester, 1975; Beers and Stewart,
1967; Youngbluth, 1975; Gunderson, et al., 1976; Haury, 1976; Fairbanks,
Wiche, and Bé, 1980). However, in no case were detailed vertically stratified
samples of both macrozooplankton and microzooplankton concurrently obtained.
On the other hand, Venrick, et al. (1973) and Longhurst (1976) reported no such
association in oligotrophic areas in the Pacific Ocean.

The work of Boyd (1973), Harder (1968), and others has indicated that zoo-
plankton can exhibit considerable sensitivity to temperature gradients. Data pre-
sented here indicate the existence of a relationship between the North Atlantic
DCM and the vertical temperature distribution. Considering the low concentra-
tion of phytoplankton biomass in the mixed layer, relative to the DCM, during
times of thermal stratification (Ortner, et al., 1979), it would not be unreasonable
to anticipate that zooplankton vertical distributions might respond to temperature
as a DCM cue.

The principle objective of this paper will be to compare 0-200 m vertical
distributions of zooplankton to 0-200 m temperature and density distributions to
see if there are zooplankton biomass peaks at or about the same depth as the DCM,
and to see if the structure of the zooplankton assemblage at those depths is different
from the assemblage above and below. Both zooplankton data and water column
properties will initially be related to vertical temperature structure, thus reducing
biological variability directly attributable to hydrographic variability. This indirect
approach is necessary because water bottle casts and net tows, were not synoptic.

2. Methods

The data presented in this paper were collected from the Northwestern Atlantic
Occan on R.V. Chain Cruise 125 (August 1975) and on R.V. Knorr Cruise 53
(November 1975). In addition to sampling the Slope Water and Northern Sargasso
Sea, on both of these cruises the same ring (Ring D) was sampled. It had formed
in February 1975 and was, therefore, about six months old in August and nine
months old in November. The positions of sample collection are shown in
Figure 1.

Collections were made with two different types of sampling gear; a multiple
opening/closing net and environmental sensing system, MOCNESS (Wiebe, et al.,
1976), with a mouth area of 1 m X 1.4 m (effective area is 1 m?), and Clarke-
Bumpus samplers with a mouth area of .012 m? The MOCNESS nets were con-
structed with 333 m Nitex nylon gauze, while Clarke-Bumpus nets were made of
67 m nylon gauze. Depth recorders and flow meters were used on all tows.

Both MOCNESS and the Clarke-Bumpus devices sampled obliquely from 200
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Figure 1. Positions of zooplankton tows, I, II indicate approximate Gulf Stream cold core
ring boundaries on Chain 125, and Knorr 53, respectively. Note stations CB 4, MOC 12,
and MOC 14 were not taken in a ring because, at that time, ring D was at position I.

m to the surface in 25 m intervals.* Collections were made during both day and
night. Five Clarke-Bumpus samplers were placed on the hydrowire at 36 m inter-
vals—i.e., 25 m sampling intervals, assuming a constant 45° wire angle—and
opened by dropping a messenger when the topmost net had reached sampling
depth. The nets were lowered and raised obliquely and were closed by dropping
a second messenger when the topmost net had reached its starting depth. On cach
station, two casts were made, 0-125 m and 75-200 m. When all nets functioned
properly, the 75-100 m and 100-125 m depth intervals were sampled twice at
cvery station. Ship speed for all tows was closely monitored and kept at approxi-
mately two knots. All samples were preserved in 5% to 10% formalin buffered
to pH > 8.0 with sodium tetraborate.

Zooplankton biomass in MOCNESS and Bongo samples was measured by dis-
placement volume (Ahlstrom and Thrailkill, 1963). After biomass determination,
some of the samples were sorted for species identification. In most cases, cm?/m?

4, MOCNESS tows to 800 m were taken at the same stations and are discussed in Ortner ef al.
(1978).
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were converted to mg C/m® according to equation number one in Table 2 of
Wiebe et al. (1975). Salp-rich samples were converted to biomass by assuming
salps constitute 100% of the sample, salps are 99% H,O (L. P. Madin, personal
communication), and salp tissue averages 23% carbon (Silver, 1971) when dried.
Such samples arc identified in both text and figures. The biomass calculation for
salp-dominant samples used here resulted in biomass estimates close to those
obtained by measuring cach individual salp in a sample, applying an experimentally
determined  specics-specific length to carbon regression, and then summing the
individual contributions (Wiebe, er al., 1979). Clarke-Bumpus samples were sub-
divided with a Folsom plankton splitter (McEwen, et al., 1954). An aliquot of
cach Clarke-Bumpus samples was filtered at 60° in a drying oven, and its weight
dctermined by difference after water loss was complete. This value was converted
to mg C/m? by the appropriate equation given in Wiebe, et al. (1975).

Larger organisms in the Clarke-Bumpus samples, i.e., large copepods (> 1 mm),
medium copepods, (0.5-1 mm), large ostracods (> 0.5 mm), cuphausiids, coelen-
terates, chactognaths, larvaceans (largely appendicularians), amphipods, poly-
chactes, mysids, decapods, and molluscs (mostly pteropods but, occasionally,
hetcropod and benthic mollusc larvae), were counted at low magnification (25X)
in the entire sample. Smaller and more abundant organisms in the Clarke-Bumpus
tows, i.e., nauplii, small copepods and copepodites (0.5 mm), dinoflagellates
(largely Ceratium spp.), foraminiferans, and tintinnids were stained with Rose
Bengal and counted at moderate magnification (50X) in an aliquot drawn by
Stempel pipette. The estimate of total counting error derived from replicate sub-
sample counts was approximately 15% (Ortner, 1978).

Temperature and salinity profiles accompanied each tow with MOCNESS, since
it was equipped with its own CTD (Brown, 1974). For Clarke-Bumpus tows, the
temperature structure had to be estimated from the nearest XBT (expandable
bathythermograph) or CTD profile. These profiles, while not synoptic, were taken
within one hour of the tow, close to the same position.

At the stations where zooplankton sampling was conducted (Fig. 1), water
bottle casts were also taken, and the following parameters determined: tempera-
ture, salinity, NO,, NO,, O,, chlorophyll a, phaeophytin, ATP, **C uptake rate,
and phytoplankton species counts. Not all of these parameters are discussed here,
but appear in part in Ortner, et al. (1978, 1979).

3. Vertical distributions of water column properties

In all hydrographic regimes sampled on Chain 125 (August 1975), strong strati-
fication began at or near the surface (see Fig. 2). In all regions, a deep chlorophyll
maximum was present near the base of the most strongly stratified zone (Northern
Sargasso Sea, 25-100 m; Ring D, 25-100 m; Slope Water, 0-70 m). The DCM was
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Figure 2. 0-200 m average vertical profiles of temperature (°C) f, dissolved oxygen (ml/1),
percent saturation of oxygen (%), chlorophyll (g/l1), phaeopigments (g/1), ATP (g/l), light
fixation of *C (g C/1 over a dawn-to-dusk incubation). R.V. Chain cruise 125, August 1975,
N equals the number of stations used in calculating the average profile.

particularly well-developed in the Slope Water stations where the density gradients
were especially steep (Slope Water, t/Z = .06).

In August 1975, Northern Sargasso Sea, Ring D, and Slope Water stations ATP
concentrations increased from the surface to the DCM and decreased beneath it.
ATP concentration in the Northern Sargasso Sea had a minor minimum at the
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Figure 3. 0-200 m average vertical profiles of temperature (°C) ¢, dissolved oxygen (ml/l),
percent saturation of oxygen (%), chlorophyll (g/l), phaeopigments (g/1), ATP (g/1),
light fixation of *C (g C/1 over a dawn-to-dusk incubation) and dark fixation of C (g C/1

over a dawn-to-dusk incubation). N equals the number of stations used in calculating the
average profile. R.V. Knorr cruise 53, November 1976.

same depth (about 125 m). Like the Slope Water DCM, the subsurface ATP peak
in the Slope Water was particularly prominent.

In Ring D, both oxygen concentration and percent saturation were maximal in
the middle of the stratified zone (75 m). At roughly the same depths, *C light fix-
ation slightly increased. A similar relationship was observed in the Slope Water
data. The Northern Sargasso Sea did not show a distinct subsurface oxygen maxi-
mum, but was supersaturated everywhere above the center of the DCM.

Between August 1975 and November 1975, the Northern Sargasso Sea had
begun its winter overturn. In August 1975 (Fig. 2), uniform stratification extended
from the surface to at least 100 m (e.g., #/Z = .04, 0-100 m). By November 1975
(Fig. 3), mixing had erased the stratification of at least the upper 50 m (+/Z — .002,
0-50 m). This mixing was not yet sufficient to affect the DCM which was still
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within the deeper stratified layer. Oxygen saturation, ATP, and pigment profiles
all were basically similar in August and November 1975. However, mixing had
erased the slight 0-100 m dissolved oxygen gradient of increasing concentration
observed in August 1975.

Between August and November 1975, Ring D also had begun its winter over-
turn (Fig. 3). Isothermal and isopycnal layers extended from the surface to at
least 100 m (c.g., +/Z =.001, 0-100 m) in contrast to the stratification of August
(compare with Fig. 2). In November, dissolved oxygen concentration and satura-
tion and chlorophyll were relatively uniform from 0-100 m. A subsurface dissolved
oxygen maximum located just beneath a well-stratified layer (+/Z — .05, 100-125 m)
was not supersaturated. **C light fixation was higher in November than in August.
In the only profile obtained, there was a prominent ATP maximum at about 100 m
atop the well stratified layer.

Changes in the Slope Water between August and November 1975 paralleled the
changes in Ring D. By November, mixing had procecded sufficiently to produce
isothermal and isopycnal conditions from the surface to at least 50 m (e.g., t/Z =
.002, 0-50 m in Slope Water). The DCM of August was erased and **C light fixa-
tion was much enhanced. Dissolved oxygen concentration was uniform within the
mixed layer, and never supersaturated.

The following conclusions are drawn:

(1) Corroborating previous observations, a DCM occurred only after the forma-
tion of a stable shallow density gradient, typically marked by a seasonal thermo-
cline. DCM depth was apparently dependent upon pycnocline depth, and was
relatively predictable (within about 10 m). Minor apparent regional differences in
the relationships between 0-200 m profiles investigated could frequently be ex-
plained as sampling artifacts.

(2) Increasing chlorophyll concentration at the DCM did not, per se, indicate a
proportional accumulation of plant biomass although on some occasions corrclated
peaks in the abundance of particular phytoplankton groups were noted (Ortner,
et al., 1979). Oxygen profiles, nutrient profiles, and *'C fixation experiments
imply phytoplankton growth had occurred or was occurring at DCM depths. ATP
profiles, dark *C fixation experiments and nutrient profiles imply microbial activity
may have been enhanced at DCM depths (Ortner, 1978). In addition, both the
corrclation between the DCM and the seasonal thermocline, and the shape of the
pigment profiles obtained, imply that DCM depths accumulated particulate matter
sinking from above.

4. Zooplankton results—August 1975

a. Total biomass. Zooplankton biomass data obtained from the MOCNIESS and
the Clarke-Bumpus tows in the Northern Sargasso Sca, Ring D, and the Slope
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Figure 4. Zooplankton biomass (mg C/m®). August 1975, R.V. Chain cruise 125 in the
Northern Sargasso Sea, Ring D, and the Slope Water. MOCNESS and Clarke-Bumpus net
tows. Values given are mg C/m® over adjacent depth intervals. The 0-200 m temperature
structure at the station or stations is superimposed on the biomass profile.
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Water in August 1975 arc given in Figure 4. Day and night average 0-200 m
biomass values (MgC/m?) in each region sampled were:

Northern Sargasso Sea Ring D Slope Water
CB-Day 132 100 480
CB-Night 174 — 1,478%
MOC-Day 163 95 581
MOC-Night 350 216 1,550*

Starred samples, at least at some depths, were overwhelmingly dominated by salps.
The biomass at those depths was calculated differently from that of the other
samples (see Methods).

Biomass in Clarke-Bumpus day tows was not significantly different from biomass
in MOCNESS day tows in the three regions sampled. For the Northern Sargasso
Sea, there are day and night biomass estimates, calculated by the same method,
for both types of gear. In that data, the night/day 0-200 m biomass ration, as de-
termined by MOCNESS, was 2.15. In contrast, the night/day 0-200 m biomass
ratio was only 1.32 for Northern Sargasso Sea Clarke-Bumpus tows. In spite of
this difference, there appears to be no systematic difference in relative vertical
distribution between Clarke-Bumpus and MOCNESS tows (see Fig. 4). To obtain
a sufficient number of samples to statistically test some of the vertical distribution
patterns observed, the Clarke-Bumpus and MOCNESS data have been considered
to represent one data set in the analyses that follow. Though Clarke-Bumpus and
MOCNESS nets sampled different (though overlapping) size ranges of zooplankton,
they both produced estimates of overall zooplankton biomass. If one net type tended
to obscure vertical patterns of distribution because of size bias in sampling, the
null hypothesis of no vertical difference in overall biomass distribution would
tend to be accepted rather than rejected; hence, lumping of the two data sets is
essentially a conservative procedure when testing the statistical significance of
vertical biomass differences.

In most of the zooplankton biomass profiles, a subsurface peak occurred in the
vicinity of the pycnocline and the DCM. The objective of the analysis which follows
is to determine the statistical significance of the position of these peaks. The null
hypothesis is that biomass values within a profile are, on the average, not signif-
icantly different.

Seven 0-200 m tows were taken in the Northern Sargasso Sea in August 1975
with MOCNESS and Clarke-Bumpus samplers (Fig. 4). Omitting CB2, because of
its numerous missing values, and ranking the 25 m interval biomass estimates in
the remaining six tows, the significance of the individual depth interval differences
can be calculated by the method of Nemenyi (1963) without multiple-testing. This
test, which employs ranks, prevents tows of higher overall biomass from dominat-
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ing the analysis. The most significant differences were as follows: 50-75 biomass >
125-150 m, > 150-175 m, and > 175-200 m biomass; 75-100 m biomass >
125-150 m, > 150-175 m, and > 175-200 m biomass; 100-125 m biomass >
175-200 m biomass (p < .05). That is, 50-100 m biomass was significantly greater
than biomass below. Though it cannot be shown with equal statistical rigor that
50-100 m biomass is greater than above, the figures strongly suggest that such is
the case. The temperature profiles accompanying the biomass histograms indicate
that 50-100 m bracketed the base of the secasonal thermocline in the Northern
Sargasso Sea. It is suggestive that CB2, the top of the thermocline was more shallow
than at any of the other stations and, at that station, an anomalously high 25-50 m
biomass was observed.

Four 0-200 m MOCNESS and Clarke-Bumpus tows were taken in Ring D (Fig.
4). After interpolating to generate the single missing value in CB3, the significance
of individual depth interval differences can be calculated as above. The most sig-
nificant differences were as follows: 50-75 m biomass > 125-150 m, > 150-175
m, and > 175-200 m biomass; 75-100 m biomass > 175-200 m biomass (p < .05).
Our statistical approach is extremely conservative when the number of comparisons
is small (here N = only 4). If the level of significance is relaxed, then: 75-100 m
biomass > 125-150 m and > 150-175 m biomass (p < .10). In Ring D, as in the
Northern Sargasso Sca, 50-100 m biomass exceeds that above and below. Ac-
companying tempcrature profiles indicate that 50-100 m bracketed the base of the
seasonal thermocline.

Two 0-200 m MOCNESS and three Clarke-Bumpus tows were taken in Slope
Water (Fig. 4). CB6 and CB1 were combined into a composite profile with three
of the histograms representing mean values. Since CB7 only sampled to 150 m,
it was decided to consider only the 0-150 m interval for statistical testing. The
most significant biomass difference was 50-75 m biomass > 75-100 m biomass
(p < .05). Relaxing the level of significance: 50-75 m biomass > 100-125 m and >
125-150 m biomass; 0-25 m biomass > 75-100 m biomass (p < .10). The sub-
surface peak appears to be significant. In the Slope Water, the 50-75 m interval
typically bracketed the base of the seascnal thermocline. Again, total biomass
shows significant subsurface peaks centered about the seasonal thermocline.

b. Distribution of functional groups. The composition of the Clarke-Bumpus
samples for August 1975 (Fig. 5) indicates that patterns in the distributions of
particular zooplankton functional groups or taxa were consistent with patterns in
the distribution of zooplankton biomass in the three areas investigated. Since these
represent estimates of group abundances based on single tows, absolute numbers
have to be interpreted with caution. However, there are consistent patterns recog-
nizable from tow to tow which support the general conclusions resulting from the
analysis of vertical biomass patterns.
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groups. August 1975, R.V. Chain cruise 125. Data from CB 4 (day), and both CB 2 and
CB 5 (averaged to night value). Note that day and night tows do not necessarily represent

a single sampling station.

Average zooplankton functional group or taxa abundance day and night in the
Northern Sargasso Sea was determined from Clarke-Bumpus tows CB4, CB2, and
CB5 (Fig. 5). In general, medium copepods, larvaceans, copepod developmental
stages, molluscs and tintinnids seem to be concentrated around the 75-100 m depth
interval. Medusae, dinoflagellates, foraminifera, and ostracods ecither show variable
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patterns or seem to be concentrated shallower in the water column. The single day
tows available for August 1975 (Figs. 6 and 7) in Ring D and in Slope Water,
indicates that there may be some differences in the similarity of depth occurrences
among the groups as seen in the Sargasso samples. In Slope Water, larvaceans do
not appear to be concentrated at DCM depths, and patterns in other groups are
variable. In Ring D, larvacecans are associated with the DCM depths, but the center
of distribution of other groups seems to be either shallower (medium and large
copepods) or deeper (copepod developmental stages, ostracods).

5. Zooplankton results—November 1975

a. Total biomass. In November 1975, the upper water columns in these three re-
gions experienced, to various degrees, the initiation of winter mixing. Thus, data
from this cruise may permit evaluation of the strength of the relationship between
vertical biomass structure and vertical temperature stratification (Fig. 8).

Interpolating missing values, day and night 0-200 m biomass values (mgC/m?)
in MOCNESS and Clarke-Bumpus tows in each region sampled were:

Northern Sargasso Sea  Ring D Slope Water*
CB-Day 140.0 715 242.5
CB-Night 160.0 62.5 40.5
MOC-Day 165.0 55.0 365.0
MOC-Night 242.5 162.5 858.0

Examining the biomass peaks evident in the four Sargasso Sea tows (Fig. 8), the
most significant differences were: 0-25 m biomass > 125-150 m biomass; 75-100
m biomass > 125-150 m biomass (p < .05). Less significant differences were: 0-25
m biomass > 175-200 m biomass; 100-125 m biomass > 175-200 m biomass;
75-100 m biomass > 175-200 m biomass (p < .10). A larger fraction of 0-200 m
biomass was found near the surface in November 1975 than in August 1975.
Despite this, there appeared to be a small, but definite, enhancement of biomass
about the base of the seasonal thermocline in the Northern Sargasso Sea.

Four 0-200 m Clarke-Bumpus and MOCNESS tows were taken in Ring D
(Fig. 8). The most significant difference was 75-100 m biomass > 175-200 m
biomass (p < .05). Less significant differences were: 75-100 m biomass > 100-125
m, > 125-150 m, and 150-175 m biomass; 0-25 m biomass > 175-200 m biomass,
and 50-75 m biomass > 175-200 m biomass (p < .10). As in the Northern Sargasso
Sea, near-surface (0-25 m) biomass was relatively greater in November 1975 than
in August 1975. Overall, 0-200 m biomass declined between August and Novem-
ber 1975 in Ring D at the Northern Sargasso Sea. Despite these changes, a minor
concentration of biomass was noted at approximately the same depth as in August,

* Slope Water Clarke-Bumpus biomass values 0-100 m only.
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Figure 8. Zooplankton biomass (mg C/m"). November 1975, R.V. Knorr cruise 53. MOCNESS
and Clarke-Bumpus net tows. Values given are mg C/m® over adjacent depth intervals.
The temperature structure at the particular station is superimposed on the biomass profiles.

but just above a seasonal thermocline in the process of erosion.

Four tows were taken in the Slope Water; two 0-200 m MOCNESS tows and
two 0-100 m Clarke-Bumpus tows (Fig. 8). The significance of individual depth
interval differences can be calculated as above if we consider only 0-100 m with
N = 4. The most significant interval differences were 0-25 m biomass > 75-100
m biomass (p < .05) and 25-50 m biomass > 75-100 m biomass (p < .10). As in
both the Northern Sargasso Sea and Ring D, the relative contribution of Slope
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Note that day and night tows do not necessarily represent a single sampling station.

Water near-surface biomass was greater in November 1975 than in August 1975.
On the average, biomass in November declined with depth and there was no (race
of subsurface biomass maximum. Biomass declined sharply beneath an isothermal
0-50 m layer.

b. Distribution of functional groups. Analysis of particular functional groups of
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taxa indicates that community structure and vertical distribution in the Sargasso
Sea may have changed between August and November. Large and medium cope-
pods appeared to be more distinctly centered at a deeper maximum between 75-125
m (Fig. 9). Distributions of other groups did not appear to differ substantially from
August patterns.

Ring D abundance patterns (Fig. 10) did not appear to change substantially ex-
cept for the larvaceans, which appear to be almost exclusively confined to surface
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November 1975, R.V. Knorr cruise 53. Data from CB 12 (day) and CB 13 (night). Note
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waters in the day, in contrast to the August day tow data. Subsurface numerical
abundance peaks are particularly evident among medium copepods, medusae,
chaetognaths, larvaceans, tintinnids, and copepod developmental stages, despitc
the lack of a well-defined chlorophyll maximum.

Slope Water (Fig. 11) showed a dramatic increase in abundances of groups by
as much as an order of magnitude, though these differences may be due to possible
clogging of the Clarke-Bumpus nets in August. Generally, the distribution of the
larger animals appears to be shallower in November than in August.

6. Discussion

a. Sampling considerations. Prior to discussing the ecological significance of the
results obtained, it is important to compare the samplers used in this study. Two
very different types of gear were used: MOCNESS (333 m) and Clarke-Bumpus
samplers (67 m mesh). They have given a similar picture of vertical 0-200 m bio-
mass structure in the different regions sampled. Both documented systematic dif-
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ferences in Northern Sargasso Sca, Slope Water and Ring D biomass. However,
day MOCNESS tows consistently contained less biomass than night MOCNESS
tows, while day/night differences were both less systematic and less substantial in
Clarke-Bumpus sample pairs. That is, MOCNESS day/night sample pairs clearly
documented diel migration, while Clarke-Bumpus day/night samples did not. In
some cases, this may reflect hydrographic variability at the same geographic loca-
tion (sce Fig. 6, Slope Water tows). However, in general, MOCNESS appeared to
more adequately sample relatively large and mobile animals (e.g., euphausiids and
pteropods) that, presumably, could avoid capture by the much smaller Clarke-
Bumpus samplers. Some of these species are known to be strong vertical migra-
tors and their nightly presence in the upper 200 m contributed substantially to
day/night diffcrences in MOCNESS sample pairs, but minimally to day/night dif-
ferences in Clarke-Bumpus sample pairs. In contrast, Clarke-Bumpus devices
sampled a large number of small zooplankton, either underrepresented or not rep-
resented, in MOCNESS samples. In short, the two types of gear sampled partially
diffcrent components of the zooplankton community.

The “microplankton”, the part of the Clarke-Bumpus catch that almost certainly
passed through the 333 m mesh of MOCNESS, included naupliar copepods, posta-
naupliar copepods, dinoflagellates, and tintinnids, and foraminiferans. Of these
groups, naupliar and post-naupliar copepods dominated both microplankton num-
bers and biomass. This does not imply that the proportions of the microplankton
in the Clarke-Bumpus samples represent their actual relative abundances. For ex-
ample, one nced only compare our numbers/m® of Northern Sargasso microplank-
ton groups (Fig. 5) with the numbers/m® of North Pacific microplankton groups
in Beers et al. (1975b) to realize that with 67 m mesh only the largest and least
abundant individuals of most of those microplankton groups have been sampled.
With the assumption that the size-frequency distribution of many of these forms
does not systematically vary with depth, it is still possible to argue that qualitative
conclusions can be drawn relative to the vertical distribution of microplankton.
In fact, no such systematic variation was reported by Beers et al. (1975a) for their
six North Pacific stations. A further indication that the above assumption may be
warranted is that microzooplankton contribution to total zooplankton biomass was
greater in Northern Sargasso Sea and Ring D samples than in Slope Water samples
(Ortner, 1978); this direction of difference accords with similar observations made
by Beers and Stewart (1969) and Lebrasseur and Kennedy (1972).

b. The relationship of zooplankton biomass to the vertical temperature gradient.
Overall zooplankton biomass in August 1975 has been shown to be significantly
higher in 25 m depth intervals adjacent to, or encompassing the seasonal thermo-
cline (Fig. 4). It is suggestive that in a Northern Sargasso Sea tow in which the
mixed layer was particularly deep (compare CB5 and CB2 in Fig. 4) the biomass
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distribution was also particularly deep. On the other hand, naupliar and post
naupliar copepods in Ring D were numerous primarily below the mixed layer
(Fig. 6). Note that in both the Slope Water and Ring D increases in naupliar and
post-naupliar copepod numbers occurred at approximately 20° (compare tempera-
ture profile, Fig. 4, with abundance in Figs. 6 and 7). Although we have not ex-
amined the specific composition of this population, this suggests that the juvenile
copepod population of Ring 1D may have been composed of Slope Waler species
entrained during ring formation since both Slope Water and Ring D populations
appear to prefer temperatures << 20°C. In the Slope Water, this strategy would
position them in the maximum temperature gradient where food is relatively
abundant. In Ring D, the same strategy seems less appropriate in that it separates
the population from the chlorophyll a maximum.

In November 1975, the hydrographic situation was quite different. The seasonal
thermoclines in the Northern Sargasso Sea, Ring D, and the Slope Water either had
been completely erased or were in the process of being eroded by the onset of winter
mixing (temperature profiles in Figs. 3 and 6). Zooplankton biomass in the North-
ern Sargasso Sea still exhibited a small, but definite enhancement of biomass around
the base of a deep but sharply defined seasonal thermocline. The Northern Sargasso
Sea mixed layer was nearly isothermal, unlike in August and, in addition to the
subsurface biomass maximum, there was a substantial surface, or near-surface bio-
mass concentration. In Ring D, where mixing was more advanced, both the deep
biomass maximum and the near-surface maximum were less definite. In the Slope
Water, where mixing was the most advanced, no trace of a subsurface biomass
maximum remained, surface concentrations were very high, and biomass was
reasonably high everywhere above the remnant seasonal thermocline.

In November, naupliar and post-naupliar copepods had very different distribu-
tions than in August. Although subsurface maxima were noted in all regions at
approximately the same depths as in August, surface values were relatively high
in all regions. As noted earlier, although we have not examined the specific compo-
sition of these samples, the similarity of Ring D and Northern Sargasso Sea profiles
suggests that the juvenile copepod population of Ring D may have been composed
of Northern Sargasso Sea immigrants in November 1975.

c. Community structure at the subsurface biomass maximum. When the seasonal
thermocline is well established, the most abundant phytoplankton cells in the
Northern Sargasso Sea are quite small (Ortner ef al,, 1979). The fact that in
August 1975 both medium and large copepod distributions in the Northern Sargasso
Sea appear unrelated to the position of the seasonal thermocline and DCM (Fig. 5),
suggests that the adult copepods sampled here did not appear to be utilizing the
DCM as a major food resource. It is possible that inter-sctal spaces within the
feeding appendages of many of these forms may be too large to capture small
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particles efficiently. In contrast, larvaceans, molluscs, and some microzooplankton
appeared, at the same time, to be concentrated about the DCM (Fig. 5). Due to
their mode of feeding, these should be able to capture very small particles (Hamner
et al., 1975; Beers and Stewart, 1969). Chaetognaths, a purely carvinorous group
relatively abundant in the Northern Sargasso Sca, also were concentrated at about
the same depths. Their primary food may have been one or more of the above
small, particle-feeding zooplankton groups.

In Slope Water, during August 1975, larvaceans, molluscs, and copepods of all
sizes apparently had enhanced numbers at DCM depths (Fig. 7). This suggests
that all of them may be able to utilize food available there. Although small cells
still were abundant, larger cells were considerably more abundant in the Slope
Water than in the Northern Sargasso Sea during the same season (Ortner et al.,
1979). It is possible that a minimum density of phytoplankton is required for an
adequate ratio to be obtained by the larger copepods. The data of Dagg (1977)
and Mullin and Brooks (1977) suggests this may be the case.

In general, Ring D abundance patterns in August 1975 appeared similar to those
of the Slope Water except for the fact that post-naupliar copepod numbers in-
creased gradually with depth from the surface to 200 m (Fig. 6). The phytoplankton
of Ring D in August, however, were more similar in composition to the surrounding
Northern Sargasso Sea than to the Slope Water (Ortner ef al., 1979). Further,
Ring D total biomass had a subsurface maximum close in depth to that of the
Northern Sargasso Sea.

Nearly all Northern Sargasso Sea functional groups had distributions centered
about the DCM which had not yet been affected by fall mixing in November 1975
(Fig. 9). It is possible that the distribution of the larger copepods changed in part
because food within the mixed layer had become so reduced after months of strati-
fication as to induce a shift in feeding preference (Cowles, 1979).

In November 1975, Ring D 0-100 m numbers generally exceeded 100-200 m
numbers (Fig. 10). Numbers increased at the considerably sharpened thermocline
and most species groups showed a subsurface maximum. A DCM was no longer
present, but an ATP maximum was still observed at approximately the seasonal
thermocline. Further, with the onset of winter mixing, diatom numbers increased
relative to August and **C fixation rates were higher (Ortner, 1978 and Ortner,
et al., 1979). These changes may indicate that, prior to and during our sampling,
more food was available throughout the mixed layer than in August 1975.

DCM structure had been largely erased in the Slope Water by November 1975.
Diatom abundance had markedly increased (Ortner et al., 1979). Day zooplank-
ton abundances reflect these changes (Fig. 11). Numbers in most groups increased
relative to August; yet, some groups still showed enhanced numbers at the per-
manent seasonal thermocline. These included tintinnids, nauplii, and medium cope-
pods.
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In contrast, the night abundance patterns of nearly all groups show definite
subsurface maxima at thermocline depths (Fig. 11). However, the water column
sampled during the night tow was very different from that observed during the
previous day (see temperature profiles, Fig. 6). Vertical mixing had been far less
thorough, and the temperature structure of the night tow was much more similar
to carlier August Slope Water profiles than to its “paired” November day tow.

d. Causal mechanisms for DCM/zooplankton association. For rcasons discussced
earlier, our interpretation of community structure is almost certainly biased because
only the Clarke-Bumpus samples have been sorted. Further, sampling intervals of
25 m are clearly too broad, especially in the Slope Water (see Fig. 2) to precisely
locate biomass or abundance peaks. All that has been strictly established is gencral
co-occurrence of the DCM and zooplankton aggregations within depth intervals
bracketing the seasonal thermocline. It did appear that, on some occasions, a dis-
tinguishable zooplankton assemblage was associated with the DCM and that the
composition of this assemblage could be interpreted in light of the food available
at those depths. The similarity of MOCNESS and Clarke-Bumpus biomass profiles
indicated that a similar generalization might obtain for zooplankton groups in-
adequately sampled by the Clarke-Bumpus samplers. What are the causal mech-
anisms resulting in these distributions? Two major alternatives are apparent:
relative availability of food, and physical structure in the upper water column.
Bainbridge (1953) demonstrated that some herbivorous zooplankton spccies be-
have as if they perceive gradients in phytoplankton concentration and are, in fact,
attracted to concentrations of particular species. Alternatively, the experiments of
Harder (1968) and the field data of Boyd (1973) suggests that zooplankton are
capable of sensing temperature gradients and may aggregate at those gradients in
the absence of any other behavioral stimulus.

Data presented here do not resolve this difficult issue, but do shed some light on
its complexity and suggest an approach which might resolve the issue. Clearly, in
the summer, or when the DCM is well developed and stratification is most intense,
food availability and physical structure are more or less coincident and cannot be
separated. The fall data, however, suggest that with luck such a separation may be
possible. Although, in some cases, the DCM had been erased by mixing, the sub-
surface zooplankton biomass maxima still was observed. The herbivorous species
at that time could not have been behaving as in Bainbridge’s experiments. Either
they were exhibiting some habitual response, perhaps conditioned by prior biologi-
cal interactions, or they were responding to the physical environmental gradient
yet present. When herbivorous plankton have a vertical distribution apparently re-
lated to temperature structure, it is difficult to unambiguously interpret the co-
distribution of carnivorous species which might be responding to either the tempera-
ture gradient or the distribution of their prey.
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e. Historical context. To what extent do the results reported herein corroborate
those of earlier investigators? Associations between zooplankton and seasonal deep
chlorophyll maxima in near coastal environments have been documented by Mullin
and Brooks (1972), Haury (1976), Anderson, et al. (1972) and Chester (1975).
In more oceanic environments, microplankton/DCM associations have been report-
ed by Beers and Stewart (1971), Hobson and Lorenzen (1972), and Gunderson
et al. (1976). It is possible that the zooplankton microdistributions reported by
Timonin (1976) in the tropical Pacific reflect a DCM/zooplankton association,
although the phytoplankton of the depth intervals sampled were not assessed. It
has been argued that the Central North Pacific may be dominated by in situ rather
than advective processes and can, for much of the year, be considered to be in
steady state (McGowan, 1977). In these respects, the Central North Pacific appears
to be analogous to the Northern Sargasso Sea. Beers et al. (1975a) presented data
for six Central North Pacific bottle casts in late June and observed that the numbers
and biomass of micro-metazoans increased from 0-120 m. They observed no ac-
cumulation of phytoplankton cells at the DCM, which had been reported previous-
ly for the same region by Venrick et al. (1973). On the other hand, the latter
authors found no concentration of zooplankton biomass (> .035 m as sampled by
a pump), and argued that a DCM could be accentuated if grazing pressure were
more intense on the shallower phytoplankton. The same argument had earlier
been made by Lorenzen (1967). No evidence for macrozooplankton aggregation
at the Central North Pacific DCM has as yet been reported. Examinations of
ZETES Expedition data reports (S.1.O. Reference 70-5) reveals no such associa-
tion. In fact, there have been only a few documented cases of open ocean macro-
zooplankton/DCM associations (Longhurst, 1967; Youngbluth, 1975; perhaps
Vinogradov et al., 1970; and Timonin, 1976). The set of observations reported
here represents the only systematic documentation of substantial oceanic zooplank-
ton biomass/DCM association. The reasons for this may be largely methodological.
On an earlier occasion, we could not unambiguously demonstrate any association
using Bongo nets (McGowan and Brown, 1966; data in Ortner, 1978).

There is at least one account of open ocean vertical zooplankton distribution
which appears to contradict the results reported here (Longhurst, 1976). He pre-
sented extensive data obtained during EASTROPAC. His conclusion was similar
to that of Lorenzen (1967); i.e., that zooplankton biomass and presumed grazing
pressure are concentrated above the DCM perhaps at the depths where primary
productivity is maximal. For the following reasons it is difficult to determine the
reason for the difference between our conclusions.

All EASTROPAC data on chlorophyll, phytoplankton cell numbers, and *C
uptake were obtained from bottle casts sampling at depths defined by percentages
of ambient light and were, therefore, so widely spaced that it is virtually impossible
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to define the depths of maximal cell numbers or chlorophyll concentration
(EASTROPAC Atlas).

Biases in the LHPR profiles present an additional difficulty. Haury et al. (1976),
documented a number of sources of bias in LHPR results, most of which result in
variable time lags betwcen introduction into the filtering cone and appearance on
the recording gauze. Their analysis, unfortunately unavailable until well after
EASTROPAC, suggests that, given the conditions described by Longhurst, i.c.,
recorder box design, gauze advance time, length of tow, direction of tow, etc., biases
may have occurred in EASTROPAC LHPR tows. Since only upward oblique
hauls were taken during EASTROPAC, these sources of error could skew actual
distributions to shallower depths. Such problems could not have occurred using
either MOCNESS or Clarke-Bumpus samplers because in both cases the entire
filtering cone opens and closes at specific depths. While the tow rejection criteria
used in Longhurst (1976) are valid and rightfully eliminate some spurious tows,
they would not have been able to detect these systematic biases.

While behavioral cues abound to account for zooplankton aggregation about
the DCM, it is difficult to imagine cues which would permit zooplankters to detect
gradients in the rate of **C incorporation by phytoplankton, though the possibility
of associated chemical gradients or “taste” criteria cannot be discounted. In short,
it is impossible at this time to satisfactorily determine the degree to which Long-
hurst’s (1976) data are contradictory to those reported here. If they are, they may
indicate fundamental differences in the structure of the plankton communities of
the eastern Tropical Pacific and the western North Atlantic. Data we recently
obtained in the Panama Basin (Pacific) and in the Southern Sargasso (Atlantic)
suggest there may well be fundamental differences between the seasonal DCM of
the western North Atlantic and the permanent DCM of the tropics.
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