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Barotropic Response to Cooling

HENRY STOMMEL

Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543

GEORGE VERONIS

Department of Geology and Geophysics, Yale University, New Haven, Connecticut 06520

Imposed horizontal density differences in a nonrotating fluid generate vertical circulation which has
vanishing vertically integrated transports. When the system is rotating, geostrophic velocities can balance
the density differences and the vertically integrated transports need not vanish locally. In a two-layer
fluid, finite amplitude disturbances lead to barotropic flows that have the same direction as the velocity in
the layer that thickens as a result of the disturbance. Specific calculations are carried out for the geostro-
phic adjustment model in situations that approximate those in which 18° water is formed south of the
Gulf Stream. The upper layer transport that results from sudden cooling (as simulated by density differ-
ences that are initially unbalanced geostrophically) is in the same direction as the Gulf Stream transport
and comparable to it in magnitude. A lower level transport of the same magnitude flows in the opposite
direction with a maximum value about an internal radius of deformation to the right of that of the upper
layer. The barotropic transport is about 1/5 as large and flows downstream in the Gulf Stream and up-

stream to the right of the Gulf Stream.

1. INTRODUCTION

It is often assumed that the response of a stratified ocean to
sudden cooling—as in the northwestern Mediterranean, the
Labrador Sea and 18° water south of the Gulf Stream—is
baroclinic, i.e., the vertically integrated flow vanishes. There is
ample evidence to support such an assumption in certain sim-
plified systems. For example, suppose that a vertical barrier
separating a layer of dense water on the left from less dense
water on the right is suddenly removed. Light water will flow
to the left near the surface, dense water will flow to the right
near the bottom and eventually a stably stratified, two-layer
system will be established. During the adjustment the verti-
cally integrated flow at any position will vanish.

If, however, the entire system is rotating, only part of the
initial potential energy is released by penetration to the right
and left. The remainder will support a geostrophic flow paral-
lel to the plane of the barrier. We show in the next section that
this induced horizontal flow generally has a nonvanishing ver-
tical average at each point.

As a second example, consider the flow in a stably strati-
fied, two-layer, rotating fluid which is perturbed in-
finitesimally. With subscripts | and 2 referring to upper and
lower layers, respectively, the conservation of potential vorti-
city of the final equilibrium state is expressed as

A1 i
i o
s S

ot (1b)

where [ is the Coriolis parameter, {; are the vertical velocities,
and h, and H, are the perturbed and unperturbed depths of
the two layers. These equations yield

H\{ + [H, = [h
H.t + fH, = [h,
S0
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H\{ + H.{, + (H, + Hy)f = (b, + hy)f

If the fluid is confined between rigid level boundaries at top
and bottom, the total depths H, + H, and h, + h, are equal
and the result is

H\{ + H){,=0

Therefore the vertically integrated vorticities vanish for lin-
earized flows. If the velocities vanish at some point (say, at in-
finity) the last equation can be integrated horizontally from
that point, and we conclude that the vertically integrated
transports vanish everywhere for linearized flows.

For flows of finite amplitude the vertically integrated vorti-
cities become

hlgll"*“hur:f};{_lz

h

2
hzfz“"hzf:f];

and the total integrated vorticity is

hi§i +h2§2=f (Ah:)z

x
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HTE

where Ah, = h, — H, = —h, + H, measures the distortion of
the interface from its equilibrium level. Hence the vertically
integrated vorticity does not vanish.

If we consider the simple case where the flow is independ-
ent of y, we have {, = dv,/dx and {, = dv,/ax. Furthermore, if
the flow vanishes at x = —oo, we can integrate (la) and (15)
from —oo to x to obtain

p, = }% ";Ah.df
vy = ;TJ; _;Ah.df

Then the vertical integrals of v over each layer added together
yield the total barotropic transport

1 1 ot
Tp=hy + hzvz. =f E; i A Ahl[_ Ahydx
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Fig. 1. (a) The shape of the interface for fluids of densities p, and
p, (>p)) initially separated by a vertical barrier. The upper layer pen-
etrates to the left to the point where its thickness, h,, vanishes. With
that point as the origin the lower layer penetrates to the point x = a,
where @ = 0.107A,. Initially the layers of fluid were separated by a
vertical barrier at x = r where r = 0.0642\,. The abscissa is in units of
x/A. (b) Upper layer, lower layer, and total (barotropic) transports
marked by T,, T, and T, respectively, for the free surface case of
Figure la. The dashed line shows T for the case with a rigid lid.
Transports are given relative to maximum value of T.

For Ak, > 0 (h, > H,) we obtain v, > 0 and v, < 0 so T} has
the same sign as v,. For Ak, < 0 (h, > H,) we have v, <0 and
v» > 0 so T, and v, have the same sign. Thus the barotropic
transport will have the same sign as the velocity in the layer
that has become thicker.

The foregoing suggests that finite amplitude motions gener-
ated by initially unbalanced, horizontal density difference in a
rotating fluid lead to nonvanishing barotropic transports. We
shall explore this question further in the following sections
and obtain quantitative estimates for specific flows. The phys-
ical situation is the adjustment problem, though we have in
mind those regions of sudden cooling of surface waters men-
tioned at the outset. Thus we assume that the cooling takes
place over a time scale short compared to the time required to
set up the adjusted flows. Our conclusions would have to be
modified if significant adjustment were to take place during
the cooling phase.

The adjustment problem has been studied by many people
since Rossby [1938] suggested the process as an important one.
The analyses presented below contain no new analytical re-
sults. Our aim is simply to investigate the degree to which the
process leads to barotropic flows and to obtain quantitative es-
timates of the barotropic transports.

In section 2 the adjustment of two masses of fluid initially
separated by a vertical barrier is analyzed for the cases where
the top surface is free and rigid. We show that the free surface
problem is essentially the rigid lid case with a superposed ba-
rotropic mode due to the distortion of the top surface. This re-
sult is used to justify the assumption of a rigid lid in the more
complicated cases of sections 3 and 4. Quantitative results
with oceanic values for the parameters are given in the latter
two problems.
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2. VERTICAL BARRIER

We explore the effect of a free surface by considering two
homogeneous layers of water initially separated by a vertical
barrier with water of density p, and depth H, to the right and
water that has been cooled to density p, = p, + Ap and with
depth H, to the left. Initially, the mass on each side is the
same so H,p, = H,p,. Conditions are assumed uniform paral-
lel to the barrier (9, = 0).

After adjustment there will be light water over dense water
as shown in Figure la. We place the origin of the x axis at the
point where the depth A, of the upper layer vanishes after ad-
.justment. In this coordinate system the location x = r of the
original barrier and the point x = a at which the lower layer
depth h, vanishes must be determined.

The adjusted, geostrophic state will consist of three regions.
Dense fluid occupies the entire depth to the left of x = 0 so the
pertinent equations are (1b) with {, = 8v,/8x and geostrophic
balance given by

fr=g 2 @

The solution for x = 0 is
hy = H,[1 + A,e"™] 3)
v, = A, e 4

where A2 = gH,/f* A, is to be determined.

Light fluid occupies the entire depth, k,, to the right of x =
a and the pertinent equations are (l¢) with {, = dv,/dx and
geostrophic balance given by

fvi=goh/ox )
The solution for x = a is
b= H(1 + Age™™"™)

6
v, = —fAdge™™M &

where A\> = gH,/f*. Ag is to be determined.
Between x = 0 and x = a both fluids are present and the
geostrophic equations become

a
v =ga(ht + hy) (7a)
d
frn=go %h,»l—hz (7b)

These equations can be combined with (la), (1) and ¢, =
av,/ox, &, = av,/ax, to yield the following fourth-order equa-
tion in A,

AR e — N2+ AR+ hy = H| 8)
where A2 = (Ap/p-)(gH \/f?).
The solution for 0 = x = a is
h,= H\|[1 + A, sinh X, + A4, cosh X,
+ A, sinh X, + A4, cosh X;) )
h, = H,{1 + (1 — e — eD*)[4, sinh X, + 4, cosh X|]
+ (1 — € — eD,?)[A4, sinh X, + 4, cosh X;]} (10)

v, = A {(2 — € — €D *)D|[4, cosh X, + A4, sinh X]
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+(2—e—eD?) D,[A;cosh X, + A, sinh X,]} (1)
V> = fA{(2 — 2e — eD*)D|[4, cosh X, + 4, sinh X|]
+ (2 — 2e — €D;*)D,[ 4, cosh X, + 4, sinh X,]} (12)

where € = Ap/p,, X, = D,x/\;, X, = D,x/); and the quantities
D, are the functions of e given by

_[2—€ex[2—€)—4e(1 —e)]'*) 2
D= { 2 }

(13)

The values 4,, A,, A;, A, are to be determined.
To obtain the six values of the A’s and the value for a, we
use the following conditions:

h, =0atx=0in (9)

h, =0at x = ain (10)

h, from (3) equals A, from (10) at x =0

h, from (6) equals &, from (9) at x = a

v, from (4) equals v, from (12) at x =0

v, from (6) equals v, from (11) at x = a

the volumes of the two fluids must be conserved; hence

f szx=/ h, dx
/ Hldx=f h, dx
i 0

The value of r can be eliminated from these two relations to
give the seventh condition.
The conditions yield the following relations:

SO LR LORRD e

(14)

and

(15)

. 1+4,+A4,=0

2. (1 - &D)(4, sinh X,, + 4, cosh X,,)

+ (1 — €,D;*)(A, sinh X,, + 4, cosh X,,) = —1

A, =1 —€DA, + (1 — D)4,

4. A,sinh X, + A4, cosh X, + 4, sinh X,,
+ A, cosh X,, — Age ™1 =0

5. A, =2 — DDA, + (2 — e DDA,

6. (2—e€—eD?*D|(A4, cosh X, + A, sinh X,,)
+ (2 — € — €D,*)D,(A4, cosh X,, + A, sinh X,,)
+ A/A)A e =0

7. A, +[(2— .D.>)/D][A\(cosh X,, — 1) + A, sinh X,,]
+ [2 — €.D,)/D,][A(cosh X,, — 1) + 4, sinh X,]
+ A /A)Are™M = —a/\,

L

where €, = €(1 — €), X\, = D,a/A,;, X5, = Dya/\,.

Because the system is transcendental in @, we substitute trial
values of a into relations 2 to 7 and solve for the values of the
A’s. Then these values are substituted into | to test whether
they satisfy that equation, too. By iterating we obtain a solu-
tion for the entire system. For p, = 1.000, p, = 0.996 the value
of a is 0.10743)\,. The corresponding value of r is 0.0642A,.
The results for by, by, T\ = vih, T, =vhand T, =T, + T,
are shown graphically in Figure 1. The results of greatest in-
terest occur in and near the central region which has a width
of the order of the internal radius of deformation, ie., A, =
geH,/{* which is much smaller than the barotropic radius of
deformation, A,. Hence the elevations and the transports in
the right and left regions will have adjustment scales consid-
erably larger than the horizontal scale shown in Figure 1.
Transports are shown relative to the maximum value of T,.
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The largest values of T, both positive and negative, lie
within the central region and are comparable to the ampli-
tudes of the individual transports, T, and T>. The largest posi-
tive value of T occurs at x/A, = 0.021 and the largest nega-
tive value at x/A, = 0.087 (the total width of the central region
is 0.107). The asymmetry of the pattern about the center is
due to the influence of the barotropic surface mode which
contributes a broad positive barotropic transport on an other-
wise symmetric picture. The ratio of the maximum amplitudes
(positive to negative) is about 4/3, also due to the superim-
posed barotropic transport of the surface mode.

It is simpler to make a calculation of the same configuration
with a rigid lid so that H, = H, = H. In this case only the
baroclinic mode occurs but a barotropic transport is still gen-
erated locally. The calculation is the same as the one that Csa-
nady [1978] carried out in a study of oceanic fronts. Only the
central region has nonvanishing velocities. By symmetry the
origin can be placed at the midpoint, where h, = h, = H/2.
The interface will intersect the surface at x = —a/2 and the
bottom at x = a/2. The solution is expressed in terms of the
parameters P = [2p,/(p, — p,)"/*] and A* = gH/[? which, to
0(Ap/p.), are the same as D, and A,? respectively, of the free
surface case. Thus

A ////'I i i S
]
500m : [ hy
e
';I',\iﬂif)\, s
ha
|

T T T T

OB

02+

o} > X/\,
-0l+ Ts
-0.2+ Tz

-03+

-04+

Fig. 2. (a) The shape of the interface between fluids of density p,
at left and p, (= 0.996p,) at right initially separated by a vertical bar-
rier at x = r and extending down to depth H,. Fluid of density p, ini-
tially everywhere below H,. Rigid lid at top. Upper layer fluid pene-
trates to left to point x = 0 where &, = 0. Abscissa in units of x/A,. (b)
Upper layer, lower layer, and total (barotropic) transports marked by
Ty, T», and T in units of fA?H, for case with H, = 500 m and H, =
3500 m.
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S sinhDx/A

his 2 sinh Da/2)\) (16)
el sinh Dx/?\
i ‘ sinh Da/2\ an

This solution brings out more clearly the role played by the
internal radius of deformation, A/P = g’H/2f? where g’ =
ghp/p,.

To find a we note that there is no velocity in the lower layer
at x = —a/2 and no velocity in the upper layer at x = a/2. In-
tegrating the respective vorticities from these points to x = 0
‘we obtain

f a/2
-1 (0) = I—{,/:, h, dx (18)
j‘ 0
v (0) = 7 ,mh dx (19)
Because of symmetry at x = 0, the sum of these must vanish
so that
' i A cosh Px/A _x+ A cosh Px/A |° L
P sinh Pa/2A |, P sinh PX/2N |0
(20)
Pa Pa
ﬁsmh N = cosh —ZX 21
The solution is Pa/2A = 1.199678 and since P/2 = 11.180

we obtain a = 0.10730A, which is practically the same as the
result obtained when the surface mode was included. T, for
this case is shown by the dashed curve in Figure 1b.

As can be seen, the rigid lid model gives a fairly good repre-
sentation of the transports in the central region. Simple addi-
tion of the broad scale, small amplitude, barotropic com-
ponent due to the free surface deformation gives the result of
the free surface case to better than 1%. We shall make use of
the analytical simplification obtained with the rigid lid as-
sumption in the following, more involved models.

3. SHALLOW, WARM LAYER

The left half of the upper layer of a stably stratified, two-
layer system is suddenly cooled to the density of the deep
layer. This system is the same as that of section 2 with an un-
derlying deep layer of density, p,. The fluid is topped by a
rigid lid.

After adjustment the upper layer forms a wedge of fluid ex-
tending from x = 0 where k, = 0 to x = oo where h, = H,, as
shown in Figure 2a. Relative to this origin for x, the position
of the initial barrier is at x = r. Since upper layer fluid must
cross from right to left across x = r, the interface will rise and
that requires that some lower layer fluid cross from left to
right across x = r. We denote by x = a the right hand edge of
lower layer fluid that comes from the region of the left of x = r.

For x < 0 there is no flow. For x > 0 the upper layer fluid
satisfies conservation of potential vorticity given by (la). In
the region 0 =< x < g, the flow in the lower layer is governed
by

Lo T

B =H H=H,+ H,

(22)

and for x = a the corresponding relation is (15).
The geostrophic equation for the upper layer is
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_ 1 dpo
i P ax 22
and for the lower layer
el o 0hy
Al e @4

where p, is the pressure exerted by the lid and g’ is g Ap/p,.
The solution for 0 = x < a'is

HH : B
h = H+H Ll +bsmha,x+ccoshali
(25)
Tl H + H\'?
X H
and for x = a
H /2
ho=H,(1+de ™) Aoy= (—) (26)
H,

where A\? = g'H,/f*.

To determine the unknown amplitudes b, ¢ and 4 and the
position a, we use the following conditions:

1. 4, (0) = 0 which yields ¢ = —1.

2. The h/s in (25) and (26) are equal at x = a.

3. The Margules relations across x = a are matched, i.e.,
h,. must be continuous at x = a. This is equivalent to requir-
ing continuity of the v’s at x = a.

4. The mass of upper layer fluid in x < r must equal the
mass of lower layer fluid above H, and to the right of . Al-
though it is not immediately obvious, condition 4 is equivalent
to the statement v,(0) = 0, which gives continuity of v, across
x = 0. Integration of the potential vorticity equation (22) from
0 to x and of (1b) from x to oo yield

V=

(27a)

de

n= [T
g 2

and when the v,’s are matched at x = a, it can be seen that
matching of the integrals (required by 4) leads to v,(0) = 0 and
vice versa.

The results for this case with p, = 0.996, p, = 1.0 and H, =
7H, (corresponding to H, = 500 m and H, = 3500 m) are
shown in Figure 2. The interface is at depth H, at large x and
rises to the surface at x = 0. The positions r and a are given by
ac; = 1.09 and ra; = 0.901. A barotropic transport of about 6
Sverdrups flows in the positive direction (dense water to the
left) in the interval 0 = x =< 0.8aa,A, and an equal but opposite
transport with peak negative value at x = 1.05aa,A; occupies
the region to the right. The upper (lower) layer transport is
everywhere positive {negative) and amounts to about 35 Sver-
drups.

The total barotropic transport from x = 0 to oo vanishes.
This result can be obtained by integrating the solutions given
above from 0 to oo but a simple expression for it is easier to
obtain from the original equations. Thus substituting A, =
Hyv,./f + H, in hyv, to obtain

(27h)

f:h,v, dx = glf—l [vi*(@) — v/*(0)] + [)GHIVI dx

and h, = H,v,./f + H in hyv, to obtain
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Fig. 3. (a) The interfaces between fluids of densities p; (= 0.996p;), p,, and p; for the three density cases with a rigid
lid. Abscissa measured in units of &, x from point where k, vanishes. Solid curves for p, = 0.999p, and dashed curves for 02
= 0.9999p5. In latter case thickness k; is nearly constant (at 500 m) to point where it vanishes. (b) Transports for the three
layers for the two values of p, of Figure 3a. Also shown is T’y for each case. For p, = 0.9999p, results are nearly identical to
those of Figure 2.
a oy 2 In a similar fashion
hov, dx = ﬁ [v.%(a) — v2(0)] + | H,v,dx
0 0
it = H, 2 H2 2
and making use of f,, (hyv, + h,v,) dx = _f vi*(a) — Evz (a) (29)

f “Huvy + Hyvy) dx = aHyw,(0) + aHyy(0) — %
yicld,owith v,(0) = 0,
j; v+ hov) dx = T3 = vO)
+ 2%1’22(0) + aH v (0) — g (28)

The sum of (28) and (29) yields

Lm(hlvl + hyv,) dx = H,{GVI(O) AL mé}ﬂ ke, f;ﬁ}

(30)

which is easy to evaluate and turns out to vanish for any par-
ticular case.
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4, A THREE-DENSITY MODEL

The configuration is the same as the one in section 2 except
that a deep bottom layer with density p, and equilibrium
depth H, underlies the system. Thus we envisage a two-layer
fluid initially at rest with an upper layer of density p, and uni-
form thickness H,. The left half of the upper layer is suddenly
cooled to density p,(p, < p. < p;) and we inquire into the fi-
nal, adjusted state. The rigid upper lid simplifies the analysis
considerably, though even with the simplification the problem
has seven conditions that must be satisfied (across x = 0 and
x = a the pertinent depths and velocities must be continuous
and mass must be conserved for each layer). The analysis is
straightforward, though rather tedious, and will be omitted.
We present only the results here.

There are three baroclinic radii of deformation in this prob-
lem, one in the right hand region with the density difference p,
— p,, the second in the left hand region with p; — p,, and the
third (in the central region) is a combination of the first two.
Again we place the origin at the point where k, vanishes in the
final state and denote by a the point where A, vanishes.

As before values for the parameters are H, = H, = 500 m,
H, = 3500 m, p, = 0.996 and p, = 1.000. Different values of p,
were used. The horizontal distance is measured in units of A?
= g'H,/[* where g’ = g(p; — p,)/ps and the transports are ex-
pressed in units of H,A,f. As a consequence, the only parame-
ters that enter into the results are (p, — p,)/(05 — 1), (P3 — 02)/
(os — p,) and H,/H, = 1.7.

The distributions of A,, hy, hs, T, T>, and T are shown in
Figure 3 for the cases with p, = 0.999 and p, = 0.9999. For p,
= 0.999 the cooling has reduced the stable stratification of the
left half of the ocean to 1/4 of that in the uncooled right half.
With p, = 0.9999 the ratio is reduced to 1/40. In both cases
the original interface deepens in the central region with the
deepening somewhat greater when cooling is greater. The
change in the left hand region occurs within an internal radius
of deformation from x = 0 and is essentially negligible when
p, = 0.9999. Tt is interesting to note that h, in the central re-
gion approaches H, as p, — ps. In the right region the adjust-
ment to this original interface level takes place over the inter-
nal deformation radius. Bottom layer fluid from the central
region has moved to the right to raise the original interface as
shown.

The barotropic transports are largest in the central region
and increase as p, — p;. As in the configuration of section 3,
the maximum positive T occurs in the left part of the central
region and T > 0 in nearly the entire central part. The nega-
tive barotropic transport is of smaller amplitude, reaches its
maximum near x, = 1 and extends farther into the right hand
region.

The results for the case with p, = 0.9999 are practically the
same as for the two-density case considered in section 3. With
p> = 0.999 the positive (negative) barotropic transport in the
central (right) region is about 4 Sverdrups. The upper (lower)
layer transport is again positive (negative) everywhere. The
intermediate layer (2) has positive transport for x = 0.5}, and
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negative transport for 0.5\, = x =< a. The transports in the re-
gion x < 0 in layers 2 and 3 are opposite and nearly equal.

The expression for the total barotropic transport, [_..” (h,v,
+ hyv, + hyvs) dx, turns out to be identical to (30), though in
the present case subscript 2 corresponds to the intermediate
layer.

5. CONCLUSIONS

The simple calculations reported above show that baro-
tropic transports are generated locally when sudden cooling
gives rise to a horizontal density contrast that is not in
geostrophic balance. The result is associated with nonlinear
adjustment since a linearized analysis leads only to baroclinic
transports.

If the parametric values used in the present analysis are
chosen to correspond to those for the region where 18° water
is formed, the generated barotropic transport would enhance
the wind-driven transport of the Gulf Stream by an amount
that is quantitatively significant. The upper layer transport
would be in the same direction as the Gulf Stream and about
as large as the wind-driven value. The compensating, and op-
positely directed, deep transport has a peak value somewhat
to the right. If the deep flow is not taken into account, e.g., be-
cause the level of no motion is chosen too deep, the down-
stream barotropic transport of the Gulf Stream could be over-
estimated by as much as a factor of 3.

The models considered in this paper are much too idealized
to be used for direct quantitative estimates. Transient proc-
esses during adjustment may be quantitatively significant. The
presence of a basic current such as the Gulf Stream would un-
doubtedly affect the results. However, the demonstration of
sizeable barotropic transports in these idealized models sug-
gests that the process of sudden cooling be included as a sig-
nificant driving mechanism in circulation models.
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