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Abstract The Global Carbon Assimilation System that assimilates ground-based atmospheric CO2 data is
used to estimate several key parameters in a terrestrial ecosystem model for the purpose of improving
carbon cycle simulation. The optimized parameters are the leaf maximum carboxylation rate at 25°C (V25

max),
the temperature sensitivity of ecosystem respiration (Q10), and the soil carbon pool size. The optimization is
performed at the global scale at 1° resolution for the period from 2002 to 2008. The results indicate that
vegetation from tropical zones has lower V25

max values than vegetation in temperate regions. Relatively high
values of Q10 are derived over high/midlatitude regions. Both V25

max and Q10 exhibit pronounced seasonal
variations at middle-high latitudes. The maxima in V25

max occur during growing seasons, while the minima
appear during nongrowing seasons. Q10 values decrease with increasing temperature. The seasonal
variabilities of V25

max and Q10 are larger at higher latitudes. Optimized V25
max and Q10 show little seasonal

variabilities at tropical regions. The seasonal variabilities of V25
max are consistent with the variabilities of LAI for

evergreen conifers and broadleaf evergreen forests. Variations in leaf nitrogen and leaf chlorophyll contents
may partly explain the variations in V25

max. The spatial distribution of the total soil carbon pool size after
optimization is compared favorably with the gridded Global Soil Data Set for Earth System. The results also
suggest that atmospheric CO2 data are a source of information that can be tapped to gain spatially and
temporally meaningful information for key ecosystem parameters that are representative at the regional and
global scales.

1. Introduction

Carbon fluxes of terrestrial ecosystems play a key role in regulating atmospheric CO2 concentrations. There
are two common types of method to quantify global distributions of net carbon fluxes. One is atmospheric
inversion by utilizing atmospheric CO2 measurements to inversely estimate the net carbon fluxes (Peylin
et al., 2013). Many efforts were devoted to develop individual atmospheric inversion systems (Chevallier
et al., 2010; Gurney et al., 2008; Peters et al., 2010; Rayner et al., 2008; Rodenbeck et al., 2003) since the first
comprehensive effort dating back to the 1980s (Enting & Mansbridge, 1989; Tans, Conway, & Nakazawa,
1989). This approach deduces spatiotemporal patterns of land/ocean net carbon fluxes at the global scale.
However, a disadvantage of the approach is that it cannot provide predictions for the future (Rayner
et al., 2005).

The other type of methods is terrestrial biosphere models (TBMs) (Chen et al., 1999; Knorr, 2000; Knorr &
Heimann, 2001a, 2001b; Krinner et al., 2005; Potter et al., 1993; Sitch et al., 2003; Wang & Leuning, 1998)
that are developed to simulate various physical and biological processes of the biosphere including
energy partitioning, photosynthesis, autotrophic and heterotrophic respirations, hydrology, soil heat
transfer, etc. An obvious advantage of these models is their ability to make predictions for net carbon
fluxes of terrestrial ecosystems in the future (Rayner et al., 2005). However, uncertainties of model para-
meters are identified as a major limitation of model applications (Green et al., 1999; Luo et al., 2003;
Wang, Trudinger, & Enting, 2009). It is necessary to optimize TBM parameters by using observations at
the global scale.

CHEN ET AL. OPTIMIZING MODEL PARAMETERS USING GCAS 3218

PUBLICATIONS
Journal of Geophysical Research: Biogeosciences

RESEARCH ARTICLE
10.1002/2016JG003716

Key Points:
• Atmospheric CO2 data are used to
estimate several key parameters in a
terrestrial ecosystem model using the
Global Carbon Assimilation System

• Plants in tropical regions have lower
Vcmax values than plants in temperate
regions. Maximal of Vcmax values occur
during growing seasons

• We find regular and significant
seasonal variation patterns of Vcmax

and Q10 in all latitudinal bands except
those in tropical regions

Supporting Information:
• Supporting Information S1

Correspondence to:
J. M. Chen,
jing.chen@utoronto.ca

Citation:
Chen, Z., Chen, J. M., Zhang, S., Zheng,
X., Ju, W., Mo, G., & Lu, X. (2017).
Optimization of terrestrial ecosystem
model parameters using atmospheric
CO2 concentration data with the Global
Carbon Assimilation System (GCAS).
Journal of Geophysical Research:
Biogeosciences, 122, 3218–3237. https://
doi.org/10.1002/2016JG003716

Received 15 NOV 2016
Accepted 26 SEP 2017
Accepted article online 30 SEP 2017
Published online 23 DEC 2017

©2017. American Geophysical Union.
All Rights Reserved.

http://orcid.org/0000-0003-0131-3132
http://orcid.org/0000-0002-0746-3556
http://orcid.org/0000-0002-8715-7320
http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-8961
http://dx.doi.org/10.1002/2016JG003716
http://dx.doi.org/10.1002/2016JG003716
http://dx.doi.org/10.1002/2016JG003716
http://dx.doi.org/10.1002/2016JG003716
http://dx.doi.org/10.1002/2016JG003716
mailto:jing.chen@utoronto.ca
https://doi.org/10.1002/2016JG003716
https://doi.org/10.1002/2016JG003716


Data assimilation techniques have recently been developed to com-
bine these two common types of method. Through using these techni-
ques, carbon fluxes modeled by a TBM can be optimized using
atmospheric CO2 mole fraction measurements. Some data assimilation
systems can also optimize parameters in TBMs using atmospheric CO2

concentration measurements (Kaminski et al., 2002). The carbon cycle
data assimilation system (CCDAS) (Kaminski et al., 2013; Rayner et al.,
2005) was a significant development in TBM parameter optimization
(Kaminski et al., 2010). In later studies, CCDAS has been extended for
use of various types of observation, for example, fPAR (Kaminski,
Knorr et al., 2012; Knorr et al., 2010), eddy correlation fluxes (Kato
et al., 2013), and satellite-derived atmospheric CO2 column-averaged
volume mixing ratio (Kaminski et al., 2010). Other studies also focused

on estimating land surface carbon fluxes (Kaminski, Rayner, et al., 2012; Koffi et al., 2012), constraining TBM
parameters (Kaminski et al., 2002; Koffi et al., 2013; Ziehn, Knorr, et al., 2011), and reducing uncertainties
(Kuppel et al., 2013; Ziehn, Scholze, et al., 2011; Ziehn et al., 2012) using CCDAS.

Although substantial efforts have been directed toward estimating parameters in TBMs using CO2 concentra-
tion measurements, TBM parameters were optimized as averages for individual plant functional types (PFTs)
(Kaminski et al., 2002; Koffi et al., 2013; Ziehn, Knorr, et al., 2011). In addition, seasonal variations of TBM para-
meters were also rarely discussed at the global scale. In fact, high spatiotemporal variabilities of some key and
common parameters were proved at the field scale by many previous studies (He et al., 2014; Mahecha et al.,
2010; Wang et al., 2007). To reduce uncertainties of TBMs applied over the globe, it is needed to investigate
spatiotemporal variabilities of TBM parameters at the global scale (Ziehn, Knorr, et al., 2011).

This study aims at exploring spatiotemporal variations of TBM parameters using atmospheric CO2 concentra-
tion data through the newly developed Global Carbon Assimilation System (GCAS). GCAS is developed for
optimizing global land surface net carbon fluxes and TBM parameters at 1° resolution at weekly time intervals
(Chen et al., 2015; Zhang et al., 2014, 2015; Zheng et al., 2014, 2015).

2. Data and Model
2.1. Prediction Model

The prediction model (M) is used to predict a distribution of atmospheric CO2 concentration (c ft ) in the tth
assimilation window. It contains a TBM (B) with a set of parameters (xt) and an atmospheric transport model
(T). The TBM is employed to estimate net ecosystem productivity (NEPt) of terrestrial ecosystems in the tth
assimilation window. Then the atmospheric transport model is used to predict the distribution of atmo-

spheric CO2 concentration (c ft ) with NEPt, background fluxes (Ft, e.g., ocean fluxes and fossil fuel emissions)
in the tth assimilation window, and the distribution of atmospheric CO2 concentration in the t � 1 assimila-
tion window (cat�1). The prediction model can be written as

c ft ¼ M xtð Þ ¼ T� B xtð Þ þ Ftð Þ þ cat�1 (1)

2.2. TBM

The TBM used in this study is BEPS (Boreal Ecosystem Productivity Simulator) (Chen et al., 1999; Ju et al., 2006),
which integrates principal processes and mechanisms that are associated with energy partitioning and car-
bon uptake. BEPS uses leaf-level photosynthetic parameters, such as the maximum carboxylation rate
(Vmax) and the maximum electronic transport rate (Jmax), to simulate the photosynthesis rates of sunlit and
shaded leaves, and the canopy-level GPP is obtained by integrating results from these two leaf groups. It is
used to estimate NEP at 1° resolution driven by climate data from NCEP reanalysis data set (Kalnay et al.,
1996) for the period from 2000 to 2008. Each grid cell can be made up of any mixture of seven PFTs
(Table 1). The PFT named “Others” includes some plant function types that are not listed in the Table 1, such
as cropland and grassland. Figure 1 shows the distribution of PFTs with the largest area in each 1° grid and
locations of CO2 concentration observation sites. An area-weighted averaging procedure is followed to

Table 1
Prior Values of Default Parameters in BEPS and Their Standard Deviations of for
Different PFTs

PFT name V25
max;j

a Q10

Broadleaf evergreen 29.0 ± 14.5 2 ± 1
Broadleaf deciduous 57.7 ± 28.5 2 ± 1
Evergreen conifers 62.5 ± 31.0 2 ± 1
Deciduous conifers 39.1 ± 19.5 2 ± 1
Shrub 57.9 ± 29.0 2 ± 1
C4 plants 100.7 ± 50.5 2 ± 1
Others 90.0 ± 45.0 2 ± 1

aj stands for a specific PFT.
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integrate NEPs of seven PFTs for each grid. The detail information about BEPS has been described in previous
studies (Chen et al., 2012: Mo et al., 2008). A brief description for BEPS is shown in Text S1 in the supporting
information.

2.3. Atmospheric Transport Model

The global chemical transport Model for OZone And Related chemical Tracers (MOZART, Emmons et al., 2010)
is used to predict distributions of atmospheric CO2 concentration at 1° resolution for the period from 2002 to
2008. It is driven by NEPs, background fluxes, a meteorological forcing data set from NCAR reanalysis (Kalnay
et al., 1996), and an initial CO2 concentration distribution. The initial CO2 concentration distribution at the
beginning of the optimization period (2002) was obtained through a 2 year transport model spin-up proce-
dure for the period from 2000 to 2002. The chemistry module of MOZART was closed in the transport simula-
tions for two reasons: (1) data for anthropogenic emissions of all gases that will eventually be converted to
CO2 were insufficient at the global scale, while the consumption of CO2 by atmospheric chemistry was small,
and (2) it helped reduce the computational demand for the high-resolution transport simulations.

2.4. Observations and Background Fluxes

CO2 measurements include observations of air samples at surface sites and quasi-continuous CO2 time series
from towers. The CO2 measurements of the period from 2002 to 2008 on 92 sites (Figure 1) were obtained
from the ObsPack product (Masarie et al., 2014) distributed through NOAA-ESRL. More than 50,000 CO2 mea-
surements observed during 12:00–16:00 LST were used in this study. The observation uncertainties were also
provided by ObsPack.

Background fluxes contain fossil fuel emissions, ocean fluxes, and fluxes from vegetation fire. The back-
ground fluxes are not optimized in GCAS, since the optimized background fluxes from CarbonTracker2013
(CT2013) (Peters et al., 2007, 2010) were selected as inputs to GCAS. The temporal resolution of background
fluxes is 3 h. The vegetation fire fluxes were modeled using the Carnegie-Ames-Stanford Approach based on
Global Fire Emission Database (van der Werf et al., 2006). The ocean fluxes were from ocean interior pCO2

inverse estimates recalculated to the air-sea partial pressure difference (Jacobson et al., 2007) and pCO2-
Clim prior estimates derived from the climatology of seawater pCO2 (Takahashi et al., 2009). The fossil fuel
emissions were preprocessed by CarbonTracker2011 from Carbon Dioxide Information and Analysis Center
(Marland et al., 2007) and Open-source Data Inventory of Anthropogenic CO2 emission (Oda &
Maksyutov, 2011).

The optimized background fluxes from CT2013 were used as inputs of GCAS, but the land surface fluxes (prior
fluxes) used in GCAS and CT2013 were different. These differences caused some substantial deviations of CO2

Figure 1. The distribution of plant function types and CO2 concentration observation sites.
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concentration predictions from GCAS and CT2013. A data assimilation
system utilizes differences between observations and predictions to
optimize the prior fluxes. Therefore, the information used to optimize
fluxes and parameters is totally different in GCAS and CT2013.
Although optimized background fluxes from CT2013 are used in
GCAS, the parameter optimization in GCAS is independent from that
in CT2013. Another obvious advantage of using optimized background
fluxes from CT2013 is that the errors of the background fluxes had been
minimized by CT2013 and can be ignored in GCAS.

2.5. LAI Data

TBM models usually use LAI to calculate the canopy radiation absorp-
tion and productivity. In this study, a global LAI product (1981–2008)
in 8 day intervals with an 8 km resolution, which was generated by
fusion of MODIS and AVHRR data, was used (Liu, Liu, & Chen, 2012).
The LAI data were averaged for each PFT type in each 1° modeling grid
for the calculation of GPP for each PFT in a grid.

3. GCAS
3.1. Optimized Parameters

GCAS is designed for optimizing parameters in BEPS at 1° resolution
using CO2 concentration measurements. The optimized parameters

are the maximum carboxylation rate at 25°C (V25
max) for leaf photosynth-

esis, the temperature sensitivity of heterotrophic respiration (Q10), and the adjustment factor for initial total
soil carbon pool sizes (λ). Different optimization strategies are applied to estimate these parameters.

Errors of CO2 concentration from the prediction model are usually composed of systemic biases and random
errors. The systemic biases cause overestimations or underestimations of CO2 concentration in all prediction
steps. The overestimations or underestimations are accumulated over a prediction period, and therefore,
they are easily detected in a long period of time (e.g., annual scale). Unlike the systemic biases, positive ran-
dom errors of the prediction model in a time step may be offset by negative random errors in another step
when CO2 concentration is accumulated in time. The random errors are therefore difficult to detect after a
long prediction time. In GCAS, the initial soil carbon sizes are accumulated over thousands of years. They
hardly change in a short period. The errors caused by overestimations or underestimations of the initial car-
bon pool sizes can be accumulated in time. Unlike the errors from the initial carbon pools, errors related to

V25
max and Q10 would offset each other as these two parameters have opposite effects on the net carbon fluxes

influencing the atmospheric CO2 concentrations. Based on above descriptions, the errors related to the initial

carbon pool sizes are treated as systemic biases. The errors related to V25
max and Q10 are considered as random

errors.

To correct systemic biases and random errors, a two-step optimization method is developed and used in
GCAS. The systemic biases are first corrected by adjusting initial total carbon pool sizes using CO2 concentra-
tion measurements in the last week of the years during the period from 2002 to 2008. The optimized carbon
pool sizes are kept constant in the next step. Then the random errors are corrected through using weekly CO2

concentration measurements to adjust V25
max and Q10. The flowchart of GCAS is shown in Figure 2.

3.2. Determination of Initial and Optimized Soil Carbon Pool Sizes

The initial soil carbon pool sizes are determined through a spin-up procedure based on an assumption that C
dynamics is approximately in equilibrium before industrialization (Chen et al., 2003). The initial soil carbon
pool sizes are set to 0 at the beginning of the spin-up procedure. Then they are accumulated when the
BEPS model is running until soil respiration and NPP arrive at the equilibrium. In fact, the C dynamics is not
in equilibrium in 2000 due to industrialization. According to Le Quéré et al. (2014), NPP is about 2 PgC larger
than heterotrophic respiration in 2000. Therefore, the carbon pool sizes are multiplied by a factor (0.95) so
that the global NEP simulated by BEPS is equal to 2 PgC in 2000. Finally, the carbon pools are used as

Determination of soil carbon pools sizes

Calculate perturbed forecast using
prediction model and perturbed states

variables (xt
i)

Estimate error statistics (P) using forecasts

Calculate analysis states variables (xt
a)

t = t + 1

Estimate optimized NEP (NEPt
a) and CO2

concentration (ct
a)

Figure 2. The flowchart of GCAS.
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initial inputs in GCAS to predict CO2 concentration at 1° resolution from 2002 to 2008. The forecasting proce-
dure can be expressed as follows:

c ft ¼ M xini;t; C
� � ¼ T� B xini;t;C

� �þ Ft
� �þ c ft�1 (2)

C ¼ C1 C2⋯C9ð ÞT (3)

where t represents the tth assimilation window. M, T, and B are the prediction model, MOZART, and BEPS,
respectively. xini,t is a vector containing initial parameters in BEPS. Ft represents the background fluxes. C is
a vector of the initial soil carbon sizes. In BEPS, there are nine soil carbon pools, namely, coarse and dead
wood detritus pool, surface structural pool, surface metabolic pool, surfacemicrobial pool, fine-root structural

litter pool, fine-root metabolic pool, soil microbial pool, slow carbon pool, and passive carbon pool. c ft�1 is the
distribution of CO2 concentration in the t � 1 assimilation window.

The mismatches between CO2 concentration measurements and simulations are used to optimize the
initial carbon pool sizes through estimating the adjustment factors (λ). The following objective function
(equation (3)) is minimized to obtain λ.

J λð Þ ¼ 1
2

λ�C � Cð ÞTQ�1 λ�C � Cð Þ þ 1
2

c �M λ�Cð Þð ÞT Oþ Pcð Þ�1 c �M λ�Cð Þð Þ (4)

where λ is a scaling factor at 1° resolution. It is independent of time and the same for all carbon pools in each
1° grid. Q is the error covariance matrix of the initial carbon pools. The standard deviations of the initial car-
bon pools are set equal to 10% of the initial carbon pool sizes. c is a vector of CO2 concentration measure-
ments. O is the observation error covariance matrix. Pc is the error covariance matrix of the prediction

model. Posterior scaling factors (λ̂) and carbon pool sizes (Ĉ) can be estimated as

C�λ̂ ¼ C þ QMT MQMT þ Oþ Pc
� ��1

� �
c �M Cð Þð Þ (5)

Ĉ ¼ λ̂�C (6)

3.3. State Variables

As described by Zhang et al. (2014, 2015), the ensemble Kalman filter was used in GCAS. The length of an
assimilation window is set to 1 week. Within the tth week, a vector of the state variables (xt) contains two

parameters of the BEPS model: the maximum carboxylation rate at 25°C for leaf photosynthesis (V25
max) and

the temperature sensitivity of heterotrophic respiration (Q10).

xt ¼ V25
max;t;Q10;t

� �
(7)

There are up to seven PFTs in every 1° grid cell. It is hard to obtain the optimizedV25
max values for all PFTs due to

limited observations. As an alternative, a base maximum carboxylation rate (V25
base) is used in GCAS. The V25

max

value for a specific PFT can be expressed as a product of V25
base and a multiplier (equation (8a))

V25
max;j ¼ βj�V25

base (8a)

βj ¼ V25
max;j=V

25
base (8b)

j denotes the jth PFT. Themultiplier (βj) makes theV25
max;j value equal to initial value shown in Table 1. It can be

calculated as equation (8b) before implementing GCAS. Then βj is treated as constants in GCAS. There are

seven multipliers that are corresponding to seven PFTs. The multipliers are not optimized in GCAS. V25
base is

initially set to 50 μmol m�2 s�1. It is optimized in every assimilation window in GCAS. Then the optimized

V25
max;j is derived following equation (8b) by applying the multipliers βj to optimized V25

base.
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Therefore, the state vector in the tth assimilation window can be written as

xt ¼ V25
base;t;Q10;t

� �
(9)

About 26,000 parameters are estimated in an assimilation window.

3.4. Calculate Perturbed Forecasts and Forecast Errors

The perturbed CO2 concentration forecasts are obtained using the prediction model (M) with perturbed state
vectors. It can be expressed as

c ft;i ¼ M xit
� � ¼ T� B xit

� �þ Ft
� �þ cat�1 (10)

where xit is the ith member of the perturbed state vectors in tth assimilation window. The total number of
ensemble members is 50. A random perturbation technique is applied to generate the ensemble state
vectors in every assimilation window. The ensemble parameters are sampled from Gaussian distributions
with prior mean values (xm) and prior standard deviations at the beginning of the optimization (Table 1).

Then, xm and the standard deviations are taken from the analysis state in the last assimilation window. c ft;i
is the ith ensemble member of CO2 concentration predictions in the tth assimilation window.M is the predic-

tion model with the state vector xit. c
a
t�1 is the optimized distribution of CO2 concentration in the t� 1 assim-

ilation window.

The error covariance matrix (P) of the prediction model is estimated as

p ¼ M x1t
� ��M xmð Þ;M x2t

� ��M xmð Þ;⋯M xnt
� ��M xmð Þ� �

(11)

P ¼ p�pT

n� 1
(12)

where n is the total ensemble number. Because only one transport model is used in GCAS, the transport
uncertainty is not explicitly evaluated. However, the forecast error of the prediction model is estimated using
the perturbed states vectors, and therefore, the transport uncertainty is included as a part of the forecast
error to consider its influence on the parameter optimization.

3.5. Calculate the Analysis State

In the tth assimilation window, the following objective function (equation (13)) is minimized to obtain the
optimized state vector (xat ) and postparameter uncertainties (Rpost).

J xð Þ ¼ 1
2

x � xmt
� �T

R�1 x � xmt
� �þ 1

2
c �M xð Þð ÞT Oþ Pð Þ�1 c �M xð Þð Þ (13)

xat ¼ xmt þ RMT MRMT þ Oþ P
� ��1

c �M xmt
� �� �

(14)

Rpost ¼ R� RMT MRMT þ Oþ P
� ��1

MR (15)

M ¼ ∂M
∂x

����
x¼xmt

(16)

where xat is the optimized state vector at 1° resolution, R is the error covariance matrix of the prior model
parameters, c is a vector of CO2 concentration measurements, O is the error covariance matrix of obser-
vations that is built based on the observation uncertainty from ObsPack, and P is the error covariance
matrix of the prediction model. The finite difference method is used to estimate M. The uncertainty reduc-
tion rate is defined as

E %ð Þ ¼ 1� Rpost
�
R

� ��100 (17)

Then BEPS with the optimized state vector (xat ) is used to estimate optimized NEP (NEPat ). The optimized dis-
tribution of CO2 concentration (cat ) is also estimated by using the prediction model driven by optimized NEP
and background fluxes, as follows:
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NEPat ¼ BEPS xat
� �

(18)

cat ¼ M B xat
� �þ Ft

� �þ cat�1 (19)

4. Results
4.1. NEP

The results of optimized NEP by GCAS are summarized in Table 2. The
NEP results from CT2013 (Peters et al., 2007) are also shown for com-
parison with the results from GCAS. The average annual NEP values
from 2002 to 2008 estimated by the two data assimilation systems
are all greater than the value from BEPS with default parameters
shown in Table 1 (1.47 PgC yr�1). The value from CT2013 is the lar-
gest (3.79 PgC yr�1) among all systems, while the value by GCAS is

2.20 PgC yr�1. The differences between GCAS and CT2013 are probably more related to the prior net carbon
fluxes from land surface models. Although the average annual NEP estimated by CT2013 is about twice as
large as the value from GCAS, interannual variabilities of NEPs from these two systems are similar. For
instance, less/more carbon uptake in 2005/2008 is observed by both GCAS and CT2013.

The distributions of the average annual NEP estimated by BEPS, GCAS, and CT2013 are shown in Figure 3.
BEPS, GCAS, and CT2013 exhibit a large carbon uptake over the northern hemisphere and tropical areas.
GCAS and BPES display weaker carbon uptake than CT2013 in most areas. Many significant differences
between BEPS/GCAS and CT2013 are discovered in the southern part of South America, Eurasia boreal
regions, North America boreal regions, etc. GCAS and BEPS show a carbon sink over the southern part of
South America, while a carbon source is produced in CT2013. The carbon sinks from GCAS over Eurasia boreal
regions and America boreal regions are much weaker than the sinks from CT2013. Some spatial patterns of
NEP are also somewhat different between the results from GCAS and CT2013, such as those over Australia
and South America. The spatial pattern of NEP from GCAS is similar to that from BEPS. However, GCAS also
makes many substantial changes over BEPS. For example, GCAS enhanced carbon sinks over Eurasia boreal
regions and tropical regions. These changes are supported by CT2013.

Figure 4 displays the zonal mean NEP for BEPS, GCAS, and CT2013 over the period from 2002 to 2008. BEPS
and GCAS display carbon sinks over midlatitude regions of the southern hemisphere. Due to negative NEP
values produced over the southern part of South America (Figure 3), CT2013 shows a carbon source over mid-
latitude regions of the southern hemisphere. Compared with the fluxes estimated by BEPS, both CT2013 and
GCAS increase NEP over tropical regions (20°S–20°N). BEPS, GCAS, and CT2013 have good agreement in mid-
latitudes of the northern hemisphere. In high-latitude regions of the northern hemisphere, GCAS is consistent
with BEPS and produces lower sinks than the sinks from CT2013. A large carbon uptake is produced by
CT2013 over high-latitude regions of the northern hemisphere, especially over Eurasia boreal regions
(Figure 3), such as Russia. NEPs from BEPS, GCAS, and CT2013 are 0.24, 0.31, and 1.08 PgC yr�1 over Russia,
respectively. An independent study of Dolman et al. (2012) used three methods based on forest inventory,
eddy covariance carbon flux measurements, and atmospheric inversion to estimate the net carbon flux over
Russia. Their results suggested that the average carbon uptake from the three methods is about
0.61 PgC yr�1. The carbon uptake estimates range from 0.34 to 1.35 PgC yr�1. The result from GCAS is close
to the lower boundary of these estimates, while the result from CT2013 is close to the upper boundary. These
large uncertainties of NEPs from different systems and studies may be due to the lack of CO2 concentration
observations in this region.

Land surface fluxes retrieved from inversion and data assimilation systems often differ substantially, due to
different choices for the spatial/temporal flux resolution, prior fluxes, transport models, and observational
constraints (Gurney et al., 2004). It is useful to assess the results from GCAS by comparing with the results
of other atmospheric CO2 inversion systems. Eleven atmospheric CO2 inversion systems used by Peylin
et al. (2013) are selected to compare with GCAS. The results from the inversion systems were obtained from
network (http://transcom.lsce.ipsl.fr/). The values of “Fossil-corrected Natural Fluxes” from 1996 to 2008 were
read from “bar plots” published in the website. “Natural Fluxes” are defined as total fluxes minus fossil fuel
emissions. To transform NEP to “Natural Fluxes,” the NEP values from CT2013 and GCAS are subtracted by

Table 2
Annual NEPs (unit: PgC yr�1) Estimated by BEPS, GCAS, and CT2013 for the Period
From 2002 to 2008

Year BEPS GCAS CT2013

2002 2.02 2.33 2.97
2003 2.16 2.66 3.00
2004 2.05 2.63 4.52
2005 0.61 1.44 3.17
2006 1.05 2.10 4.30
2007 0.84 2.36 3.88
2008 1.58 2.60 4.68
Average 1.47 2.20 3.79

Note. The BEPS model was driven by the default parameters shown in Table 1.
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the vegetation fire fluxes provided by CT2013 (Peters et al., 2007; van der Werf et al., 2006). Although the time
period of the results of Peylin et al. (2013) is longer than that of GCAS and CT2013, the terrestrial sink has only
a weak increasing trend from 1996 to 2008 (Le Quere et al., 2013). The comparison of the 7 year mean values
of GCAS and CT2013 and the 13 year mean values of Peylin et al. (2013) within the period from 1996 to 2008
period is therefore meaningful.

The boxes in Figure 5 present minimum and maximum extents of the natural carbon fluxes from the CO2

inversion systems. The horizontal lines in the boxes display the mean natural fluxes of the inversion systems.
The natural fluxes by GCAS fall into the ranges of the fluxes from the inversion systems. The results of GCAS
are similar to those of CT2013 except over Eurasia boreal regions. CT2013 indicates a large carbon sink, while
a moderate carbon uptake is produced by GCAS. Figure 5 therefore shows that the optimized NEPs from
GCAS are comparable to the ensemble means of the inversion results for most regions.

4.2. Error Analysis

BEPS is run with default parameters shown in Table 1 and optimized parameters from GCAS to estimate prior
NEPs and optimized NEPs, respectively. These NEP fields and the background fluxes are used to force MOZART

Figure 3. The distribution of average annual NEP (unit: gC m�2 yr�1) estimated by different systems for the period from
2002 to 2008. (a) NEP from BEPS with default parameters shown in Table 1. (b) Optimized NEP from GCAS. (c) Optimized
NEP from CT2013.
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to simulate daily CO2 concentrations for the period from 2002 to 2008.
The simulated atmospheric CO2 concentrations are evaluated by mea-
surements (Figure 6a). The RMSE between simulated and observed
concentrations is significantly reduced from 4.67 to 3.43 ppmwhen opti-
mized NEPs are used. Then the prediction model was driven by NEPs
from BEPS, GCAS, and CT2013 to predict CO2 concentrations for the
period from 2005 to 2008. The predictionswere comparedwith indepen-
dent observations of CO2 concentration from the comprehensive obser-
vation network for trace gases by airliner (CONTRAIL). The RMSEs for the
predictions from the prediction model driven by NEPs from BEPS, GCAS,
and CT2013 are 5.03, 3.96, and 1.91 ppm, respectively (Figure 6b).
Although the RMSE value for GCAS is larger than that for CT2013, the
results suggest that the performance of BEPS with optimized para-
meters is substantially better than that with default parameters.

Chi-square statistics (χ2) are usually used to test the error covariances or
the innovations in a data assimilation system (Zhang et al., 2015;
Zupanski & Zupanski, 2006). For the tth time step, it is defined as

χ2 ¼ 1
Nobs

ct �M xmt
� �� �T 1

n� 1
MRtMT þ Ot þ Pt

� 	�1

ct �M xmt
� �� �

(20)

where Nobs is the number of observations. If χ2 follows a chi-square distribution, its mean value and variance
of should be close to 1 and 2. If χ2 departs significantly from the value of 1, it indicates the divergence of the
filter. χ2 values of GCAS range from 1 to 2.5 with a mean of 1.53 (Figure 7). It is reasonable and consistent with
the results from GCAS without error inflations (Zhang et al., 2015). A clear seasonality of χ2 can be found in

Figure 7. The χ2 values are always larger in northern summer than in
northern winter. The seasonality of χ2 may be caused by either the
differences between observations (Ct in equation (20)) and forecasts

(M xmt
� �

in equation (20)) or errors (R, Ot, and Pt in equation (20)) in

GCAS, since the χ2 value is a ratio between the differences and the
errors (equation (20)). χ2 values are always larger than 1 in Figure 7
because the errors estimated in GCAS are less than the differences
between observations and forecasts. The global carbon sinks from
both observations and forecasts in northern winter are much less
than the sinks in northern summer. Then the deviations of forecasts
from observations are commonly smaller in northern winter than in
northern summer. In addition, due to the small ensemble size in
GCAS, the prediction errors may be underestimated. Since the uncer-
tainties are usually related to the magnitude of carbon fluxes, GCAS
may have more underestimation of the prediction errors in northern
summer than in northern winter. Therefore, the χ2 values are
commonly larger in northern summer than in northern winter in
GCAS (Figure 7). There are some ways to help reduce errors in a data
assimilation system. Our previous results showed that the inflations
on forecast errors and observation errors applied to GCAS can
improve the estimation of error statistics (Zhang et al., 2015).
Furthermore, more observations used or control variables optimized
in a data assimilation system also can help reduce the errors
(Zupanski & Zupanski, 2006).

4.3. Optimized Soil Carbon Pool Sizes

A gridded Global Soil Data Set for Earth Systemmodels (GSDE, Figure 8a)
(Shangguan et al., 2014) developed based on soil databases and soil
maps is selected as a reference data to be compared with the initial

Figure 5. Average annual natural fluxes (in PgC/yr�1) from different systems for
the Transcom land regions. The squares show values of average annual natural
fluxes from GCAS. The circles show values of average annual natural fluxes from
CT2013. The boxes show minimal and maximal values of average annual neutral
fluxes from 11 inversion systems (Peylin et al., 2013). The horizontal lines in the
boxes are mean annual natural fluxes of 11 inversion systems. The TransCom
land regions are Boreal North America (NAmBor), Temperate North America
(NAmTmp), Tropical South America (SAmTr), Temperate South America
(SAmTmp), North Africa (NAf), South Africa (SAf), Boreal Eurasia (EuAsBor),
Temperate Eurasia (EuAsTmp), Tropical Asia (AsTr), Australia (Au), and Europe
(Eu), respectively.

Figure 4. Zonal mean NEPs (unit: gC m�2 yr�1) from different systems for the
period from 2002 to 2008 in different latitudinal bands. The blue line presents
NEPs estimated by BEPS with default parameters shown in Table 1. The black line
presents NEPs estimated by GCAS. The red line presents NEPs estimated by
CT2013.
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and optimized soil carbon pool sizes. The soil carbon pool sizes from GSDE are large over high latitudes of the
northern hemisphere and small over the arid and semiarid areas. The distribution of initial soil carbon pool
sizes (ISCD) from BEPS is shown in Figure 8b. It also depicts similar spatial patterns as GSDE. However,
many differences between GSDE and ISCD are also detected. For instance, ISCD gives higher values than
GSDE in the eastern America, boreal Europe regions, the southern China, and tropical regions of South
America. The distribution of the ratio between GSDE and ISCD indicates that magnitudes of GSDE are
more/less than 1.2/0.8 times of ISCD in most regions of the world (Figure 8c). The possible explanation is that
spatial scale of GSDE and ISCD are different. GSDE is retrieved from field measurements at a fine scale (about
10 km), while ISCD is obtained at 1° resolution. Althoughmagnitudes of the soil carbon density from ISCD and
GSDE are quite different, GSDE implies overestimations and underestimations of soil carbon pool sizes in
ISCD. The spatial pattern of the adjustment multipliers for ISCD (λ, equation (4)) derived by GCAS is shown in
Figure 8d. The spatial scale of the adjustment multipliers is also different from GSDE. It is not surprising that
magnitudes of the adjustment multipliers are significantly smaller than the ratios between GSDE and ISCD.
However, the distribution of the adjustment multipliers is supported by the ratio. For example, the adjust-
ment multipliers are less than 1 over North America and western regions of boreal Europe where GSDE is less
than ISCD. These results suggest that GCAS effectively utilizes information in CO2 concentration measure-
ments to improve ISCD.

4.4. Global Parameterization of V25
base

Figure 9 shows the distribution of optimized multiyear average V25
base derived from GCAS for the period from

2002 to 2008. The optimized V25
base values range from 49 to 51 μmol m�2 s�1 over most regions of the world.

Larger V25
base values are found over temperate regions, such as southeast U.S.A. and southern China. Although

the optimized multiyear average V25
base values over tropical regions are

close to the values over high-latitude regions, the seasonal variability

of V25
base is stronger in high-latitude regions than in tropical or low-

latitude regions (Figure 10). In high-latitude regions, the key character-

istic of the seasonal variation of V25
base is that the maximum in V25

base

occurs during a growing season, while the minimum in V25
base appears

during a nongrowing season. In tropical regions, optimized V25
base values

keep about 50 μmol m�2 s�1 all year round. Seasonal fluctuation in

V25
base becomes strong with increasing latitude. The possible explana-

tions for the seasonal variations of the derived V25
max will be discussed in

section 5.

The distribution and histogram of optimized multiyear averageV25
max for

broadleaf deciduous forests are shown in Figure 11. Higher V25
max values

Figure 7. Weekly chi-square (χ2) statistics of error covariance of GCAS for all CO2
concentration observations from 2002 to 2008. The mean and standard devia-
tion of χ2 are 1.53 and 0.33.

Figure 6. Comparison between CO2 concentration measurements with simulations. (a) The site measurements were pre-
dicted by the prediction model driven by NEPs from BEPS and GCAS during the period from 2002 to 2008. (b) The contrail
measurements were predicted by the prediction model driven by NEPs from BEPS, GCAS, and CT2013 during the period
from 2005 to 2008. The BEPS model was driven by the default parameters shown in Table 1.
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are found over the southeast of North America and the tropical Asia. The distribution ofV25
max (Figure 11a) sug-

gests that V25
max values are quite variable spatially. They are not simply dependent on a specific PFT as

described in TBMs. The histogram of optimized V25
max values for broadleaf deciduous forests follow a

Gaussian distribution with a mean of 57.4 μmol m�2 s�1 and a standard deviation of 3.68 μmol m�2 s�1

(Figure 11b). Histograms of optimized V25
max values for other PFTs also follow Gaussian distributions. Mean

values of optimized V25
max for C4 plants, evergreen conifers forests, deciduous conifers forests, broadleaf

evergreen forests, shrubs, and other types plants are 100.3, 62.5, 39.1, 28.8, 57.6, and
89.7 μmol m�2 s�1, respectively, and their corresponding standard deviations are 9.73, 2.05, 0.61, 1.39,
2.56, and 5.91 μmol m�2 s�1, respectively.

4.5. Global Parameterization of Q10

Figure 12 shows the spatial pattern of multiyear average Q10 derived from GCAS for the period from 2002 to
2008. The optimized Q10 values vary from 1.95 to 2.05 over most regions of the world. Relatively high Q10

values are derived over middle and high-latitude regions where annual average temperature is lower than

Figure 8. The distribution of soil carbon density (unit: t/ha) and adjustment factors. (a) Reference soil carbon density from observations (GSDE, Shangguan et al.,
2014). (b) Initial soil carbon density (ISCD) used by BEPS. (c) Rations between GSDE and ISCD. (d) Mean values of adjustment multiplier (λ) for ISCD retrieved by
GCAS for the period from 2002 to 2008.

Figure 9. The distribution of the average of weekly optimizedV25
base (unit: μmol m�2 s�1) estimated by GCAS for the period

from 2002 to 2008.
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other regions. An exception is that a center with lowQ10 values appears
over Eurasia regions where annual average temperature is also low. The
center with low Q10 values is also found by Zhou et al. (2009).

The optimized Q10 shows stronger seasonal variability in high-latitude
regions than in tropical or middle latitude regions (Figure 13). Time ser-
ies of optimized Q10 suggest that Q10 values change little all year round
over tropical regions, while their seasonal fluctuations become larger at
higher latitudes. Seasonal variation inQ10 is probably related to the var-
iation in temperature. For instance, the highest Q10 value is observed in
winter, while the lowest Q10 value is found in summer over high-
latitude regions (red and yellow line shown in Figure 13). The seasonal
variation patterns of Q10 shown in Figure 13 confirm the conclusions
drawn by Kirschbaum (1995, 2010), who indicated that the tempera-
ture dependence of organic matter decomposition is greater at
lower temperatures.

There are two types of methods for estimating Q10 from observations.
One type estimates apparent Q10, which is the temperature sensitivity
of ecosystem respiration controlled by environmental factors.
Another type derives intrinsic Q10, which represents the unconfounded
temperature sensitivity of ecosystem respiration. Mahecha et al. (2010)
argued that intrinsic Q10 values for ecosystem respiration show global

convergence to small values (about 1.4), while apparent Q10 values have large variabilities (0.21 to 5.65,
see supporting information (S4) in Mahecha et al., 2010). In fact, most studies including this work could
not minimize the influence of confounding environmental effects. Apparent Q10 is retrieved usually. Q10

values derived from field observations usually varied in a range of almost one order of magnitude
(Janssens & Pilegaard, 2003; Lloyd & Taylor, 1994; Mahecha et al., 2010). The spatiotemporal distributions
of the optimized Q10 confirm to the existing understanding of its geographical and seasonal patterns.
These results could not be obtained from averaging limited site data and therefore have credibility for regio-
nal ecosystem modeling. This successful exploration in using the CO2 concentration in this way may open
doors for further investigations of the spatiotemporal behavior of this important parameter when more
atmospheric CO2 data become available.

4.6. Uncertainty Reduction

The distributions of uncertainty reduction rate forV25
max andQ10 in northern winter (31 January 2002) and sum-

mer (1 August 2002) are shown in Figure 14. The uncertainty reduction rates forV25
max and Q10 range from 20%

to 40% and from 30% to 50%, respectively. The rates for V25
max in northern winter and summer are quite dif-

ferent. In northern winter, the rates for V25
max are close to zero over middle and high-latitude regions of the

north hemisphere, while they significantly increase in northern summer. The rates for V25
max are about 30%

Figure 10. Time series of zonalmeanof optimizedweeklyV25
base (inμmolm�2 s�1)

in different latitudinal bands during the period from 2002 to 2008.

Figure 11. The distribution and histogram of multiyear average weekly optimized V25
max (unit: μmol m�2 s-1) for broadleaf

deciduous forest from 2002 to 2008. (a) The distribution of multiyear average weekly optimized V25
max for broadleaf decid-

uous forest. (b) The histogram of multiyear average weekly optimized V25
max for broadleaf deciduous forest.
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over tropical regions both in northern summer and winter. The distributions of uncertainty reduction rates for
Q10 in northern summer and winter are similar. The rates for Q10 over tropical regions are larger than over
middle and high latitudes. Uncertainty reduction rates over regions with dense observation networks are
not larger than the rates over regions with sparse observation networks. However, a dense observation net-
work provides more detail information about the distribution of uncertainty reduction rates. For example, the
uncertainty reduction rates for Q10 over tropical regions with a sparse observation network are much larger
than the rates over regions with a dense observation network (e.g., North America and Europe), while the dis-
tribution of the rates over North America and Europe is more complex than the distribution over tropical
regions (Figures 14c and 14d). The rates of uncertainty reduction for different seasons were also calculated
and shown in Figure S1 in the supporting information. The distributions of seasonal reduction rates are similar
to the distributions of the rates for two specific dates.

5. Discussions
5.1. Global Distribution and Seasonal Variation of V25

max

The leaf-level photosynthesis calculation scheme proposed by Farquhar et al. (1980) has been widely used by

TBMs. V25
max is a key parameter in Farquhar’s scheme. Many efforts have been made to investigate photosyn-

thetic capacity based on a large number of species (De et al., 2015;
Niinemets et al., 2015; Medlyn et al., 1999; Reich et al., 2007; Wilson

et al., 2000]. However, due to high variability of V25
max (Medlyn et al.,

2002), it is difficult to describe the spatial pattern of V25
max on the global

scale. In this study, we explore V25
max values at the global scale through

the GCAS system. The key finding about the distribution of V25
max is that

plants from tropical regions have lower V25
max values than plants from

temperate regions. The result is consistent with Kattge et al. (2009)
and Ali et al. (2015). A possible explanation is that plants from tempe-
rate regions have higher nitrogen use efficiency than plants from tropi-

cal regions (Ali et al., 2015). Other studies supposed that V25
max values

that increase with latitude could be acclimation of plants to environ-
ment factors. (Hikosaka et al., 2006; Kattge & Knorr, 2007; Yamori
et al., 2005).

Previous studies observed seasonal fluctuations ofV25
max in some specific

plants (Croft et al., 2015; Grassi et al., 2002; Wang et al., 2007; Wilson
et al., 2000). It is hard to describe the seasonal variation patterns of

V25
max at the global scale based on sites observations. This study finds

regular and significant seasonal variation patterns of V25
max in all

latitudinal bands except those in tropical regions. Maximal V25
max values

occur during growing seasons, while minimal values occur during

Figure 12. The distribution of average of weekly Q10 values estimated by GCAS for the period from 2002 to 2008.

Figure 13. Time series of zonal mean of optimizedweeklyQ10 values in different
latitudinal bands for during the period from 2002 to 2008.
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nongrowing seasons. The seasonal variation patterns ofV25
max could be highly correlated with variations of leaf

nitrogen content and leaf mass per area (Grassi et al., 2002; Han et al., 2004; Misson et al., 2006). In fact,
variations of leaf nitrogen content are also correlated with variations of leaf mass per area (Reich et al.,
1995; Reich & Walters, 1994). To find a possible explanation for the regular seasonal variation patterns of

V25
max shown in this study, the relationship between optimized V25

max and LAI for individual PFTs was

investigated (Figure 15). The large seasonal variations of optimized V25
max and LAI are synchronized for

evergreen conifers (Figure 15a), although the weekly values fluctuate due to uncertainties in the data

assimilation. Two peaks were found in the series of optimized V25
max for deciduous conifers, while only one

peak was shown in the series of LAI data (Figure 15b). The peak of LAI lags the first peak of optimized V25
max.

The inconsistencies in the series of LAI and optimized V25
max may be caused by lacking of observations in

areas dominated by deciduous conifers. The seasonal curves of optimized V25
max and LAI for broadleaf

evergreen forests are reasonably smooth (Figure 15c). Growth/senescence of leaf area and
increase/decrease in leaf photosynthetic capacity occur simultaneously in the yearly cycle, leading to the

similar seasonal variation patterns between LAI and optimized V25
max for midlatitude and high-latitude plant

functional types. This broad pattern of synchronicity between LAI and V25
max could be partly explained by the

allocations of leaf nitrogen to Rubisco (Hrstka, Urban, & Babák, 2012; Wilson et al., 2000) and leaf chlorophyll
pigments (Croft et al., 2017) that increase most rapidly in growing leaves or decrease rapidly in senescing
leaves. So far there have been limited reports on the seasonal variations of leaf chlorophyll content and

V25
max . The results in this study suggest that this is an area deserving close attention in ground-based

measurement programs.

One important result of this study is the spatial distribution and seasonal variation of V25
max at the global scale.

The result confirms the conclusions drawn by previous studies at leaf, canopy, or field scale. This is not just
merely to show that results from GCAS agree with existing ones, but this is the first time to show that atmo-
spheric CO2 does have the information on the seasonal variation of this key photosynthetic parameter, and

therefore, the V25
max maps produced in this study would be a leap forward from limited ground points to

Figure 14. The distribution of uncertainty reduction rates ofV25
max and Q10 for one assimilation window. The black points are locations of CO2 concentration observa-

tion sites. (a) The distribution of uncertainty reduction rates of V25
max in 31 January 2002. (b) The distribution of uncertainty reduction rates of V25

max in 1 August 2002.
(c) The distribution of uncertainty reduction rates of Q10 in 31 January 2002. (d) The distribution of uncertainty reduction rates of Q10 in 1 August 2002.
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spatially and temporally cohesive patterns. The spatial pattern and seasonal variations of V25
max may have

implications for parameterization of the Farquhar’s leaf-level model.

5.2. Errors in GCAS

Errors in an optimization study are due to a combination of three factors: a limited number of measure-
ments, errors in prediction models, and errors in input data (Carvalhais et al., 2008). The limited number
of measurements usually causes underdetermination problems in assimilation systems. In the case of
CCDAS (Rayner et al., 2005), it optimized model parameters as averages for individual PFT to reduce the
dimension of the state variables. In GCAS, there are about 26,000 parameters estimated in an assimilation
window. The underdetermination problem is solved in GCAS in two steps. In the first step, regional fluxes
(e.g., Transcom regions) can be constrained well using CO2 concentration measurements, as shown by many
previous atmospheric inversion studies (Peylin et al., 2013). A regional flux is the accumulation of fluxes from

Figure 15. Time series of weekly optimized V25
max and LAI for individual PFT during the period from 2002 to 2008. The red

line is a time series of LAI. The black line is a time series of optimized V25
max.

Journal of Geophysical Research: Biogeosciences 10.1002/2016JG003716

CHEN ET AL. OPTIMIZING MODEL PARAMETERS USING GCAS 3232



all grids in the region. The contribution from every grid to the regional flux is different. Therefore, the regio-
nal flux retrieved from assimilation/inversion systems can be downscaled to the fine spatial resolution using
information provided by the distribution of prior fluxes from TBMs. Since LAI data from remote sensing (Liu
et al., 2012) were used as input to the BEPS model, the distribution of prior fluxes simulated by BEPS is reli-
able in terms of the spatial patterns of the fluxes. In this way, fluxes with a high spatial resolution could be
optimized by a limited number of CO2 concentration measurements (Zhang et al., 2014). In the second step,
parameters can be estimated using the high resolution fluxes as observations at the fine spatial resolution in
an assimilation system.

Ideally, each parameter should be optimized using independent observations. However, one type of
observation is usually used to estimate more than one parameter due to lack of observations (Yuan
et al., 2012). For instance, two or five parameters were determined from CO2 flux observations using data
assimilation techniques (He et al., 2014; Mo et al., 2008). Multiple years of CO2 and water fluxes observa-
tions were used to estimate more than 10 parameters using nonlinear inversion methods (Braswell et al.,
2005; Moore et al., 2008; Santaren et al., 2007; Wolf et al., 2006). Almost all parameter estimation studies
use covariance matrixes of prediction models to determine a set of optimal parameters when observa-
tions are limited. As shown in Text S2, the sensitivities of parameters are estimated and contained in
an error covariance matrix (e.g., P in equation (12)) to apportion model-data mismatches to various para-
meters. A larger sensitivity of the cost function to a given parameter indicates that this parameter is more
adjusted than others, and the parameter with a larger sensitivity is therefore more tightly constrained by
the measurements (Santaren et al., 2007). Like many previous studies, the error covariance matrixes for

the prediction model (M), which represent sensitivities and correlations of NEP to V25
max and Q10, were used

to provide the necessary information for optimizing these two parameters using only CO2 concentration
measurements in GCAS. The sensitivities of the CO2 concentrations to photosynthetic and respiratory
parameters are estimated based on the physical principles of BEPS. Models may not be reliable to esti-
mate the magnitudes of various fluxes but may be far more reliable to estimate the sensitivities of the
fluxes to key model parameters. Because of this, the partition of the total errors in simulating the CO2

concentration at a given time into respiratory and photosynthetic flux errors is mostly credible.
Nevertheless, more types of observations can be integrated into GCAS to reduce the impacts of the
uncertainty in the sensitivities of parameters to one type of observation.

Furthermore, the errors from the prediction model also contribute errors to optimized results. The errors from

the prediction model arise from parameter errors and model errors. In GCAS, only two parameters (V25
max and

Q10) and the size of soil carbon pools are optimized. However, other parameters may also have contributed to
the variations in CO2 concentrations. The errors related to other parameters may be folded into the three

parameters in GCAS. This means that the valuesV25
max and Q10 optimized this way may be biased if other para-

meters of importance to photosynthesis and respiration have large errors. For the model errors, the forecast
error matrixes of the prediction model (section 2.1) were estimated using a perturbed ensemble of model
parameters under an ensemble Kalman filter (section 3.3). Since only one transport model is used in GCAS,
the transport uncertainty is not evaluated. In fact, Stephens et al. (2007) indicated that errors in vertical trans-
port contribute significantly to the seasonal errors of CO2 concentration perditions. In future studies, these
errors from transport models may be assessed using simulation experiments as done by Chevallier, Breon,
and Rayner (2007). In addition, errors caused by simulations of the boundary layer height in the transport
model also must be considered in the future. The height of the boundary layer is a critical parameter in atmo-
spheric transport models, since it controls the extent of the vertical mixing of trace gases emitted near the
surface (Koffi et al., 2016).

Finally, uncertainties in the forcing data also contribute to errors in GCAS. The optimized background fluxes
from CT2013 were used as inputs to GCAS. The background CO2 concentration distribution at the beginning
of the optimization period (2002) was obtained through a 2 year transport model spin-up procedure.
Although the errors from these background fluxes are mostly minimized by CT2013, the background fluxes
also need to be optimized in GCAS in the future. In addition, errors from meteorological forcing data for
BEPS and MOZART are also projected into the optimized parameters. For example, errors in temperature var-

iation can be mapped into V25
max, and uncertainties in precipitation can influence the optimized value of Q10

because soil moisture is not optimized in GCAS.
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6. Conclusion

In this study, the Global Carbon Assimilation System (GCAS) is used to investigate the spatiotemporal varia-
tions of terrestrial ecosystem model parameters. The following conclusions are drawn:

1. The spatial patterns ofV25
max andQ10 are explored in this study. Mean values of optimizedV25

max for C4 plants,
evergreen conifers forests, deciduous conifers forests, broadleaf evergreen forests, shrubs, and other
types plants are 100.3, 62.5, 39.1, 28.8, 57.6, and 89.7 μmol m�2 s�1, respectively. Vegetation from tropical
zones has relatively lowerV25

max values than vegetation in temperate regions. Optimized multiyear average
Q10 values varied from 1.95 to 2.05 over most regions of the world. Relatively high values of Q10 are
derived over high/midlatitude regions.

2. Seasonal variations ofV25
max andQ10 are pronounced at middle and high latitudes in both hemispheres. The

maximum V25
max occurs during the growing season, while the minimum appears during the nongrowing

season. Q10 values decreases with increasing temperature. The seasonal variability ofV25
max and Q10 are lar-

ger over high-latitude regions than over low-latitude regions.
3. The spatial distribution of the size of soil carbon pools optimized based on atmospheric CO2 data

improved the comparison with the gridded Global Soil Data Set for Earth System models retrieved from
measurements, suggesting that the temporal variations of atmospheric CO2 concentration contains infor-
mation on the strength of heterotrophic respiration that can be effectively tapped through data assimila-
tion techniques.
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