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ABSTRACT

Whole-organism performance tasks are accomplished by the
integration of morphological traits and physiological functions.
Understanding how evolutionary change in morphology and
physiology influences whole-organism performance will yield
insight into the factors that shape its own evolution. We dem-
onstrate that nonmigratory populations of alewife (Alosa pseu-
doharengus) have evolved reduced swimming performance in
parallel, compared with their migratory ancestor. In contrast to
theoretically and empirically based predictions, poor swimming
among nonmigratory populations is unrelated to the evolution of
osmoregulation and occurs despite the fact that nonmigratory
alewives have a more fusiform (torpedo-like) body shape than
their ancestor. Our results suggest that elimination of long-
distance migration from the life cycle has shaped performance
more than changes in body shape and physiological regulatory
capacity.

Introduction

Whole-organism performance—the ability to conduct an eco-
logically relevant task (Lailvaux and Irschick 2006; Irschick
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et al. 2008)—is accomplished by the integration of both mor-
phological and physiological components (Arnold 1983; Ben-
nett and Huey 1990; Garland and Losos 1994; Irschick and
Garland 2001; Irschick 2003; Irschick et al. 2008). Although it is
thus clear that adaptive changes in performance are potentially
shaped by natural selection on an array of morphological and
physiological traits, assessing how performance evolves has
been challenging because ancestral phenotypes and agents of
selection are usually not known. We describe the evolution of
locomotor performance in an ancestrally migratory fish that has
recently and repeatedly formed nonmigratory populations. Our
empirical approach was based on a priori predictions about
how swimming performance would be shaped by evolutionary
changes in life-history strategy, morphology, and physiology.
Such integrative investigations illuminate the complex rela-
tionship between changing environments and phenotypic evo-
lution (e.g., Langerhans et al. 2007).

For many animal species, locomotor performance is an im-
portant aspect of fitness-related behaviors, such as foraging,
escape, and migration (Garland et al. 2017). For migrating
fishes in particular, prolonged swimming performance should
be under directional selection in the wild. Conversely, fishes
that exhibit little or no migratory behavior have relatively low
prolonged swimming performance (e.g., Dalziel et al. 2012b). In
sockeye salmon (Oncorhynchus nerka), for example, maximum
metabolic rate and prolonged swimming performance are higher
in populations that make long-distance migrations than in pop-
ulations that make exclusively short-distance migrations (Lee et al.
2003; Eliason et al. 2011, 2013).

In addition to migratory demands, locomotion can evolve in
concert with changes in body morphology that accompany
changes in habitat. High-predation environments, for example,
may favor burst swimming abilities over prolonged, steady-
swimming abilities (Langerhans and Reznick 2010). Such evolved
differences in burst and prolonged swimming performance have
well-documented biophysical dependencies on body and fin shape
(Webb 1982; Walker 1997; Domenici et al. 2008; Langerhans and
Reznick 2010; Dalziel et al. 2012b). Specifically, theory and em-
pirical work suggest that fusiform shapes enhance prolonged
swimming performance over more other body forms (Webb 1982,
1984; Walker 1997; Langerhans and Reznick 2010; Ellerby and
Gerry 2011). This divergence in shape is commonly associated with
differences in habitat usage, such that robust body shapes enhance
maneuverability beneficial to complex habitats, whereas fusiform
shapes enhance the prolonged swimming abilities beneficial in the
open water (e.g., Jones et al. 2013).

Evolutionary changes in physiological abilities should also
affect swimming performance. For example, maximum sustained
swimming speed is positively correlated with maximum and stan-
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dard metabolic rates as well as the capacity of the cardiorespi-
ratory system to deliver oxygen and fuel to tissues (Claireaux et al.
2005; Eliason et al. 2011, 2013; Dalziel et al. 2012a, 2012b;
Eliason and Farrell 2016; Norin and Clark 2016). For euryhaline
fishes in particular, osmoregulatory physiology may influence
swimming performance, although this has been less well char-
acterized. Transfer from freshwater to saltwater or vice versa
reduces prolonged swimming performance in several species
(Kolok and Sharkey 1997; Swanson 1998; Plaut 2000; McKenzie
etal. 2001; Wagner et al. 2006) for several possible reasons that
are not mutually exclusive: (1) because changes in ion concen-
tration reduce muscle oxygen delivery (Brauner et al. 1994),
(2) because of the energetic expense associated with osmoreg-
ulation (Tseng and Hwang 2008), or (3) because ionocyte pro-
liferation and/or decreased lamellar perfusion associated with
changes in osmoregulation limit the efficiency of gas exchange
and thus maximum metabolic rate (Bindon et al. 1994; Sardella
and Brauner 2007). Such negative associations between os-
moregulatory abilities and performance may act to shape evo-
lutionary trade-offs in nature. For example, estuarine populations
of Fundulus heteroclitus have higher critical swimming speeds in
brackish water than natives of upstream freshwater habitats
(Brennan et al. 2016). Because estuarine F. heteroclitus maintain
ion balance more effectively after transfer to brackish water
(Brennan et al. 2015), natural selection on osmoregulatory phe-
notypes may indirectly select on swimming performance.

We tested how evolutionary changes in multiple and poten-
tially interacting traits have influenced swimming performance in
alewife (Alosa pseudoharengus) from the northeastern United
States. This opportunity arises because exclusively freshwater
(landlocked) populations have repeatedly and independently
formed from an anadromous ancestor, most likely as the result of
widespread dam building during European colonial settlement
(though exact dates of formation are unknown; Palkovacs et al.
2008). Population genetic analyses using microsatellite loci in-
dicate that landlocked populations in Connecticut are inde-
pendently derived from a common ancestral anadromous stock
(Palkovacs et al. 2008). Unlike anadromous alewife that make
long-distance journeys from the sea to coastal lakes and streams
(Fay et al. 1982), landlocked alewife no longer migrate. We have
shown previously that landlocked alewife have diverged from
anadromous alewife in osmoregulatory ability, including a re-
duction in saltwater tolerance and hypo-osmotic balance that
corresponds with an improved tolerance of freshwater (Velotta
et al. 2015). Previous work has also demonstrated that alewife
populations differ in body shape, most likely as a result of dif-
ferentiation in nursery habitat foraging; whereas landlocked forms
feed in the pelagic zone, anadromous alewife feed in the littoral
(Jonesetal. 2013). Divergence in feeding strategy has putatively
selected for more fusiform shapes and narrower caudal pedun-
cles in landlocked forms, which are hypothesized to perform
more prolonged bouts of steady swimming in order to feed in the
pelagic zone (as postulated in Jones et al. 2013). By contrast, anad-
romous alewife are robust in body shape and have larger heads
(Jones et al. 2013), which is consistent with their preference for
feeding in more complex littoral habitat.

We subjected alewife from an anadromous population and
two independently derived landlocked populations to 24-h fresh-
water and saltwater treatments, followed by assays of prolonged
swimming performance (measured as critical swimming speed
[Ueul; Brett 1964; Beamish 1978; Hoar and Randall 1978; Farrell
2007), osmoregulatory abilities, and body shape. Critical swim-
ming speed—the ability to maintain a constant swimming speed
(Hoar and Randall 1978)—is an ecologically relevant measure of
prolonged swimming performance in migratory species (Jain et al.
1998; Kolok 1999; Plaut 2001; Lee et al. 2003). We measured
plasma osmolality after critical swimming speed trials in order to
assess whether variation in U, is associated with postexercise de-
viations in osmotic balance. We analyzed variation in body shape
using geometric morphometrics (Adams et al. 2004; Zelditch et al.
2012) and related it to variation in ULy.

We tested three alternative hypotheses of the ultimate fac-
tors affecting swimming performance. Hypothesis 1: Prolonged
swimming performance is constrained by osmoregulatory per-
formance. This hypothesis predicts that U, varies with the ca-
pacity to maintain osmotic homeostasis; U should be equal or
greater among landlocked individuals in freshwater but reduced
in seawater. Hypothesis 2: Prolonged swimming performance
evolves in conjunction with body morphology. This hypothesis
predicts that more fusiform landlocked fish should have higher
U..« than anadromous fish. Hypothesis 3: Prolonged swimming
performance evolves in concert with migratory tendency. This
hypothesis predicts that landlocked individuals should exhibit a
reduced U, as a result of the loss of traits associated with mi-
gration. We found that landlocked alewife have poor prolonged
swimming performance in spite of their more fusiform body
shape and regardless of osmoregulatory state. Our results support
the hypothesis that loss of the anadromous migration from the
life cycle leads to a loss of locomotor performance, likely as a
result of natural selection on aerobic metabolism and cardiac
function.

Methods
Capture and Husbandry

Young-of-the-year alewife (approximately 3-4 mo old) were
captured by purse seine from their natal freshwater lakes in
Connecticut in August 2013 and were immediately transported
to the Conte Anadromous Fish Research Center in Turners Falls,
Massachusetts. All animals were handled in accordance with the
University of Connecticut Institute for Animal Care and Use Com-
mittee (protocol A12-042). We captured individuals from three
populations: an anadromous population from Bride Lake (A-
Bride; East Lyme, CT; 41.33°N, 72.24°W) and landlocked pop-
ulations from Pattagansett Lake (L-Pattagansett; East Lyme,
CT; 43.47°N, 72.23°W) and Rogers Lake (L-Rogers; Old Lyme,
CT; 41.37°N, 72.30°W); sites differed little in salinity and con-
ductivity (Velotta et al. 2015). Approximately 150 individuals
were collected from each site. Young-of-year alewife collected at
this time have had no prior exposure to seawater and no prior
experience migrating. Fish were transported in aerated 190-L
cylindrical containers containing lake water into which artificial
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sea salt was dissolved to 1 ppt (Instant Ocean, Spectrum Brands,
Madison, WI) to reduce stress and mortality associated with
handling (Stanley and Colby 1971; Johnson and Metcalf 1982;
Nikinmaa et al. 1983; Carneiro and Urbinati 2001). Once in the
laboratory, alewives were held at 1 ppt for 1 d, after which salinity
was decreased to 0.5 ppt (final rearing salinity). We held subjects
segregated by population in separate 1,200-L recirculating oval
tanks fitted with charcoal filtration systems for 2 mo before swim-
ming performance trials. Such a period of acclimation to a com-
mon environment is standard practice (e.g., Whitehead and
Crawford 2006; Whitehead et al. 2011; Brennan et al. 2015;
Velotta et al. 2015) to minimize potential confounding effects
of environmental history in resolving among-population geno-
typic effects on the phenotypes of interest.

Salinity Challenge and Swimming Speed Trials

To test whether divergence in osmoregulatory ability influences
swimming performance, we exposed fish to acute (24 h) treat-
ments of fresh- and saltwater followed by swimming trials
to measure U,;,. Treatments and trials lasted from October—
November 2013. Acute challenge via direct transfer to a treat-
ment salinity is a standard method to assess the osmoregulatory
performance of fishes and allows for comparison across studies
of alewife (Velotta et al. 2014, 2015) and other euryhaline fishes
(reviewed in Schultz and McCormick 2013; see also Whitehead
2010; Whitehead et al. 2011, 2012; Berdan and Fuller 2012;
McCormick 2013; Kozak et al. 2014; Brennan et al. 2015). We
chose the method of direct transfer rather than gradual salinity
change because it is ecologically relevant: out-migrating young-
of-year individuals from Bride Lake pass from a small fresh-
water stream (approximately 5-m bankfull width) directly into
the Long Island Sound, with no marsh-like area in between or
opportunity for backflow of saltwater into freshwater (J. P. Ve-
lotta, S. D. McCormick, A. W. Jones, and E. T. Schultz, personal
observation). A treatment of 24 h is sufficient for measurement of
responses in gene expression and cellular change and roughly
represents the time when physiological stresses are greatest, as
quantified by changes in plasma osmolality and mortality rate
(Staurnes et al. 1992; Zydlewski and McCormick 1997; Scott and
Schulte 2005; Whitehead et al. 2011; Velotta et al. 2014, 2015).

For salinity challenge treatments, we transferred seven to
10 fish from rearing tanks (0.5 ppt) directly to aerated 250-L
oval tanks containing either 0 ppt freshwater, a 0.5 ppt control,
or saltwater at 35 or 40 ppt. Control and saltwater treatments
were achieved by mixing dechlorinated tap water with artificial
sea salt (Crystal Sea Marine Mix, Marine Enterprises Interna-
tional, Baltimore, MD), while the freshwater treatment (0 ppt)
consisted of dechlorinated tap water only. Tank temperature
was maintained at 17°-19°C with electric tank heaters. Salinity
treatments used in this study span and exceed values found in
the species’ habitat. Conductivity in the freshwater treatment
(~250 pS) approximated the conductivity of alewife juvenile
habitat (Velotta et al. 2015). Similarly, the saltwater treatment
was chosen to represent natural (35 ppt) conditions, while

40 ppt was chosen to test the limits of hypo-osmoregulation
(Velotta et al. 2015; Divino et al. 2016).

Swimming trials occurred 24 h after the salinity challenge
treatment. Each day of swimming trials tested up to three subjects,
all from a single combination of population and salinity. Each
combination of population and salinity was tested until n = 5-6
individuals were assayed. To measure U,;, we swam fish indi-
vidually in a 5-L Brett style swim tunnel (Loligo Systems, Hobro),
in which flow speed was increased incrementally as described be-
low. We matched the temperature (17°-19°C) and salinity of the
water in the swim tunnel to that of the salinity challenge tank.
Subjects acclimated to the swim tunnel for 1 h at 0.5 total body
lengths per second (TL s™'). We then increased flow speed by
0.5 TL s™* every 2 min until the fish reached 5 TL s™*, which is
50% of a predicted average U, (10 TL s™') observed in a pilot
study. Above 5 TL s, flow speed was increased by 0.5 TL s
every 10 min until the fish remained pinned against the down-
stream barrier of the tunnel for >10 s. In the pilot study, fish pinned
for longer than 10 s did not resume swimming. Each fish occupied
less than 15% of the cross-sectional area of the tunnel, and there-
fore a correction for solid blocking effects was not needed.

We determined critical swimming speed (TL s™') as de-
scribed by Brett (1964):

Uait = Ui + (%Uii>: (1)
where U is the highest speed the fish is able to swim for a full
10-min interval; Uy is 0.5, the increment at which speed is in-
creased; t; is the time in minutes that the fish swam at the final
velocity; and t; is 10, the time fish swam at each interval. To set the
speed increments we used for each subject, we estimated TL be-
fore placement into the swim tunnel from an image taken in water.
In cases where the length estimated before the trial differed from the
length determined after the subject was euthanized, we adjusted
U, by dividing the velocity at failure (cm s™') by the actual TL.
Differences in U.,;, among alewife life-history forms and sa-
linity treatments were tested using linear mixed effects models
(LMMs) generated using the Imer function in R (Ime4 package;
R ver. 3.1.0). Full models included population (A-Bride, L-
Pattagansett, or L-Rogers) and salinity (0, 0.5 [control], 35, and
40 ppt) as fixed effects, TL as a covariate, and swimming trial as a
random effect. P values were calculated with the anova function
in the LmerTest package (R ver. 3.1.0) using restricted maxi-
mum likelihood and Satterthwaite estimation for denominator
degrees of freedom. We implemented a model reduction ap-
proach, whereby nonsignificant (P > 0.05) interaction terms were
eliminated sequentially. Tukey honest significant difference post
hoc tests (multcomp package in R) were used to determine pair-
wise differences among populations and salinity treatments.

Analysis of Body Shape and Plasma Osmolality

After each swimming trial, we euthanized fish in 250 mg L™
tricaine methanesulfonate (MS-222; Argent, Redmond, WA)
and measured TL and body mass. We then straightened them
with insect pins and photographed them from a standard dis-
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tance on a white background. We then severed the caudal fin
and collected blood from the caudal artery in a 1-mL hepa-
rinized hematocrit tube. Blood was centrifuged at 3,200 g for
5 min, after which plasma was removed and stored at —80°C.
We measured plasma osmolality, the total plasma solute con-
centration, using a vapor pressure osmometer (Wescor, Logan,
UT) with approximately 8 uL of plasma, following the manu-
facturer’s instructions. Depending on the amount of available
plasma, we ran samples in duplicate or triplicate and took the
average reading as the final value of osmolality.

To quantify body shape variation, we used landmark-based
geometric morphometrics approach (Zelditch et al. 2012) fol-
lowing the procedure of Jones et al. (2013), who analyzed body
shape of young-of-year in each of the populations presented
here, as well as three additional landlocked and anadromous
populations. We placed 11 landmarks (fig. 1) using tpsDig2 v2.16
(Rohlf 2010) on approximately 20 individuals from each of the
three populations. We then used the Procrustes fit function in
Morpho] v1.02 (Klingenberg 2011) to generate the consensus
shape (Rohlf and Slice 1990; Adams et al. 2004; Zelditch et al.
2012). To identify the predominant axes of variation in body
shape, we conducted principal components analysis (PCA) on the
covariance matrix of Procrustes coordinates. We then performed
a discriminant function analysis (DFA) to describe the axis of
body shape variation that best distinguishes the landlocked and
anadromous life-history forms. We tested for statistical differ-
ences in PCA and DFA scores between populations using LMMs,
in which population was a main effect, swimming trial was a ran-
dom effect, and TL was a covariate. To determine whether body
shape variation influences swimming performance, we cor-
related PCA scores from each of the first three principal com-
ponents (PCs) with U, using Pearson’s correlation. Body shape
variation in the PCA and DFA were visualized using wireframe
graphs generated in Morpo] at a scale factor of +0.1. We com-
puted fineness ratio (standard length/body depth; as in Dalziel

et al. 2015) as an additional metric of overall body shape that
is related to steady swimming performance (Webb 1975; Fish
1996). Maximum body depth and standard length were ob-
tained from images using Image] (Schneider et al. 2012). Among-
population differences in fineness ratio were assessed via ANOVA.
We tested for population and salinity effects on postswim (after
swimming performance trial) plasma osmolality (mOsm kg ™).
LMMs were implemented as above. Full models tested for the
main effects of population, salinity, and their interaction on os-
molality. Fish TL was used a covariate. Random effects in each
model included trial date and tank. P values were calculated with
the anova function in the LmerTest package as above. We tested
for correlations between postswim plasma osmolality and U,
in order to determine whether differences in swimming per-
formance are associated with deviations in osmoregulatory ca-
pacity at the individual level. We computed Spearman’s rank
correlation coefficients (cor.test function in R) since data did
not meet the assumptions of normality. Under the hypothesis
of a linkage between osmoregulatory abilities and swimming per-
formance, the predicted direction of the correlation should be
different in freshwater and saltwater; impaired osmoregulatory
ability is indicated by low plasma osmolality in freshwater but
high osmolality in saltwater. For this reason, we conducted cor-
relation analysis separately within each salinity treatment.

Results

We found that prolonged swimming performance was signif-
icantly lower among landlocked alewife from both populations
across all salinities. Anadromous alewife exhibited a U, of
9.7 TLs™', which was 1.8 and 2.8 TL s higher than individuals
from L-Pattagansett and L-Rogers, respectively (fig. 2). Full
LMMs contained no significant three-way or two-way inter-
actions (P > 0.05), and so a reduced model included only main
effects (population and salinity) and TL as a covariate. This

Figure 1. Location of the 11 landmarks used for geometric morphometric analysis of body shape. For further detail, see Jones et al. (2013).

Image depicts a representative juvenile alewife.
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Across all populations, U,,;, was significantly and negatively cor-
related with PC2 scores, indicating that fish with more fusiform
body shapes had lower critical swimming speeds than those with
robust shapes. No correlations between U and PC1 or PC3 were
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Figure 2. Critical swimming speed (U.,;; total body lengths per second
[TL s7']) of landlocked (L-Pattagansett, triangles and solid line; L-
Rogers, squares and solid line) and anadromous (A-Bride, circles and
dashed line) alewives subjected to 24-h challenge at 0, 0.5 (control),
35, and 40 ppt (n = 4-6 per salinity per population. Data are presented
as mean U, *+ SE error of the mean. Main effect of population relative
to A-Bride: two asterisks, P < 0.01; three asterisks, P < 0.001. A color
version of this figure is available online.

model revealed significant effects of population and salinity on
U., (table 1). Post hoc tests revealed that U, differed between
L-Pattagansett and A-Bride (z = —3.7, P < 0.001) and be-
tween L-Rogers and A-Bride (z = —5.8, P < 0.001) but not
between the two landlocked populations (z = —2.3, P > 0.05).
High salinity significantly impaired swimming; U.; was lower
at 40 ppt than at all other salinities (0.5 ppt: z = —2.9, P = 0.02;
0 ppt: z = —2.2, P = 0.02; 35 ppt: z = —3.1, P = 0.009).
Elevated mortality prevented measurement of U, in L-Rogers
alewife at 40 ppt. Models in which U, was expressed as ab-
solute speed (cm s™') yielded the same population and salinity
effects.

Landlocked and anadromous alewife differed in body shape,
primarily in head shape and caudal peduncle size (fig. 3). Three
PCs explained variance in shape (34.9%, 18.5%, and 14.7%,
respectively). We observed significant differences among popu-
lations along PC2 (F, 137 = 4.5, P = 0.03; nonsignificant effect
of TL, P > 0.05) but not PC1 or PC3. PC2 values of both
landlocked populations were significantly different from those
of A-Bride (L-Pattagansett: z = 2.7, P = 0.020; L-Rogers: z =
2.5. P = 0.037). Loadings on PC2 indicated that populations
differed in head and caudal peduncle size (fig. 34; LMM of
DFA scores F, 45 = 89.1, P < 0.001). Analysis of fineness ra-
tio confirmed that landlocked alewife are more fusiform than
anadromous alewife; ANOVA revealed a significant effect of
population on fineness ratio (Fp, 51 = 5.99,P = 0.005). Post hoc
tests revealed that individuals from A-Bride have a significantly
lower fineness ratio compared with individuals from L-
Pattagansett (P = 0.006) and L-Rogers (P = 0.03) and that
landlocked populations do not differ from each other (P > 0.05).
Body shape was correlated with critical swimming speed (fig. 3B).

detected (P > 0.05). U, was negatively correlated with fineness
ratio (r = —0.26), but this trend was not statistically significant
(P = 0.06).

Population and salinity affected plasma osmolality after acute
salinity challenge and swimming trials. Plasma osmolality was
lower at 0 and 0.5 ppt than at 35 and 40 ppt (fig. 4; effect of
salinity: F3 146 = 101.2, P < 0.001) and was lower among anad-
romous compared with landlocked fish (effect of population:
Fy13 = 3.8, P = 0.05). The effect of acute salinity challenge
on plasma osmolality did not vary among populations (inter-
action: P > 0.05). Swimming performance was not correlated
with postswim osmolality across salinities (P > 0.05; fig. 5).

Discussion

We tested whether divergence in osmoregulatory ability, body
form, or loss of long-distance migration as part of the life cy-
cle provides the best explanation for changes in prolonged swim-
ming performance as landlocked (nonmigratory) alewife have
differentiated from the anadromous ancestral form. Landlocked
populations have evolved a lower maximum sustained swim-
ming speed (fig. 2). This reduction is unaffected by salinity (fig. 2)
and independent of osmoregulatory ability (fig. 5). Although life-
history form divergence in body shape (fig. 3A) was associated
with swimming performance, it varied in a direction opposite of
biophysical predictions (Langerhans and Reznick 2010; fig. 3B).
Our results demonstrate that body shape, osmoregulation, and
prolonged swimming performance are diverging in an uncor-
related fashion, most likely as a result of different selection pres-
sures. We conclude that loss of migration is the strongest con-
tributor of evolved differences in whole-organism swimming
performance, a difference that is likely to be mediated by varia-
tion in aerobic metabolism and cardiorespiratory performance.

We found that alewife life-history forms differ in body shape
but not in a fashion that clearly explains differences in pro-
longed swimming performance. Compared with the anadro-
mous form, landlocked alewife have smaller heads and more
fusiform bodies, principally owing to a reduced caudal pedun-
cle height (fig. 3A4). The patterns of morphological differentia-

Table 1: Effect of population, salinity, and length on U,

Numerator Denominator
df df F P
Population 2 134 17.7  <.001
Salinity 3 14.7 3.7 .037
Length 1 43.3 5 466

Note. Data are results of a reduced linear mixed effects model. Population
has three levels (A-Bride, L-Pattagansett, L-Rogers), and salinity has four
levels (0, 0.5, 35, and 40 ppt). Length is total length (cm). Denominator df was
generated by the Satterthwaite approximation method. Values in bold denote
statistical significance at the 0.05 level.
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Figure 3. Morphological divergence and its effect on critical swim-
ming speed (U..). A, Body shape divergence between anadromous
(A-Bride) and landlocked (L-Pattagansett and L-Rogers) alewives. Values
are mean discriminant function analysis (DFA) scores for each population,
which describe the axis of variation that best distinguished anadromous
and landlocked body forms. Error bars represent 95% confidence in-
tervals. Figures along the Y-axis represent extreme cases of shape var-
iation according to the DFA. B, Correlation between U, (total body
lengths per second [TL s~']) and body shape as described by the second
principal components axis (PC2). PC2 scores described general body shape,
head size, and caudal peduncle size. Figures under the X-axis represent
extreme cases of shape variation along PC2. Shapes denote populations
(circles, A-Bride; triangles, L-Pattagansett; squares, L-Rogers). A color ver-
sion of this figure is available online.

tion were consistently observed in all lakes tested by Jones et al.
(2013), who suggested that the ultimate causes of this divergence
arise from differences in habitat use. Anadromous young-of-year
alewives feed in the littoral zone, where structurally complex habi-

tat and abundant epibionts favor maneuverability and the ability
to consume large prey. In contrast, landlocked fish feed mostly in
the pelagic zone, where structural simplicity and abundant zoo-
plankton may favor the ability to swim steadily and consume small
prey. Our results do not speak to the feeding performance pre-
dictions of Jones et al. (2013). Our results do, however, contradict
the swimming performance predictions: despite the body form
differences, anadromous alewives exhibit higher U, than land-
locked alewives (fig. 2), suggesting that prolonged swimming
performance has evolved in ways that depart from the generally
understood association with body shape. In the future, it will be
informative to test for life-history form differences in caudal fin
shape, since, along with fusiform bodies, high caudal fin aspect
ratios (height® surface area™) should improve prolonged swim-
ming performance by maximizing thrust and minimizing drag (re-
viewed in Langerhans and Reznick 2010).

We also found that life-history form differences in osmoreg-
ulatory abilities do not account for the differences in prolonged
swimming performance. We observed lower U, among land-
locked alewife across all salinity treatments (fig. 2), despite com-
parable values of postswim osmolality (fig. 4). U was also uncor-
related with postswim osmolality at the individual level (fig. 5).

Similarity of plasma osmolality postswim between life-
history forms is in striking contrast to previous measurements
on unexercised fish that showed higher osmolality in land-
locked alewife than anadromous alewife in seawater (Velotta
etal. 2014,2015). We did not measure plasma osmolality before
swimming trails (preswim) because subjects are euthanized
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Figure 4. Postswim plasma osmolality (mOsm kg™') of anadromous
(A-Bride, circles) and landlocked (L-Pattagansett, triangles; L-
Rogers, squares) alewives. Measurements were taken after fish swam
to exhaustion in freshwater (0 ppt), seawater (35 and 40 ppt), and a
0.5 ppt control. Data are presented as mean plasma osmolality + SE
of the mean. Significant main effects of salinity (linear mixed effects
model [LMM]; P < 0.001) and population (LMM; P = 0.05) were
detected but no interaction effect (P > 0.05). A color version of this
figure is available online.
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immediately before collecting blood. Data from Velotta et al
(2015) provide the most comparable measures on plasma os-
molality of unexercised alewife: juveniles from the same popu-
lations examined here were collected at a comparable age and
size, reared under identical conditions, and transferred to 0, 35,
and 40 ppt. Velotta et al. (2015) found that plasma osmolality
varied among populations. Reanalysis of the Velotta et al. (2015)
data at 48 h, the time closest to that reported in this study,
demonstrates that in seawater, landlocked alewife exhibit approxi-
mately 10% higher plasma osmolality than anadromous alewives
(fig. A1). The inconsistency between pre- and postswim plasma
osmolality may reflect an osmorespiratory compromise (Nilsson
1986); increased gill perfusion in response to intense exercise comes
at the cost of increased passive ion efflux (loss of ions in fresh-
water, gain of ions in saltwater; Sardella and Brauner 2007), which
may have eclipsed population differences in plasma osmolality de-
tected at rest. Indeed, compared with unexercised fish, average
postswim plasma osmolality levels were 1.3% lower in freshwater
and 22% and 18% higher in 35 and 40 ppt saltwater treatments
(fig. 4 compared with fig. A1). We note that because of our swim-
ming trial design, the time at which blood sampling occurred var-
ied among individuals and groups.

While direct transfer to seawater did not affect U,,;, salinity
in excess of typical seawater negatively influenced swimming per-
formance. A salinity of 40 ppt reduced U, by the same magnitude
among anadromous and landlocked individuals (fig. 2). This sa-
linity is higher than what alewives would encounter in the wild,
and direct transfers to 40 ppt incur population-dependent mor-
tality (Velotta et al. 2015). Transfer to a different salinity (from
freshwater to seawater or vice versa) has been shown to reduce U,
in several species of fish (Brauner et al. 1994; Kolok and Sharkey
1997; Swanson 1998; Plaut 2000). Brauner et al. (1994) suggested

that reductions in U, following seawater transfer could be caused
by plasma ion imbalances that lower the efficiency of muscle con-
tractions. Although we did not observe a significant negative cor-
relation between plasma osmolality and U, the small number of
measurements at 40 ppt (fig. 5) suggests that pronounced osmotic
imbalance might alter prolonged swimming performance in ale-
wife.

The parallel reduction in prolonged swimming performance
among independently landlocked alewife populations suggests
the influence of common evolutionary processes resulting from the
repeated loss of long-distance migration. Selection for higher pro-
longed swimming performance is expected to be strong in long-
distance migrators and to be weak in fishes confined to lentic
habitats. Indeed, populations of nonmigratory species often ex-
hibit a reduced U, compared with ancestrally anadromous or
highly migratory populations (Taylor and McPhail 1986; Tay-
lor and Foote 1991; Tudorache et al. 2007; Dalziel et al. 2012b;
Reyes and Baker 2016). Likewise, in migratory sockeye salmon
(Oncorhynchus nerka), critical swimming speed is positively cor-
related with the distance to upstream spawning grounds (Lee
et al. 2003), suggesting local adaptation of swimming performance
as a function of migratory tendency.

Decreased prolonged swimming performance in nonmigra-
tory populations could have evolved because the capacity for high
performance has direct or indirect costs, or it may have evolved
by neutral processes (Lahti et al. 2009). A good candidate for a
direct cost of maintaining the capacity for high performance is
the requirement for high metabolic rates and aerobic scope, phys-
iological characters that have strong fitness effects in the wild
(Irschick et al. 2008). Indeed, maximum and routine metabolic
rates as well as aerobic scope increase with prolonged swimming
performance (Brett 1964; Plaut 2000, 2001; Reidy et al. 2000;
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Marras et al. 2013). In populations of migratory threespine stickle-
back, higher U, is associated with higher maximum (Dalziel et al.
2012b) and routine (Tudorache et al. 2007) metabolic rates, rela-
tive to populations that do not migrate. Among populations of
salmon, aerobic scope varies positively with migratory difficulty
(e.g., river distance, elevation, and duration), a difference that ap-
pears to be attributable to increased maximum metabolic rate (Lee
et al. 2003; Eliason et al. 2011, 2013). Together, these studies sug-
gest that maintaining the capacity for high prolonged swimming
performance is costly and subject to direct selection.

A related direct cost explanation is that loss of prolonged swim-
ming capacity has occurred as landlocked alewife have adapted
to habitat with reduced energy availability. Compared with coastal
seawater environments, freshwater habitats are generally lower in
food availability (Morgan and Iwama 1991; Kitano et al. 2010;
Metcalfe et al. 2016). Landlocked alewife may have evolved re-
duced rates of energy consumption and storage as a result. In fact,
landlocked alewife exhibit relatively slow growth in the wild
(Graham 1956; Scott and Crossman 1973) and when reared in
seawater in the laboratory (J. P. Velotta, unpublished data). Fur-
ther work is needed to determine whether the differences in
growth rate are accompanied by differences in energetic condi-
tion, which could have a bearing on muscle metabolic capacity
and thus U, (Sullivan and Somero 1983; Martinez et al. 2003).
Whether the divergence in prolonged swimming performance
is better attributed to selection on energy demand (loss of mi-
gration) or supply (reduced feeding and lower condition) will re-
quire comparisons across a wider range of landlocked alewife
populations from environments varying in productivity.

Further work on the energetics of alewife will be needed to
confirm that prolonged swimming performance has decreased
in landlocked forms under direct selection. We predict that rou-
tine metabolic rate, maximum metabolic rate, and thus aerobic
scope will be lower in landlocked forms. Metabolic rate differences
may be evident in anatomical differences indicative of oxygen
transport and consumption (Claireaux et al. 2005; Eliason et al.
2011; Dalziel et al. 2012a). For example, enhanced aerobic scope
associated with migration distance in sockeye salmon appears to
be driven by an enhanced cardiac output, which is mediated by
enlarged ventricles and better coronary supply (Eliason et al. 2011,
2013; Eliason and Farrell 2016). Relative to benthic lake whitefish
(Coregonus clupeaformis), the highly aerobic dwarf ecotype has
evolved larger ventricles and higher densities of oxidative muscle
fibers and muscle mitochondria, which promote high swimming
capabilities (Dalziel et al. 2015). Metabolically active species often
have an enhanced capacity for oxygen transport (Suarez 1996),
which should be costly to maintain (Dalziel et al. 2012a). Reduced
prolonged swimming performance among landlocked alewives is
therefore likely to be mediated by physiological changes that in-
fluence muscle oxygen supply.

Prolonged swimming capacity has not evolved in alewives
by indirect selection arising from a trade-off with growth rate
that has been observed in other species. Juvenile growth rate
can be negatively correlated with U, (Kolok and Oris 1995;
Farrell et al. 1997; Billerbeck et al. 2001; Alvarez and Metcalfe
2005; Lee et al. 2010), apparently because rapid growth limits

the fraction of aerobic scope available for activity (Arnott et al.
2006). In this scenario, selection for rapid growth in land-
locked alewife would cause a reduction in prolonged swimming
capacity. As noted above, growth rates are reduced in landlocked
alewife, and this scenario is not tenable.

Comparison of burst swimming performance in the anad-
romous and landlocked life-history forms is also needed. A trade-
off between prolonged and burst swimming performance has been
widely demonstrated (Taylor and McPhail 1986; Langerhans 2009;
Oufiero et al. 2011; Gerry et al. 2012). Prolonged and burst swim-
ming performance tend to covary negatively because morpho-
logical features act antagonistically: fusiform body shapes that
minimize drag and enhance steady swimming are not optimized
for stability, which is needed during rapid bursts of activity (Langer-
hans and Reznick 2010). We do not expect that life-history forms
of alewife have differentiated along this trade-off, because the
relatively fusiform body shape of landlocked alewife is indicative
of relatively poor burst swimming performance.

Our results suggest that reductions in swimming performance
are uncoupled from evolutionary changes in osmoregulatory abil-
ities and body shape, most likely because these components of
performance are responding to different selection pressures or
environmental conditions. This finding was unexpected, given
that both body shape (e.g., Langerhans and Reznick 2010) and
osmoregulatory abilities (e.g., Brauner et al. 1994; Brennan et al.
2016) exert a strong influence on fish swimming. The extent to
which selection or neutral processes may account for differences
in U, cannot be explicitly deduced, although our results suggest
that trade-offs with growth rate, burst swimming performance,
or both are unlikely. We conclude that loss of long-distance anad-
romous migrations best explains the reduction of U in land-
locked alewife and that this reduction may be mediated by changes
in metabolic rate and the transport and delivery of oxygen to
swimming muscles. Future work will characterize metabolic and
cardiorespiratory capacity differences between alewife populations
in order to assess the degree to which the evolution of aerobic
performance influences the loss of swimming performance. Nev-
ertheless, the results of this study strongly suggest that relaxation
of selection pressures associated with migration is a stronger force
in shaping prolonged swimming performance than osmoregula-
tory abilities or morphological change.
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