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SUMMARY/ABSTRACT  30 

1. Phenological changes have been observed in a variety of systems over the past century. 31 

There is concern that, as a consequence, ecological interactions are becoming 32 

increasingly mismatched in time, with negative consequences for ecological function.  33 

2. Significant spatial heterogeneity (inter-site) and temporal variability (inter-annual) can 34 

make it difficult to separate intrinsic, extrinsic, and stochastic drivers of phenological 35 

variability. The goal of this study was to understand the timing and variability of 36 

breeding phenology of Adélie penguins under fixed environmental conditions, and to use 37 

those data to identify a ‘null model’ appropriate for disentangling the sources of variation 38 

in wild populations. 39 

3. Data on clutch initiation were collected from both wild and captive populations of Adélie 40 

penguins. Clutch initiation in the captive population was modeled as a function of year, 41 

individual, and age to better understand phenological patterns observed in the wild 42 

population. 43 

4. Captive populations displayed as much inter-annual variability in breeding phenology as 44 

wild populations, suggesting that variability in breeding phenology is the norm and thus 45 

may be an unreliable indicator of environmental forcing. The distribution of clutch 46 

initiation dates was found to be moderately asymmetric (right skewed) both in the wild 47 

and in captivity, consistent with the pattern expected under social facilitation. 48 

5. The role of stochasticity in phenological processes has heretofore been largely ignored. 49 

However, these results suggest that inter-annual variability in breeding phenology can 50 

arise independent of any environmental or demographic drivers and that synchronous 51 

breeding can enhance inherent stochasticity. This complicates efforts to relate 52 
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phenological variation to environmental variability in the wild. Accordingly, we must be 53 

careful to consider random forcing in phenological processes, lest we fit models to data 54 

dominated by random noise. This is particularly true for colonial species where breeding 55 

synchrony may outweigh each individual’s effort to time breeding with optimal 56 

environmental conditions. Our study highlights the importance of identifying appropriate 57 

null models for studying phenology. 58 

Keywords: Antarctica, Adélie penguin, Bayesian hierarchical model, climate change, coloniality, 59 

phenological mismatch, Pygoscelis adeliae, stochasticity, synchrony 60 
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INTRODUCTION 71 

There is concern that ecological interactions are becoming increasingly mismatched in time as a 72 

result of climate change-driven shifts in the timing of key life history events such as migration, 73 

foraging, and breeding (Thackeray et al. 2016). Such mismatches may result in decreased fitness 74 

(Cushing 1974, Visser and Both 2005) with long-term repercussions for population dynamics 75 

(Ludwig et al. 2006, Miller-Rushing et al. 2010, McLean et al. 2016). These asynchronies have 76 

been observed in a diverse range of taxa, including arthropods (Winder and Schindler 2004, Both 77 

et al. 2009), birds (Both et al. 2009, Visser et al. 2012), fish (Durant et al. 2005), and mammals 78 

(Post and Forchhammer 2008) and in a variety of ecological systems (Kerby et al. 2012 and 79 

references therein). To better understand and predict how phenological change might impact 80 

ecological systems, it is important to recognize what factors drive the timing of these life-history 81 

events. 82 

Photoperiod has been identified as a proximate driver of the timing of key life history events 83 

in both plants and animals (animal breeding, animal migration, plant flowering; Hay 1990, 84 

Temte and Temte 1993, Bradley et al. 1999, Helm 2009, Zerbe et al. 2012). Studies of 85 

phenological variation (inter-annual variation and/or long-term trends), however, have focused 86 

on abiotic environmental factors such as temperature and precipitation (Visser et al. 2009, 87 

Thackeray et al. 2016), or biotic factors such as body condition, which may reflect 88 

environmental conditions and/or prey availability (Bêty et al. 2003; see review in Dawson 2008). 89 

Variability in population-level phenology arises by some combination of three factors: (1) 90 

extrinsic drivers: changes in environmental (both abiotic and biotic) conditions, including 91 

changes in other components of the ecological community (e.g., prey, predators, mutualists); (2) 92 

intrinsic drivers: fixed differences among individuals coupled with demographic turnover within 93 
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the population; and (3) stochastic variation: seemingly random variation in the timing of 94 

breeding of individuals (unrelated to known intrinsic or extrinsic factors) that propagates up to 95 

population-level metrics of phenology. Consistent with usage by Lande et al. (2003), we define 96 

stochasticity in this context as variability that is either truly random or, at least, appears random 97 

with respect to factors relevant to the question of interest. While numerous studies have focused 98 

on intrinsic and extrinsic drivers of phenology, there has been relatively little attention paid to 99 

the role of stochasticity. This lack of attention to stochastic factors is due, in part, to the fact that 100 

wild populations are subject to fluctuating environmental conditions, making it difficult to 101 

identify forces independent of measureable extrinsic and intrinsic factors.  102 

The scale on which data are collected (i.e., population-level vs. individual-level) also 103 

contributes to the challenge of identifying stochasticity. Most studies of phenology in wild 104 

populations use population-level summary statistics (such as first or mean timing of a life-history 105 

event in a population) due to difficulties associated with collecting individual-level data. Metrics 106 

that capture the first instance of an event of interest are known to be problematic due to their 107 

sensitivity to population size and sampling frequency (Miller-Rushing et al. 2008). While more 108 

robust to these influences, population mean metrics can be affected by other factors such as age 109 

(Ainley et al. 1983, Ainley 2002) and random variation among individuals (Crawley and 110 

Akhteruzzaman 1988) that, through shifts in demographic composition, can impact population-111 

level statistics. For instance, if older individuals breed earlier, an aging population will display 112 

an apparent trend towards earlier breeding (Lewis et al. 2012). Similarly, any random subset of 113 

individuals may, by chance, have an earlier or later average phenology than another such random 114 

subset of individuals. 115 
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Individual-level data, in either wild or captive populations, allows us to track the role of 116 

demographic turnover (age and individual effects) on phenological response. An even more 117 

comprehensive understanding of the role for stochastic factors in driving phenological variability 118 

can be developed by paring studies of wild populations with studies of populations under fixed 119 

environmental conditions (Lambrechts et al. 1999, Dunne et al. 2003, Visser et al. 2009). 120 

Phenological variability in captive populations kept under fixed conditions represents a null 121 

model against which interannual variability in wild populations can be compared. Without such a 122 

control group, it may be difficult to determine the extent to which phenological variability is 123 

driven by environmental variability or, alternatively, inherent stochasticity. An estimate of inter-124 

annual variation under fixed environmental conditions is therefore of value when interpreting 125 

phenological studies of wild populations. Assessing variability under these conditions may be 126 

particularly important for colonially breeding species that may rely on social cues to synchronize 127 

breeding (Ims 1990b). 128 

Here we used data collected from both wild (representing naturally variable environmental 129 

conditions) and captive (representing fixed environmental conditions) populations of Adélie 130 

penguins Pygoscelis adeliae, to identify the role of stochastic factors in driving breeding 131 

phenology. Adélie penguins are a site faithful, highly colonial species that inhabit the Antarctic 132 

continent and surrounding islands. Several studies (Barbraud and Weimerskirch 2006, 133 

Emmerson et al. 2011, Hinke et al. 2012, Lynch et al. 2012, Youngflesh et al. 2017) have sought 134 

to understand the conditions associated with breeding phenology in Adélie penguins. However, 135 

despite considerable effort to collect and analyze long-term phenological data, our understanding 136 

of what drives phenology in this species and the potential role that stochastic factors might play, 137 

is limited. Our aim was to address three principal questions in this study: 1) how variable is 138 
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Adélie penguin breeding phenology in the absence of environmental variability; 2) can variation 139 

in breeding phenology under fixed environmental conditions be explained by individual variation 140 

and age structure, or is there substantial residual random variation that remains unexplained; and 141 

3) what implications do our findings have for interpreting variability in wild populations of 142 

synchronously breeding colonial species? In sum, to what extent have we been overemphasizing 143 

the role of exogenous environmental forcing in the phenological variability of some wild 144 

populations? 145 

 146 

MATERIALS AND METHODS 147 

Description of data 148 

Individual-level data on clutch initiation date (CID – the date in which the first egg is laid in each 149 

nest) were obtained for all individuals in a captive Adélie penguin population at SeaWorld San 150 

Diego from 1992 - 2015 (89 penguins in total). The number of breeding females in each year 151 

varied from 12 to 37 throughout the course of the study. The youngest birds to breed were 2 152 

years of age, while the oldest were 45 years of age. Most penguins (67 of the 89) were born in 153 

captivity – individuals born before 1984 were taken as chicks from wild populations in the Ross 154 

Sea region of Antarctica in 1976. 155 

All captive penguins were associated with unique identifiers, and metrics for each individual 156 

were tracked through time. Temperature at the facility was kept at a constant -4°C to -2°C year-157 

round. Feeding regime of the captive birds did not change over the study period. Nesting 158 

materials (stones) were provided at the same time in each year. Photoperiod for the exhibit 159 
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lighting mimicked that of 77°S latitude (though minimal exhibit lighting is required during the 160 

winter period), representative of the southern limit of the Adélie penguin breeding range. 161 

Seasonal variations in lighting are accounted for in the lighting regime and are constant from 162 

year to year. The viewing area is setup in such a way to minimize light exposure to the penguin 163 

enclosure. The penguin exhibit at SeaWorld underwent a 6-month renovation in 2005. The 164 

captive penguin population used in this study was kept in a separate enclosure during this 165 

renovation, which may have impacted breeding phenology in this year. 166 

Data on CID were also obtained for a unique set of 100 individuals each year in a wild 167 

population of Adélie penguins located at Admiralty Bay, Antarctica (62.2°S, 58.4°W) from 168 

1986-2012 using methodologies outlined in Hinke et al. (2012). Individual-level data across 169 

years was not available for the wild population. Wild penguins are typically younger than those 170 

in captivity, generally less than 20 years of age (Ainley et al. 1983, Ainley 2002).  171 

Statistical analysis of individual phenology in marked captive penguins 172 

For the captive Adélie penguin time series, a hierarchical Bayesian approach was used to model 173 

CID (!!"), with year (i) and individual (j) as random effects (! and !, respectively) and age as a 174 

fixed effect (!): 175 

 !!" = ! + !! + !! + ! ∗ !"#!" + !!" (1) 

!!  ~ ! 0,!!!"#$  

!!  ~ ! 0,!!!"#!$!#%&'  

!!"  ~ ! 0,!!!"#$%  
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where ! represents the intercept, !"# represents the age of the female, and ! represents the error 176 

term. This model was used to determine whether variation in !!" was driven by the ! parameter 177 

(variance attributed to a colony-wide effect that varies among years), the ! parameter (variance 178 

attributed to fixed differences between individuals), the !"# covariate, or the error term (!). 179 

Individual data used in this statistical framework allowed us to account for potential confounding 180 

factors related to differences in phenology due to individual identity (or quality) and age, and 181 

provide a more complete understanding of these processes than is possible using population-level 182 

summary statistics. 183 

Models were fit using the R package ‘rjags’ (Plummer 2013), an interface to JAGS (Plummer 184 

2003), in the R statistical environment (R Core Team 2016). Normal priors were used for !, !, 185 

!, and !. Broad Gamma priors were used for all precision ! = !
!!  parameters (shape = 0.01, 186 

rate = 0.01). Posterior distributions were derived from three chains with 5,000 samples (after 187 

thinning every other draw) following a ‘burn-in’ period of 40,000 draws and an adaptation 188 

period of 5000 draws. Model convergence was assessed through a visual analysis of the posterior 189 

chains, in addition to the use of the Gelman-Rubin convergence diagnostic (Brooks and Gelman 190 

1998). All models unambiguously converged. Parameter estimate plots were generated using the 191 

‘MCMCvis’ package (Youngflesh 2016) while other plots were generated using the ‘ggplot2’ 192 

package (Wickham 2009) in the R statistical environment. 193 

Statistical analysis of population-level phenology in captive and wild penguins 194 

 No information on individual phenology across years was available for the wild population (i.e., 195 

no information on the ! parameter or !"# covariate), leaving it ambiguous as to which 196 

component was contributing to the variability in !!" (CID of individual ! in year !). Therefore, to 197 
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directly compare the captive and wild Adélie populations, we considered population-level 198 

aggregate summaries of phenology in both populations. The median colony CID in each year 199 

(median across individuals; denoted !!∙) was calculated for both the captive and wild Adélie 200 

penguin populations. Between year variation in median phenology, !!"#$""%! = !"#(!!∙), 201 

included variation from all sources (year, individual, age, and unexplained variance as captured 202 

by !). Note that in contrast to !!!"#$% in Eq 1, !!"#$""%! includes variation due to age and 203 

individual identity as well as residual stochastic variation unrelated to these factors. For both the 204 

captive and wild populations, variation within year !, !!,!"#!!"! = !"#(!!"), was used as a 205 

measure of year-specific, within-population breeding synchrony. We also note that while 206 

differences in (simulated) latitude may have generated a fixed difference in photoperiod between 207 

the captive and wild populations, our analysis examined only within-site inter-annual variability 208 

in breeding phenology. 209 

 To investigate whether individual breeding dates within a colony were distributed 210 

symmetrically around a population mean, as might be expected a priori if individuals were 211 

acting independently, CID values in each year were standardized !!∙ = !!∙!!!∙
!"(!!∙)

 and aggregated 212 

across years to be analyzed for skewness using a D’Agostino skewness test (D’Agostino 1970). 213 

All analyses were performed in the R statistical environment (R Core Team 2016). 214 

 215 

RESULTS 216 

Inter-annual and intra-annual variance in CID 217 
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Inter-annual variance of median colony CID was similar between the captive 218 

(!!"#$""%!!"#$%&'! = 15.8  [!" = 4.7]) and wild (!!"#$""%!!"#$! = 13.5 [!" = 3.7]) populations 219 

(Fig. 1). This degree of phenological variability is comparable to that seen in other taxa 220 

(Appendix S1). Within year, individual birds were relatively synchronous in both populations, 221 

with greater synchrony among individuals in the wild population compared to the captive 222 

population (![!!"#!!"!!"#$! ] <  ![!!"#!!"!!"#$%&'! ]; Welch two-sample t-test, t= 4.99, df = 28.5, p 223 

< 0.001) (Fig. 1; Appendix S1). 224 

 225 

Fig. 1. Mean colony breeding phenology (top panels) and distribution of individual CID in each 226 

year (bottom panels). The bold lines in the box-and-whisker plots represent the median CID 227 

while boxes represent the 25th and 75th quantiles. The top and bottom of the whiskers are 1.5 × 228 

IQR (inter-quartile range) from the upper and lower boxes, respectively. Data beyond this range 229 
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are plotted as points. The number of data points per year in the captive population ranged from 230 

13 to 38. One hundred data points were collected for each year in the wild population. 231 

 232 

Individual phenology in marked captive penguins 233 

A strong year effect (!) on CID was apparent for the captive penguin population (Fig. 2a; 234 

!"#$%&(!!"#$! ) = 13.81 [Appendix S1]). Significant year to year variation was found, even 235 

when accounting for the effects of age and individual. Inter-annual variation is still substantial 236 

when accounting for first-order autocorrelation (Appendix S2). Random effects due to individual 237 

(!) were notable (as evidenced by the spread of ! parameter estimates), with some individuals 238 

breeding consistently earlier/later than other individuals (Fig. 2b; !"#$%&(!!"#!$!#%&'! ) = 13.66 239 

[Appendix S1]). Over the 24-year study period, 16 different individuals were the first to lay eggs 240 

in a particular year (in 3 of these years, multiple individuals laid eggs on the same day). No 241 

biologically significant effect of age (!) on CID was found (median posterior estimate = 0.06 242 

days/year); the 95% credible interval overlapped 0 (Fig. 2c). Variance unaccounted for by the 243 

model is represented by !"#$%&(!!"#$%! ) = 34.96 (Appendix S1). 244 
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 245 

Fig. 2.  Posterior estimates for the captive population parameters: (a) year effect – !; (b) 246 

individual effect – !; and (c) age effect – ! parameters (see Eq 1). Black circles represent 247 

posterior medians. Thicker lines represent 50% credible intervals while thinner lines represent 248 

95% credible intervals. Error bars for the ! parameter are obscured by the point itself. 249 

 250 

Intra-annual variance in CID 251 

The distributions of CID for both captive and wild populations (Fig. 3) had a small but 252 

statistically significant right skew (!!!"#$%&' = 0.54 [SE = 0.10]; !!!"#$= 0.79, [SE = 0.04]; 253 

D’Agostino test, p < 0.001). 254 
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 255 

Fig. 3.  Distribution of CIDs for the captive (left) and wild (right) populations. Data were 256 

standardized and aggregated across years. Colored lines depict the kernel density estimates on 257 

the distribution. Red lines represent the actual distributions of CID, while the blue lines represent 258 

the normal distributions generated using the actual mean and variance of the CID distribution.  259 

 260 

DISCUSSION 261 

Despite prior expectations of lower inter-annual variance in breeding phenology under fixed 262 

environmental conditions, we found that both the captive and wild Adélie penguin populations 263 

exhibit a similar degree of inter-annual fluctuation in breeding phenology. Stochasticity appears 264 

to play a substantial role in determining the timing of Adélie penguin breeding within the 265 

window of time dictated by biological and physical constraints. We suggest that stochasticity at 266 

the individual level is amplified by the importance of breeding synchrony among individuals, 267 

producing the observed inter-annual variance. 268 

Inherent inter-annual variation 269 
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Previous studies have suggested that photoperiod (Dawson 2008), abiotic conditions such as 270 

rainfall (Leitner et al. 2003, Deviche et al. 2006) and temperature (Both et al. 2004, Torti & 271 

Dunn 2005, Visser et al. 2009), biotic conditions such as food availability (Reynolds et al. 2003), 272 

or some combination of these factors, are important in regulating phenology in a number of bird 273 

species. While these conditions may define a larger envelope of time in which successful 274 

breeding may occur, our analysis of a captive Adélie penguin population shows that external 275 

drivers neither explain nor are required to generate substantial inter-annual variability in 276 

breeding phenology (i.e., a large year effect). Inter-annual fluctuations are apparent even under 277 

constant environmental conditions and after accounting for the effects of individual variation and 278 

age (Fig. 2a). Other potential factors that we thought might have influenced penguin breeding 279 

phenology, such as number of breeders in a given season, the timing of nesting material 280 

availability, and potential effects of the 2005 captive population exhibit renovation, were 281 

investigated but ultimately determined to have only minor effects (Appendix S2).  282 

Beyond the random effect of year, some fixed differences in the timing of breeding among 283 

individuals in the captive population do exist – that is, some individuals breed earlier than others 284 

on average (Fig. 2b). However, the relatively minor shifts in the composition of the population 285 

each year cannot explain the inter-annual fluctuations in the breeding phenology of captive 286 

individuals. While previous work has suggested that age plays a role in determining Adélie 287 

penguin breeding phenology in the wild (Ainley et al. 1983, Ainley 2002), the effect of age on 288 

breeding phenology was minimal in the captive population studied here (Fig. 2c). This is not 289 

surprising, given that one hypothesized mechanism by which age might impact breeding 290 

phenology is through an individual’s ability to navigate back to the breeding colony following 291 

the overwintering period. Older individuals, being more experienced, are thought to be able to 292 
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find their way back to the breeding colonies more quickly, particularly through substantial sea 293 

ice (Ainley et al. 1983). With no migration in a captive population, we would expect age and 294 

experience to have a substantially smaller impact on breeding phenology. 295 

Interplay between synchrony and stochasticity 296 

Adélie penguins are highly synchronous breeders within a population in a given season (Fig. 1; 297 

see also Ainley 2002), and previous work has shown that increased synchrony among individuals 298 

leads to increased breeding success (Youngflesh et al. 2017). Where colonial breeding is driven 299 

by predator avoidance, individuals that breed not only in the same area but also at the same time 300 

as others in the population would be at an advantage (Darling 1938, Young 1994). Penguins 301 

breeding during the same time period in the same location can more easily defend nests against 302 

aerial predators, a principal threat to Adélie penguin chicks (Young 1994). Synchronous 303 

breeding also results in an overwhelming influx of potential prey resources for species that prey 304 

on penguins; such ‘predator-swamping’ can facilitate higher breeding success (Ims 1990a). We 305 

hypothesize that the fitness consequences of breeding in sync with conspecifics may outweigh 306 

the importance of matching optimal environmental conditions within the environmentally-driven 307 

time envelope in which reproduction can occur successfully (as suggested in Hinke et al. 2012, 308 

Youngflesh et al. 2017). We suggest that the importance of this phenomenon for any given 309 

species reflects a balance between the expected fitness advantages of synchronous breeding 310 

among conspecifics and the fitness advantages of breeding during some (environmentally-311 

determined) optimal period of time – the latter of which may be more difficult to assess for an 312 

individual with limited information.  313 



Youngflesh et al. 

 17 

In this way, predators indirectly influence the breeding phenology of Adélie penguins – a 314 

top-down process. Abiotic (e.g., photoperiod, temperature) and/or bottom-up processes (e.g., 315 

resource availability, organism physiological condition) are typically the focus of phenological 316 

studies. However, top-down forcing (via antagonists such as predators and pathogens) has been 317 

identified as an important process in the regulation of a number of phenological processes, 318 

including absolute phenology (Elzinga et al. 2007, Galloway and Burgess 2012), phenological 319 

synchrony (Hatchwell 1991, Sinclair et al. 2000), and the rate at which offspring develop 320 

(Vonesh 2005). These processes often operate in concert with abiotic and/or bottom-up processes 321 

(as suggested by Varpe et al. 2007, Burr et al. 2016), painting a complex picture of multiple 322 

ecological determinants of phenological processes. While the mechanisms for top-down control 323 

on phenology are diverse, these patterns may be more common among colonial breeders given 324 

the importance of phenological synchrony for predator avoidance in many species (Ims 1990b). 325 

While the precise mechanism that regulates this highly synchronous behavior in Adélie 326 

penguins is unknown, social cues have been found to drive courtship and copulation (Waas 1988, 327 

1991, 1995, Waas et al. 2000), and result in more synchronized breeding patterns (Setiawan et al. 328 

2007). This has been demonstrated in a number of birds (Burger 1979, Danchin 1988, Waas et al. 329 

2005), including other species of penguins, as well as in mammals (McClinktock 1978, Scott 330 

1986, Berger 1992). Vocalizations (Clark et al. 2012), exposure to courtship displays (Lehrman 331 

and Friedman 1969), and chemical cues (McClintock 1978) have all been demonstrated as 332 

proximate behavioral mechanisms by which this social facilitation occurs. 333 

Slightly right skewed distributions of CID are apparent within each year – very late breeders 334 

in this right skewed distribution contribute to a relatively large residual variance in our model. 335 

This skew is also consistent with, though by no means proves conclusively, a role for social 336 
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facilitation in the timing of breeding. Even a simple model in which breeding is accelerated 337 

proportional to the number of pairs that have recently initiated breeding creates a right skewed 338 

distribution for clutch initiation (Appendix S1). This notion of facilitation is further supported by 339 

the strong relationship (70% of variance explained) between first CID (the first breeders in each 340 

year) and median CID in both the captive and wild populations (Appendix S1). Right skewed 341 

distributions of phenological events are apparent in many species of both birds and plants 342 

(Thomson 1980, Sparks et al. 2005, Wilson 2013) in magnitudes similar to those observed here 343 

(Appendix S1). Environmental factors may play a role in driving this pattern for many species, a 344 

hypothesis difficult to exclude if only wild data were available. In this case, however, both a 345 

right skewed distribution and a strong relationship between first breeding and median breeding 346 

are apparent under controlled conditions, despite inter-annual variability in the overall timing of 347 

breeding. 348 

It should be noted that the captive penguin population in this study exhibited less synchrony 349 

among individuals in a given year than did the wild population (Fig. 1; Appendix S1). One 350 

possible explanation for this relates to colony size; larger populations in the wild may, through 351 

increased colony noise, better facilitate the transmission of social cues (Waas et al. 2000). Other 352 

possibilities include the notion that the degree of synchrony is a plastic trait that may be relaxed 353 

under the predator-free conditions of captivity. Future work, including manipulative 354 

experiments, is required to understand the precise behavioral mechanisms regulating synchrony 355 

in this species. 356 

To be clear, we are not suggesting that synchronous breeding is necessary to observe the 357 

impacts of stochastic factors on breeding phenology at the individual level, but rather that the 358 

importance of synchrony in colonial species may facilitate the propagation of stochasticity from 359 
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the individual-level to that of the population. Social cues that facilitate synchrony (see above) 360 

may encourage individuals to initiate breeding once other individuals in the colony have done so. 361 

This cascading effect of synchronous breeding may drive a shift in the average phenology of the 362 

population that is largely uncoupled from any environmental trigger. 363 

In ignoring the role of stochasticity, have we been modeling noise? 364 

In the search for causal drivers for phenology, the role of inherent stochasticity has been largely 365 

ignored in the existing phenological literature. Our study has important implications for studying 366 

patterns of phenology across all animal systems as it highlights the difficulty of teasing out the 367 

extent to which the environment may, or may not, be driving variation in phenology. The 368 

observed levels of inter-annual variability under fixed environmental conditions are of a similar 369 

magnitude to those seen in the wild (Fig. 1; Appendix S1, S2) – a surprising result. Previous 370 

studies of Adélie penguin phenology at Admiralty Bay found October mean air temperature 371 

(thought to be related to snow melt and nest site availability) to be the most important 372 

environmental determinant of CID in a model selection framework (Hinke et al. 2012, Lynch et 373 

al. 2012). Our analyses of the same CID data (with additional years beyond what was used in the 374 

original studies) do not contradict these original findings, but suggest that environmental drivers, 375 

such as temperature, are layered on top of substantial ‘built in’ variability. Put another way, our 376 

null model for phenological studies should not, by default, be one of stasis. 377 

Whether the drivers that influence a pair’s ‘decision’ to breed are unknown, or unknowable, 378 

the implication is that phenological variability of this scale can be generated in the absence of 379 

environmental variability. This finding is of practical importance, as it highlights the difficulty in 380 

identifying external causal drivers of phenological events. Our study shows that stochastic 381 
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variation in penguin breeding phenology, with respect to the environmental factors addressed 382 

here, may be the rule rather than the exception and does not require external forcing from the 383 

environment. This is similar to stochastic outcomes of individuals, whereby identical individuals, 384 

experiencing identical conditions, will differ with respect to lifespan and fecundity (Caswell 385 

2011). This role of stochasticity may partially explain previous findings of a relatively weak 386 

relationship between Antarctic seabird breeding phenology and environmental forcing (Barbraud 387 

and Weimerskirch 2006).  388 

One way to address the inherent convolution of environmental variability and inherent 389 

stochasticity is through the study of captive populations in controlled conditions. While studies 390 

focusing on plants more often include experiments in controlled environments to distinguish the 391 

role of multiple factors on phenology (Cleland et al. 2007), there are fewer studies elucidating 392 

inter-annual changes in phenology in captive animals (but see Lambrechts et al. 1999, Visser et 393 

al. 2009). Captive animal populations are not, of course, perfect replicas of wild populations. For 394 

instance, penguins in captive populations are kept in enclosed spaces and do not undergo an 395 

overwinter migration. Captive populations are also limited in size, often smaller than what might 396 

be observed in the wild. Accordingly, we must be cautious not to overextend the analogy 397 

between captive and wild populations. Nevertheless, studies focusing on populations in 398 

controlled conditions can provide a wealth of information on phenology in the absence of all 399 

environmental factors deemed potentially important in wild populations. Identification and 400 

tracking of individual animals further allows for straightforward estimation of age effects and 401 

random individual variation. Ultimately these studies can provide a reasonable null model 402 

against which to assess factors contributing to variation in wild populations. Studies involving 403 

experimental manipulation and/or transplantation of organisms to new environments (e.g., Helm 404 
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2009) may provide additional power to disentangle the factors controlling breeding phenology. 405 

Our study highlights the challenges of understanding the factors driving phenology in wild 406 

populations, and reminds us to take caution in ascribing causality when we are unaware of the 407 

degree of inherent variation in the response variable of interest. 408 
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Appendix S1: Study R/JAGS code with results

Rethinking ‘normal’: The role of stochasticity in the phenology of a synchronously breeding

seabird

Casey Youngflesh, Stephanie Jenouvrier, Je�erson T. Hinke, Lauren DuBois, Judy St. Leger, Wayne Z.
Trivelpiece, Susan G. Trivelpiece, Heather J. Lynch

Initial set up

Packages
#install packages if they don�t exist - then load them

if(�pacman� %in% rownames(installed.packages()) == FALSE)
{

install.packages(�pacman�)
}

pacman::p_load(ggplot2,
reshape2,
dplyr,
rjags,
moments,
MCMCvis)

Inter-annual variation in CID

Load data
setwd(�Data�)

captive_data <- read.csv(�Captive_CID.csv�, header = TRUE)
wild_data <- read.csv(�Wild_CID.csv�, header = TRUE)

Function to calculate intra-annual median and var
srt.fun <- function(IN)
{

#IN <- SD_lay

yrs <- unique(IN$YEAR)

OUT <- c()
for(i in min(yrs):max(yrs))
{

#i <- 1993

temp <- filter(IN, YEAR == i)
t_md <- median(temp$J_CID)
t_var <- var(temp$J_CID)
temp2 <- data.frame(YEAR = i, MEDIAN = t_md, VAR = t_var)
OUT <- rbind(OUT, temp2)

}

1



return(OUT)
}

Function to calculate SE of variance

‡s2 = s2 ú


2/(n ≠ 1)
se_var <- function(data)
{

OUT <- var(data)*sqrt(2/(length(data)-1))
return(OUT)

}

Captive inter-annual variance - var(yi.)
captive_md_sd <- srt.fun(captive_data)

(c_med <- var(captive_md_sd$MEDIAN))

## [1] 15.83288

Captive standard error of variance
se_var(captive_md_sd$MEDIAN)

## [1] 4.668862

Wild inter-annual variance - var(yi.)
wild_md_sd <- srt.fun(wild_data)

(w_med <- var(wild_md_sd$MEDIAN))

## [1] 13.49003

Wild standard error of variance
se_var(wild_md_sd$MEDIAN)

## [1] 3.741461

Inter-annual variation in CID from literature

Inter-annual variation in CID in the Adélie penguin population are of a similar magnitude to those seen in
other bird species.
setwd(�Data�)

lit_data <- read.csv(�Lit_data.csv�, header = TRUE)

Both et al. 2009 (Fig. 2) - Blue tit, Great tit, Pied flycatcher, Coal tit, Sparrowhawk
#detrend because we are interested in the interannual variance - trends would conflate this estimate

fit_BT_B_2009 <- lm(lit_data$BT_B_2009 ~ lit_data$YEAR)
res_BT_B_2009 <- residuals(fit_BT_B_2009)
v_BT_B_2009 <- var(res_BT_B_2009)

fit_GT_B_2009 <- lm(lit_data$GT_B_2009 ~ lit_data$YEAR)
res_GT_B_2009 <- residuals(fit_GT_B_2009)
v_GT_B_2009 <- var(res_GT_B_2009)
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fit_PF_B_2009 <- lm(lit_data$PF_B_2009 ~ lit_data$YEAR)
res_PF_B_2009 <- residuals(fit_PF_B_2009)
v_PF_B_2009 <- var(res_PF_B_2009)

fit_CT_B_2009 <- lm(lit_data$CT_B_2009 ~ lit_data$YEAR)
res_CT_B_2009 <- residuals(fit_CT_B_2009)
v_CT_B_2009 <- var(res_CT_B_2009)

#no need to detrend - no significant change

v_SH_B_2009 <- var(lit_data$SH_B_2009, na.rm = TRUE)

Valtonen et al. 2017 (Fig. 2) - Common redstart, Great tit, Pied flycatcher
#no need to detrend - no significant change

v_CR_V_2017 <- var(lit_data$CR_V_2017, na.rm = TRUE)

v_GT_V_2017 <- var(lit_data$GT_V_2017, na.rm = TRUE)

v_PF_V_2017 <- var(lit_data$PF_V_2017, na.rm = TRUE)

Species Publication Metric Inter-annual Variance
Blue tit Both et al. 2009 Hatch date 11.94
Great tit Both et al. 2009 Hatch date 12.82
Pied flycatcher Both et al. 2009 Hatch date 4.22
Coal tit Both et al. 2009 Hatch date 25.11
Sparrowhawk Both et al. 2009 Hatch date 9.74
Common redstart Valtonen et al. 2017 Clutch initiation date 10.65
Great tit Valtonen et al. 2017 Clutch initiation date 15.62
Pied flycatcher Valtonen et al. 2017 Clutch initiation date 10.26
Adélie penguin (captive) This publication Clutch initiation date 15.83
Adélie penguin (wild) This publication Clutch initiation date 13.49

Adélie penguins exhibit degrees of inter-annual variance in phenology comparable to other species.

Plot median CID over time - Captive

plt_t <- data.frame(YEAR = 1992:2015, MD_CID = captive_md_sd$MEDIAN)
plt <- melt(plt_t, id = �YEAR�)

#CAPTIVE PLOT

ggplot(plt, aes(YEAR, value)) +

geom_line(size = 1.2, col = �red�) +

theme_bw() +

ggtitle(�Captive penguin breeding phenology�) +

xlab(�Year�) +

ylab(�CID (days from Sep 30)�) +

coord_cartesian(xlim = c(1990, 2015)) +

coord_cartesian(ylim = c(25, 45)) +

scale_x_continuous(breaks = seq(1990, 2015, by = 5)) +

scale_y_continuous(breaks = c(25, 30, 35, 40, 45)) +

3



theme(
axis.text = element_text(size = 12), #axis label size

axis.title = element_text(size = 14),
panel.grid.major = element_line(color = �gray40�), #lower # is darker

panel.grid.minor = element_line(color = �gray95�),
panel.background = element_blank(),
panel.border = element_rect(fill = NA, color= �black�, size = 1.5),
axis.ticks.length= unit(0.15, �cm�), #length of axis tick

axis.ticks = element_line(size = 1)
)

25

30

35

40

45

1995 2000 2005 2010 2015
Year

C
ID

 (d
ay

s 
fro

m
 S

ep
 3

0)

Captive penguin breeding phenology

Plot median CID over time - Wild

plt_t2 <- data.frame(YEAR = 1986:2012, MD_CID = wild_md_sd$MEDIAN)
plt2 <- melt(plt_t2, id = �YEAR�)

#WILD PLOT

ggplot(plt2, aes(YEAR, value)) +

geom_line(size = 1.2, col = �blue�) +

theme_bw() +

ggtitle(�Wild penguin breeding phenology�) +

xlab(�Year�) +

ylab(�CID (days from Sep 30)�) +

coord_cartesian(xlim = c(1984, 2012)) +
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coord_cartesian(ylim = c(25, 45)) +

scale_x_continuous(breaks = seq(1985, 2012, by = 5)) +

scale_y_continuous(breaks = c(25, 30, 35, 40, 45)) +

theme(
axis.text = element_text(size = 12), #axis label size

axis.title = element_text(size = 14),
panel.grid.major = element_line(color = �gray40�), #lower # is darker

panel.grid.minor = element_line(color = �gray95�),
panel.background = element_blank(),
panel.border = element_rect(fill = NA, color= �black�, size = 1.5),
axis.ticks.length= unit(0.15, �cm�), #length of axis tick

axis.ticks = element_line(size = 1)
)
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Wild penguin breeding phenology

Determine which female is the first to lay in each year (including

ties for first)

FEM <- c()
for (i in 1992:2015)
{

#i <- 1997

temp <- filter(captive_data, YEAR == i)
pos <- which(temp$J_CID == min(temp$J_CID))
t_data <- temp[pos,]
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FEM <- rbind(FEM, t_data)
}

16 di�erent ‘leaders’ in 24 years
length(unique(FEM$FEMALE_ID))

## [1] 16

Intra-annual variation in CID

#t-test to determine if intra-annual variation differs between captive and wild popualtions

t.test(captive_md_sd$VAR, wild_md_sd$VAR)

##
## Welch Two Sample t-test
##
## data: captive_md_sd$VAR and wild_md_sd$VAR
## t = 4.9893, df = 28.488, p-value = 2.733e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 19.51181 46.65717
## sample estimates:
## mean of x mean of y
## 50.75654 17.67205

Number of breeders

len_fun <- function(IN)
{

yrs <- range(IN$YEAR)

LEN <- c()
for(i in yrs[1]:yrs[2])
{

#i <- 1992

temp <- filter(IN, YEAR == i)
tl <- dim(temp)[1]
tb <- c(i, tl)
LEN <- rbind(LEN, tb)

}

return(LEN)
}

#range

range(len_fun(captive_data)[,2])

## [1] 12 37
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Hierarchical model - captive population

JAGS model

yij = µ + –i + —j + “ ú AGEij + ‘ij

–i ≥ N(0, ‡2
year)

—j ≥ N(0, ‡2
individual)

‘ij ≥ N(0, ‡2
model)

setwd(�Data�)

AGE_mat <- read.csv(�AGE_mat.csv�, header= TRUE)
CID_mat <- read.csv(�CID_mat.csv�, header= TRUE)

DATA <- list(
y = CID_mat,
yr = 1:NCOL(CID_mat),
ind = 1:NROW(CID_mat),
age = AGE_mat,
N = NCOL(CID_mat), #columns are year in matrix

M = NROW(CID_mat)) #rows are individuals

#----------------#

#model

#alpha = YEAR - random

#beta = INDIVIDUAL - random

#gamma = AGE - fixed

setwd(�JAGS�)

{
sink("captive.jags")

cat("
model {

for(t in 1:N)
{
for(i in 1:M)
{
y[i,t] ~ dnorm(mu.g[i,t], tau)
mu.g[i,t] <- mu + alpha[yr[t]] + beta[ind[i]] + gamma*age[i,t]
}
}

#priors
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#year
for(t in 1:N)
{
alpha[t] ~ dnorm(0, tau.year)
}

#individual
for(i in 1:M)
{
beta[i] ~ dnorm(0, tau.ind)
}

#mu, gamma, and tau
mu ~ dnorm(0, 0.001)
gamma ~ dnorm(0, 0.001)
tau ~ dgamma(0.01, 0.01)
var.model <- 1/tau #convert from precision to variance

#hyperparameters
tau.year ~ dgamma(0.01, 0.01)
var.year <- 1/tau.year
tau.ind ~ dgamma(0.01, 0.01)
var.ind <- 1/tau.ind

}",fill = TRUE)

sink()
}

Run model
#----------------------#

#Starting values

Inits <- function() {list(alpha = rep(rnorm(1),
ncol(CID_mat)),

beta = rep(rnorm(1),
nrow(CID_mat)),

tau = rgamma(1, 1),
mu = rnorm(1),
gamma = rnorm(1),
tau.year = rgamma(1, 1),
tau.ind = rgamma(1, 1))}

#----------------------#

#Parameters to track

Pars <- c(�alpha�, �beta�, �gamma�, �var.year�, �var.ind�, �var.model�)

# Inputs for MCMC ---------------------------------------------------------
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n_adapt <- 5000 # number for initial adapt

n_burn <- 40000 # number burnin

n_draw <- 10000 # number of final draws to make

n_thin <- 2 # thinning rate

n_chain <- 3 # number of chains

Rhat_max <- 1.1 # max allowable Rhat (close to 1 = convergence)

n_max <- 1e7 # max allowable iterations

#----------------------#

#Run model

jm = jags.model(data = DATA,
file = "JAGS/captive.jags",
inits = Inits,
n.chains = 3,
n.adapt = n_adapt)

update(jm, n.iter = n_burn)

out = coda.samples(jm,
n.iter = n_draw,
variable.names = Pars,
thin = n_thin)

#extra draws to ensure convergence

n_total <- n_burn + n_draw
n_extra <- 0
while(max(MCMCsummary(out)[,6]) > Rhat_max &

n_total < n_max)
{

out <- update(out,
n.iter = n_draw,
n.chains = n_chain,
n.thin = n_thin)

n_extra <- n_extra + n_draw
n_total <- n_total + n_draw

}

n_final <- n_draw/n_thin

Inferences were derived from 5000 samples drawn following an adaptation period of 5000 draws, and a burn-in
period of 4 ◊ 104 draws using 3 chains and a thinning rate of 2.

Year e�ect (alpha)

MCMCplot(out,
params = �alpha�,
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rank = FALSE,
labels = NULL,
horiz = FALSE,
ref_ovl = FALSE,
ylim = c(-15, 15))
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MCMCsummary(out,
params = �alpha�)

## mean sd 2.5% 50% 97.5% Rhat
## alpha[1] 0.24 1.55 -2.80 0.25 3.31 1
## alpha[2] -0.36 1.69 -3.70 -0.35 2.95 1
## alpha[3] 0.52 1.54 -2.50 0.51 3.55 1
## alpha[4] -4.87 1.60 -8.07 -4.86 -1.76 1
## alpha[5] 0.87 1.46 -1.96 0.87 3.76 1
## alpha[6] -3.07 1.50 -6.05 -3.04 -0.18 1
## alpha[7] -2.90 1.45 -5.80 -2.89 -0.06 1
## alpha[8] -5.12 1.47 -8.05 -5.12 -2.26 1
## alpha[9] -1.93 1.33 -4.55 -1.93 0.73 1
## alpha[10] -5.07 1.31 -7.65 -5.06 -2.54 1
## alpha[11] -4.85 1.36 -7.55 -4.84 -2.21 1
## alpha[12] -2.84 1.30 -5.38 -2.84 -0.29 1
## alpha[13] 1.15 1.25 -1.33 1.15 3.59 1
## alpha[14] -2.78 1.30 -5.39 -2.77 -0.23 1
## alpha[15] 3.18 1.76 -0.20 3.16 6.77 1
## alpha[16] 7.13 1.43 4.39 7.11 10.01 1
## alpha[17] 0.90 1.34 -1.68 0.90 3.56 1
## alpha[18] -0.33 1.39 -3.05 -0.34 2.41 1
## alpha[19] 2.44 1.34 -0.17 2.43 5.11 1
## alpha[20] 4.80 1.35 2.22 4.78 7.52 1
## alpha[21] 5.16 1.37 2.54 5.15 7.95 1
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## alpha[22] 1.87 1.31 -0.67 1.87 4.50 1
## alpha[23] 3.19 1.40 0.47 3.16 5.98 1
## alpha[24] 2.65 1.39 -0.04 2.65 5.45 1

Individual e�ect (beta)

MCMCplot(out,
params = �beta�,
rank = TRUE,
labels = NULL,
horiz = FALSE,
thick_sz = 2,
thin_sz = 1,
med_sz = .6,
ref_ovl = FALSE,
ylim = c(-15, 15))

−15

−10

−5

0

5

10

15

Pa
ra

m
et

er
 E

st
im

at
e

MCMCsummary(out,
params = �beta�)

## mean sd 2.5% 50% 97.5% Rhat
## beta[1] 2.28 2.07 -1.76 2.29 6.30 1
## beta[2] -2.71 2.16 -7.02 -2.72 1.44 1
## beta[3] -0.36 3.19 -6.74 -0.37 5.83 1
## beta[4] -2.96 1.52 -5.94 -2.95 0.00 1
## beta[5] 1.74 3.21 -4.47 1.67 8.18 1
## beta[6] 4.60 2.62 -0.49 4.54 9.83 1
## beta[7] 8.37 1.90 4.65 8.36 12.09 1
## beta[8] -2.18 3.22 -8.61 -2.10 4.00 1
## beta[9] -0.23 1.96 -4.09 -0.23 3.60 1
## beta[10] -6.18 1.89 -9.93 -6.16 -2.58 1
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## beta[11] -0.91 1.58 -3.98 -0.92 2.16 1
## beta[12] -1.47 2.83 -7.15 -1.45 4.00 1
## beta[13] 0.86 1.58 -2.27 0.88 3.93 1
## beta[14] -0.51 1.78 -4.00 -0.52 3.00 1
## beta[15] -0.89 1.57 -3.97 -0.89 2.18 1
## beta[16] 1.08 1.76 -2.39 1.07 4.46 1
## beta[17] -1.83 1.61 -4.97 -1.83 1.30 1
## beta[18] -2.88 2.27 -7.39 -2.88 1.56 1
## beta[19] -0.63 1.71 -4.00 -0.62 2.72 1
## beta[20] 2.80 2.40 -1.90 2.80 7.55 1
## beta[21] -3.60 1.75 -7.07 -3.60 -0.20 1
## beta[22] 7.09 3.48 0.58 6.98 14.20 1
## beta[23] 3.69 2.61 -1.40 3.66 8.87 1
## beta[24] 1.22 3.20 -4.99 1.19 7.61 1
## beta[25] -4.63 1.38 -7.32 -4.62 -1.91 1
## beta[26] -0.96 1.45 -3.78 -0.97 1.92 1
## beta[27] 2.80 3.21 -3.37 2.76 9.27 1
## beta[28] -1.12 3.18 -7.38 -1.11 5.04 1
## beta[29] -0.71 2.81 -6.33 -0.72 4.77 1
## beta[30] -1.04 3.21 -7.42 -1.04 5.24 1
## beta[31] -0.58 1.32 -3.15 -0.60 2.03 1
## beta[32] 0.67 2.34 -3.97 0.67 5.28 1
## beta[33] 0.70 2.82 -4.84 0.69 6.26 1
## beta[34] -3.22 1.74 -6.64 -3.21 0.17 1
## beta[35] -1.95 1.98 -5.87 -1.94 1.89 1
## beta[36] -3.95 1.84 -7.52 -3.94 -0.37 1
## beta[37] -4.25 1.69 -7.56 -4.24 -0.97 1
## beta[38] -5.40 1.71 -8.74 -5.40 -2.06 1
## beta[39] -0.93 3.17 -7.17 -0.91 5.18 1
## beta[40] -5.73 2.96 -11.64 -5.67 -0.10 1
## beta[41] -0.10 1.66 -3.37 -0.11 3.16 1
## beta[42] -1.32 1.62 -4.45 -1.33 1.85 1
## beta[43] -4.11 2.01 -8.14 -4.07 -0.14 1
## beta[44] 1.81 2.35 -2.84 1.81 6.40 1
## beta[45] -5.23 1.33 -7.86 -5.22 -2.63 1
## beta[46] 0.26 3.15 -5.95 0.27 6.50 1
## beta[47] 0.10 1.49 -2.80 0.10 3.03 1
## beta[48] 2.89 3.21 -3.30 2.86 9.28 1
## beta[49] 3.71 3.22 -2.39 3.65 10.35 1
## beta[50] 0.22 1.83 -3.40 0.24 3.80 1
## beta[51] 4.34 1.59 1.25 4.34 7.50 1
## beta[52] 0.60 1.47 -2.29 0.60 3.45 1
## beta[53] -2.30 2.23 -6.73 -2.30 2.05 1
## beta[54] -1.32 3.18 -7.64 -1.30 4.89 1
## beta[55] 2.75 2.84 -2.65 2.69 8.46 1
## beta[56] -1.37 2.06 -5.38 -1.37 2.64 1
## beta[57] -2.90 1.69 -6.25 -2.90 0.42 1
## beta[58] 2.79 2.82 -2.77 2.76 8.41 1
## beta[59] 3.37 1.51 0.41 3.38 6.36 1
## beta[60] 2.34 1.99 -1.51 2.31 6.30 1
## beta[61] 2.90 3.24 -3.24 2.84 9.44 1
## beta[62] -1.42 2.10 -5.56 -1.42 2.64 1
## beta[63] -1.20 2.83 -6.75 -1.16 4.36 1
## beta[64] 0.43 1.90 -3.29 0.44 4.13 1
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## beta[65] 1.91 2.55 -2.99 1.88 6.94 1
## beta[66] -2.62 2.83 -8.22 -2.58 2.88 1
## beta[67] -1.38 1.79 -4.85 -1.39 2.13 1
## beta[68] 0.47 3.19 -5.80 0.46 6.79 1
## beta[69] 3.33 3.23 -2.87 3.26 9.78 1
## beta[70] 7.95 2.53 3.04 7.91 13.07 1
## beta[71] 0.45 2.24 -3.92 0.42 4.93 1
## beta[72] 3.34 2.17 -0.94 3.33 7.70 1
## beta[73] -0.16 2.57 -5.19 -0.18 4.83 1
## beta[74] -1.89 2.40 -6.59 -1.88 2.75 1
## beta[75] -0.63 3.19 -6.87 -0.60 5.66 1
## beta[76] 0.51 2.81 -5.00 0.51 6.03 1
## beta[77] -0.22 2.40 -4.91 -0.22 4.53 1
## beta[78] 1.96 2.41 -2.69 1.93 6.78 1
## beta[79] 2.77 2.83 -2.62 2.72 8.42 1
## beta[80] -4.68 1.79 -8.23 -4.67 -1.22 1
## beta[81] -0.82 1.68 -4.15 -0.84 2.45 1
## beta[82] 1.88 2.21 -2.53 1.90 6.23 1
## beta[83] 1.24 2.20 -3.08 1.24 5.58 1
## beta[84] 0.82 3.16 -5.35 0.80 7.10 1
## beta[85] 3.17 2.10 -0.91 3.15 7.35 1
## beta[86] -2.37 1.84 -5.99 -2.36 1.20 1
## beta[87] 0.61 3.16 -5.57 0.57 6.76 1
## beta[88] 1.58 1.94 -2.22 1.57 5.38 1
## beta[89] -0.58 2.00 -4.51 -0.59 3.30 1

Age e�ect (gamma)

MCMCplot(out,
params = �gamma�,
rank = TRUE,
labels = NULL,
horiz = FALSE,
med_sz = 2,
ref_ovl = FALSE,
ylim = c(-15, 15))
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MCMCsummary(out,
params = �gamma�)

## mean sd 2.5% 50% 97.5% Rhat
## gamma 0.06 0.04 -0.03 0.06 0.15 1

Variance estimates (inverse precision)

MCMCsummary(out,
params = c(�var.year�, �var.ind�, �var.model�))

## mean sd 2.5% 50% 97.5% Rhat
## var.year 14.83 5.50 7.16 13.81 28.43 1
## var.ind 14.09 3.80 7.95 13.66 22.74 1
## var.model 35.05 2.26 30.92 34.96 39.75 1

Skewness test and plots

Captive

#scale and aggregate data

sc_agg_fun <- function(IN)
{

yrs <- range(IN$YEAR)

OUT <- c()
for(i in yrs[1]:yrs[2])

14



{
temp <- filter(IN, YEAR == i)
s_CID <- scale(temp$J_CID, scale = TRUE)

t.out <- cbind(temp, s_CID)
OUT <- rbind(OUT, t.out)

}
return(OUT)

}

cap_sk <- sc_agg_fun(captive_data)

Skew determined using D’Agostino test
skew_captive <- agostino.test(cap_sk$s_CID)$statistic[1]
agostino.test(cap_sk$s_CID)

##
## D�Agostino skewness test
##
## data: cap_sk$s_CID
## skew = 0.54072, z = 5.24950, p-value = 1.525e-07
## alternative hypothesis: data have a skewness

Standard error skew
#standard error of skewness function

ses <- function(n)
{

sqrt((6*n*(n-1))/((n-2)*(n+1)*(n+3)))
}

length_captive <- dim(cap_sk)[1]

ses(length_captive)

## [1] 0.09774553

Wild

wild_sk <- sc_agg_fun(wild_data)

Skew
skew_wild <- agostino.test(wild_sk$s_CID)$statistic[1]
agostino.test(wild_sk$s_CID)

##
## D�Agostino skewness test
##
## data: wild_sk$s_CID
## skew = 0.79228, z = 16.09200, p-value < 2.2e-16
## alternative hypothesis: data have a skewness

Standard error skew
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length_wild <- dim(wild_sk)[1]

ses(length_wild)

## [1] 0.04376183

Simulate normal breeding distribution given true CID mean and sd - Plot

Captive
m_cap <- mean(cap_sk$s_CID, na.rm = TRUE)
sd_cap <- sd(cap_sk$s_CID, na.rm = TRUE)
cap_rd <- rnorm(100000, mean = m_cap, sd = sd_cap)

hist(cap_sk$s_CID, prob = TRUE,
main = �Breeding distribution - Captive�,
xlab = �CID�, ylab= �Density�, col = �grey90�,
xlim = c(-2.5, 3),
breaks = 15)

lines(density(cap_rd), col = �blue�, lwd = 5)
lines(density(cap_sk$s_CID, na.rm = TRUE), col = �red�, lwd = 5)

Breeding distribution − Captive
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Wild
m_wild <- mean(wild_sk$s_CID, na.rm=TRUE)
sd_wild <- sd(wild_sk$s_CID, na.rm=TRUE)
wild_rd <- rnorm(100000, mean= m_wild, sd= sd_wild)

hist(wild_sk$s_CID, prob=TRUE,
main=�Breeding distribution - Wild�,
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xlab= �CID�, ylab= �Density�, col = �grey90�,
xlim = c(-2.5, 3),
breaks = 25)

lines(density(wild_rd), col=�blue�, lwd=5)
lines(density(wild_sk$s_CID, na.rm=TRUE), col=�red�, lwd=5)
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First CID as a predictor for median CID

Fit a linear model to examine the predictive power of first CID for median CID in a given year.
#remove first values when calculating median for that year

#CAPTIVE

YRS_C <- unique(captive_data$YEAR)

OUT_C <- c()
for (i in 1:length(YRS_C))
{

#i <- 1

temp <- filter(captive_data, YEAR == YRS_C[i])
min_temp <- min(temp$J_CID)
min_ind <- which(temp$J_CID == min(temp$J_CID))
med_temp <- median(temp$J_CID[-min_ind])

t_OUT_C <- c(YRS_C[i], min_temp, med_temp)
OUT_C <- rbind(OUT_C, t_OUT_C)

}
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fit_C <- summary(lm(OUT_C[,3] ~ OUT_C[,2]))

#WILD

YRS_W <- unique(wild_data$YEAR)

OUT_W <- c()
for (i in 1:length(YRS_W))
{

#i <- 1

temp <- filter(wild_data, YEAR == YRS_W[i])
min_temp <- min(temp$J_CID)
min_ind <- which(temp$J_CID == min(temp$J_CID))
med_temp <- median(temp$J_CID[-min_ind])

t_OUT_W <- c(YRS_W[i], min_temp, med_temp)
OUT_W <- rbind(OUT_W, t_OUT_W)

}

fit_W <- summary(lm(OUT_W[,3] ~ OUT_W[,2]))

Captive model r2 = 0.7

Wild model r2 = 0.7

Explanatory power is high and very similar between the captive and wild populations.

Skew estimates from literature

Data on skew of phenological data from Thomson 1980, Sparks et al. 2005, Wilson 2013 from plant and
bird species. Data is composed of various phenological measures, including first flowering for plants and first
arrival for birds (which di�ers from CID used in this study).
setwd(�Data�)

lit_skew <- read.csv(�Lit_skew.csv�, header = TRUE)

mn_skew_lit <- mean(lit_skew$Skew)

mean skew = 0.43

Histogram of skew from literature

hist(lit_skew$Skew,
main = �Red = Captive; Blue = Wild�,
xlab = �Estimated Skew�)

abline(v = skew_captive, col = �red�, lwd = 5)
abline(v = skew_wild, col = �blue�, lwd = 5)
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Red = Captive; Blue = Wild
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per_captive <- length(which(lit_skew$Skew > skew_captive))/NROW(lit_skew)
per_wild <- length(which(lit_skew$Skew > skew_wild))/NROW(lit_skew)

Percent literature values greater than captive population skew = 37%

Percent literature values greater than wild population skew = 17%

Skew for Adélie penguin CID is slightly higher than the skew estimated for most populations.

Simulation of right skew breeding distribution

Simple model to show that a right skew distribution can be produced when breeding is accelerated proportional
to the number of pairs that have recently initiated breeding.
#simulate a normal distirbution (breeding in the absence of conspecifics)

set.seed(1)
time <- round(rnorm(1000, 50, 10))
time <- sort(time)
#no significant skew

agostino.test(time)

##
## D�Agostino skewness test
##
## data: time
## skew = -0.01578, z = -0.20520, p-value = 0.8374
## alternative hypothesis: data have a skewness
#simulate �contagion effect� of breeding

for (i in min(time):max(time))
{
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time[time == i] <- time[time == i] - sum(as.numeric((time > (i - 3)) & (time < i)))/4
}

hist(time, prob = TRUE)
lines(density(time), col = �blue�, lwd = 5)

Histogram of time
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agostino.test(time)

##
## D�Agostino skewness test
##
## data: time
## skew = 0.55355, z = 6.74630, p-value = 1.516e-11
## alternative hypothesis: data have a skewness
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Appendix S2: Additional factors that may a�ect Adélie penguin
breeding phenology

Rethinking ‘normal’: The role of stochasticity in the phenology of a synchronously breeding
seabird
Casey Youngflesh, Stephanie Jenouvrier, Je�erson T. Hinke, Lauren DuBois, Judy St. Leger, Wayne Z.
Trivelpiece, Susan G. Trivelpiece, Heather J. Lynch

The e�ect of breeding in year t-1 on breeding in year t

We conducted a post-hoc analysis on the captive population data to investigate temporal autocorrelation in
the posterior estimates for the year e�ect (Fig. 2a). Plotting clutch initiation date (CID) in year t against
CID in year t-1, the e�ect of this temporal inertia on CID is apparent (Fig S1).
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Figure S1: CID for all individuals in the captive population (see Methods) in year t plotted against CID in
year t-1 (r2 = 0.27).

To further investigate this pattern, we fit a hierarchical Bayesian model, similar to Eq 1, but with an added
autoregressive term, to account for possible temporal autocorrelation.

yij = µ + –i + fi ú yi≠1j + —j + “ ú AGEij + ‘ij (S1)

–i ≥ N(0, ‡2
year)

fi ≥ N(0, 1000)
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—j ≥ N(0, ‡2
individual)

“ ≥ N(0, 1000)

‘ij ≥ N(0, ‡2
model)

where yij represents CID, µ represents the intercept, – represents the year e�ect, — represents the individual
e�ect, fi represents the autoregressive term, “ represents the e�ect of age, AGE represents the age of the
female penguin, and ‘ represents the error term.

The model was fit using the R package ‘R2jags’ (Su and Yajima 2015), to interface with JAGS (Plummer
2003) in the R statistical environment (R Development Core Team 2016). Broad Gamma priors were used
for all precision (· = 1

‡2 ) parameters (shape = 0.01, rate = 0.01). Inferences were derived from 20,000
samples drawn following a ‘burn-in’ period of 30,000 draws, using a thinning rate of 2 and 3 chains. Model
convergence was assessed through a visual analysis of the posterior chains, in addition to the use of the
Gelman-Rubin convergence diagnostic (Brooks and Gelman 1998). All models unambiguously converged.
Parameter estimates plots were generated using the ‘MCMCvis’ package (Youngflesh 2016) in the R statistical
environment.

RESULTS
Even when accounting for temporal autocorrelation, the year e�ect appears strong (Fig S2, S3). This suggests
that even when controlling for the e�ect of previous year, the stochastic component to CID across years is still
apparent. Inclusion of the autoregressive term does not substantially impact the posterior results of the other
parameters. Individual e�ects are similar between the two models, with estimates closer to 0 when including
the autoregressive term (Fig S5, S6). The e�ect of age is also similar between the two models (Fig S7, S8).
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Figure S2: Posterior estimates for the captive population parameters: (a) year e�ect – –; (b) individual e�ect
– —; and (c) age e�ect – “ parameters for the original model, that does not include the auto-regressive term
(see Eq 1). Black circles represent posterior medians. Thicker lines represent 50% credible intervals while
thinner lines represent 95% credible intervals. Error bars for the “ parameter are not visible.
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Figure S3: Posterior estimates for the captive population parameters: (a) year e�ect – –; (b) individual
e�ect – —; (c) age e�ect – “; and (d) autoregressive e�ect - fi parameters for the model that includes the
auto-regressive term (see Eq S1). Black circles represent posterior medians. Thicker lines represent 50%
credible intervals while thinner lines represent 95% credible intervals. Error bars for the “ and fi parameters
are not visible.

Our primary concern was to determine whether autocorrelation in the CID of individual penguins across
years could explain the year e�ect apparent in the original model (Eq 1). We show that temporal inertia in
CID does exist, though it does not explain the year-to-year stochasticity in CID. The reason for this temporal
autocorrelation may be due to physiological factors but is beyond the scope of this study. Our model results
show a strong year e�ect in CID is still apparent when accounting for this potentially confounding factor.

The e�ect of breeding population size on CID

We were also interested to know if the number of breeders in a particular year impacted the breeding phenology
of the captive penguins. To further investigate this pattern, we fit a hierarchical Bayesian model, similar to
Eq 1, but with an added term for the number of breeders in each year.

yij = µ + –i + —j + “ ú AGEij + ’ ú NBi + ‘ij (S2)

–i ≥ N(0, ‡2
year)

—j ≥ N(0, ‡2
individual)

“ ≥ N(0, 1000)

’ ≥ N(0, 1000)

‘ij ≥ N(0, ‡2
model)
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where yij represents CID, µ represents the intercept, – represents the year e�ect, — represents the individual
e�ect, “ represents the e�ect of age, AGE represents the age of the female penguin, ’ represents the e�ect of
the number of breeders, NB represents the number of breeders in each year, and ‘ represents the error term.

The model was fit using the same methodology denoted above.

RESULTS
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Figure S4: Posterior estimates for the captive population parameters: (a) year e�ect – –; (b) individual e�ect
– —; (c) age e�ect – “; and (d) e�ect of population size - ’ (see Eq S2). Black circles represent posterior
medians. Thicker lines represent 50% credible intervals while thinner lines represent 95% credible intervals.
Error bars for the “ and ’ parameters are not visible.

It does not appear that population size has a strong e�ect on captive penguin CID. The parameter estimate
for ’ is small and a year-e�ect is still apparent.

The e�ect of the timing of nesting material availability on breeding phenology

We initially hypothesized that the timing of nesting material availability may also impact CID. Adélie penguin
rely on the availability of stones to build nests before laying eggs during the breeding season. We compared
the ‘waiting time’ of a wild Adélie penguin population at Cape Crozier (77.45°S, 169.20°E) (i.e., the time
between the first arrival at the colony and the first clutch initiation date [data presented in Table 3.2 of
Ainley et al. (1983)]), to the ‘waiting time’ of the captive population (i.e., the time between when nesting
materials are first made available to the penguins [available for 2007-2015] and the first clutch initiation date).

Mean time between the first arrival at the colony and the first egg laid in a wild population was found to be
13.7 days (Ainley et al. 1983).

Mean time between when nesting materials first became available and the first egg laid in this captive
population was found to be 41.3 days.
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Figure S5: Barchart showing distribution of waiting times for both the captive Adélie penguin population
(time between first availability of nesting materials and first CID) and the wild Adélie penguin population
observed by Ainley et al. (1983) (time between first arrival at the colony and first CID). This analysis was
conducted using the mean CID in the captive population as opposed to the min CID with the same results.

The mean waiting time is more than 3 times higher in captivity than the wild. This suggests that availability
of nesting materials is not a barrier for breeding for Adélie penguins in captivity.

Potential e�ects of 2005 exhibit renovation on phenology

CID appears slightly delayed following the captive exhibit renovation in 2005. To investigate whether this
impacted our results, we standardized median CID for 1992-2004 and from 2006-2015 (removing 2005 to
account for any impact that the renovation may have had in that year), and calculated the variance for the
time series.

To further investigate the e�ect that any potential step-change due to the 2005 renovation may have had on
CID, we fit a hierarchical Bayesian model, similar to Eq 1, but with an added term for pre- and post-renovation
identity.

yij = µ + –i + —j + “ ú AGEij + Ÿl ú RIDi + ‘ij (S3)

–i ≥ N(0, ‡2
year)

—j ≥ N(0, ‡2
individual)

“ ≥ N(0, 1000)

Ÿl ≥ N(0, 1000)
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‘ij ≥ N(0, ‡2
model)

where yij represents CID, µ represents the intercept, – represents the year e�ect, — represents the individual
e�ect, “ represents the e�ect of age, AGE represents the age of the female penguin, Ÿ represents the e�ect of
pre/post renovation identity, RID represents whether a particular year belongs in the pre or post renovation
period, and ‘ represents the error term.

The model was fit using the same methodology denoted above.

RESULTS
‡2

RID = 7.59

‡2
AdmiraltyBay = 13.5

When standardizing the pre and post renovation periods, the overall variance of the captive time series
decreases, leading to a slightly lower variance than that seen at Admiralty Bay. This is well within the
range of variance in CID found at other wild Adélie penguin colonies in Antarctica (Youngflesh et al. 2017),
however, confirming that variance in CID in this captive population is as great as that seen in the wild.
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Figure S6: Posterior estimates for the captive population parameters: (a) year e�ect – –; (b) individual e�ect
– —; (c) age e�ect – “; and (d) e�ect of period id (pre/post renovation) - Ÿ (see Eq S3). Black circles represent
posterior medians. Thicker lines represent 50% credible intervals while thinner lines represent 95% credible
intervals. Error bars for the “ parameter are not visible.

None of the factors examined changed our overall conclusions. Year e�ects are slightly weaker when adding
the Ÿ term compared to the original model (Fig S2), however are still prominent. Parameter estimates for Ÿ
are relatively close to zero, with large credible intervals. Even when accounting for any potential e�ect that
the renovation may have had on CID, interannual variability in CID appears to be the norm.
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