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Abstract The sources of terrestrial material delivered to the California margin over the past 7 Myr were
assessed using 187Os/188Os, Nd, and Pb isotopes in hydrogenetic ferromanganese crusts from three sea-
mounts along the central and southern California margin. From 6.8 to 4.5 (60.5) Ma, all three isotope sys-
tems show more radiogenic values at Davidson Seamount, located near the base of the Monterey Canyon
System, than in Fe-Mn crusts from the more remote Taney and Hoss Seamounts. At the Taney Seamounts,
approximately 225 km farther offshore from Davidson Seamount, 187Os/188Os values, but not Pb and Nd iso-
tope ratios, also deviate from the Cenozoic seawater curve toward more radiogenic values from 6.8 to 4.5
(60.5) Ma. However, none of the isotope systems in Fe-Mn crusts deviate from seawater at Hoss Seamount
located approximately 450 km to the south. The regional gradients in isotope ratios indicate that substantial
input of dissolved and particulate terrestrial material into the Monterey Canyon System is responsible for
the local deviations in the seawater Nd, Pb, and Os isotope compositions from 6.8 to 4.5 (60.5) Ma. The iso-
tope ratios recorded in Fe-Mn crusts are consistent with a southern Sierra Nevada or western Basin and
Range provenance of the terrestrial material which was delivered by rivers to the canyon. The exhumation
of the modern Monterey Canyon must have begun between 10 and 6.8 6 0.5 Ma, as indicated by our data,
the age of incised strata, and paleo-location of the Monterey Canyon relative to the paleo-coastline.

Plain Language Summary The Monterey Submarine Canyon is the main feature of Monterey Bay,
California and is as large as the Grand Canyon, but little is known about the age of the Monterey Canyon
and how it formed. We used iron and manganese-rich rocks that grew out of seawater (ferromanganese
crusts) that formed near the Monterey Canyon and recorded seawater chemistry to study changes in the
material transported from land to sea. This information combined with the location of the Monterey Canyon
along the California coastline was used to determine that the modern Monterey Canyon started forming
between about 10 and 6.8 million years ago. Specifically, we show that the Monterey Canyon is at least 6.8
million years old. The Monterey Canyon was likely carved by a river or rivers carrying large amounts of mate-
rial from the continent into the ocean and through the canyon. This ended when the mountains of the Cali-
fornia Coast Range along Southern California rose up about 5 million years ago.

1. Introduction

The Monterey Canyon (MC) is the main channel of the Monterey Canyon System (MCS) and the dominant
feature of central California’s Monterey Bay National Marine Sanctuary (Eittreim et al., 2002; Greene & Hicks,
1990; Greene et al., 1989). Comparable to the Grand Canyon, the MC has a maximum vertical relief of
1,700 m, width of �12 km, and length including the fan-valley of 470 km (Greene et al., 2002). The MCS
includes six canyons with 16 canyon heads and extends 153 km off the modern shoreline, reaching a depth
of 3,600 m below sea level (Greene & Hicks, 1990; Greene et al., 2002). It has been proposed that the
MCS was initially incised in the Oligocene to early Miocene (33.9–15.97 Ma), near the current location of
California’s Transverse Range, possibly subaerially (Greene, 1977; Greene & Hicks, 1990). That paleo MC was
then filled and reexhumed possibly more than once to form the modern MC (Greene, 1977; Greene & Hicks,
1990). Today, the Monterey and Carmel canyons are the only canyons in the Monterey Bay region extending
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to the shoreline. Several rivers including the Pajaro River, San Lorenzo River, and Soquel Creek drain into
Monterey Bay north of the MC and transport sediment into Monterey Bay, but only the Salinas River and
Elkhorn Slough feed into the MC at Moss Landing (Best & Griggs, 1991; Eittreim et al., 2002; Greene et al.,
2002). Active sediment deposition during the modern sea level highstand in the MC is also observed in sub-
marine canyons studied off southern California (Covault et al., 2007; Eittreim et al., 2002). In addition to flu-
vial sediments, the MCS also traps sediment carried by longshore currents and from local erosion of sea
cliffs (Best & Griggs, 1991; Eittreim et al., 2002; Greene et al., 2002). Turbidity currents episodically carry
trapped sediment down-canyon and cause further canyon incision (Covault et al., 2007; Greene & Hicks,
1990; Paull et al., 2003).

Despite this significant body of work on the MCS and its evolution, the age and initial formation of the mod-
ern MC and MCS are poorly known with little direct age information available to pinpoint the onset and
duration of canyon incision. Here we use records of paleo-seawater chemistry archived in hydrogenetic fer-
romanganese (Fe-Mn) crusts collected from seamounts located close to the MC submarine fan to shed new
light on the timing and sources of terrestrial inputs into the California margin proximal to the canyon
system.

2. Tectonic and Geological Background

The MCS lies along an active tectonic margin spanning the boundary of the Pacific and North American
plates (Anima et al., 2002; Eittreim et al., 2002; Greene et al., 2002). The region is dominated by right-lateral
strike slip movement along the San Andreas and San Gregorio Fault systems (Anima et al., 2002). The MCS
primarily cuts into the allochthonous Salinian block, which is bounded to the east by the San Andreas Fault,
to the west by the San Gregorio Fault, and is mainly composed of Cretaceous granite (Anima et al., 2002;
Barbeau et al., 2005; Greene, 1977).

The complex tectonic environment makes reconstructing movement difficult. It is thought that parts of the
Ascension Canyon system, north of the MC, including the Ascension, A~no Nuevo, and Cabrillo canyons (Fig-
ure 1), originated as a channel to the MC during the Pliocene lowstand (�3.8 Ma) and have undergone
northward migration relative to the MC (Greene & Hicks, 1990; Nagel et al., 1986). Greene and Hicks (1990)
proposed that if this is true, then right lateral motion and excavation of the canyon systems may have
increased, starting at around 10–7 Ma, based on the increased distances between canyons of the Ascension
Canyon System (1–4 km apart, Figure 1, numbers 3–5) and those of the MCS (around 30 km apart, Figure 1,
numbers 5–7) (Greene & Hicks, 1990).

Sedimentary particulate and dissolved inputs through the MCS and sediment deposition on the continental
shelf and in the Monterey Fan are affected by tectonic, eustatic, climatic, and oceanographic processes
(Edwards, 2002; Griggs & Hein, 1980; Lewis et al., 2002). Rivers are the main source of sedimentary and dis-
solved material to the California margin (Best & Griggs, 1991; Griggs & Hein, 1980). Anthropogenic activities
such as mining, agriculture, and timber harvesting tend to increase sediment fluxes whereas reservoir con-
struction and conservation activities decrease sediment fluxes (Griggs & Hein, 1980; Jeandel & Oelkers,
2015; Meade, 1969). Modern river sediment fluxes are therefore of questionable value in establishing vol-
umes and sources of paleo-inputs.

Reconstructing the stratigraphy of sedimentary sequences in the Monterey Bay region is also complicated
by unconformities. Previous work around the Monterey Bay has shown that primarily Neogene (23.03–2.59
Ma) strata overlies the Mesozoic (251.0–65.5 Ma) basement complex without the presence of Paleogene
(65.5–23.03 Ma) deposits (Greene, 1977; Greene & Hicks, 1990). There are also unconformities bounding sed-
imentary deposits of late Miocene to Pliocene (11.63–5.33 Ma), and late Pliocene to Holocene ages (3.60 Ma
to 11.7 ka) (Greene, 1977). Seismic-reflection data show that the MC and some related canyons incised
Mesozoic (251.0–65.5 Ma) basement rock. These incisions are filled with middle Miocene (�15.97 to 11.63
Ma) and younger sediment, implying a pre-middle Miocene (pre 15.97 Ma) origin for the paleo-canyons
(Greene, 1977; Greene & Hicks, 1990). Uninterrupted sedimentation occurred in the Monterey Bay region
during the middle to late Miocene (15.97–5.33 Ma), as indicated by conformable strata filling canyons in the
upper MCS near the coastline on seismic-reflection profiles. The modern MC cuts through this material indi-
cating incision of the canyon occurred since the late-middle Miocene (�11.63 Ma) (Greene, 1977; Greene &
Hicks, 1990). Formation of the modern MC is thought to have begun in the late Pliocene (3.60 Ma) by
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erosion of canyon fill from seaward sediment transport (Greene & Hicks, 1990). It has also been proposed
that the MC was reexhumed during two separate events occurring in the late Miocene (11.63–5.33 Ma) and
the Pleistocene (<2.59 Ma) (Greene, 1977; Greene & Hicks, 1990).

The coastline has moved westward toward the modern position since 20 Ma (Bowersox, 2005). From 10 to 5
Ma the coastline was further east (inland) than today (Bowersox, 2005; M€uller et al., 2008) (Figure 2). The
San Joaquin Basin, southeast of the modern Monterey Bay was connected to the Pacific in the west and
extended to the Sierra Nevada Mountains in the east (Johnson & Graham, 2007; Pyenson et al., 2009). By
the late Neogene to Pleistocene (5.33 Ma to 11.7 ka), the major rivers draining the southern Sierra Nevada
flowed westward, possibly emptying into the San Joaquin Basin (Bowersox, 2004, 2005; Graham et al., 1988;
Reid, 1995; Wakabayashi & Sawyer, 2001). This resulted in rates of sediment deposition that equaled or
exceeded the rate of basin subsidence, causing gradual progressive shallowing of the basin with a maxi-
mum rate of 140 cm/kyr in the early Pliocene (�5.33 Ma) during uplift of the Coast Range (Bowersox, 2004;
Loomis, 1990). In the early Pliocene, after the uplift of the Temblor and Gabilan Ranges, in the Southern
Coast Range, along the south-western margin of the San Joaquin Basin, the basin was connected to the
Pacific only through the Priest Valley Strait, which closed around 2.3 Ma due to tectonic uplift and sedimen-
tation (Bowersox, 2004, 2005; Loomis, 1990).

The inputs into the California margin proximal to the MCS were determined using hydrogenetic Fe-Mn crust
records of paleo-seawater chemistry. Ferromanganese crusts grow over millions of years on elevated rock
surfaces, such as seamounts, when slope or submarine currents are sufficient to prevent sediment accumu-
lation (Bonatti et al., 1972; Hein & Koschinsky, 2014). Hydrogenetic Fe-Mn crusts commonly grow very slowly
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(1–5 mm/Myr) by precipitation of dissolved elements from seawater and they record changes in seawater
chemistry over the time of their growth (Halbach & Puteanus, 1984; Hein & Koschinsky, 2014).

Numerous seamounts exist along the California Margin. Hydrogenetic Fe-Mn crust samples were
selected from Davidson, Taney B and D, and Hoss Seamounts, which lie on the Pacific Plate (Figure 1).
Davidson Seamount is located near the base of the Monterey Submarine Fan (Clague et al., 2009; Davis
et al., 2002). Taney B and D Seamounts lie approximately 225 km offshore from the MC. They are part of
a chain of five seamounts and formed approximately 26 Ma (Coumans et al., 2015). Hoss Seamount is
located significantly farther south of the MCS, offshore of San Diego, and was selected to provide a
regional control. Hoss Seamount is estimated to have formed 22–17 Ma (Conrad et al., 2017; Hein et al.,
2010).

The geochemical composition of the selected bulk Fe-Mn crust samples has been analyzed previously
(Conrad et al., 2017). A hydrogenetic origin was confirmed through the use of trace metal abundance
ratios (Bonatti et al., 1972; Conrad et al., 2017). When possible, the thickest crusts from each seamount
were chosen, as these are typically the oldest crusts that provide higher temporal resolution and longer
duration records. The Fe-Mn crust samples do not show textural evidence of double sided growth, and
all except T141-R5 (Davidson) show evidence of attachment to the substrate on the oldest (bottom) sur-
face that would not permit growth from the bottom or overturning of the samples. Consideration was
also given to water depth; the two samples from Davidson T145-R9 (3,298 mbsl) and T141-R5 (2,388
mbsl) and the two samples from Taney Seamounts T121-R5 (3,887 mbsl) and D173-R5 (3,178 mbsl) differ
in water depth by approximately 1,000 and 700 m, respectively, and may therefore represent different
water masses. Hoss Seamount Fe-Mn crust D11-4 was collected from 2,540 to 2,560 mbsl (Conrad et al.,
2017).
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3. Methods

Ferromanganese crusts were encased in Tap Plastic Clear-Lite Casting Resin and cut using a sintered dia-
mond blade into billets perpendicular to the growth layers (supporting information Text S1). Samples for Os
and Nd isotope analyses were subsampled using a New Wave Micromill with Brasslinger 1 mm cylindrical
(flat head) diamond tipped drill bit. Osmium was sampled at 2 mm intervals through the crust. Neodymium
was sampled at 0.3 mm intervals. However, for both isotope systems not every subsample was analyzed,
resulting in a sampling resolution lower than the sampling interval.

All isotope data presented here, 187Os/188Os, ENd/206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb were analyzed
in the Woods Hole Oceanographic Institution (WHOI) Inductively Coupled Plasma Mass Spectrometer
(ICPMS) or Non-traditional Isotope Research on Various Advanced Novel Applications (NIRVANA) facilities
using a Thermo Finnigan NEPTUNE multicollector ICP-MS (MC-ICP-MS). Two Fe-Mn crusts were selected
from the Hoss, Davidson, and Taney Seamounts (B and D) to measure Os isotopes and create age models.
The USGS nodule standard A-1 was digested together with unknown Fe-Mn crust samples using an Anton
Parr high-pressure asher (HPA-S).

Osmium isotopes were analyzed with three ion counters using an Ar gas sparging method on the NEPTUNE
MC-ICP-MS (Sen & Peucker-Ehrenbrink, 2014). Measurements of Re concentrations on an Element 2 ICP-MS
showed that Re concentrations in the Fe-Mn crust samples were extremely low and that in-growth correc-
tions of 187Os to account for the decay of 187Re within the crusts were negligible even in the bottom (oldest)
sections of these samples, a finding consistent with previous studies over this time interval (Klemm et al.,
2008). The deepest sections of crust measured were D11-4 43–44, T141-R5 31–32, T145-R9 36–37, T121-R5
31–32, and D173-R2 45–46; these samples had Re concentrations (in ng/g) of 0.17, 26.5, 5.94, 1063.5, and
772.8, respectively. Even for T121-R5 with 1,063.5 ng/g Re, the change in the 187Os/188Os ratio for that sam-
ple resulted in an age difference of less than 0.5 Ma, within the uncertainty of our ability to reconstruct
ages. Multiple analysis (n 5 48) over multiple analytical sessions of the LoOsStd reference standard with an
Os concentration of 0.61 pg/g over multiple analytical sessions yielded an average 187Os/188Os value of
0.1098 6 0.0021 (1 standard deviation), within error of the reference value (0.1069 6 0.0015, n 5 26) (Sen &
Peucker-Ehrenbrink, 2014) (supporting information Text S2, Data Set S1, and Figure S1). Multiple analysis of
the USGS A-1 nodule standard, prepared together with the Fe-Mn crust samples, yielded an average
187Os/188Os value of 0.969 6 0.013 (n 5 15), when three samples with anomalously low 187Os/188Os are
excluded (supporting information Text S2 and Figure S2). This is the first measurement of 187Os/188Os for
USGS nodule standard A-1.

Neodymium isotopes were measured in four Fe-Mn crusts, one each from Hoss and Taney B, and two from
Davidson Seamounts. Nodule standards USGS A-1 and P-1 were prepared together with the Fe-Mn crust
samples. One-stem Nd column chemistry (Scher & Delaney, 2010) utilizing 50–100 mm particle size Eichrom
Ln resin to separate and purify Nd, was used, and isotope ratios were analyzed on the MC-ICP-MS following
the procedure of Huang et al. (2012). Neodymium isotope ratios for samples and USGS A-1 and P-1 nodule
standards are corrected to 143Nd/144Nd 5 0.512115 for JNdi-1 and expressed as ENd relative to the Chon-
dritic Uniform Reservoir (CHUR) 5 0.512638 (Jacobsen & Wasserburg, 1980; Tanaka et al., 2000). Neodymium
was analyzed in the fall of 2014 and the spring of 2015, analyses of the JNdi-1 standard yielded an average
143Nd/144Nd of 0.512064 6 0.000016 (2 standard deviation; n 5 31), and 143Nd/144Nd 5 0.512099 6 0.000005
(2 standard deviation; n 5 14), respectively, for the two sessions (supporting information Text S3 and Data
Set S2). This is compared to the published value for JNdi-1 of 0.512115 6 0.000007 (Tanaka et al., 2000).
Analysis of the USGS A-1 nodule standard (n 5 16) corrected to JNdi-1 5 0.512115 and averaged over both
periods yielded 0.512169 6 0.000016 (ENd 5 29.15 6 0.31, 2 standard deviation). The published value for
nodule A-1 is 0.512148 6 0.000008 (ENd 5 29.56 60.16, 2 standard deviation) (Foster & Vance, 2006a).

Lead isotopes were measured in three Fe-Mn crusts and in pressed pellets of USGS nodule standards A-1
and P-1 using the NewWave/Merchantek NWR-193 ArF excimer laser ablation (LA) system coupled with the
NEPTUNE MC-ICP-MS (supporting information Text S4 and Figure S3). A 50 mm diameter laser spot, rastered
over a 1 mm line parallel to the growth surface, was used for each subsample, but sampling resolution var-
ied. The ablation cell was purged with He gas. Standard sample bracketing was used to correct for Pb iso-
tope fractionation as the Tl could not be used to correct for mass bias due to low Tl contents in the Fe-Mn
crusts as well as potential effects from variations in the stable Tl isotope composition of the crusts (Nielsen
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et al., 2009; Rehk€amper et al., 2004). To ascertain if instrumental mass bias remained roughly constant
throughout the analytical session, we repeatedly analyzed the isotopic difference between the USGS A-1
and P-1 nodule standards (n 5 85). For the whole session, we obtained Pb isotope offsets between these
two reference materials of D206Pb/204Pb 5 0.253 6 0.012, 1 standard deviation, D 207Pb/204Pb 5 0.044 6

0.007, 1 standard deviation, and D 208Pb/204Pb 0.248 6 0.022, 1 standard deviation. These numbers are
within error of the published differences of D206Pb/204Pb 5 0.264, D 207Pb/204Pb 5 0.047, and D
208Pb/204Pb 5 0.268 (Ling et al., 1997). A Python code was written to process the laser ablation Pb isotope
data, including background corrections and fractionation corrections based on the paired standards brack-
eting the samples (supporting information Text S5 and Data Sets S4). A more detailed discussion of the
methodology can be found in the supporting information (Foster & Vance, 2006b) (supporting information
Figure S4).

4. Results and 187Os/188Os Interpretation

4.1. 187Os/188Os and Interpreted Ages
Osmium is not subject to significant diffusive re-equilibration in Fe-Mn crusts (Burton et al., 1999; Hender-
son & Burton, 1999) and has a relatively long residence time in seawater of a few thousand to 50 kyrs
(Levasseur et al., 1999). This allows Os to be used to develop age models for the Fe-Mn crust samples by
comparing the 187Os/188Os of subsamples collected through a crust with the Cenozoic 187Os/188Os seawater
curve (Burton et al., 1999; Klemm et al., 2005; Nielsen et al., 2009; Peucker-Ehrenbrink & Ravizza, 2012) (see
supporting information Text S2, Os isotopes). 187Os/188Os was measured in 86 samples from six Fe-Mn
crusts and matched with the Cenozoic 187Os/188Os seawater curve (supporting information Data Set S1; Fig-
ure 3). Ages and growth rates are interpreted from the data that fits on the Cenozoic 187Os/188Os seawater
curve. Ages and growth rates for sample D11-4 from Hoss Seamount (2,540–2,560 mbsl), the control site,
can be adjusted to fit the seawater curve and yield a maximum age of 20.5 6 0.5 Myr with variable growth
rates of 3.6 mm/Myr from 0 to 35 mm, 3.1 mm/Myr from 35 to 39 mm, and 2.2 mm/Myr from 39 to 45mm.
Data for Fe-Mn crust samples D173-R2 Taney B, T121-R5 Taney D, and Davidson T145-R9 and T141-R5 fit the
seawater curve from approximately 4.5 6 0.5 Ma to present. Prior to 4.5 6 0.5 Ma, all four of the Taney and
Davidson Seamount Fe-Mn crusts deviate from the Cenozoic seawater Os isotope curve toward more radio-
genic values (Figure 3), making direct age determinations by Os isotope stratigraphy impossible for these
older sections. Ages for the older sections of these samples were therefore extrapolated using the same
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growth rate as the younger portions, and are also constrained by the age of the substrate on which they
grew. Assuming constant growth rates prevents us from detecting rate changes before 4.5 Ma. However,
constant growth rates are found to account for all Os isotope variation in crust sections younger than 5.4
Ma, which suggests that the constant growth rate assumption is reasonable for the older sections as well.
Extrapolating the growth rates of the younger sections throughout the crusts implies that Fe-Mn crusts
T145-R9 and T141-R5 from Davidson Seamount started growing 6.4 6 0.5 and 6.7 6 0.5 Ma, respectively,
with average growth rates of 7.6 and 5.6 mm/Myr. These maximum ages are younger than the age of David-
son Seamount itself, which has been dated to 14.8–9.8 Ma (Clague et al., 2009). The two crusts from Taney
Seamount D and B, T121-R5 and D173-R2 had average growth rates of 6.0 and 7.5 mm/Myr, respectively,
which corresponds to ages at the base of the crusts of 5.6 6 0.5 and 6.8 6 0.5 Ma, respectively. The devia-
tion to more radiogenic Os isotope values relative to seawater is found at the base of all four crusts from
Taney and Davidson Seamounts and, therefore, the process that caused this deviation must predate initia-
tion of Fe-Mn crust growth of the samples studied. Using the extrapolated ages at the base of the Fe-Mn
crusts we find that the oldest crust to record the deviation in Os isotopes is D173-R2 from Taney B Sea-
mount with an estimated age of 6.8 6 0.5 Ma. Thus, the deviation to radiogenic Os isotopes spanned at
least 6.8–4.5 Ma, but may have begun earlier.

4.2. Neodymium Isotopes
Neodymium isotopes were measured in 190 samples from four of the six Fe-Mn crusts for which Os isotope
age models were created. Ferromanganese crusts D11-4 (Hoss) and D173-R2 (Taney) have ENd values consis-
tent with those from central Pacific Fe-Mn crusts (Chen et al., 2013; Frank, 2002; Ling et al., 1997, 2005) (Fig-
ure 4; supporting information Data Set S2). Both Davidson Seamount Fe-Mn crusts T145-R9 and T141-R5
deviate in ENd toward more radiogenic values around the time when 187Os/188Os values deviated from the
seawater values. The deviation from regional seawater values, as represented by Hoss D11-4, is particularly
prominent in crust T145-R9 as shown in Figure 4 (supporting information Data Set S2). Minor deviations in
Hoss D11-4 from the central Pacific Fe-Mn crust reference values are also observed for certain periods in
T141-R5, where deviations are slightly greater than the 0.3 ENd unit reproducibility of the JNdi-1 standard,
and includes four discrete more radiogenic data points (supporting information Data Set S2). The Fe-Mn
crust D173-R2 from Taney B Seamount does not show the excursion toward more radiogenic values seen in
the older sections of the two Davidson Seamount crusts.

4.3. Lead Isotopes
About 400 samples from three Fe-Mn crusts, D11-4 (188), D173-R2 (87), and T145-R9 (125) from Hoss, Taney,
and Davidson Seamounts, respectively, were analyzed for Pb isotopes (supporting information Data Set S3
and Figure S5). The Pb isotope ratios in T145-R9 from Davidson Seamount deviate from regional seawater
values as recorded in Hoss Fe-Mn crust D11-4 (Figure 5) in samples older than 5.5 Ma. Two excursions to

Figure 4. Plot of eNd in four California margin Fe-Mn crust samples over the past 9 Myr with data shown as three point
moving average trend lines. Central Pacific Fe-Mn crusts D11-1 and CD29-2 are shown for comparison (Ling et al., 1997).
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more radiogenic 206Pb/204Pb and lower 207Pb/206Pb values are
observed between 5.5 and 4.8 6 0.5 Ma (Figure 4; supporting infor-
mation Figure S5 and Data Set S3). A more detailed view of the lead
data can be found in the supporting information (Christensen, 1997;
Nielsen et al., 2011) (supporting information Figure S5). In contrast,
Pb isotope ratios in Fe-Mn crusts D173-R2 and D11-4 from Taney B
and Hoss Seamounts do not show any significant changes during
that period.

5. Discussion

5.1. Isotope Excursions in California Margin Fe-Mn Crusts
The deviation of 187Os/188Os from the Cenozoic Os isotope seawater
curve toward more radiogenic values from at least 6.8 6 0.5 to
4.5 6 0.5 Ma is accompanied by Nd isotope deviations recorded in
the two Davidson Seamount Fe-Mn crusts (which are closest to the
MC) over a similar time period, which also overlaps with a brief
excursion toward radiogenic Pb isotope values in one of the David-
son Seamount Fe-Mn crusts (T145-R9; Figure 5). The change toward
more radiogenic Os isotope values relative to the 187Os/188Os iso-
tope seawater curve in the four Fe-Mn crusts from Davidson and
Taney Seamounts was surprising given the long residence time, in
comparison to Nd and Pb, and largely uniform distribution of Os in
the global ocean (Levasseur et al., 1999; Peucker-Ehrenbrink & Rav-
izza, 2000, 2012). Estimates of the residence time of osmium in sea-
water vary from few thousand to about 50 kyr, pegging this element
at the transition between an ocean-wide well-mixed reservoir
(Levasseur et al., 1999) and tracers that can show regional variations
in isotope composition (Paquay & Ravizza, 2012). Having such a resi-
dence time not only makes the marine Os isotope system responsive
to climatic (short-term) and tectonic (long-term) forcing, but it also
increases the likelihood of observing strong regional forcing from
inputs with isotope signatures very different from that of contempo-
raneous seawater. The few water column profiles of Os are generally
consistent with conservative behavior in seawater with a modern
seawater 187Os/188Os �1.06, though indications of nonconservative
behavior in oxygen minimum zones have been observed (Levasseur
et al., 1999; Peucker-Ehrenbrink & Ravizza, 2000; Sharma & Wasser-
burg, 1997; Woodhouse et al., 1999; Zeng et al., 2014). Osmium is
also not conservative in estuaries. The few systems that have been
studied act as a sink for Os with 20% to 30% of Os removed from
the dissolved phase as concentration of Os in the suspended phase
increases with increasing salinity (Martin et al., 2001; Sharma et al.,

2007). Approximately 80% of the Os in seawater is of continental crustal origin, with hydrothermal, and
extraterrestrial sources accounting for the remainder (Sharma & Wasserburg, 1997; Williams & Turekian,
2002). Fresh Mid-Ocean Ridge Basalt (MORB) is characterized by a 187Os/188Os of 0.133 (Gannoun et al.,
2006; Zeng et al., 2014), slightly more radiogenic than unaltered abyssal peridotite (187Os/188Os 5 0.121;
Brandon et al., 2000; Harvey et al., 2011; Zeng et al., 2014). Hydrothermal fluids at the Juan de Fuca Ridge,
approximately 1,200 km north of the MCS, have 187Os/188Os values that range from 0.11 to 1.04 (Sharma
et al., 2000, 2007). Hydrothermal seafloor massive sulfides have 187Os/188Os ratios between 0.968 and 1.209
(Zeng et al., 2014). While hydrothermal input could provide a radiogenic source for 187Os/188Os it could not
provide a radiogenic source for Nd, as Nd is scavenged within or directly adjacent to hydrothermal systems
(van de Flierdt et al., 2004). Hydrothermal inputs are therefore unlikely to have provided the radiogenic Nd

Figure 5. Isotope values for 187Os/188Os, eNd, and 206Pb/204Pb for Fe-Mn crust
T145-R9, Davidson Seamount are shown relative to Hoss D11-4, representing
regional seawater. For eNd and 206Pb/204Pb Central Pacific seawater, in gray, is
represented by Fe-Mn crusts CD29-2 and D11-1 (Ling et al., 1997). The Cenozoic
187Os/188Os seawater curve is used for age determination (Peucker-Ehrenbrink
& Ravizza, 2012). The region highlighted in yellow, from �7 to 4.5 Ma shows
deviation from regional seawater at Davidson Seamount. Error bars for eNd and
206Pb/204Pb are 2 standard deviation. for all analyses of the USGS A-1 nodule
standard, n 5 16 and 85, respectively. Error for 187Os/188Os is 2 standard devia-
tion of A-1 excluding the lowest three values, two of which had contaminations
on 185Re, n 5 13. Instrumental error greater than the 2 standard deviation of
A-1 is shown for individual points.
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observed in Davidson Seamount crusts or the radiogenic Os observed in Taney and Davidson Seamount Fe-
Mn crusts over the same period.

Extraterrestrial sources have a much less radiogenic 187Os/188Os signature than seawater of �0.12–0.13 and
have high Os concentrations (Brandon et al., 2006; Horan et al., 2003; Peucker-Ehrenbrink & Ravizza, 2000).
Extraterrestrial material would therefore cause an excursion in the opposite direction to that observed in
Davidson and Taney Seamount Fe-Mn crusts. Fe-Mn crusts with 187Os/188Os that plot below the Os seawater
curve have been shown to contain micrometeorite fragments (Klemm et al., 2005; Peucker-Ehrenbrink &
Ravizza, 2000). A few individual Fe-Mn crust samples analyzed here, including a data point at �2.7 Ma from
Hoss Seamount D11-4, show less radiogenic values relative to the Os seawater curve and have high-count
rates (indicating high Os concentration) that we attribute to the presence of extraterrestrial material.

Increased burial of Os caused by enhanced primary productivity or decrease in deep water dissolved oxy-
gen concentrations also do not affect the 187Os/188Os values as evident from measurements at ODP Site
849 that is located in the eastern equatorial Pacific (Dalai et al., 2005).This shows that change in water col-
umn processes such as primary productivity may affect the concentrations of Os and possibly Nd and Pb
available to be incorporated into Fe-Mn crusts, but are unlikely to impact the isotope ratios recorded in the
crusts. Indeed, unlike Nd concentration data that mimic nutrient-like depth profiles in seawater, ENd appears
to trace water masses and does not covary with chlorophyll a (Hu et al., 2016; Jeandel & Oelkers, 2015; Sti-
chel et al., 2012). Lead isotopes are even less likely to be influenced by primary productivity, as Pb is not uti-
lized by primary producers (Chow & Patterson, 1962; Flegal & Patterson, 1983). Hence, changes in marine
primary productivity cannot explain the isotope offsets observed prior to �4.5 6 0.5 Ma in the Fe-Mn crusts
collected close to the MCS.

Terrestrial aeolian dust and fluvial inputs are other sources of Os that must be considered. Dust transported
to seawater has a globally averaged 187Os/188Os of 1.05 6 0.2 and an Os concentration of �30 pg/g
(Peucker-Ehrenbrink & Jahn, 2001), but little of the Os in dust is expected to dissolve in seawater. The
187Os/188Os of average fluvial inputs is likely more radiogenic (�1.4) than average crustal material because
easily weathered Os-rich lithologies, such as sediments rich in organic matter, have more radiogenic isotope
values (Dubin & Peucker-Ehrenbrink, 2015; Peucker-Ehrenbrink & Ravizza, 2000). Overall, aerosol deposition
contributes only a small fraction of the overall continental Os input to the ocean (Sharma & Wasserburg,
1997; Williams & Turekian, 2002). Accordingly, this favors fluvial input of Os into the California margin
through the MCS as the most likely source of radiogenic Os to the Davidson and Taney Seamounts. Inputs
from rivers transporting dissolved and particulate terrestrial material have been shown to affect local seawa-
ter 187Os/188Os (Martin et al., 2000; Oxburgh et al., 2007; Sharma et al., 1999) and may explain the local devi-
ation in the crusts when compared to the seawater 187Os/188Os curve.

Neodymium has a residence time in seawater of 400–950 years, shorter than the �1,000 year mixing time
of the global ocean (David et al., 2001; Lacan et al., 2012; Piepgras et al., 1979). The Nd isotope composition
of seawater is controlled by the isotopic signature of the source inputs, which in turn are controlled by
weathering of source rocks, which causes different water masses in the oceans and different ocean basins
to have distinct Nd isotope values (Frank, 2002; Goldstein et al., 1984; van de Flierdt et al., 2016). In estuaries,
Nd is rapidly (within �3 weeks) released from suspended sediments (Rousseau et al., 2015). For example, in
the Amazon estuary, the ENd values were shown to change from a more radiogenic dissolved river end-
member by about 21.8 ENd units, toward less radiogenic values, as the dissolved Nd was coagulated by col-
loidal matter, to a less radiogenic value consistent with suspended fluvial material (Rousseau et al., 2015).
This is consistent with models that suggest that sediment release from fluvial input is a significant source of
Nd in seawater (Rousseau et al., 2015; van de Flierdt et al., 2016). Aeolian inputs may also be an important
source of Nd to the ocean, but aeolian and fluvial inputs alone cannot account for the mass balance of Nd
in seawater (Goldstein et al., 1984; van de Flierdt et al., 2016). Submarine groundwater discharge is another
source of Nd that may influence seawater near the continental margin (Du et al., 2016; Jeandel & Oelkers,
2015; Lacan & Jeandel, 2005). Additional processes can redistribute Nd in seawater, including reversible
scavenging, fluxes from sediment pore waters, and chemical reactions between terrestrial particles and sea-
water, collectively called ‘‘boundary exchange’’ (Abbott et al., 2015a, 2015b; Du et al., 2016; Jeandel &
Oelkers, 2015; Lacan & Jeandel, 2005). The Nd isotope signature of Fe-Mn crusts is generally thought to
reflect changes in water masses, but continental input, benthic flux, and boundary exchange processes
within the continental shelf and slope must also be taken into account, particularly in coastal areas
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(Abouchami et al., 1997; Jeandel & Oelkers, 2015; van de Flierdt et al., 2016). In Fe-Mn crusts, Nd does not
re-equilibrate with modern seawater or diffuse noticeably within the crust, thus preserving the original
water column signal over time (Abouchami et al., 1997; Bau & Koschinsky, 2006; Frank, 2002).

Model calculations using ENd over the past 14 Myr from North Pacific Fe-Mn crusts indicate that dust disso-
lution provided just a few percent of dissolved Nd in this region for the time of interest, >6.8 to 4.5 Ma
(Pettke et al., 2000; van de Flierdt et al., 2004). Rivers are the main source of sediment to the central Califor-
nia margin, a region where sediment input is often dominated by episodic floods (Best & Griggs, 1991;
Edwards, 2002; Lewis et al., 2002). Fluvial sediment is normally transported past the littoral zone and may
be deposited on or off the continental shelf (Edwards, 2002; Lewis et al., 2002). On-shelf sediments can sub-
sequently be advected, or resuspended during high-energy events, and transported significant distances
alongshore (Best & Griggs, 1991; Edwards, 2002; Ogston & Sternberg, 1999).

Resuspension and transport of sediment may affect the concentrations and isotope signatures of Os and
Nd. Marine Os is scavenged in estuary and coastal zone sediments, reducing the flux of dissolved fluvial Os
transported to the ocean (Martin et al., 2000, 2001; Williams & Turekian, 2004). However, it is also possible
that changes in salinity may cause the release of previously nonsoluble Os sequestered in sediments (Martin
et al., 2001). It has been well documented that the release of Nd from sediments along continental margins
due to the dissolution of terrestrial particulate material can change the ENd signature of regional seawater
(Arsouze et al., 2007; Garcia-Solsona et al., 2014; Jeandel & Oelkers, 2015; Lacan & Jeandel, 2005; Stichel
et al., 2012). Sediment resuspension and release of Nd and possibly Os are potential sources of these ele-
ments to California margin seawater from >6.8 to 4.5 6 0.5 Ma.

Like Os and Nd, Pb is considered to be a closed system in Fe-Mn crusts (Abouchami et al., 1997; Chen et al.,
2013; Henderson & Burton, 1999; Ling et al., 2005). Experiments to study the behavior of Pb in an estuary
environment provided evidence that dissolved and particulate Pb does undergo isotope exchange on time
scales of hours to days (Chen et al., 2016). In seawater, Pb has a relatively short residence time of 80–100
years (Flegal & Patterson, 1983). This is significantly shorter than the residence times of Os and Nd. Lead is
therefore expected to be more susceptible to local inputs, presuming sources are isotopically distinct from
local seawater. As Pb isotope values vary considerably both spatially and temporally in the ocean it is diffi-
cult to determine what the local seawater value would have been prior to the influence from the MC. How-
ever, the large excursion toward radiogenic values at around 5.3 Ma in Davidson Seamount crust T145-R9 is
not related to regional Pb isotope signatures, as evidenced by the absence of this excursion in Taney D173-
R2 and Hoss D11-4 Fe-Mn crusts. The main sources of Pb to the oceans are aeolian dust, hydrothermal flu-
ids, and fluvial input (Frank, 2002). As Fe-Mn crust T145-R9 does not show evidence of hydrothermal inputs
around 5.3 Ma and dust is unlikely to have a high enough Pb concentration to alter the local seawater Pb
isotopic composition so significantly, we consider fluvial inputs of radiogenic terrestrial material as the most
likely cause of the excursion.

Evidence for terrestrial input into the California margin is also recorded in Ocean Drilling Program (ODP)
Leg 167 Sites 1018 (2,477 mbsl) and 1020 (3,038 mbsl), located off of the central and northern California
coast (Hovan et al., 2000) (Figure 1). Site 1018 is located �75 km west of the northern Monterey Bay and
has very high sedimentation rates that average 100–400 m/Myr in the late Pleistocene (Hovan et al., 2000).
Site 1020 was drilled on the east flank of Gorda Ridge and has sedimentation rates averaging over 100 m/
Myr (Hovan et al., 2000). Sediments recovered at these sites include biogenic silica and carbonate but are
dominated by terrestrial clays and silts that make up 70–80% of the bulk sediment (Hovan et al., 2000). It
was proposed that terrestrial sediment preserved at Site 1020 originated from input near the Pioneer Can-
yon (Hovan et al., 2000). The water depths and distance to the coastline at these ODP sites are comparable
those of the Fe-Mn crusts from Taney and Davidson Seamounts and support our interpretation that terres-
trial inputs in this region was very high and could have affected seawater chemistry 225 km from the coast-
line. Other cores collected on ODP Leg 167 from the same region including Site 1021 show sparse diatom
preservation with an increase of terrestrial material from the late Miocene (7 Ma) through the early Pliocene
(2.6 Ma) (Lyle et al., 2000). At Site 1021, sediment accumulation rates increased from �18 m/Myr in the late-
middle and early-late Miocene to �30 m/Myr at �7.6 Ma even though diatom preservation decreased dur-
ing this time, indicating an increase in deposition of terrigenous material (Barron et al., 2002; Lyle et al.,
2000).
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5.2. Source Areas of Fluvial Input
To examine potential sources of the terrestrial material responsible for the more radiogenic signatures in
Davidson Seamount Fe-Mn crust T145-R9, 207Pb/206Pb was plotted against ENd (Figure 6). Source regions
were selected inland from the MCS to incorporate possible catchment regions, and extended from north of
San Francisco Bay to the Mojave Desert in the south, and to the Colorado Plateau in the east (Beard & John-
son, 1997; Cousens, 1996; Farmer et al., 2002; Feuerbach et al., 1993; Heumann & Davies, 1997; Miller et al.,
2000; Reid & Ramos, 1996; Schott et al., 2004; Wannamaker et al., 2000; Wolff et al., 2005). Data over the
period of interest, (�7.5 to 4 Ma) from central Pacific Fe-Mn crusts, outside the influence of the MCS, are
used to represent open-ocean seawater isotope values, and data from D11-4 at Hoss Seamount are plotted
as a regional control (Chen et al., 2013; Ling et al., 1997, 2005). The Pb and Nd compositions from Davidson
Seamount rock samples were also used as a comparison (Castillo et al., 2010). Using Pb isotope data from
terrestrial source rocks to identify the source of the dissolved marine material has inherent uncertainties as
the Pb isotope composition of labile Pb can differ from that of the bulk rock (Erel et al., 1994; Frank, 2002).
Minerals hosting Pb have different time-integrated U-Pb and Th-Pb compositions and different susceptibili-
ties to weathering, resulting in variations between the Pb isotope composition of source rocks, weathered
residues and dissolved loads (Erel et al., 1994; Frank, 2002). For this reason, more weight should be placed
on the possible Nd sources.

The Colorado Plateau is not a likely source as it has a more positive ENd and higher 207Pb/206Pb than the
excursion in Davidson Fe-Mn crust T145-R9 (Beard & Johnson, 1997; Wannamaker et al., 2000; Wolff et al.,
2005). The most likely source of the dissolved terrestrial material seems to be erosion of the Big Pine Volca-
nic Field along the border of the southern Sierra Nevada and western Basin and Range (Figure 6). However,
it is not possible to exclude the granitic Sierra Nevada or Long Valley Caldera from the central Sierras as
potential source regions, due to overlap in the data. In addition, the Salinian block, on which the head of
the MCS rests, was derived from the southern Sierra Nevada by strike-slip motion (Barbeau et al., 2005;

Figure 6. Source map for the south-western United States 207Pb/206Pb and eNd; (a) Location map of the south-western
United States showing sample locations. (b) Plot of average 207Pb/206Pb and eNd isotope values by region. (c) Inset box
with individual 207Pb/206Pb and eNd data points. Samples from Davidson and Hoss Fe-Mn crusts have 2–4 average Pb
measurements for Nd each sample. Only data from 7 to 4.5 Ma is shown for California Margin and Central Pacific Fe-Mn
crusts. All Nd data are normalized to JNdi-1 5 0.512115 for comparison. Southern Sierras includes data from Kern, San Joa-
quin, and Kings volcanic fields. References: 1. Ling et al. (1997); 2. Chen et al. (2013); 3. Castillo et al. (2010); 4. Beard and
Johnson (1997); 5. Wannamaker et al. (2000); 6. Wolff et al. (2005); 7. Heumann and Davies (1997); 8. Cousens (1996); 9.
Farmer et al. (2002); 10. Schott et al. (2004); 11. Reid and Ramos (1996); 12. Miller et al. (2000).
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Chapman et al., 2014). Mixing of these source regions especially between Sierra Nevada sources that would
mix in watersheds during transport westward into the San Joaquin Basin is quite likely. Additional mixing is
likely between Sierra Nevada and Central Valley deposits.

While the input from the Sierra Nevada potentially explains the Pb and Nd data, an additional radiogenic
source for Os is needed. Black shales of the Miocene Monterey Formation, underlie the southern section of
the San Joaquin Basin, and sections along the California coastline including the Monterey Bay area (Anima
et al., 2002) (Figure 1). Black shale as another potential source of radiogenic Os to the MCS could account
for the deviation from the osmium isotope seawater curve toward more radiogenic 187Os/188Os prior to
4.5 6 0.5 Ma. As radiogenic Os is efficiently mobilized during weathering of organic-rich shale and can lose
45–90% of its initial Os (Peucker-Ehrenbrink & Blum, 1998; Peucker-Ehrenbrink & Ravizza, 2000; Ravizza &
Esser, 1993), such contributions can be even more radiogenic than average continental runoff (187Os/188Os
�1.4). Rivers draining shale deposits frequently have high 187Os/188Os, and it has been proposed that black
shale can provide a more radiogenic flux of Os than other rock types (Dalai & Ravizza, 2010; Ravizza & Esser,
1993; Singh et al., 1999). However, Os released from shale can be incorporated into secondary iron oxides
and clay minerals during weathering and in rivers, which may restrict the flux of labile radiogenic Os
(Dalai & Ravizza, 2010; Pierson-Wickmann et al., 2002). It is possible that a river or tributary sourced near
the Big Pine Volcanic Field flowed through shale deposits in the San Joaquin Basin or near the coast
resulting in a mixed particulate and dissolved load with an even more radiogenic 187Os/188Os signature
flowing into the MC.

5.3. Timing the Incision of the Modern Monterey Canyon: Tectonic and Stratigraphic
Evidence for Changes in Fluvial Input
As previously discussed, the isotope systems used in this study, Os, Nd, and Pb have very different residence
times in seawater and in estuaries, and different behavior in the water column and in sediments. These fac-
tors are likely responsible for the differences in the records of the three isotope systems observed in the Fe-
Mn crust samples studied. Out of the three elements studied Os has the longest residence time and most
conservative behavior in seawater. It is therefore unsurprising that 187Os/188Os is the only isotope record
reported here that shows deviations from ambient seawater isotope values at both the Davidson and Taney
Seamounts, which we interpret as recording a strong local terrestrial input flux. Deviations of Nd and Pb iso-
tope ratios from ambient seawater values are not observed in the Taney Seamount Chain, which is much
farther from the coast. The less conservative behavior of these elements likely enables other processes to
dissipate the terrigenous signal. Deviations from regional seawater ENd, and 204Pb, 206Pb, 207Pb, 208Pb,
recorded in Hoss crust D11-4 are observed at Davidson Seamount but are of shorter duration than excur-
sions in 187Os/188Os (Figure 5). The difference in sampling resolution may also be a contributing factor.
Osmium was sampled at 2 mm intervals, while Nd was sampled at 0.3 mm intervals. Lead was sampled
using a 50 mm wide laser spot at varying intervals (50 mm up to 1 mm) throughout the crust samples. There-
fore, Os samples represent an average over a longer time interval whereas Pb data are averaged over a
much shorter time interval. It is therefore not surprising that Os shows the least variation in between data
points while Pb shows a large peak of short duration. Given the differences in residence time of these ele-
ments and the sampling resolution used, it is expected that the isotope records will be asynchronous even
in response to the same forcing. The excursions toward radiogenic 206Pb/204Pb in crust T145-R9 from 5.8 to
�4.9 Ma likely represent events in the delivery of terrestrial material on top of the already large dissolved
and particulate loads affecting Nd and Os that were of sufficiently short duration to be averaged into the
Nd and Os records.

187Os/188Os records in the continent-proximal Fe-Mn crusts show that from some time before 6.8 6 0.5 Ma
and up to 4.5 6 0.5 Ma the base of the MCS at Davidson Seamount was exposed to more radiogenic dis-
solved Os, compared with global/regional seawater. This radiogenic Os extended offshore and was also
recorded in Fe-Mn crusts from the Taney Seamount chain. We propose that the radiogenic Os isotope signal
reflects large volumes of terrestrial material transported into the system, a contention that is supported by
the Nd and Pb isotope records from crusts on Davidson Seamount, located closer to shore. The timing of
the radiogenic isotope excursions recorded in Fe-Mn crusts is consistent with an increase in right-lateral
movement and increased canyon incision due to terrestrial input from 10 to 7 Ma, as proposed by Nagel
et al. (1986) and Greene and Hicks (1990).
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If it were possible to constrain plate motion in this region the incision rate of the MCS could be inferred
based on canyon spacing. Unfortunately, constraining total right-lateral offset within Monterey Bay is chal-
lenging. The Salinian block and MCS are bisected by several faults including the San Gregorio Fault zone
that caused northward strike-slip displacement of canyons in the Ascension Canyon System from the MCS
(Greene & Hicks, 1990). In Monterey Bay, the San Gregorio Fault changes from the steep dip observed along
the rest of the Fault to a moderate dip, indicating a change in the amount of strike-slip movement through
Monterey Bay (Langenheim et al., 2013). This may be due to interaction between the San Gregorio Fault
and other nearby faults or changes in fault geometry (Langenheim et al., 2013). This makes determining the
slip rates for the San Gregorio Fault in Monterey Bay difficult, especially since reconstructions of slip rates
and total offsets along the San Gregorio Fault vary widely (Dickinson et al., 2005; Langenheim et al., 2013).
Therefore, it is not currently feasible to constrain the incision rate of the MCS and estimate the age of the
modern MC using the spacing and depth of the canyons in the MCS.

Since the modern MC cuts through middle Miocene (15.97–11.63 Ma) strata, the exhumation of the canyon
must have also postdated the middle Miocene (Greene, 1977; Greene & Hicks, 1990). This is supported by
seismic-reflection profiles showing uninterrupted sedimentation in the canyons during the middle to late
Miocene (15.97–5.33 Ma) with age data extrapolated to the offshore environment from nearshore cores
(Greene, 1977; Greene & Hicks, 1990). Miocene (23.03–5.33 Ma) strata form uniformly thick flat beds on
either side of the MC but thin toward the canyon center, indicating possible incision of the MC in the late
Miocene to Pliocene (11.63–2.588 Ma) (Greene, 1977).

Around 10 Ma, the MC would have been located south and slightly inland of the canyon’s present-day loca-
tion and seaward from the paleo-coastline (DeMets & Merkouriev, 2016; M€uller et al., 2008; Wilson et al.,
2005) (Figure 1). This makes incision of the canyon system due to fluvial input around or before 10 Ma
unlikely. However, submarine incision of the canyon due to down-canyon transport, hyperpycnal flows, and
other turbidity currents is possible (Greene & Hicks, 1990; Mulder & Syvitski, 1995). Indeed, large volumes of
terrestrial material were deposited into the San Joaquin Basin as evidenced by late Miocene and Pliocene
(11.63–2.59 Ma) sedimentary deposits up to 2,470 m thick (Bowersox, 2004; Loomis, 1990). As the MC was
located seaward from the paleo-coastline at 10 Ma, it is likely that exhumation of the canyon due to sub-
stantial fluvial input started after that time. However, by around 5 Ma the MC was on the paleo-coastline
and would have been near the southern edge of the San Joaquin Basin coastline, hence we expect the
increase in exhumation to have started sometime between 10 and 5 Ma. Based on our extrapolated Fe-Mn
crust ages for sections with excursions from ambient seawater Os isotope values, we suggest that exhuma-
tion had started by �7 Ma. Around 7 Ma the head of the MC was near or above sea level and was located
on the paleo-coastline, which is consistent with the >6.8 6 0.5 Ma onset of radiogenic Os and Nd isotope
excursions in Davidson Seamount Fe-Mn crusts. Altogether, the tectonic, seismic and Fe-Mn crust age infor-
mation indicate that incision of the MC commenced at some point after 10 Ma but before 7 Ma.

Until the end of the Miocene (5.33 Ma), the San Joaquin Basin southeast of the modern Monterey Bay was a
shallow sea open to the Pacific on the western side and it captured westward drainage from the southern
Sierra Nevada (Figure 2) (Bowersox, 2005; Loomis, 1988, 1990; Reid, 1995; Stanton & Dodd, 1997). Uplift of
the South Coast Ranges starting at �5.4 Ma, closed the southern end of the basin, which was then con-
nected to the Pacific only through the Priest Valley Strait that was likely >300 km north of the MC at �5 Ma
(Bowersox, 2004, 2005; Loomis, 1990; Page et al., 1998). The Priest Valley Strait closed completely �2.3 Ma
while the isotope excursion in Davidson and Taney Seamount Fe-Mn crusts had already started to approach
open-ocean seawater values by �5.5 to 4.5 Ma (Bowersox, 2005). Therefore, draining of the San Joaquin
Basin after it was cut off from open-ocean circulation could not have caused the isotope excursion.

The return to open-ocean seawater 187Os/188Os values in Davidson and Taney Seamount Fe-Mn crusts �4.5
Ma coincided with the Pliocene orogeny in western California (DeMets & Merkouriev, 2016; Page et al.,
1998). Reconstruction of plate slip and rotation of the Sierra Nevada and Great Valley blocks with reference
to the Pacific plate show that from 9 to 5.2 Ma the plates were parallel to the San Andreas Fault, but that
from 5.2 Ma onward progressive clockwise rotation from the San Andreas Fault has occurred (DeMets &
Merkouriev, 2016). The Sierra Nevada-Great Valley block and the Pacific plate began to converge at an angle
orthogonal to the San Andreas Fault from 5.2 to 4.2 Ma (DeMets & Merkouriev, 2016). That coincided with
the onset of the orogeny of the Santa Lucia Range starting around 6 Ma and estimated onset of shortening
in central California at around 3.9 to 3.4 Ma (Ducea et al., 2003; Page et al., 1998). Most of Monterey Bay was
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emergent by the late Pliocene to early Pleistocene (�3.6 to �2.0 Ma) in part due to marine regression com-
bined with regional uplift (Greene & Hicks, 1990; Nagel et al., 1986). We propose that uplift of the California
Coast Range and emergence of the Monterey Bay region may have resulted in the termination of the iso-
tope excursion by cutting off input from the San Joaquin Basin or by diverting riverine sources. This would
have decreased the flux of continental runoff into the MC to such an extent that large-scale incision
stopped and the continental isotope signature was diluted by mixing with regional seawater so the radio-
genic continental isotope values were insufficient to affect the Fe-Mn crusts on Davidson and Taney Sea-
mounts. A decrease in catchment basin area may also have decreased the amount of fluvial material
transported into the MCS. In addition, the uplift of the Coast Range may have caused a change in the type
of sediment transported from fine-grained material more susceptible to resuspension and more prone to
dissolution, to a coarser-grained fluvial sediment load and a reduced dissolved flux. This also may have con-
tributed to the change in Fe-Mn crust Os, Nd, and Pb isotope values toward compositions consistent with
regional seawater at �4.5 6 0.5 Ma

Results presented here along with regional tectonic reconstructions help to constrain the start of modern
MC exhumation to the late Miocene (11.63 to 6.8 6 0.5 Ma) and termination of this event by �4.5 Ma. This
timing is earlier than the late Pliocene (�2.60 Ma) exhumation of the modern MC as proposed by Greene
and Hicks (1990). There is also no evidence in the Os, Nd, or Pb isotope records from any of the Fe-Mn crusts
for a second separate event occurring in the Pleistocene (<2.6 Ma) as proposed by Greene (1977). However,
a shorter-duration reincision event in the MCS since �4 Ma that did not change the seawater isotope signa-
ture locally over several hundred thousand years and was therefore not recorded in Fe-Mn crusts is possible
as indicated by continuing transport in the canyon and associated incision.

6. Summary

We analyzed Os, Nd, and Pb isotopes in Fe-Mn crusts from three seamounts, Davidson proximal to the MCS,
Taney offshore from the MCS, and Hoss, well removed from the MCS. Four Fe-Mn crust records from David-
son and Taney Seamounts deviated from the Cenozoic seawater 187Os/188Os curve toward more radiogenic
values from >6.8 6 0.5 to 4.5 6 0.5 Ma. We attribute this to enhanced input of radiogenic material to the
MCS that started in late Miocene time between �10 and 7 Ma and ended about 4.5 6 0.5 Ma, causing the
187Os/188Os in the Fe-Mn crusts to return to a seawater-dominated isotopic signature. This is supported by
concurrent more radiogenic ENd and Pb in Fe-Mn crusts from Davidson Seamount when compared to
regional seawater isotope values of similar ages from >6.8 6 0.5 to 4.5 6 0.5 Ma. These data constrain the
start of modern MC exhumation to between 10 and 6.8 6 0.5 Ma and provides a minimum age of 6.8 6 0.5
Ma for the MC.

The only reasonable source of radiogenic Os also capable of accounting for the trends observed in Nd and
Pb is fluvial input of continental material with a radiogenic 187Os/188Os signature transported through the
MCS. The most likely origin of this material is from near the border of the southern Sierra Nevada and south-
ern edge of the western Basin and Range. The timing of the end of the Os isotope excursion at 4.5 6 0.5 Ma
is concurrent, within error, with the orogeny of the California Coast Range. This may have led to a change in
the source material, sediment type, or drainage configuration, thereby reducing the radiogenic signature of
the fluvial material, which, resulted in seawater near the MCS reverting to regional values subsequently
recorded in the Fe-Mn crusts.
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