DATA FILE

SEDIMENTS OF THE EAST ATLANTIC CONTINENTAL MARGIN NORTHWEST AFRICA

Sample Collection and Analysis

Compiled and Edited By

Scott R. Briggs, Colin P. Summerhayes, and John D. Milliman

WOODS HOLE OCEANOGRAPHIC INSTITUTION Woods Hole, Massachusetts 02543

June 1976

TECHNICAL REPORT

Prepared for the National Science Foundation (IDOE) under Grant No. GX-28193.

Reproduction in whole or in part is permitted for any purpose of the United States Govermment. In citing this manuscript in a bibliography, the reference should be followed by the phrase: UNPUBLISHED MANUSCRIPT.

Approved for Distribution

(i)

TABLE OF CONTENTS

Page
INTRODUCTION 1
ACKNOWLEDGEMENTS 3
SECTION I CRUISE INFORMATION 4
SECTION II SAMPLE LIST: SHIP-LOGGED DATA 8
A. Moroccan Shelf Samples 9
B. Saharan Shelf Samples 82
SECTION III SAMPLE TEXTURE 92
A. Moroccan Shelf Samples 95
B. Saharan Shelf Samples 110
SECTION IV FINE SAND FRACTION: COMPOSITION 116
A. Moroccan Shelf Samples 117
B. Saharan Shelf Samples 124
SECTION V CLAY MINERALS 127
A. Moroccan Shelf Samples 129
B. Saharan Shelf Samples 136
SECTION VI CHEMICAL ANALYSES AND CARBONATE ASSEMBLAGE 138
A. Moroccan Shelf Samples 141
B. Saharan Shelf Samples 165
SELECTED REFERENCES 171
FIGURES 173

ABSTRACT

The petrology, provenance, and history of sediments from the continental shelf and upper continental slope of western Africa have been studied in some detail by scientists from the Woods Hole Oceanographic Institution as part of a long-term investigation of the marine geology of the Eastern Atlantic Continental Margin (funded by the National Science Foundation through the Office of the International Decade of Ocean Exploration in a grant to Dr. K.O. Emery- GX-28193). In this data file we present the analytical data and other information relating to all of the readily available samples (ll78) of sediment from northwestern Africa (off the coasts of Morocco and what was recently called Spanish Sahara). These data have been described and interpreted in a recent article in the scientific literature (Summerhayes and others, 1976). The data file contains sample locations, shipboard descriptions, size data, sand fraction composition, clay mineral composition, carbonate assemblage, and carbonate, nitrogen, and carbon contents. The object of the data file is to make these data readily available to other research groups interested in African margin sediments.

INTRODUCTION

The purpose of this data file, which is modelled on that produced by Hathaway (1971) for the continental margin of the Atlantic coast of the United States, is to make available in printed form the basic data relating to samples collected as part of the Woods Hole Oceanographic Institution's program of study of the continental margin of West Africa. This program was funded by the National Science Foundation's Office of the International Decade of Ocean Exploration through a grant to Dr. K.O. Emery. One of the objectives of this work was to investigate the petrology, provenance, and history of surficial sediments on the west African margin. During the course of this sedimentological investigation, through cruises on research vessels of the Institution, and through cruises by other American and foreign scientists, the majority of samples obtained were from the continental shelves of Morocco and Spanish Sahara, in northwest Africa. A comprehensive study of sedimentation on the northwest African margin resulted (Summerhayes, Milliman, Briggs, Bee, and Hogan, 1976), and this data file makes available the sample information used for that study.

The background to this study has been described by Milliman (1972), and Summerhayes and others (1976). Milliman (1972) and Milliman and Summerhayes (1975) give descriptions of the analytical methods used to treat the samples. A substantial number of the analyses (mainly of phosphate and carbonate) come from the unpublished theses of students from Imperial College, London (Nutter,1969; Summerhayes, 1970; Bee, 1974) who were involved in studying the origin and distribution of phosphate in sediments from the continental margin of northwest Africa. This study was carried out through the Applied Geochemistry Research Group of Imperial College, under the direction of Dr. J.S. Tooms. It involved three extensive cruises to the area, two on R.R.S. JOHN MURRAY, and one on M.V. SURVEYOR, sponsored by the Natural Environmental Research Council of Great Britain. Other unpublished analyses of sediment size and carbonate content were provided by Dr. R.I. McMaster, of the University of Rhode Island, following a major cruise to the a rea by the R.V. TRIDENT. This data file presents all of the available data from these and other sources prior to June 1974.

ACKNOWLEDGEMENTS

We present the results of 1014 samples collected by Imperial College, 92 collected by University of Rhode Island, 43 collected by Woods Hole Oceanographic Institution, and 29 samples collected by the Institute of Oceanographic Sciences. Of the Imperial College samples 320 were analyzed in Woods Hole, together with all of the U.R.I. and W.H.O.I. samples. Visual descriptions of the I.O.S. samples were provided by R.H. Belderson, and some analytical data for these samples came from the thesis of Summerhayes (1970). For the provision of unpublished information relating to sample collection and analyses, we are indebted to Drs. J.S. Tooms, D.S. Cronan, and A.G. Bee, of Imperial College, Dr. R.L. McMaster of U.R.I., and R.H. Belderson of I.O.S.

For collection of samples during the Institution's program of study on the west African continental margin, we are indebted to Dr. Elazar Uchupi. Samples from other cruises by W.H.O.I. ships were provided by G. Rowe, R. Haedrich, and J. Ryther. Those analyses carried out at Woods Hole, were performed by Lois Toner, Caroline Rodgers, Colleen Hogan, Jeffrey Ellis, Frances Forrestal, Gilpin Robinson and Catherine Offinger. Jack Hathaway of the United States Geological Survey kindly gave his advice on the interpretation of clay mineral diffractograms. The file was typed by Donna Allison, and Dorothy Meinert prepared the diagrams.

- 4 -

SECTION I CRUISE INFORMATION

HEADING CODES

INSTITUTION CODE

IOS $=$ Institute of Oceanographic Sciences, Surrey, England
IC = Imperial College, London, England
URI = University of Rhode Island, Kingston, R.I., U.S.A.
WHOI= Woods Hole Oceanographic Institution, Woods Hole, Mass., U.S.A.
AREA CODE
MCSS $=$ Moroccan Continental Shelf and Slope
SSCSS = Spanish Saharan Continental Shelf and Slope MACSS = Mauritanian Continental Shelf and Slope

BASIC PURPOSE CODE
$\mathrm{G}=$ Geological and Biological Sampling
$\mathrm{S}=$ Seismic Profiling

NOTE: Chief Scientist Listed is that of Pertinent Cruise Leg(s).
SECTION I

CRUISE	SHIP	INSTITUTION	AREA	DATES							BASIC PURPOSE	CHIEF SCIENTIST
TR15	R. V. TRIDENT	URI	$\begin{aligned} & \text { MCSS } \\ & \text { SGCSS } \end{aligned}$		4	64	-	2	6	64	G, S	R. McMaster
DIS 21	$\begin{aligned} & \text { R.R.S. } \\ & \text { DISCOVERY } \end{aligned}$	IOS	SSCSS	14	1	68	-		2	68	G, S	P. David
IC 68	$\begin{aligned} & \text { R.R.S. } \\ & \text { JOHN MURRAY } \end{aligned}$	IC	SSCSS	1	2	68	-		2	68	G, S	J. Tooms
IC 69	$\begin{aligned} & \text { R.R.S. } \\ & \text { JOHN MURRAY } \end{aligned}$	IC	MCSS	6	1		-	6	2	69	G, S	J. Tooms
IC 70	M.V. SURVEYOR	IC	MCSS			70	-			70	G, S	C. Summerhayes
AII 59	$\begin{aligned} & \text { R.V. } \\ & \text { ATLANTIS II } \end{aligned}$	WHOI	$\begin{aligned} & \text { SSCSS } \\ & \text { MCSS } \end{aligned}$	9	6		-			70	G	J. Ryther
AII 75	R.V. ATLANTIS II	WHOI	MACSS SSCSS	20	1		-	9	7	73	G, S	E. Uchupi
AII 82	R.V. ATLANTIS II	WHOI	SSCSS		2		-	4	6	74	G, S	R. Haedrich

[^0]The following sample list includes all ship-logged information for those sampling stations at which sediment was successfully recovered, and for which some descriptive or analytical data has ultimately become available. This section, as well as each of the following sections (III-VI), is divided into two parts;
A. All Moroccan samples, chronologically listed By cruise
B. All Spanish Saharan samples, chronologically listed By cruise

Note on Sample Numbers
A capital letter immediately following a station number indicates a subsample of the given station sample

Sampler Type Code
G = Shipek Grab
PD= Pipe Dredge
GC= Gravity Core
$B D=$ Chain-bag dredge
$B D / P D=$ Both together, pipe towed behind bag dredge
VC= Vibrocorer
WB= Water Bottle
$V V=.04 \mathrm{~m}^{2}$ Van Veen
$\mathrm{VVI}=.1 \mathrm{~m}^{2}$ Van Veen
BC= Box Core
EUS = Ellis Underway Sampler

Note on Sampler Type

All TR15 samples were taken with either a Smith-McIntyre or a Peterson sampler.

NOTE ON SAMPLE DEPTH
$C M$ or $M \quad=$ depth in corrected meters
UCF $\quad=$ depth, uncorrected fathoms
$\mathrm{CF} \quad=$ depth, corrected fathoms

NOTE ON SAMPLE LOCATION MAPS

See Figure section, page 173.

- 9 -
A. MOROCCAN SHELF SAMPLES

TR 15

$\begin{aligned} & \text { Sample } \\ & \text { No. } \\ & \hline \end{aligned}$	Latitude	Longitude	Correc Depth Meters	Sample Description
68	$27^{\circ} 55^{\prime \prime} \mathrm{N}$	$13^{\circ} 03^{\prime} \mathrm{W}$	26	Coarse sand and shell
69	$27^{\circ} 56^{\prime} \mathrm{N}$	$13^{\circ} 07^{\prime} \mathrm{W}$	50	Silt and fine sand
70	$27^{\circ} 57^{\prime} \mathrm{N}$	$13^{\circ} 09.5^{\prime} \mathrm{W}$	65	Medium to coarse sand
71	$27^{\circ} 59^{\prime} \mathrm{N}$	$13^{\circ} 16.5^{\prime} \mathrm{W}$	157	Shell fragments and sand
72	$27^{\circ} 58^{\prime} \mathrm{N}$	$13^{\circ} 15^{\prime} \mathrm{W}$	97	Shell fragments and sand
73	$27^{\circ} 57.5^{\prime N}$	$13^{\circ} 13^{\prime} \mathrm{W}$	83	Shell fragments and sand
74	$27^{\circ} 57^{\prime N}$	$13^{\circ} 18^{\prime} \mathrm{W}$	94	Shell fragments and sand
75	$28^{\circ} 41^{\prime} \mathrm{N}$	$11^{\circ} 08.5^{\prime} \mathrm{W}$	50	Medium to fine sand
76	$28^{\circ} 44.5^{\prime N}$	$11^{\circ} 11^{\prime} \mathrm{W}$	66	Medium to fine sand
77	$28^{\circ} 46^{\prime} \mathrm{N}$	$11^{\circ} 12^{\prime} \mathrm{W}$	74	Medium to fine sand
78	$29^{\circ} 06^{\prime \prime} \mathrm{N}$	$11^{\circ} 26.5^{\prime} \mathrm{W}$	160	Medium sand and shells
79	$29^{\circ} \mathrm{O} 1^{\prime} \mathrm{N}$	$11^{\circ} 23.5^{\prime} \mathrm{W}$	100	Shell fragments and sand
81	$28^{\circ} 53^{\prime \prime N}$	$11^{\circ} 17^{\prime} \mathrm{W}$	92	Shell fragments and sand
82	$30^{\circ} 03^{\prime} \mathrm{N}$	$9^{\circ} 47^{\prime \prime} \mathrm{W}$	20	Fine brown sand
83	$30^{\circ} 03.5^{\prime N}$	$9^{\circ} 49.5^{\prime} \mathrm{W}$	50	Silt and fine sand(brown)
84	$30^{\circ} 03.5^{\prime} \mathrm{N}$	$9^{\circ} 51{ }^{\prime} \mathrm{W}$	75	Brown silt and clay
85	$30^{\circ} 04^{\prime} \mathrm{N}$	$9^{\circ} 52.5^{\prime} \mathrm{W}$	88	Brown silt and clay
86	$30^{\circ} 04^{\prime} \mathrm{N}$	$9^{\circ} 58^{\prime} \mathrm{W}$	99	Brown silt and clay
87	$30^{\circ} 14^{\prime \prime} \mathrm{N}$	$9^{\circ} 45.5{ }^{\prime} \mathrm{W}$	121	Brown mud
88	$30^{\circ} 29^{\prime} \mathrm{N}$	$9^{\circ} 46^{\prime} \mathrm{W}$	67	Brown mud
89	$30^{\circ} 27^{\prime} \mathrm{N}$	$9^{\circ} 52.5^{\prime} \mathrm{W}$	100	Brown sand

TR 15

Sample No.	Latitude	Longitude	Correct Depth Meters	Sample Description
90	$30^{\circ} 26^{\prime} \mathrm{N}$	$9^{\circ} 59.5^{\prime \prime} \mathrm{W}$	167	Brown sand
91	$30^{\circ} 57.5^{\prime} \mathrm{N}$	$9^{\circ} 50 \mathrm{l}$ W	35	Medium-fine brown sand
92	$30^{\circ} 57.5^{\prime} \mathrm{N}$	$9^{\circ} 52^{\prime} \mathrm{W}$	50	Medium-fine brown sand
93	$30^{\circ} 58^{\prime \prime N}$	$9^{\circ} 57{ }^{\prime} \mathrm{W}$	75	Brown mud
94	$30^{\circ} 57.5^{\prime} \mathrm{N}$	$10^{\circ} 00.5^{\prime} \mathrm{W}$	100	Brown mud
95	$30^{\circ} 57^{\prime} \mathrm{N}$	$10^{\circ} 08.51 \mathrm{~W}$	160	Brown-black medium sand
96	$30^{\circ} 57^{\prime} \mathrm{N}$	$10^{\circ} 07^{\prime} \mathrm{W}$	125	Mud
98	$32^{\circ} 03^{\prime} \mathrm{N}$	$9^{\circ} 55^{\prime} \mathrm{W}$	130	Brown mud
99	$32^{\circ} 00^{\prime} \mathrm{N}$	$9^{\circ} 55^{\prime} \mathrm{W}$	96	Green-brown medium sand
102	$32^{\circ} 00^{\prime} \mathrm{N}$	$9^{\circ} 50.5^{\prime W}$	55	Rock
104	$33^{\circ} 17^{\prime N}$	$8^{\circ} 58^{\prime} \mathrm{W}$	157	Fine brown sand
105	$33^{\circ} 08^{\prime N}$	$8^{\circ} 42^{\prime} \mathrm{W}$	50	Sand and shell fragments
106	$33^{\circ} 09^{\prime} \mathrm{N}$	$8^{\circ} 43^{\prime} \mathrm{W}$	63	Fine brown sand
108	$33^{\circ} 12^{\prime} \mathrm{N}$	$8^{\circ} 48.5^{\prime} \mathrm{W}$	105	Brown mud
109	$33^{\circ} 16^{\prime} \mathrm{N}$	$8^{\circ} 56^{\prime} \mathrm{W}$	120	Tan medium to coarse sand
111	$34^{\circ} 09.5^{\prime N}$	$7^{\circ} 25^{\prime} \mathrm{W}$	157	Brown mud
112	$34^{\circ} 04.5^{\prime N}$	$7^{\circ} 23^{\prime} \mathrm{W}$	125	Brown mud
113	$33^{\circ} 55^{\prime} \mathrm{N}$	$7^{\circ} 18^{\prime} \mathrm{W}$	95	Brown mud
114	$33^{\circ} 53^{\prime} \mathrm{N}$	$7^{\circ} 17.5^{\prime} \mathrm{W}$	75	Brown mud and shell fragments
115	$33^{\circ} 51^{\prime \prime N}$	$7^{\circ} 16.5^{\prime} \mathrm{W}$	29	Algal rock
116	$34^{\circ} 10^{\prime} \mathrm{N}$	$6^{\circ} 571 \mathrm{~W}$	125	Brown mud

TR 15

Sample No.	Latitude	Longitude	Correc Depth Meters	Sample Description
117	$34^{\circ} 15^{\prime} \mathrm{N}$	$7^{\circ} 00^{\prime} \mathrm{W}$	150	Gray sand
118	$34^{\circ} 07{ }^{\prime} \mathrm{N}$	$6^{\circ} 54{ }^{\prime} \mathrm{W}$	97	Brown mud
119	$34^{\circ} 05^{\prime N}$	$6^{\circ} 52{ }^{\prime}$ W	50	Brown mud
121	$35^{\circ} 01.5^{\prime N}$	$6^{\circ} 35^{\prime} \mathrm{W}$	199	Brown mud
122	$35^{\circ} 00.5^{\prime N}$	$6^{\circ} 33^{\prime} \mathrm{W}$	150	Brown-gray mud, shell fragments
123	$34^{\circ} 59^{\prime} \mathrm{N}$	$6^{\circ} 30^{\prime} \mathrm{W}$	124	Olive-gray mud
124	$34^{\circ} 56^{\prime} \mathrm{N}$	$6^{\circ} 24^{\prime} \mathrm{W}$	100	Olive-gray mud
125	$34^{\circ} 54^{\prime} \mathrm{N}$	$6^{\circ} 21^{\prime} \mathrm{W}$	43	Olive-tan sand
126	$34^{\circ} 53^{\prime} \mathrm{N}$	$6^{\circ} 20^{\prime} \mathrm{W}$	20	Medium-fine sand
127	$35^{\circ} 18^{\prime} \mathrm{N}$	$6^{\circ} 18.5^{\prime} \mathrm{W}$	100	Olive-gray mud
128	$35^{\circ} 22^{\prime} \mathrm{N}$	$6^{\circ} 26^{\prime}$ W	150	Olive-gray sand \& mud
129	$35^{\circ} 23^{\prime} \mathrm{N}$	$6^{\circ} 28^{\prime} \mathrm{W}$	193	Olive-gray sand \& mud
130	$35^{\circ} 41^{\prime} \mathrm{N}$	$6^{\circ} 21.5^{\prime} \mathrm{W}$	200	Tan sand and shell fragments
131	$35^{\circ} 40.5^{\prime N}$	$6^{\circ} 20^{\prime} \mathrm{W}$	135	Tan sand and shell fragments
132	$35^{\circ} 40^{\prime} \mathrm{N}$	$6^{\circ} 17^{\prime} \mathrm{W}$	121	Tan sand and shell fragments
133	$35^{\circ} 38.5^{\prime N}$	$6^{\circ} 13^{\prime} \mathrm{W}$	100	Tan sand and shell fragments
134	$35^{\circ} 37.5^{\prime N}$	$6^{\circ} 08^{\prime} \mathrm{W}$	73	Tan sand and shell fragments
135	$35^{\circ} 36^{\prime N}$	$6^{\circ} 03^{\prime} \mathrm{W}$	43	Tan sand and shell fragments

AII 59

Sample \#	Latitude	Longitude	Depth (meters)	Sample Description
1747	$28^{\circ} 05^{\prime} \mathrm{N}$	$13^{\circ} 13^{\prime} \mathrm{W}$	183	None
1748	$28^{\circ} 19^{\prime} \mathrm{N}$	$13^{\circ} 36^{\prime} \mathrm{W}$	1300	None
1749	$28^{\circ} 49^{\prime} \mathrm{N}$	$12^{\circ} 29^{\prime} \mathrm{W}$	175	None
1750	$29^{\circ} 20^{\prime} \mathrm{N}$	$11^{\circ} 04{ }^{\prime} \mathrm{W}$	165	None

AII 75

Sample No.	Sampler	Latitude	$\frac{\text { Longitude }}{}$	Depth (m)		Sample Description
34	EUS	$28^{\circ} 51^{\prime} \mathrm{N}$	$11^{\circ} 49^{\prime} \mathrm{W}$		110	Fine to medium grained sand, light brown
35	EUS	$29^{\circ} 43.2^{\prime} \mathrm{N}$	$10^{\circ} 16.5^{\prime} \mathrm{W}$	128	Muddy sand, light olive gray	

IC 68

Station No.	Sampler Type	Date	Time From	$\begin{array}{r} \text { GMT } \\ \text { TO } \\ \hline \end{array}$	$\begin{gathered} \text { Lat. } N \\ \text { to } \\ \text { Lat. } N \\ \hline \end{gathered}$	$\begin{gathered} \text { Long. W } \\ \text { to } \\ \text { Long. } W \\ \hline \end{gathered}$	Depth UCF	$\mathrm{CF}^{\mathrm{Ra}}$	$\begin{gathered} \text { ige } \\ \text { CM } \\ \hline \end{gathered}$	comments
125	BD/PD	1/24/68	2000	2132	$\begin{aligned} & 33^{\circ} 20^{\prime} \\ & 33^{\circ} 20^{\prime} \end{aligned}$	$\begin{aligned} & 09^{\circ} 32^{\prime} \\ & 09^{\circ} 31.5^{\prime} \end{aligned}$	$\begin{aligned} & 730 \\ & 664 \end{aligned}$	$\begin{aligned} & 750 \\ & 682 \end{aligned}$	$\begin{aligned} & 1365 \\ & 1241 \end{aligned}$	Mud in both BD and PD
126	BD/PD	1/25/68	2319	0050	$\begin{aligned} & 33^{\circ} 21.2^{\prime} \\ & 33^{\circ} 21.0^{\prime} \end{aligned}$	$\begin{aligned} & 09^{\circ} 26.4^{\prime} \\ & 09^{\circ} 25.8^{\prime} \end{aligned}$	$\begin{aligned} & 485 \\ & 402 \end{aligned}$	$\begin{aligned} & 499 \\ & 414 \end{aligned}$	$\begin{aligned} & 908 \\ & 753 \end{aligned}$	Mud in BD Coral in PD
127	BD/PD	1/25/68	0148	0252	$\begin{aligned} & 33^{\circ} 17.5^{\prime} \\ & 33^{\circ} 17.4^{\prime} \end{aligned}$	$\begin{aligned} & 09^{\circ} 17.2^{\prime} \\ & 09^{\circ} 16.8^{\prime} \end{aligned}$	$\begin{array}{r} 382 \\ 380 \end{array}$	$\begin{array}{r} 393 \\ 391 \end{array}$	$\begin{aligned} & 255 \\ & 712 \end{aligned}$	Sticky mud
128	BC	1/25/68	0329	0437	$\begin{aligned} & 33^{\circ} 16.5^{\prime} \\ & 33^{\circ} 15.9^{\prime} \end{aligned}$	$\begin{aligned} & 09^{\circ} 09^{\prime} \\ & 09^{\circ} 07^{\prime} \end{aligned}$	$\begin{aligned} & 187 \\ & 152 \end{aligned}$	$\begin{aligned} & 193 \\ & 157 \end{aligned}$	$\begin{aligned} & 353 \\ & 287 \end{aligned}$	2 out of 4 corers recovered
129	G	1/25/68	0445	0535	$33^{\circ} 16.5^{\prime}$	09 ${ }^{\circ} 09.5^{\prime}$	201	207	379	Brown fine sand
133	GC/G	1/25/68	0700	0848	$33^{\circ} 15^{\prime}$	$09^{\circ} 01.5^{\prime}$	88	91	167	Fine sand and shell in grab. 1/2 ft. core
134	G	1/25/68	0943	0955	$33^{\circ} 15^{\prime}$	$08^{\circ} 59.9^{\prime}$	73	76	139	Sand
135	G	1/25/68	1031	1040	$33^{\circ} 13.5^{\prime}$	$08^{\circ} 53^{\prime}$	60	62	113	Cobble and shells
137	G	1/25/68	1200	1205	$33^{\circ} 12.4{ }^{\prime}$	08 ${ }^{\circ} 49.5^{\prime}$	61	63	115	Muddy sand
138	G	1/25/68	1220	1230	$33^{\circ} 11.1^{\prime}$	$08^{\circ} 46.3^{\prime}$	58	60	110	Mud and fine sand
139	BD/PD	1/25/68	1240	1317	$\begin{aligned} & 33^{\circ} 10.5^{\prime} \\ & 33^{\circ} 10^{\prime} \end{aligned}$	$\begin{aligned} & 08^{\circ} 44^{\prime} \\ & 08^{\circ} 43.5^{\prime} \end{aligned}$	$\begin{aligned} & 40 \\ & 41 \end{aligned}$	$\begin{aligned} & 41 \\ & 42 \end{aligned}$	$\begin{aligned} & 75 \\ & 77 \end{aligned}$	Shells and phosphate pebbles

	IC	68								
$\begin{gathered} \text { Station } \\ \text { No. } \\ \hline \end{gathered}$	$\begin{gathered} \text { Sampler } \\ \text { Type } \\ \hline \end{gathered}$	Date	$\begin{aligned} & \text { Time } \\ & \text { From } \end{aligned}$	$\begin{array}{r} \text { GMT } \\ \text { TO } \\ \hline \end{array}$	$\begin{aligned} & \text { Lat. } N \\ & \text { to } \\ & \text { Lat. } N \end{aligned}$	$\begin{gathered} \text { Long. } \\ \text { to } \\ \text { Long. W } \end{gathered}$	Depth UCF	$\mathrm{CF}^{\mathrm{Rar}}$	$\begin{aligned} & \text { ge } \\ & C M \\ & \hline \end{aligned}$	Comments
140	G	1/25/68	1400	1407	$33^{\circ} 08.8^{\prime}$	$08^{\circ} 39.3$ '	26	27	49	Muddy fine sand
141	G	1/25/68	1435	1440	$33^{\circ} 08.3^{\prime}$	$08^{\circ} 36.5^{\prime}$	10	10	18	Fine sand
143	GC/G	1/26/68	1205	1323	$31^{\circ} 18^{\prime}$	$10^{\circ} 48.6^{\prime}$	510	525	956	7' core. Grab empty
144	BD/PD	1/26/68	1435	1537	$\begin{aligned} & 31^{\circ} 18.3^{\prime} \\ & 31^{\circ} 18.3^{\prime} \end{aligned}$	$\begin{aligned} & 10^{\circ} 40.71 \\ & 10^{\circ} 40^{\prime} \end{aligned}$	$\begin{aligned} & 385 \\ & 373 \end{aligned}$	$\begin{aligned} & 397 \\ & 395 \end{aligned}$	$\begin{aligned} & 723 \\ & 719 \end{aligned}$	Mud in pipe. Rock dredge empty
149	G	1/27/68	0800	0910	$31^{\circ} 22.8{ }^{\prime}$	$09^{\circ} 48.8^{\prime}$	7	7	13	Coral and sand
150	G	1/27/68	1000	1006	$31^{\circ} 22.5{ }^{\prime}$	09 ${ }^{\circ} 57.5^{\prime}$	45	46	84	Mud
151	BD/PD	1/27/68	1050	1120	$\begin{aligned} & 31^{\circ} 22.7^{\prime} \\ & 31^{\circ} 22.9^{\prime} \end{aligned}$	$\begin{aligned} & 10^{\circ} 02.3^{\prime} \\ & 10^{\circ} 01.8^{\prime} \end{aligned}$	$\begin{aligned} & 66 \\ & 68 \end{aligned}$	$\begin{aligned} & 67 \\ & 70 \end{aligned}$	$\begin{aligned} & 123 \\ & 128 \end{aligned}$	Limestone and black sand
153	G	1/27/68	1225	1245	$31^{\circ} 21.3^{\prime}$	$10^{\circ} 08.5{ }^{\prime}$	70	72	132	Sand, mud and shells
154	BD/PD	1/27/68	1335	1415	$\begin{aligned} & 31^{\circ} 20.8^{\prime} \\ & 31^{\circ} 20.8^{\prime} \end{aligned}$	$\begin{aligned} & 10^{\circ} 17^{\prime} \\ & 10^{\circ} 16.5^{\prime} \end{aligned}$	$\begin{aligned} & 218 \\ & 180 \end{aligned}$	$\begin{aligned} & 225 \\ & 186 \end{aligned}$	$\begin{aligned} & 412 \\ & 340 \end{aligned}$	conglomeratic phosphorite and glauconitic sandy mud
155	BD/PD	1/27/68	1435	1528	$\begin{aligned} & 31^{\circ} 19.5^{\prime} \\ & 31^{\circ} 19.8^{\prime} \end{aligned}$	$\begin{aligned} & 10^{\circ} 19.7^{\prime} \\ & 10^{\circ} 18.9^{\prime} \end{aligned}$	254 230	$\begin{aligned} & 261 \\ & 237 \end{aligned}$	$\begin{aligned} & 478 \\ & 434 \end{aligned}$	Glauconitic mud and limestone

$\begin{gathered} \text { Station } \\ \text { No. } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Sampler } \\ & \text { Type } \\ & \hline \end{aligned}$	Date	Time From	$\begin{array}{r} \text { GMT } \\ \mathrm{TO} \\ \hline \end{array}$	Lat. N to Lat. N	$\begin{aligned} & \text { Long. W } \\ & \text { to } \\ & \text { Long. } \mathrm{W} \end{aligned}$	Depth UCF	${ }^{2}{ }_{\mathrm{CF}}{ }^{\mathrm{R}}$	$\begin{aligned} & \text { nge } \\ & \text { CM } \end{aligned}$	Comments
										-
266	G	10/2/68	2228	2232	$27^{\circ} 57.7^{\prime}$	$12^{\circ} 56.5^{\prime}$	10	11	20	Fine sand
267	G	10/2/68	2248	2250	$27^{\circ} 58.5^{\prime}$	$12^{\circ} 57^{\prime}$	20	21	38	Sand and coral
268	G	10/2/68	2308	2311	$27^{\circ} 59.5^{\prime}$	$12^{\circ} 57.5^{\prime}$	22	23	42	Sand and coral
269	G	10/2/68	2324	2327	$28^{\circ} 00.2^{\prime}$	$12^{\circ} 57.7^{\prime}$	23	24	44	Sand and shell fragments
270	G	10/2/68	2342	2346	$28^{\circ} 01.2^{\prime}$	$12^{\circ} 58.3^{\prime}$	25	26	48	Sand and shell fragments
271	G	10/2/68	2358	2404	$28^{\circ} 02 \cdot$	$12^{\circ} 59^{\prime}$	21	22	40	Sand and shell fragments
272	BD/PD	11/2/68	0028	0115	$\begin{aligned} & 28^{\circ} 05^{\prime} \\ & 28^{\circ} 05.5^{\prime} \end{aligned}$	$\begin{aligned} & 13^{\circ} 00^{\prime} \\ & 13^{\circ} 00.5^{\prime} \end{aligned}$	$\begin{aligned} & 27 \\ & 31 \end{aligned}$	$\begin{aligned} & 28 \\ & 32 \end{aligned}$	$\begin{aligned} & 51 \\ & 59 \end{aligned}$	Sand in pipe
273	BD/PD	11/2/68	0140	0217	$\begin{aligned} & 28^{\circ} 08.7^{\prime} \\ & 28^{\circ} 09^{\prime} \end{aligned}$	$\begin{aligned} & 13^{\circ} 02.5^{\prime} \\ & 13^{\circ} 03^{\prime} \end{aligned}$	$\begin{aligned} & 42 \\ & 42 \end{aligned}$	$\begin{aligned} & 43 \\ & 43 \end{aligned}$	$\begin{aligned} & 79 \\ & 79 \end{aligned}$	Sand in pipe Shelly limestone
					$28^{\circ} 09^{\prime}$					Shelly limestone
274	G	11/2/68	0241	0246	$28^{\circ} 11.5^{\prime}$	$13^{\circ} 04.7{ }^{\prime}$	48	49	90	Fine shell sand
275	G	11/2/68	0305	0313	$28^{\circ} 14^{\prime}$	$13^{\circ} 06.5^{\prime}$	54	56	103	Shell sand
276	G	11/2/68	0332	0339	$28^{\circ} 16.5{ }^{\prime}$	$13^{\circ} 08^{\prime}$	56	58	106	Shell sand
277	BD/PD	11/2/68	0349	0450	$\begin{aligned} & 28^{\circ} 17.5^{\prime} \\ & 28^{\circ} 17.1^{\prime} \end{aligned}$	$\begin{aligned} & 13^{\circ} 08.7^{\prime} \\ & 13^{\circ} 09.2^{\prime} \end{aligned}$	$\begin{aligned} & 180 \\ & 150 \end{aligned}$	$\begin{aligned} & 185 \\ & 155 \end{aligned}$	$\begin{aligned} & 339 \\ & 284 \end{aligned}$	Glob. sand, shells and limestone
278	GC	11/2/68	0525	0548	$28^{\circ} 21.5{ }^{\prime}$	$13^{\circ} 11.5^{\prime}$	357	367	668	4 1/2 ft. gritty clay

Ic 68

Station No.	Sampler Type	Date	Time From	$\begin{array}{r} \text { GMT } \\ \text { TO } \\ \hline \end{array}$	$\begin{gathered} \text { Lat. N } \\ \text { to } \\ \text { Lat. } N \end{gathered}$	$\begin{aligned} & \text { Long. W } \\ & \text { to } \\ & \text { Long. W } \end{aligned}$	Depth UCF		CM	Comments
818	$B D / P D$	1/18/69	1530	1554	$31^{\circ} 04.3$ '	$10^{\circ} 05.2{ }^{\prime}$	61		115	Green glauconitic mud, siltstone, sandstone, phosphorite?
819	G	1/18/69	1612	1652	$31^{\circ} 04.2^{\prime}$	$10^{\circ} 03.2^{\prime}$	46		87	Coarse shell sand and limestone
820	G	1/18/69	1658	1700	$31^{\circ} 03.9^{\prime}$	$10^{\circ} 02.2{ }^{\prime}$	45		85	Brown muddy shell sand
821	BD/PD	1/18/69	1719	1807	$31^{\circ} 03.6{ }^{\prime}$	$10^{\circ} 01^{\prime}$	52		98	Pebbly brown mud and limestone
822	G	1/18/69	1818	1836	$31^{\circ} 04.2^{\prime}$	$9^{\circ} 59.7{ }^{\prime}$	52		98	Greenish brown sandy mud
823	$B D / P D$	1/18/69	1848	1946	$31^{\circ} 04.2^{\prime}$	$9^{\circ} 58.4{ }^{\prime}$	$\begin{aligned} & 48 \\ & 44 \end{aligned}$		$\begin{aligned} & 90 \\ & 83 \end{aligned}$	Brown shelly mud and pebbles
824	$B D / P D$	1/18/69	1942	2019	$31^{\circ} 04^{\prime}$	$9^{\circ} 57.2{ }^{\prime}$	$\begin{aligned} & 48 \\ & 40 \end{aligned}$		$\begin{aligned} & 90 \\ & 75 \end{aligned}$	Brown shelly mud
825	G	1/18/69	2040	2051	$31^{\circ} 04.4{ }^{\prime}$	$9^{\circ} 55^{\prime}$	37		70	Sand
826	BD/PD	1/18/69	2106	2142	$31^{\circ} 05!$	$9^{\circ} 53.2{ }^{\prime}$	29		55	Brown muddy sand with large shells and siltstone pebbles
827	BD/PD	1/18/69	2215	2244	$31^{\circ} 07.6^{\prime}$	$9^{\circ} 56.3^{\prime}$	44		83	Brown sandy mud
$\frac{\text { TRAVERSE }}{829}$	BD/PD	1/19/69	0918	0956	$31^{\circ} 11.7^{\prime}$	$9^{\circ} 57.3^{\prime}$	45		85	Muddy pebbly sand with limestone
830	BD/PD	1/19/69	1007	1036	$31^{\circ} 11.75^{\prime}$	$9^{\circ} 59.7^{\prime}$	52		98	Brown muddy shell sand with pebbles
831	BD/PD	1/19/75	1048	11.24	$31^{\circ} 11.5^{\prime}$	$10^{\circ} 01.15^{\prime}$	$\begin{aligned} & 57 \\ & 55 \end{aligned}$		$\begin{aligned} & 107 \\ & 104 \end{aligned}$	Brown glauconitic muddy sand with siltstone

$\begin{aligned} & \text { Station } \\ & \text { No. } \\ & \hline \end{aligned}$	Sampler Type	Date	Time From	$\begin{array}{r} \text { GMT } \\ \text { TO } \\ \hline \end{array}$	Lat. N to Lat. N	$\begin{aligned} & \text { Long. W } \\ & \text { to } \\ & \text { Long. W } \end{aligned}$	Depth UCF	CF	$\begin{aligned} & \text { ge } \\ & \end{aligned}$	Comments
832	G	1/19/69	1132	1200	$31^{\circ} 11.4{ }^{\prime}$	$10^{\circ} 02.71$	63		119	Glauconitic muddy sand
833	BD/PD	1/19/69	1230	1311	$31^{\circ} 11.3^{\prime}$	$10^{\circ} 04{ }^{\prime}$	66		124	Green muddy sand and phosphorite?
834	BD/PD	1/19/69	1324	1359	$31^{\circ} 11.2^{\prime}$	$10^{\circ} 05.8{ }^{\prime}$	66		124	Muddy glauconitic sand with flint mudstone
835	G	1/19/69	1410	1420	$31^{\circ} 11.6^{\prime}$	$10^{\circ} 06.9^{\prime}$	65		122	Glauconitic sand
836	BD/PD	1/19/69	1436	1505	$31^{\circ} 11.5{ }^{\prime}$	$10^{\circ} 08.9^{\prime}$	70		132	Glauconitic black sand and siltstone
837	BD/PD	1/19/69	1525	1600	$31^{\circ} 11.8^{\prime}$	$10^{\circ} 10.4{ }^{\prime}$	93		175	Shelly glauconitic sand and sandstone
838	G	1/19/69	1619	1645	$31^{\circ} 11.5^{\prime}$	$10^{\circ} 13.4{ }^{\prime}$	140		264	Black glauconitic sand
839	GC	1/19/69	1658	1723	$31^{\circ} 11.2^{\prime}$	$10^{\circ} 15^{\prime}$	156		294	5 l/2 ft. glauconitic black and brown sand
840	G	1/19/69	1756	1826	$31^{\circ} 11.3^{\prime}$	$10^{\circ} 16.6^{\prime}$	162		305	Black sand
841	BD/PD	1/19/69	1848	1930	$31^{\circ} 11.4{ }^{\prime}$	$10^{\circ} 18.7{ }^{\prime}$	170		320	Muddy glauconitic sand
842	G	1/19/69	2000	2035	$31^{\circ} 10.4{ }^{\prime}$	$10^{\circ} 23.1{ }^{\prime}$	238		448	Muddy glauconitic sand
843	GC/WB	1/19/69	2108	2204	$31^{\circ} 09.8{ }^{\prime}$	$10^{\circ} 27.8^{\prime}$	272		512	2'9" brown mud top and green sand bottom
TRAVERSE										
844	GC/WB	1/19/69	2241	2327	$31^{\circ} 14.4{ }^{\prime}$	$10^{\circ} 29.8{ }^{\prime}$	296		558	4'4" brown mud top and green sand bottom

IC 69

Station No.	$\begin{aligned} & \text { Sampler } \\ & \text { Type } \\ & \hline \end{aligned}$	Date	$\begin{aligned} & \text { Time } \\ & \text { From } \end{aligned}$	$\begin{array}{r} \text { GMT } \\ \hline \text { TO } \\ \hline \end{array}$	Lat. N to Lat. N		Depth UCF	CF	$\begin{aligned} & \text { nge } \\ & \text { CM } \end{aligned}$	Comments
861	G	1/21/69	0047	0105	$31^{\circ} 26.7^{\prime}$	$10^{\circ} 02.6{ }^{\prime}$	63		119	Brown mud
862	BD/PD	1/21/69	0117	0132	$31^{\circ} 26.5^{\prime}$	$10^{\circ} 04.3^{\prime}$	70		132	Brown muddy sand
863	G	1/21/69	0144	0159	$31^{\circ} 26.55^{\prime}$	$10^{\circ} 05.8^{\prime}$	70		132	Black sand
864	G	1/21/69	0214	0224	$31^{\circ} 26.4^{\prime}$	$10^{\circ} 07.9^{\prime}$	73		138	Muddy glauconitic sand and pebbles
865	BD/PD	1/21/69	0326	0303	$31^{\circ} 26.1^{\prime}$	$10^{\circ} 09.7^{\prime}$	74		139	Medium sand, sandstone and phosphorite?
866	BD/PD	1/21/69	0312	0357	$31^{\circ} 26.0^{\prime}$	$10^{\circ} 11.5^{\prime}$	$\begin{aligned} & 131 \\ & 166 \end{aligned}$		$\begin{aligned} & 247 \\ & 313 \end{aligned}$	Medium shell sand
867	G	1/21/69	0400	0411	$31^{\circ} 25.8{ }^{\prime}$	$10^{\circ} 15^{\prime}$	316		595	Glauconitic sand
868	GC/WB	1/21/69	0433	0540	$31 .{ }^{\circ} 25.6{ }^{\prime}$	$10^{\circ} 18.6^{\prime}$	103		1025	5'2 1/2" brown and green sandy mud
$\frac{\text { TRAVERSE }}{869}$	G	1/21/69	1148	1200	$31^{\circ} 32.8{ }^{\prime}$	$9^{\circ} 54.4{ }^{\prime}$	39		73	Brown mud
870	G	1/21/69	1226	1231	$31^{\circ} 32.7^{\prime}$	$9^{\circ} 56.7^{1}$	44		83	Brown mud
871	BD/PD	1/21/69	1640	1714	$31^{\circ} 32.3{ }^{\prime}$	$9^{\circ} 58.8{ }^{\prime}$	40		75	Delayed due winch troubles. Coarse, shell sand and finegrained limestone
872	BD/PD	1/21/69	1755	1820	$31^{\circ} 32.1{ }^{\prime}$	$10^{\circ} 02.11$	62		117	Brown mud
873	BD/PD	1/21/69	1835	1850	$31^{\circ} 32 \cdot$	$10^{\circ} 05^{\prime}$	70		132	Muddy black glauconitic sand

Station	$\begin{aligned} & \text { Sampler } \\ & \text { Type } \end{aligned}$	Date	$\begin{aligned} & \text { Time GMT } \\ & \text { From To } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { Lat. } N \\ & \text { to } \\ & \text { Lat. } N \\ & \hline \end{aligned}$	```Long. W```	Depth UCF	Range		Comments	
No.					CF			CM			
874	G	1/21/69	1857	1915		$31^{\circ} 31.5^{\prime}$	$10^{\circ} 06.6^{\prime}$	70		132	Muddy black glauconitic. sand
875	BD/PD	1/21/69	1929	1952	$31^{\circ} 31.6^{\prime}$	$10^{\circ} 09.2^{\prime}$	72		136	Muddy shelly sand with flint, sandstone and phosphorite?	
876	BD/PD	1/21/69	2036	2120	$31^{\circ} 31.5^{\prime}$	$10^{\circ} 11^{\prime}$	72		136	Shell sand with mudstone	
877	BD/PD	1/21/69	2126	2152	$31^{\circ} 31^{\prime}$	$10^{\circ} 12.3{ }^{\prime}$	$\begin{aligned} & 80 \\ & 73 \end{aligned}$		$\begin{aligned} & 151 \\ & 138 \end{aligned}$	Shell sand with phosphorite?	
878	G	1/21/69	2211	2225	$31^{\circ} 30.4{ }^{\prime}$	$10^{\circ} 14.2{ }^{\prime}$	302		569	Muddy glauconitic sand	
879	GC	1/21/69	2251	2312	$31^{\circ} 30.3^{\prime}$	$10^{\circ} 18.6^{\prime}$	482		906	4'8" core. Brown mud top, green sand centre, gray. mud bottom	
TRAVERSE 5											
880	BD/PD	1/22/69	0013	0057	$31^{\circ} .26{ }^{\prime}$	$10^{\circ} 25.1{ }^{\prime}$	490		921	Siltstone and glauconitic sand	
882	BD/PD	1/22/69	0220	0244	$31^{\circ} 24.9^{\prime}$	$10^{\circ} 24.0^{\prime}$	400		753	Mudstone and glauconitic sandy mud	
883	BD/PD	1/22/69	0256	0334	$31^{\circ} 25.3{ }^{\prime}$	$10^{\circ} 22^{\prime}$	472		888	Limestone, phosphorite? and glauconitic sandy mud	
TRAVERSE 7											
885	G	1/22/69	1240	1253	$31^{\circ} 52.2{ }^{\prime}$	$9^{\circ} 33$:	10		19	Fine sand	
886	G	1/22/69	1322	1327	$31^{\circ} 51.8^{\prime}$	$9^{\circ} 36.2^{\prime}$	17		32	Pebbles with muddy fine'sand	
887	G	1/22/69	1353	1402	$31^{\circ} 51.6^{\prime}$	$9^{\circ} 39.71$	20		38	Pebbly shell sand	
888	G	1/22/69	1429	1437	$31^{\circ} 51.5^{\prime}$	$9^{\circ} 43.4{ }^{\prime}$	20		38	Coarse shell sand	

Station No.	$\begin{aligned} & \text { Sampler } \\ & \text { Type } \\ & \hline \end{aligned}$	Date	Time From	$\begin{array}{r} \text { GMT } \\ \text { TO } \\ \hline \end{array}$	Lat. N to Lat. N	$\begin{gathered} \text { Long. } \\ \text { to. } \\ \text { Long. } \end{gathered}$	Depth UCF	$C^{R c}$	$\begin{gathered} \text { nge } \\ \hline \end{gathered}$	Comments
904	BD/PD	1/23/69	1256	1316	$32^{\circ} 17.2^{\prime}$	$9^{\circ} 24.6{ }^{\prime}$	22		41	Shelly limestone and siltstone with shell sand
905	G	1/23/69	1331	1338	$32^{\circ} 17^{\prime}$	$9^{\circ} 26.9^{\prime}$	24		45	Shell sand
906	BD/PD	1/23/69	1359	1415	$32^{\circ} 16.8^{\prime}$	$9^{\circ} 28.3^{\prime}$	26		49	Sandstone, limestone, flint and shell sand
907	BD/PD	1/23/69	1435	1500	$32^{\circ} 16^{\prime}$	$9^{\circ} 31.9^{\prime}$	32		60	Siltstone and shell sand
908	BD/PD	1/23/69	1516	1536	$32^{\circ} 15.7$ '	$9^{\circ} 33.4{ }^{\prime}$	28		53	Mudstone and shell sand
909	BD/PD	1/23/69	1545	1607	$32^{\circ} 15.3^{\prime}$	$9^{\circ} 35.1{ }^{\prime}$	28		53	Shelly sandstone and shell sand
910	BD/PD	1/23/69	1620	1638	$32^{\circ} 15^{\prime}$	$9^{\circ} 37.8^{\prime}$	24		45	Algal crust and sandstone
911	BD/PD	1/23/69	1643	1703	$32^{\circ} 14.6{ }^{\prime}$	$9^{\circ} 38.6{ }^{\prime}$	31		58	Sandstone and shell sand
912	G	1/23/69	1745	1752	$32^{\circ} 14.4{ }^{\prime}$	$9^{\circ} 42.5{ }^{\prime}$	48		90	Fine brown sand
913	G	1/23/69	1810	1818	$32^{\circ} 13.9{ }^{\prime}$	$9^{\circ} 44.8$ '	60		113	Muddy fine sand
914	BD/PD	1/23/69	1852	1913	$32^{\circ} 13.7{ }^{\prime}$	$9^{\circ} 46.7^{\prime}$	66		124	Mudstones, sandstone and shell sand
915	BD/PD	1/23/69	1928	1948	$32^{\circ} 13.2{ }^{\prime}$	$9^{\circ} 50.2^{\prime}$	130		245	Siltstone, phosphorite? and mud
916	BD/PD	1/23/69	2015	2046	$32^{\circ} 12.3{ }^{\prime}$	$9^{\circ} 49.6{ }^{\prime}$	70		132	Mudstone and limestone
918	GC/wB	1/23/69	2229	2400	$32^{\circ} 11.8^{\prime}$	$9^{\circ} 56.2^{\prime}$	840		1579	9" core - brown mud

$\begin{aligned} & \text { Station } \\ & \text { No. } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Sampler } \\ & \text { Type } \end{aligned}$	Date	Time From	$\begin{array}{r} \text { GMT } \\ \text { TO } \\ \hline \end{array}$	Lat. N to Lat. N	$\begin{aligned} & \text { Long. W } \\ & \text { to } \\ & \text { Long. W } \end{aligned}$	$\begin{aligned} & \text { Depth } \\ & \text { UCF } \end{aligned}$	${ }_{C F}{ }^{\text {R }}$	$\begin{gathered} \text { nge } \\ \mathrm{CM} \end{gathered}$	Comments
934	BD/PD	1/24/69	1830	1848	$32^{\circ} 30.9^{\prime}$	$9^{\circ} 22.6{ }^{\prime}$	33		62	Shell sand
935	G	1/24/69	1906	1920	$32^{\circ} 30.5{ }^{\prime}$	$9^{\circ} 21^{\prime}$	29		55	Shell sand
936	G	1/24/69	1931	1936	$32^{\circ} 30.6{ }^{\prime}$	$9^{\circ} 19.2^{\prime}$	25		47	Silty sand
937	G	1/24/69	1947	1954	$32^{\circ} 30.6^{\prime}$	$9^{\circ} 17.3^{\prime}$	18		34	Shell sand
TRAVERSE 10										
939	GC	1/25/69	0446	0515	$32^{\circ} 53^{\prime}$	$9^{\circ} 35^{\prime}$	804		1511	5'10" core brown mud top, gray mud bottom
940	BD/PD	1/25/69	0538	0635	$32^{\circ} 52.4{ }^{\prime}$	$9^{\circ} 32.1{ }^{\prime}$	642		1207	Brown mud
941	GC	1/25/69	0648	0704	$32^{\circ} 51.8^{\prime}$	$9^{\circ} 30.4{ }^{\prime}$	218		411	6'4" sandy mud top, greenish mud bottom
942	BD/PD	1/25/69	0721	0743	$32^{\circ} 51.3^{\prime}$	$9^{\circ} 28.5^{\prime}$	77		145	Siltstone and shell sand
943	G	1/25/69	0755	0802	$32^{\circ} 51{ }^{1}$	$9^{\circ} 21.8^{\prime}$	72		136	Muddy shell sand
944	G	1/25/69	0826	0834	$32^{\circ} 50.8^{\prime}$	$9^{\circ} 25.4{ }^{\prime}$	62		113	Shell sand
945	G	1/25/69	0852	0857	$32^{\circ} 50.5^{\prime}$	$9^{\circ} 23.6^{\prime}$	57		107	Shell sand
947	G	1/25/69	0955	1005	$32^{\circ} 49.6^{\prime}$	$9^{\circ} 20.4{ }^{\prime}$	50		94	Shell sand and coral
948	BD/PD	1/25/69	1026	1045	$32^{\circ} 49^{\prime}$	$9^{\circ} 18.3{ }^{\prime}$	55		104	Calc. mudstone and shell sand
949	BD/PD	1/25/69	1102	1124	$32^{\circ} 48.3^{\prime}$	$9^{\circ} 15.9^{\prime}$	54		102	Limestone and shell sand
950	BD/PD	1/25/69	1138	1153	$32^{\circ} 47.2^{\prime}$	$9^{\circ} 15^{\prime}$	51		96	Shell sand and phosphorite?

tation No.	$\begin{aligned} & \text { Sampler } \\ & \text { Type } \end{aligned}$	Date	Time From	$\begin{array}{r} \text { GMT } \\ \hline \mathrm{TO} \\ \hline \end{array}$	Lat. N to Lat. N	$\begin{gathered} \text { Long. } \\ \text { to } \\ \text { Long. } \end{gathered}$	$\begin{aligned} & \text { Depth } \\ & \text { UCF } \end{aligned}$	$\mathrm{CF}^{\text {r }}$	ge CM	Comments
951	G	1/25/69	1248	1255	$32^{\circ} 47.6^{\prime}$	$9^{\circ} 13^{\prime}$	51		96	Fine brown muddy sand
952	BD/PD	1/25/69	1320	1333	$32^{\circ} 46.5^{\prime}$	$9^{\circ} 10.8^{\prime}$	48		90	Argil. limestone and silty mud
953	G	1/25/69	1353	1402	$32^{\circ} 46^{\prime}$	$9^{\circ} 08.7{ }^{1}$	44		83	Shell sand
954	BD/PD	1/25/69	1420	1444	$32^{\circ} 45.4{ }^{\prime}$	$9^{\circ} 06.4{ }^{\prime}$	34		64	Shell sand and conglomerate
956	BD/PD	1/26/69	0257	0324	$33^{\circ} 07.9^{\prime}$	$9^{\circ} 19.3^{\prime}$	208		392	Fine sandy mud
IRAVERSE 11										
357	GC	1/26/69	0341	0352	$33^{\circ} 07.3^{\prime}$	$9^{\circ} 16.7^{\prime}$	122		230	2' muddy sand - brown top then green
358	BD/PD	1/26/69	0418	0440	$33^{\circ} 06.4{ }^{\prime}$	$9^{\circ} 13.8{ }^{\prime}$	76		143	Impure limestone and shell sand
759	BD/PD	1/26/69	0505	0520	$33^{\circ} 05.8^{\prime}$	$9^{\circ} 09.8^{\prime}$	67		126	Limestone and phosphorite? with shell sand
360	BD/PD	1/26/69	0559	0625	$33^{\circ} 05^{\prime}$	$9^{\circ} 06.7^{1}$	56		105	Algal encrusted mudstone - shell sand
361	BD/PD	1/26/69	0645	0720	$33^{\circ} 04.5^{\prime}$	$9^{\circ} 04.31$	59		111	Algal encrusted limestone and phosphorite? with shell sand
362	G	1/26/69	0734	0747	$33^{\circ} 04.2^{\prime}$	$9^{\circ} 02.9^{\prime}$	58		109	Pebbly shell sand
363	BD/PD	1/26/69	0800	0816	$33^{\circ} 03.71$	$9^{\circ} 01.4^{\prime}$	61		115	Limestone and phosphorite? and shell sand
364	BD/PD	1/26/69	0920	0940	$33^{\circ} 03.7{ }^{\prime}$	$9^{\circ} 01{ }^{\prime}$	61		115	(Power failure on gallows) Limestone and phosphorite? with shell sand

Station No.	Sampler Type	Date	$\begin{aligned} & \text { Time } \\ & \text { From } \end{aligned}$	$\begin{array}{r} \text { GMT } \\ \text { TO } \\ \hline \end{array}$		$\begin{gathered} \text { Long. W } \\ \text { to } \\ \text { Long. } W \end{gathered}$	$\begin{aligned} & \text { Depth } \\ & \text { UCF } \end{aligned}$	$\mathrm{CF}^{\text {R }}$	CM	Comments
965	BD/PD	1/26/69	1313	1327	$33^{\circ} 03.2^{\prime}$	$8^{\circ} 58.5{ }^{\prime}$	52		98	Sandy siltsone and muddy sand
966	BD/PD	1/26/69	1351	1408	$33^{\circ} 02.6{ }^{\prime}$	$8^{\circ} 56.8^{\prime}$	48		90	Calc. mudstone and phosphorite? pebble with shell sand
967	G	1/26/69	1418	1426	$33^{\circ} 02.2^{\prime}$	$8^{\circ} 55.2^{\prime}$	54		102	Shell sand
968	BD/PD	1/26/69	1440	1453	$33^{\circ} 02.1^{\prime}$	$8^{\circ} 54.7{ }^{\prime}$	52		98	Brown silty mud
969	G	1/26/69	1506	1514	$33^{\circ} 01.7^{\prime}$	$8^{\circ} 52.6{ }^{\prime}$	42		79	Brown sticky mud
970	BD/PD	1/26/69	1524	1539	$33^{\circ} 01.5{ }^{\prime}$	$8^{\circ} 52^{\prime}$	34		64	Muddy shell sand
971	G	1/26/69	1549	1555	$33^{\circ} 01.2^{\prime}$	$8^{\circ} 50.7{ }^{\circ}$	26		49	Shell sand
972	BD/PD	1/26/69	1605	1614	$33^{\circ} 01.1^{\prime}$	$8^{\circ} 50^{\prime}$	21		40	Shell sand and algal crusts
973	G	1/26/69	1628	1635	$33^{\circ} 00.4^{\prime}$	$8^{\circ} 47 .{ }^{\prime}$	16		304	Phosphorite? and limestone pebbles with shell sand
$\frac{\text { TRAVERS }}{974}$	$12 \mathrm{BD} / \mathrm{PD}$	1/26/69	1730	1745	$33^{\circ} 04$.	$8^{\circ} 47.9^{\prime}$	25		47	Algal encrusted shelly limestone and shell sand
975	G	1/26/69	1758	1809	$33^{\circ} 04.5^{\prime}$	$8^{\circ} 49.2^{\prime}$	30		57	- Shell sand
976	BD/PD	1/26/69	1822	1840	$33^{\circ} 04.7{ }^{\prime}$	$8^{\circ} 50.8^{\prime}$	45		85	Mud and shell sand and mudstone and sandstone
977	BD/PD	1/26/69	1858	1914	$33^{\circ} 04.6{ }^{\prime}$	$8^{\circ} 52.7{ }^{\prime}$	50		94	Sandy mud
978	BD/PD	1/26/69	1938	1948	$33^{\circ} 05.4{ }^{\prime}$	8 ${ }^{\circ} 54.5{ }^{\text {. }}$	47		89	Mudstone and argil. limestone with shell debris

IC 69

Station No.	$\begin{aligned} & \text { Sampler } \\ & \text { Type } \end{aligned}$	Date	$\begin{aligned} & \text { Time } \\ & \text { From } \end{aligned}$	$\begin{array}{r} \text { GMT } \\ \text { TO } \\ \hline \end{array}$	Lat. N to Lat. N	Long. W to Long. W	Depth UCF	${ }_{C F}{ }^{\text {R }}$	CM	Comments
979	BD/PD	1/26/69	2005	2021	$33^{\circ} 05.6^{\prime}$	$8^{\circ} 56.7{ }^{\prime}$	51		94	Argillite and sand
980	BD/PD	1/26/69	2033	2055	$33^{\circ} 06^{\prime}$	$8^{\circ} 57.6^{\prime}$	60		113	Argillite, shelly argillite, brown muddy shelly sand
981	BD/PD	1/26/69	2119	2137	$33^{\circ} 06.3^{\prime}$	$8^{\circ} 59^{\prime}$	62		117	Sandy brown mud
982	BD/PD	1/26/69	2153	2214	$33^{\circ} 06.4{ }^{\prime}$	$9^{\circ} 00.1{ }^{\prime}$	58		109	Sandy brown mud with phosphorite? and limestone
TRAVERSE 13										
984	G	1/27/69	0430	0434	$33^{\circ} 06.2^{\prime}$	$8^{\circ} 42.4{ }^{\prime}$	14		26	Algal crusts only
985	BD/PD	1/27/69	0454	0509	$33^{\circ} 06.3^{\prime}$	$8^{\circ} 43.6{ }^{\prime}$	20		38	Fractured sandstone and shell sand
986	G	1/27/69	0528	0644	$33^{\circ} 06.8^{\prime}$	$8^{\circ} 46^{\prime}$	36		68	Coarse shell sand
987	BD/PD	1/27/69	0723	0731	$33^{\circ} 07{ }^{\prime}$	$8^{\circ} 47.9$.	37		70	Mudstone and sandstone and coarse shell sand
988	BD/PD	1/27/69	0742	0802	$33^{\circ} 07.21$	$8^{\circ} 48.7{ }^{\prime}$	48		90	Mudstone, limestone, phosphorite? shelly sandy mud
989	BD/PD	1/27/69	0836	0850	$33^{\circ} 07.6^{\prime}$	$8^{\circ} 49.5^{\prime}$	50		94	Limestone slab and mud
991	G	1/27/69	1000	1010	$33^{\circ} 07.9^{\prime}$	$8^{\circ} 53^{\prime}$	60		113	Brown sandy mud
992	G	1/27/69	1020	1026	$33^{\circ} 08.4^{\prime}$	$8^{\circ} 54.3{ }^{\prime}$	61		115	Shell sand
993	G	1/27/69	1041	1045	$33^{\circ} 08.5^{\prime}$	$8^{\circ} 56^{\prime}$	62		117	Shell sand
995	BD	1/27/69	1153	1210	$33^{\circ} 09.5^{\prime}$	$8^{\circ} 59.6^{\prime}$	63		119	Algal encrustations

$\begin{aligned} & \text { Station } \\ & \text { No. } \\ & \hline \end{aligned}$	Sampler Type	Date	Time . GMT		$\begin{gathered} \text { Lat. } N \\ \text { to } \\ \text { Lat. } N \end{gathered}$	$\begin{gathered} \text { Long. W } \\ \text { to } \\ \text { Long. } \mathrm{W} \\ \hline \end{gathered}$	$\begin{aligned} & \text { Deptr } \\ & \text { UCF } \\ & \hline \end{aligned}$	Range		Comments
			From	To				CF	CM	
996	BD	1/27/69	1231	1248	$33^{\circ} 09.3^{\prime}$	$9^{\circ} 02{ }^{\prime}$	60		113	Mudstone (fresh fractured) and algal crust
997	BD	1/27/69	1300	1326	$33^{\circ} 10^{\prime}$	$9^{\circ} 03{ }^{\prime}$	64		121	Phosphorite? pebble
998	G	1/27/69	1339	1345	$33^{\circ} 10.3^{\prime}$	$9^{\circ} 05^{\prime}$	68		128	Fine brown silty sand
999	BD/PD	1/27/69	1358	1416	$33^{\circ} 10.9^{\prime}$	$9^{\circ} 07.2^{\prime}$	68		128	Shell sand
TRAVERSE 12		1/27/69	1441	1500	$33^{\circ} 08.2{ }^{\prime}$	$9^{\circ} 10.3{ }^{\prime}$	68	.	128	Fine silty sand
1001	BD/PD	1/27/69	1518	1542	$33^{\circ} 07.8^{\prime}$	$9^{\circ} 08.5^{\prime}$	68		128	Sandstone pebbles; lost pipe
1002	G	1/27/69	1554	1600	$33^{\circ} 07.7^{\prime}$	$9^{\circ} 007.5^{\prime}$	68		128	Coarse shelly sand
1003	$\underset{\mathrm{G}}{\mathrm{BD} / \mathrm{PD} /}$.1/27/69	1621	1648	$33^{\circ} 07.3^{\prime}$	$9^{\circ} 06.2^{\prime}$	63		119	Coarse shelly sand
1004	BD/PD	1/27/69	1708	1726	$33^{\circ} 07.1^{\prime}$	$9^{\circ} 04.4{ }^{\prime}$	63		119	(Rock dredge broken) Conglomeratic phosphorite? limestone, mudstone
1005	G	1/27/69	1752	1759	$33^{\circ} 07^{\prime}$	$9^{\circ} 03.4{ }^{\prime}$	61		115	Shelly sand
1006	G	1/27/69	1808	1815	$33^{\circ} 06.8^{\prime}$	$9^{\circ} 01.8{ }^{\prime}$	61		115	Fine shelly sand and phosphorite? pebbles
1007	G	1/27/69	1833	1843	$33^{\circ} 03.2^{\prime}$	$9^{\circ} 00.5^{\prime}$	60		113	Shelly sand
$\frac{\text { TRAVERS }}{1013}$	$\underline{14}_{G}$	2/1/69	1552	1616	$33^{\circ} 11.2^{\prime}$	$8^{\circ} 39.7{ }^{\prime}$	21		40	Fine sand
1014	BD/PD	2/1/69	1643	1658	$33^{\circ} 11.7^{\prime}$	$8^{\circ} 42.1{ }^{\prime}$	39		73	Limestone

IC 69

$\begin{gathered} \text { Station } \\ \text { No. } \\ \hline \end{gathered}$	Sampler Type	Date	$\begin{aligned} & \text { Time } \\ & \text { From } \end{aligned}$	$\begin{array}{r} \text { GMT } \\ \hline \text { TO } \\ \hline \end{array}$	Lat. N to Lat. N	$\begin{gathered} \text { Long. } \\ \text { to } \\ \text { Long. } \mathrm{w} \end{gathered}$	Depth UCF	CF	$C M$	Comments
1015	BD/PD	2/1/69	1730	1743	$33^{\circ} 11.6^{\prime}$	$8^{\circ} 41.7{ }^{\prime}$	42		79	Calcareous mudstone
1016	BD/PD	2/1/69	1812	1824	$33^{\circ} 12.1{ }^{\prime}$	$8^{\circ} 44.3{ }^{1}$	46		87	Phosphorite? limestone and mud
1017	BD/PD	2/1/69	1846	1901	$33^{\circ} 12.71$	$8^{\circ} 45.7{ }^{\prime}$	48		90	Argillaceous limestone
1018	G	2/1/69	1910	1928	$33^{\circ} 12.8^{\prime}$	$8^{\circ} 47.0{ }^{\prime}$	54		102	Sandy mud
1019	G	2/1/69	1942	1949	$33^{\circ} 13.2^{\prime}$	$8^{\circ} 48.2^{\prime}$	56		105	Silty mud
1020	BD/PD	2/1/69	2018	2037	$33^{\circ} 13.5{ }^{\prime}$	$8^{\circ} 49.7{ }^{\prime}$	58		109	Sandy mud
1021	G	2/1/69	2050	2100	$33^{\circ} 13.8^{\prime}$	$8^{\circ} 50.6^{\prime}$	58		109	Mud and algal crusts
1022	BD/PD	2/1/69	2112	2132	$33^{\circ} 14.1^{\prime}$	$8^{\circ} 52^{\prime}$	58		110	Siltstone and mud
1023	G/WB	2/1/69	2140	2207	$33^{\circ} 14.3^{\prime}$	$8^{\circ} 52.9^{\prime}$	60		113	Fine sand
1024	BD/PD	2/1/69	2221	2259	$33^{\circ} 14.6{ }^{\prime}$	$8^{\circ} 54.6^{\prime}$	62		117	Algal crust only
1025	BD/PD	2/1/69	2308	2325	$33^{\circ} 15^{\prime}$	$8^{\circ} 55.2^{\prime}$	62		117	Algal crust only
1026	G	2/1/69	2339	2355	$33^{\circ} 15^{\prime}$	$8^{\circ} 56.5^{\prime}$	62		117	Shelly sand
1027	G	2/2/69	0005	0036	$33^{\circ} 15.5^{\prime}$	$8^{\circ} 57.4{ }^{\prime}$	62		117	Shelly sand
1028	BD/PD	2/2/69	0052	0112	$33^{\circ} 15.6^{\prime}$	$8^{\circ} 59.8^{\prime}$	70		132	Sandstone and coarse sand
TRAVERSE 15									151	l'1" core black and brown sand
1029	GC	2/2/69	0156	0226	$33^{\circ} 19.1$	$8^{\circ} 56.5^{\prime}$	80		151	1'1" core black and brown sand
1030	G	2/2/69	0245	0300	$33^{\circ} 19.6{ }^{\prime}$	$8^{\circ} 54.6^{\prime}$	77		145	Sand

IC 69

Station No.	$\begin{aligned} & \text { Sampler } \\ & \text { Type } \\ & \hline \end{aligned}$	Date	$\begin{aligned} & \text { Time } \\ & \text { From } \end{aligned}$	$\begin{array}{r} \text { GMT } \\ \text { TO } \\ \hline \end{array}$	Lat. N to Lat. N	$\begin{gathered} \text { Long. W } \\ \text { to } \\ \text { Long. } \mathrm{W} \\ \hline \end{gathered}$	Depth UCF	CF	$\begin{aligned} & \text { ge } \\ & C M \\ & \hline \end{aligned}$	Comments
1031	BD/PD	2/2/69	0314	0336	$33^{\circ} 19^{\prime}$	$8^{\circ} 52.8{ }^{\prime}$	69		130	Sand and sandstone pebble
1032	G	2/2/69	0350	0405	$33^{\circ} 19^{\prime}$	$8^{\circ} 52.11$	66		124	Shelly sand
1033	BD/PD	2/2/69	0423	0442	$33^{\circ} 18.7^{\prime}$	$8^{\circ} 50.3{ }^{\prime}$	62		117	Shell sand and limestone
1034	G	2/2/69	0454	0501	$33^{\circ} 18.2^{\prime}$	$8^{\circ} 49.2{ }^{\prime}$	64		121	Muddy shell sand
1035	BD/PD	2/2/69	0510	0525	$33^{\circ} 18.1{ }^{\prime}$	$8^{\circ} 48^{\prime}$	60		113	Muddy shell sand with phosphorite? and limestone
1036	BD/PD	2/2/69	0543	0558	$33^{\circ} 17.6^{\prime}$	$8^{\circ} 46.7^{\prime}$	52		98	Shell sand
1037	BD/PD ${ }^{\text {c }}$	2/2/69	0624	0640	$33^{\circ} 17.3^{\prime}$	$8^{\circ} 45.4{ }^{\prime}$	58		109	Shell sand and phosphorite?
1038	BD/Pd	2/2/69	0703	0720	$33^{\circ} 16.8^{\prime}$	$8^{\circ} 43.5{ }^{\prime}$	54		102	Shell sand and limestone
1039	G	2/2/69	0730	0736	$33^{\circ} 16.6^{\prime}$	$8^{\circ} 42.3{ }^{\prime}$	50		94	Mud
1040	BD/PD	2/2/69	0752	0802	$33^{\circ} 15.9{ }^{\prime}$	$8^{\circ} 40.5{ }^{\prime}$	44		83	Brown mud and shelly limestone
1041	BD/PD	2/2/69	0820	0905	$33^{\circ} 15.7{ }^{\prime}$	$8^{\circ} 39.5{ }^{\prime}$	35		66	Shelly mud
1042	G	2/2/69	0925	0931	$33^{\circ} 15.1{ }^{\prime}$	$8^{\circ} 36.3^{\prime}$	20		38	Shell
TRAVERS										
1044	$B D / P D$	2/2/69	1240	1259	$33^{\circ} 27.1^{\prime}$	$8^{\circ} 17.1{ }^{\prime}$	16		30	Algal crust only
1045	G	2/2/69	1314	1322	$33^{\circ} 27.9^{\prime}$	$8^{\circ} 17.6^{\prime}$	19		36	Shell
1046	$\underset{G}{B D / P D /}$	2/2/69	1336	1359	$33^{\circ} 28.9^{\prime}$	$8^{\circ} 18.4{ }^{\prime}$	25		47	Silty mud

69

Station No.	Sampler Type	Date	Time From	$\begin{array}{r} \text { GMT } \\ \text { TO } \\ \hline \end{array}$	Lat. N to Lat. N	$\begin{gathered} \text { Long. W } \\ \text { to } \\ \text { Long. } \end{gathered}$	Depth UCF	CF	$\begin{aligned} & \text { ge } \\ & \text { CM } \end{aligned}$	Comments
TRAVERSE 18										
1063	G	2/3/69	0423	0430	$33^{\circ} 40^{\prime}$	$7^{\circ} 42.7{ }^{\prime}$	26		49	Fine sand
1064	BD/PD	2/3/69	0458	0517	$33^{\circ} 41.2^{\prime}$	$7^{\circ} 44.2{ }^{\prime}$	34		64	Sticky mud and shelly sand
1065	G	2/3/69	0530	0538	$33^{\circ} 42.8{ }^{\prime}$	$7{ }^{\circ} 45.8{ }^{\prime}$	42		79	Mud
1066	G	2/3/69	0557	0604	$33^{\circ} 44.8^{\prime}$	$7{ }^{\circ} 47.1{ }^{\prime}$	51		96	Mud
1067	G	2/3/69	0614	0622	$33^{\circ} 46.1^{\prime}$	$7{ }^{\circ} 47.8^{\prime}$	55		104	Mud
1068	G	2/3/69	0640	0645	$33^{\circ} 47.9^{\prime}$	$7^{\circ} 49.4{ }^{\prime}$	61		115	Mud
1069	G	2/3/69	0712	0718	$33^{\circ} 50.9^{\prime}$	$7^{\circ} 51.8^{\prime}$	65		122	Mud
1070	BD/PD	2/3/69	0640	0800	$33^{\circ} 53.2^{\prime}$	$7^{\circ} 53.8^{\prime}$	70		132	Mud and limestone
1071	G	2/3/69	0836	0847	$33^{\circ} 54.8{ }^{\prime}$	$7^{\circ} 54.8{ }^{\prime}$	73		138	Muddy sand
1072	$B D / P D$	2/3/69	0907	0924	$33^{\circ} 56.7^{\prime}$	$7{ }^{\circ} 55.8{ }^{\prime}$	80		151	Muddy sand
1073	BD/PD	2/3/69	0935	0958	$33^{\circ} 58^{\prime}$	$7^{\circ} 56.6^{\prime}$	84		158	Muddy sand
1075	GC	2/3/69	1103	1116	$33^{\circ} 59.2^{\prime}$	$7^{\circ} 59.3{ }^{\prime}$	134		247	6" core sandy mud
1077	GC	2/3/69	1223	1245	$34^{\circ} 02.7{ }^{\prime}$	$8^{\circ} 02.5^{\prime}$	250		471	11" core sandy mud
1078	BD/PD	2/3/69	1310	1336	$34^{\circ} 04.8{ }^{\prime}$	$8^{\circ} 03.6{ }^{\prime}$	303		571	Brown mud
TRAVERSE 19		2/3/69	1955	1958	$33^{\circ} 53.3^{\prime}$	$7{ }^{\circ} 06.1^{\prime}$	20		38	Fine sand
1079	G	2/3/69								
1080	BD/PD	2/3/69	2030	2046	$33^{\circ} 55.1{ }^{\prime \prime}$	$7{ }^{\circ} 05.5^{\prime}$	28		53	Fine sand

IC 69

$\begin{aligned} & \text { Station } \\ & \text { No. } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Sarmpler } \\ & \text { Type } \end{aligned}$	Date	$\begin{aligned} & \text { Time } \\ & \text { From } \end{aligned}$	$\begin{array}{r} \text { GMT } \\ \text { TO } \\ \hline \end{array}$		$\begin{aligned} & \text { Long. W } \\ & \text { to } \\ & \text { Long. W } \end{aligned}$	Depth UCF	CF	$\begin{aligned} & \text { ge } \\ & \hline \\ & \hline \end{aligned}$	Comments
1081	G	2/3/69	2053	2108	$33^{\circ} 56.5^{\prime}$	$7^{\circ} 05^{\prime}$	40		75	Mud
1082	GC	2/3/69	2120.	2138	$33^{\circ} 57.71$	$7^{\circ} 06.5^{\prime}$	45		85	Mud (6'11" core)
1083	G	2/3/69	2149	2157	$33^{\circ} 59.5^{\prime}$	$7^{\circ} 07.6^{\prime}$	55		104	Mud
1084	BD/PD	2/3/69	2215	2245	$34^{\circ} 01.2^{\prime}$	$7{ }^{\circ} 07.5^{\prime}$	58		109	Mud
1085	G	2/3/69	2307	2313	$34^{\circ} 03.2^{\prime}$	$7^{\circ} 09.5^{\prime}$	64		121	Mud
1086	G	2/3/69	2332	2336	$34^{\circ} 06.0^{\prime}$	$7^{\circ} 10.3^{\prime}$	70		132	Mud
1087	G	2/3/69	2351	2357	$34^{\circ} 06.8^{\prime}$	$7{ }^{\circ} 11^{\prime}$	68		128	Mud
1088	G	2/4/69	0010	0025	$34^{\circ} 08.6^{\prime}$	$7{ }^{\circ} 111$	76		143	Mud
1089	GC	2/4/69	0038	0051	$34^{\circ} 10^{\prime}$	$7^{\circ} 11.7^{\prime}$	76		143	Mud (1'8" core)
1090	$\begin{gathered} \mathrm{BD} / \mathrm{PD} / \\ \hline \end{gathered}$	2/4/69	0114	0145	$34^{\circ} 12.8{ }^{\prime}$	$7^{\circ} 12.31$	126		237	Fine sand

CM \quad Comments

IC 70	
Station Sampler No. Type	

$\begin{aligned} & \text { Station } \\ & \text { No. } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Sample } \\ & \text { Type } \\ & \hline \end{aligned}$	Date	$\begin{aligned} & \text { Time } \\ & \text { From } \end{aligned}$	$\begin{array}{r} \text { GMT } \\ \text { TO } \\ \hline \end{array}$	$\begin{aligned} & \text { Lat. } N \\ & \text { to } \\ & \text { Lat. } N \end{aligned}$	Long. k to Long. W	Depth UCF	CF	CM	Comments
1216	G	10/30/70	1415	1422	$33^{\circ} 32.6^{\prime}$	08 ${ }^{\circ} 01.8^{\prime}$	20	23	41	Algal mat
1217	G	10/30/70	1424	1432	$33^{\circ} 31.95^{\prime}$	08 ${ }^{\circ} 01.0^{\prime}$	19	22	40	Mud over shell
1218	G	10/30/70	1437	1443	$33^{\circ} 31.55^{\prime}$	$08^{\circ} 00.8^{\prime}$	17	20	36	Brown sand
1219	G	10/30/70	1447	1450	$33^{\circ} 30.9{ }^{\prime}$	08 ${ }^{\circ} 00.6^{\prime}$	16	19	34	Brown sand
1220	G	10/30/70	1458	1501	$33^{\circ} 30.0^{\prime}$	070 59.9^{\prime}	12	14	26	Brown sand
TRA VERSE 3										
1221	G	10/30/70	1530	1535	$33^{\circ} 28.25^{\prime}$	08 ${ }^{\circ} 04.3^{\prime}$	$91 / 2$	11	23	Algal crust
1222	G	10/30/70	1541	1547	$33^{\circ} 28.85^{\prime}$	08 ${ }^{\circ} 04.6^{\prime}$	12	14	26	Algal crust
1223	G	10/30/70	1551	1605	$33^{\circ} 29.4^{\prime}$	$08^{\circ} 05.1^{\prime}$	13	15	28	Algal crust
1224	BD/PD	10/30/70	1608	1610	$33^{\circ} 29.6^{\prime}$	08 ${ }^{\circ} 05.5^{\prime}$	13	15	28	Algal crust and pebbles in PD
1227	G	10/30/70	1649	1652	$33^{\circ} 31.45^{\prime}$	$08^{\circ} 07.4^{\prime}$	26	29	53	Muddy sand
1229	G	10/30/70	1720	1723	$33^{\circ} 33.2$ '	08 $8^{\circ} 08.8{ }^{\prime}$	32	35	64	Muddy sand
1230	G	10/30/70	1733	1738	$33^{\circ} 34.1^{\prime}$	08 ${ }^{\circ} 09.75^{\prime}$	38	41	75	Muddy sand
TRAVERSE 4										
1231	GC	10/30/70	1800	1815	$33^{\circ} 34.1^{\prime}$	$08^{\circ} 14.8^{\prime}$	40	43	79	4' silt core
1232	G	10/30/70	1825	1834	$33^{\circ} 33.4{ }^{\prime}$	$08^{\circ} 14.0^{\prime}$	34	37	68	Brown silt
1233	G	10/30/70	1843	1848	$33^{\circ} 32.6{ }^{\prime}$	$08^{\circ} 13.4$,	30	33	60	Brown silt

IC 70

Station	Samplex Type	Date	Time.GMT		$\begin{aligned} & \text { Lat. } N \\ & \text { to } \\ & \text { Lat. } \mathrm{N} \end{aligned}$	Long. W to Long. \qquad	Dept UCF	Range		Comments
No.			From	To				CF	CM	
TRAVERSE 6										
1253	G	10/30/70	2359	0003	$33^{\circ} 31.6^{\prime}$	$08^{\circ} 21.6^{\prime}$	33	36	66	Brown mud
1254	G	10/31/70	0010	0016	$33^{\circ} 30.9^{\prime}$	$08^{\circ} 20.8^{\prime}$	31	34	62	Brown mud
1255	G	10/31/70	0024	0029	$33^{\circ} 29.9^{\prime}$	$08^{\circ} 20.0^{\prime}$	29	32	58	Brown mud
1256	G	10/31/70	0037	0040	33.28.8'	$08^{\circ} 14.4{ }^{\prime}$	27	30	55	Brown mud
1257	G	10/31/70	0049	0053	$33^{\circ} 28.2^{\prime}$	$08^{\circ} 18.3{ }^{\prime}$	26	29	53	Brown mud
1258	G	10/31/70	0101	0110	$33^{\circ} 27.2^{\prime}$	$08^{\circ} 17.2^{\prime}$	19	22	40	Muddy shelly sand.
1259	G	10/31/70	0116	0119	$33^{\circ} 26.5{ }^{\prime}$	$08^{\circ} 17.0^{\prime}$	13	15	28	Algal crust
1261	G	10/31/70	0137	0139	$33^{\circ} 25^{\prime}$	$08^{\circ} 15.9^{\prime}$	11	13	24	Algal crust
1263	G	10/31/70	0152	0157	33'24.1'	$08^{\circ} 15.25^{\prime}$	8	10	19	Algal crust
TRAVERSE 7										
1268	G	10/31/70	0252	0254	$33^{\circ} 25.8^{\prime}$	$08^{\circ} 19.9^{\prime}$	14	16	30	Algal crust
1270	G	10/31/70	0318	0321	$33^{\circ} 27.45^{\prime}$	$08^{\circ} 21.4^{\prime}$	23	26	47	Muddy sand
1271	G	10/31/70	0330	0332	$33^{\circ} 28.5{ }^{\prime}$	$08^{\circ} 22^{\prime}$	26	29	53	Muddy sand
1272	G	10/31/70	0345	0348	$33^{\circ} 29.1$ '	$08^{\circ} 23^{\prime}$	28	31	57	Muddy silt
1273	G	10/31/70	0357	0400	$33^{\circ} 29.9^{\prime}$	$08^{\circ} 23.6{ }^{\prime}$	31	34	62	Muddy silt

$$
\begin{aligned}
& 1 \\
& 0 \\
& 20 \\
& 0 \\
& 0 \\
& \text { H } \\
& \text { r } \\
& -1 \\
& \text { N }
\end{aligned}
$$

$$
08^{\circ} 27^{\prime} \quad 39
$$

$$
\begin{aligned}
& 08^{\circ} 26.1^{\prime} \\
& 08^{\circ} 25.6^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& 08^{\circ} 25.6^{\prime} \\
& 08^{\circ} 24.8^{\prime}
\end{aligned}
$$

$$
08^{\circ} 24.1^{\prime}
$$

$$
\begin{array}{ll}
\bar{m} & \bar{u} \\
\dot{N} & \\
\sim & \\
\infty & 0 \\
0 & 0
\end{array}
$$

$$
\begin{aligned}
& 08^{\circ} 22.6^{\prime} \\
& 08^{\circ} 21.9^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& 08^{\circ} 21.9^{\prime} \\
& 08^{\circ} 21.3^{\prime} \\
& 08^{\circ} 21.25^{\prime} \\
& 08^{\circ} 21.6^{\prime}
\end{aligned}
$$

$$
08^{\circ} 22.1^{\prime}
$$

$$
08^{\circ} 22.6^{\prime}
$$

$$
\begin{array}{lll}
\infty & \text { in } \\
& \dot{\sim} \\
\sim & \underset{\sim}{n} \\
\infty & 0 \\
0 & \infty
\end{array}
$$

$$
\begin{gathered}
\text { in } \\
\text { on } \\
\text { ǹ } \\
\text { on } \\
\text { n}
\end{gathered}
$$

$$
\begin{array}{cll}
\text { Station Sampler } & & \\
\text { No. } & \text { Type GMT } & \text { Date } \\
\hline
\end{array}
$$

$$
\begin{array}{lll}
\text { n } & 0 & 0 \\
& \text { H. } & 0 \\
0 & 0 & 0
\end{array}
$$

$$
\begin{array}{lllllll}
\text { n } & \text { M } & \infty & 0 & 0 & n & 0 \\
\underset{\sim}{1} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \stackrel{0}{1} & \hat{0} & \stackrel{~}{0}
\end{array}
$$

$$
0414
$$

$$
\begin{aligned}
& \infty \\
& \underset{\sim}{\sim} \\
& \underset{\sim}{\prime}
\end{aligned}
$$

$$
4
$$

$$
10 / 31 / 70
$$

$$
0543
$$

$$
\begin{aligned}
& 0555 \\
& 0623
\end{aligned}
$$

$$
0631
$$

$$
0639
$$

$$
54
$$

$$
33^{\circ} 20.9^{\prime}
$$

$$
33^{\circ} 21.25^{\prime}
$$

$$
\begin{aligned}
& \text { Muddy silt } \\
& \text { Muddy silt } \\
& \text { Sandy silt } \\
& \text { Fine sand } \\
& \text { Fine sand } \\
& \text { Algal crust }
\end{aligned}
$$$\begin{array}{lll}15 & 1 / 2 & 20\end{array}$Range

$$
\begin{aligned}
& \text { Algal crust } \\
& \text { Algal crust }
\end{aligned}
$$-

※							

IC 70
Station
IC 70

IC 70
Depth Range

No.	Type	Date	From	T0	Lat. N	Long. W	UCF	CF	CM	comments
1322A	G	10/31/70	1525	1529	$33^{\circ} 22.75^{\prime}$	$08^{\circ} 31.9^{\prime}$	31	34	62	Top red mud
1322B	G	10/31/70	1525	1529	$33^{\circ} 22.75^{\prime}$	$08^{\circ} 31.9^{\prime}$	31	34	62	Bottom blackish mud
1323	G	10/31/70	1537	1543	$33^{\circ} 22^{\prime}$	$08^{\circ} 31.2^{\prime}$	27	30	55	Reddish mud
1324	G	10/31/70	1550	1556	$33^{\circ} 21^{\prime}$	08 $8^{\circ} 30.3^{\prime}$	19	21	40	Mud and algal fragments
1326	BD/PD	10/31/70	1612	1618	$33^{\circ} 19.9{ }^{\prime}$	08 ${ }^{\circ} 29.45^{\prime}$	15	18	32	(1) Mud (2) Coralgal fragments
1327	G	10/31/70	1627	1630	$33^{\circ} 19^{\prime}$	$08^{\circ} 28.8^{\prime}$	11	13	24	Algal crust
1328	G	10/31/70	1637	1640	$33^{\circ} 18.7^{\prime}$	08 ${ }^{\circ} 28.25^{\prime}$	11	13	24	Fine red mud/silt
1329	G	10/31/70	1645	1647	$33^{\circ} 18.2^{\prime}$	$08^{\circ} 27.8^{\prime}$	11	13	24	Red brown sandy silt
1330	G	10/31/70	1653	1655	$33^{\circ} 17.65^{\prime}$	08 ${ }^{\circ} 27.5^{\prime}$	11	13	24	Black mud ($0-1 / 2^{\text {n }}$ red mud)
1331	G	10/31/70	1701	1704	$33^{\circ} 17.2^{\prime}$	$08^{\circ} 27.1^{\prime \prime}$	9	11	21	Fine sand pebbles
1332	G	10/31/70	1711	1715	$33^{\circ} 16.6^{\prime}$	08 ${ }^{\circ} 26.7^{\prime}$	7	9	17	Bedrock, algal crust
TRAVERSE 13										
1334	G	10/31/70	2114	2117	$33^{\circ} 16.35^{\prime}$	08 ${ }^{\circ} 32.4{ }^{\prime}$	$81 / 2$	11	21	Algal crust
1335	G	10/31/70	2122		$33^{\circ} 16.9^{\prime}$	$08^{\circ} 32.65{ }^{\prime}$	11 1/2	14	26	Algal crust
1336	PD	10/31/70	2136	2138	$33^{\circ} 17.6^{\prime}$	$08^{\circ} 33.2{ }^{\prime}$	15	18	32	(1) Algal crust (2) Gray mud
1337	G	10/31/70	2159	2201	$33^{\circ} 18.0^{\prime}$	$08^{\circ} 34.1^{\prime \prime}$	18	21	38	Light brown mud
1338	G	10/31/70	2210	2213	$33^{\circ} 18.8^{\prime}$	$08^{\circ} 34.55^{\prime}$	35	38	70	Light brown mud

IC 70

IC 70

Station No.	Sampler		Time From	$\begin{array}{r} \text { GMT } \\ \text { TO } \\ \hline \end{array}$		to Long. W	Depth UCF	CF	CM	comments
TRAVERSE 17										
1387	G	11/1/70	1333	1336	$33^{\circ} 04.5{ }^{\prime}$	08${ }^{\circ} 41.6^{\prime}$	$121 / 2$	14	28	Algal crust
1388	G	11/1/70	1341	1344	$33^{\circ} 05.0^{\prime}$	08 ${ }^{\circ} 42.5^{\prime}$	12	14	26	Algal crust
1389	G	11/1/70	1348	1351	$33^{\circ} 05.3{ }^{\prime}$	08 ${ }^{\circ} 43.5^{\prime}$	15	18	32	Algal crust
1390	G	11/1/70	1359	1408	$33^{\circ} 05.0^{\prime}$	08 ${ }^{\circ} 44.2^{\prime}$	11 1/2	13	26	Mudstone pebbles
1391	G	11/1/70	1422	1426	$33^{\circ} 05.8^{\prime}$	$08^{\circ} 46.2^{\prime}$	35	38	70	5 cm top light mud, $10-15 \mathrm{~cm}$ black mud,bottom gravel
1392	G	11/1/70	1435	1440	$33^{\circ} 06.3^{\prime}$	08 ${ }^{\circ} 47.5^{\prime}$	40	43	79	Mud
1394	G	11/1/70	1508	1514	$33^{\circ} 06.5^{\prime}$	$08^{\circ} 50.0^{\prime}$	50	54	98	Dark brown mud
1395A	G	11/1/70	1525	1530	$33^{\circ} 06.9^{\prime}$	$08^{\circ} 51.0^{\prime}$	47	50	92	Shell gravel
1395B	G	11/1/70	1525	1530	$33^{\circ} 06.9^{\prime}$	$08^{\circ} 51.0^{\prime}$	47	50	92	Mudstone boulder
1396	G	11/1/70	1539	1548	$33^{\circ} 07.5^{\prime}$	$08^{\circ} 51.9^{\prime}$	46	49	90	Shelly muddy gravel
1397	G	11/1/70	1643	1709	$33^{\circ} 05.1{ }^{\prime}$	$09^{\circ} 01.0^{\prime}$	60	64	117	Shelly sand
1398	G	11/1/70	1716	1745	$33^{\circ} 05.2^{\prime}$	$09^{\circ} 00.0^{\prime}$	60	64	117	(?) Phosphorite pebble
1399	G	11/1/70	1753	1805	$33^{\circ} 04.8^{\prime}$	08'58.6'	60	64	117	Muddy shell gravel
1400	G	11/1/70	1814	1825	$33^{\circ} 04.5^{\prime}$	$08^{\circ} 57.2^{\prime}$	55	59	107	Muddy shell gravel

IC 70
Station
$\begin{array}{cccc}\text { to } & \text { Depth } & \text { Range } \\ \text { Long. } & \mathrm{W} & \mathrm{UCF} & \mathrm{CF}\end{array}$
Muddy shell gravel
Muddy shell sand
Muddy shell sand
Muddy shell sand
Muddy shell sand Algal crust . Algal crust
Coarse shell sand Algal crust Algal crust Algal crust Algal crust
Algal crust
Algal crust Algal crust
Mud and shell
 $\stackrel{\square}{2}$

N | O |
| :--- |
| $\underset{\sim}{7}$ | がN 아 in ($\stackrel{\circ}{\sim}$ 1 \circ 3 -1 $\because 8$ M in in

9
न - $\underset{\sim}{-1} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty}$

IC 70

IC 70
Station
Lat. N Long. W Depth Pange
0
告
M
Comments

IC 70

Station	Sampler		Time From	$\begin{gathered} \text { GMT } \\ \text { TO } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Lat. N } \\ & \text { to } \\ & \text { Lat. N } \end{aligned}$	Long. n to Long. W	Depth UCF	Range		Comments		
No.	Type	Date						CF	CM			
TRAVERSE 22												
1465	PD	11/3/70	0405	0420	$32^{\circ} 55.9{ }^{\prime}$	$09^{\circ} 24.0^{\prime}$	70	74	136	Coarse shell san	.	
1466	G	11/3/70	0447	0455	$32^{\circ} 54.4{ }^{\prime}$	$09^{\circ} 21.5^{\prime}$	59	63	115	Coarse shell san		
1467	G	11/3/70	0511	0519	$32^{\circ} 55.0^{\prime}$	09 ${ }^{\circ} 19.1^{\prime}$	56	60	109	Rock only (cher		
1468	PD	11/3/70	0547	0605	$32^{\circ} 53.8{ }^{\prime}$	$09^{\circ} 06.5^{\prime}$	50	54	98	Shell sand and r		
1469	G	11/3/70	0620	0625	$32^{\circ} 53.5{ }^{\prime}$	$09^{\circ} 14.2^{\prime}$	55	59	107	Muddy sand		
1470	PD	11/3/70	0646	0705	$32^{\circ} 53.1{ }^{\prime}$	$09^{\circ} 12.0{ }^{\prime}$	54	58	105	Shell sand and m		
1471	PD	11/3/70	0733	0748	$32^{\circ} 52.5{ }^{\prime}$	$09^{\circ} 09.5{ }^{\prime}$	50	54	98	Muddy shell sand		
1472	G	11/3/70	0806	0813	$32^{\circ} 52.2^{\prime}$	$09^{\circ} 07.0^{\prime}$	48	51	92	Shell gravel		
1473	G	11/3/70	0848	0855	$32^{\circ} 51.5^{\prime}$	$09^{\circ} 05.31$	47	50	92	Coarse shell sand	mud	
1474	G	11/3/70	0908	0914	$32^{\circ} 51.6^{\prime}$	$09^{\circ} 04.0{ }^{\prime}$	46	49	90	Muddy shell sand		
1475	G	11/3/70	0921	0927	$32^{\circ} 51.2^{\prime}$	$09^{\circ} 02.5^{\prime}$	47	50	92	Shelly mud		
1476	G	11/3/70	0935	0940	$32^{\circ} 51.0^{\prime}$	$09^{\circ} 01.2^{\prime}$	42	45	83	Brown mud		
1477	G	11/3/70	0950	0954	32'50.9'	$09^{\circ} 00.8^{\prime}$	34	37	68	Pure shell sand		
1478	G	11/3/70	1001	1010	$32^{\circ} 50.6{ }^{\prime}$	$09^{\circ} 00.0^{\prime}$	30	33	60	Pure shell sand	\bullet	\cdot
1479	G	11/3/70	1019	1026	$32^{\circ} 50.5{ }^{\prime}$	$08^{\circ} 59.0^{\prime}$	21	24	43	Algal crust		

$\begin{aligned} & \text { Station } \\ & \text { No. } \\ & \hline \end{aligned}$	Sampler Type	Date	$\begin{aligned} & \text { Time } \\ & \text { From } \end{aligned}$	$\begin{array}{r} \text { GMT } \\ \text { TO } \\ \hline \end{array}$	$\begin{gathered} \text { Lat. } \\ \text { to } \\ \text { Lat. } \\ \hline \end{gathered}$	$\begin{gathered} \text { Long. W } \\ \text { to } \\ \text { Long. } W \\ \hline \end{gathered}$	Depth UCF	CF	CM	Comments
1480	G	11/3/70	1035	1040	$32^{\circ} 50.2^{\prime}$	$08^{\circ} 58.0^{\prime}$	22	25	45	Shell sand
1481	G	11/3/70	1047	1050	$32^{\circ} 50.0^{\prime}$	$08^{\circ} 57.1{ }^{\prime}$	20	23	41	Shell sand
1482	G	11/3/70	1057	1103	$32^{\circ} 49.9{ }^{\prime}$	$08^{\circ} 56.4{ }^{\prime}$	10	12	23	Algal crust
1483	G	11/3/70	1105	1112	$32^{\circ} 49.9^{\prime}$	$08^{\circ} 56.71$	12	14	26	Algal crust
1484	G	11/3/70	1118	1123	$32^{\circ} 50.0^{\prime}$	08 ${ }^{\circ} 57.1{ }^{\prime}$	20	23	41	Rocks and pebbles
1485	G	11/3/70	1130	1135	$32^{\circ} 50.2^{\prime}$	$08^{\circ} 58.0^{\prime}$	22	25	45	Rock
1486	G	11/3/70	1157	1207	$32^{\circ} 50.0^{\prime}$	$08^{\circ} 58.0^{\prime}$.	22	25	45	Shell gravel
TRAVERSE 23										
1488	G	11/3/70	1335	1337	$32^{\circ} 47.2^{\prime}$	09 ${ }^{\circ} 01.0^{\prime}$	14	16	30	Algal crust
1489	G	11/3/70	1342	1346	$32^{\circ} 47.5^{\prime}$	09 ${ }^{\circ} 01.5^{\prime}$	18	21	38	Algal crust
1490	G	11/3/70	1350	1356	$32^{\circ} 47.6^{\prime}$	09 ${ }^{\circ} 02.0^{\prime}$	18	21	38	Algal crust
1491	G	11/3/70	1403	1410	$32^{\circ} 47.9^{\prime}$	09 ${ }^{\circ} 03.1{ }^{\prime}$	30	33	60	Sand
1492	G	11/3/70	1419		$32^{\circ} 48.1^{\prime}$	09 ${ }^{\circ} 04.5^{\prime}$. 37	40	73	Muddy sand
1493	GC	11/3/70	1430	1436	$32^{\circ} 48.1{ }^{\prime}$	09 ${ }^{\circ} 04.5^{\prime}$	37	40	73	Small amount of coarse sand
1494	G	11/3/70	1442	1446	$32^{\circ} 48.3^{\prime}$	09 ${ }^{\circ} 05.5^{\prime}$	37	40	73	Sandy mud
1495	G	11/3/70	1459	1505	$32^{\circ} 48.8^{\prime}$	09 ${ }^{\circ} 06.5^{\prime}$	46	49	90	Fine sand

Station No.	Samp Type	Date	Time, From	GMT To	Lat. N to Lat. N	Long. W to Long. W	Depth UCF	CF	CM	Comments	
1496	G	11/3/70	1514	1518	$32^{\circ} 48.9{ }^{\prime}$	09 07.5^{\prime}	46	49	90	Sandy mud	
1497	G	11/3/70	1527	1531	$32^{\circ} 49.2^{\prime}$	09 $08.5{ }^{\prime}$	49	53	96	Shell sand	
1498	G	11/3/70	1540	1544	$32^{\circ} 49.5^{\prime}$	$09^{\circ} 10.2^{\prime}$	51	55	100	Shell sand	
1499	G	11/3/70	1555	1558	$32^{\circ} 49.9^{\prime}$	09 ${ }^{\circ} 11.5^{\prime}$	45	48	89	Fine shell sand	
TRAVERSE 24											
1500	G	11/3/70	1656	1659	$32^{\circ} 44.0^{\prime}$	$09^{\circ} 19.0^{\prime}$	53	57	104	Sandy mud	
1501	G	11/3/70	1706	1712	$32^{\circ} 44.0^{\prime}$	$09^{6} 18.0{ }^{\prime}$	53	57	104	Muddy sand	
1502	G	11/3/70	1716	1720	$32^{\circ} 43.8^{\prime}$	$09^{\circ} 17.0{ }^{1}$	51	55	100	Sandy mud	
1503	G	11/3/70	1729	1733	$32^{\circ} 43.4{ }^{\prime}$	$09^{\circ} 15.6{ }^{\prime}$	48	51	94	Sandy mud	
1504	G	11/3/70	1747	1750	$32^{\circ} 42.4{ }^{\prime}$	$09^{\circ} 15.71$	47	50	92	Shell sand	
1505	G	11/3/70	1802	1805	$32^{\circ} 42.8{ }^{\prime}$	$09^{\circ} 15.0{ }^{\prime}$	45	48	89	Brown mud	
1506	G	11/3/70	1814		$32^{\circ} 42.5^{\prime}$	$09^{\circ} 13.51$	45	48	89	Brown mud	
	GC	11/3/70		1837	$32^{\circ} 42.5^{\prime}$	$09^{\circ} 13.5{ }^{\prime}$	45	48	89	2'6" long	
1507	G	11/3/70	1842	1850	$32^{\circ} 42.3$	$09^{\circ} 12.5{ }^{\prime}$	41	44	81	Brown mud	
1508	G	11/3/70	1857	1902	$32^{\circ} 42.2{ }^{\prime}$	$09^{\circ} 11.1{ }^{\prime}$	39	42	77	Shell sand	.
1509	G	11/3/70	1910	1913	$32^{\circ} 42.0^{\prime}$	$09^{\circ} 10.2^{\prime}$	36	39	72	Shell sand	
1510	G	11/3/70	1919	1922	$32^{\circ} 42.0{ }^{\prime}$	09 ${ }^{\circ} 09.8^{\prime}$	32.	35	64	Shell sand	

IC 70

$\begin{gathered} \text { Station } \\ \text { No. } \\ \hline \end{gathered}$	Sample Type	Date	$\begin{aligned} & \text { Time } \\ & \text { From } \end{aligned}$	$\begin{array}{r} \text { GMT } \\ \text { TO } \\ \hline \end{array}$	Lat. N to Lat. N	$\begin{gathered} \text { Long. W } \\ \text { to } \\ \text { Long. W } \\ \hline \end{gathered}$	Depth UCF	$\mathrm{CF}^{\text {R }}$	CM	Comments
1511	G	11/3/70	1928	1932	$32^{\circ} 41.9^{\prime}$	09 ${ }^{\circ} 09.0^{\prime}$	30	33	60	Shell sand
1512	G	11/3/70	1937	1941	$32^{\circ} 41.8^{\prime}$	09 ${ }^{\circ} 08.51$	26	29	53	Shell sand
1513	G	11/3/70	1947	1949	$32^{\circ} 41.8^{\prime}$	09 ${ }^{\circ} 08.0^{\prime}$	22	25	45	Shell sand
1514	G	11/3/70	1956	1959	$32^{\circ} 41.6^{\prime}$	09 ${ }^{\circ} 06.9^{\prime}$	20	23	41	Fine shell sand
TRAVERSE 25										
1516	BD/PD	11/4/70	0115		$32^{\circ} 42.6{ }^{\prime}$	$09^{\circ} 35.0^{\prime}$	57	61	111	Shells and rocks
1517	G	11/4/70	0128	0136	$32^{\circ} 42.2{ }^{\prime}$	09 ${ }^{\circ} 34.5{ }^{\prime}$	52	56	102	Sand
1518	BD/PD	11/4/70	0143	0218	$32^{\circ} 42.01$	$09^{\circ} 33.0^{\prime \prime}$	48	51	94	Algal crust and sand
1519	BD/PD	11/4/70	0233	0301	$32^{\circ} 41.8{ }^{\prime}$	09 ${ }^{\circ} 31.4{ }^{\prime}$	56	60	109	Rocks, algal crust and sand
1520	G	11/4/70	0314	0319	$32^{\circ} 41.5^{\prime}$	09 ${ }^{\circ} 30.2^{\prime}$	56	60	109	Sandy mud
1521	G	11/4/70	0330	0335	$32^{\circ} 41.3^{\prime}$	09 ${ }^{\circ} 28.1{ }^{\prime}$	55	59	107	Sandy mud
1522	G	11/4/70	0348	0353	$32^{\circ} 41.0^{\prime}$	09 ${ }^{\circ} 27.0^{\prime}$	52	56	102	Brown mud
1523	G	11/4/70	0402	0405	$32^{\circ} 40.5^{\prime}$	$09^{\circ} 25.7^{\prime}$	50	54	98	Brown mud
1524	BD/PD	11/4/70	0423	0446	$32^{\circ} 40.4{ }^{\prime}$	$09^{\circ} 24.4{ }^{\prime}$	44	47	87	Rocks and shell sand
1525	G	11/4/70	0500	0504	$32^{\circ} 39.8{ }^{\prime}$	09 ${ }^{\circ} 22.6^{\prime}$	44	47	87	Muddy silt
1526	G	11/4/70	0512	0517	$32^{\circ} 39.6{ }^{\prime}$	$09^{\circ} 21.6^{\prime}$	42	45	83	Muddy silt
1527	G	11/4/70	0526	0530	$32^{\circ} 39.1{ }^{\prime}$	$09^{\circ} 20.2^{\prime \prime}$	37	40	73	Muddy silt

$\begin{aligned} & \text { Station } \\ & \text { No. } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Sampler } \\ & \text { Type } \end{aligned}$	Date	Time From	$\begin{array}{r} \text { GMT } \\ \text { TO } \\ \hline \end{array}$	Lat. N to Lat. N	Long. W to Long. W	Depth UCF	CF	CM	Comments	
1544	G	11/4/70	0853	0857	$32^{\circ} 36.0^{\prime}$	09 ${ }^{\circ} 27.4{ }^{\prime}$	42	45	83	Muddy shell sand	
1545	G	11/4/70	0907	0913	$32^{\circ} 36.3^{\prime}$	09 ${ }^{\circ} 28.5^{\prime}$	51	55	100	Coarse shell sand	
TRAVERSE											
1546	G	11/4/70	0922	0927	$32^{\circ} 35.5^{\prime}$	09 ${ }^{\circ} 28.1{ }^{\prime}$	52	56	102	Coarse shell sand	
1547	G	11/4/70	0936	0942	$32^{\circ} 35.0{ }^{\prime}$	$09^{\circ} 27.1^{\prime}$	40	43	79	Coarse shell sand	
1548	G	11/4/70	0948	0952	32 ${ }^{\circ} 34.5^{\prime}$	$09^{\circ} 26.5^{\prime}$	45	48	89	Muddy sand	
1549	G	11/4/70	1001	1005	$32^{\circ} 33.8^{\prime}$	09 ${ }^{\circ} 25.5^{\prime}$	35	38	70	Algal crust	
1550	G	11/4/70	1014	1017	$32^{\circ} 33.3^{\prime}$	09 ${ }^{\circ} 24.5^{\prime}$	29	32	58	Sand	
1551	G	11/4/70	1025	1029	$32^{\circ} 32.5^{\prime}$	$09^{\circ} 24.6{ }^{\prime}$	36	39	72	Shelly mud	
1552	G	11/4/70	1040	1049	$32^{\circ} 31.5^{\prime}$	$09^{\circ} 23.0^{\prime}$	33	36	66	Muddy sand	
1553	G	11/4/70	1051	1055	$32^{\circ} 30.8^{\prime}$	09 ${ }^{\circ} 22.0^{\prime}$	33	36	66	Shell sand	
1554	G	11/4/70	1158	1201	$32^{\circ} 30.0^{\prime}$	$09^{\circ} 21.3^{\prime}$	28	31	57	Shell sand	
1555	G	11/4/70	1210	1213	$32^{\circ} 29.4{ }^{\prime}$	09 ${ }^{\circ} 20.2{ }^{\prime}$	26	29	53	Sand	
1556	G	11/4/70	1221	1225	$32^{\circ} 28.5^{\prime}$	09 ${ }^{\circ} 19.1{ }^{\prime}$	23	26	47	Fine sand	
1557	G	11/4/70	1232	1243	$32^{\circ} 28.2^{\prime}$	09 ${ }^{\circ} 18.5{ }^{\prime}$	22	25	45	Fine sand	\checkmark
1558	G	11/4/70	1245	1248	$32^{\circ} 28.0^{\prime}$	$09^{\circ} 17.9^{\prime}$	22	25	45	Muddy sand	
1559	G	11/4/70	1255	1257	$32^{\circ} 27.8^{\prime}$	$09^{\circ} 16.4{ }^{\prime}$	21	24	43	Muddy sand	

IC 70
Station
No. Type Date
$11 / 4 / 70$
$11 / 4 / 70$
$11 / 4 / 70$
$11 / 4 / 70$
$11 / 4 / 70$
$11 / 4 / 70$
$11 / 4 / 70$
$11 / 4 / 70$
11/4/70
11/4/70
11/4/70

$\stackrel{\circ}{\stackrel{\circ}{\text { - }} \underset{\text { - }}{\text { - }}}$

| O |
| :--- | :--- |
-
I

$\begin{array}{ll}\text { Depth } \\ \mathrm{UCF} & \mathrm{CF} \\ & \text { Range } \\ \text { CM }\end{array}$

IC 70
Lat. N Long. k
Comments
Algal crust
Shell sand
Shell sand
Shell sand
Shell sand
Shell sand
Shell sand Shell sand Shell sand
 Algal crust
Shell sand
Shell sand Shell sand
Shell sand
Shell sand Fine sand Fine sand Shell sand Shell sand
Shell sand
 Shell sand

IC 70
Station
$\begin{array}{ll}\text { Depth } \\ \text { UCF } & \text { Range } \\ \text { CM }\end{array}$
47
49
55
57
58
57
N

													ron		
	$\begin{aligned} & \text { To } \\ & \underset{\sim}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { To } \\ & \text { 留 } \end{aligned}$	$\begin{aligned} & \text { 苟 } \\ & \underset{\sim}{4} \end{aligned}$	$\begin{aligned} & \text { 考 } \\ & \stackrel{2}{4} \\ & 0 \end{aligned}$		$\begin{aligned} & \text { 荡 } \\ & \stackrel{y}{4} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { To } \\ & \text { 品 } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ro } \\ & \text { 斤斤 } \\ & 0 \end{aligned}$			$\begin{aligned} & \text { To } \\ & \text { 荡 } \end{aligned}$				$\stackrel{\text { H }}{\text { H }}$
$\begin{aligned} & \text { H. } \\ & \text { d } \end{aligned}$	ت 先	$\begin{aligned} & \text { ت̈- } \\ & \text { 咟 } \end{aligned}$	$\begin{aligned} & \text { H0 } \\ & \text { N } \\ & \text { 圌 } \end{aligned}$			$\begin{aligned} & \text { H } \\ & \text { N0 } \\ & \text { Ö氏 } \end{aligned}$	$\begin{aligned} & \text { Hy } \\ & \text { 的 } \end{aligned}$	$\begin{aligned} & \text { ت-1 } \\ & \text { 先 } \end{aligned}$	F－ है है	H． E． ह．	$\begin{aligned} & \text { H. } \\ & \text { ÉE } \end{aligned}$	－ － है	苟	$\begin{aligned} & \text { 缡 } \\ & \text { 等 } \end{aligned}$	离
F	$\stackrel{9}{7}$	n	in	∞	in	in	กn	ก	$\stackrel{-1}{n}$	9	9	$\stackrel{\%}{ }$	\％	악	\％
$\stackrel{\sim}{\sim}$	$\stackrel{\text { N }}{ }$	\％	－	N	\cdots	－	앙	ํ	N	N	N	N	N	N	N
$\stackrel{\sim}{N}$	$\stackrel{\sim}{\sim}$	$\stackrel{N}{N}$	N	－	$\stackrel{\sim}{\sim}$	N	N	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{N}$	N	N	N	9	9	9
in	－	－	∞	6	i	－	\cdots	$\bar{\square}$	－	\square	\bigcirc	\bigcirc	\bigcirc	j	in
$\dot{\mathrm{N}}$	$\underset{\sim}{\sim}$	̇̇	¢	¢	กั่	$\stackrel{\text { N }}{ }$	$\stackrel{\circ}{0}$	～ì	$\stackrel{1}{\sim}$	¢	ベ	N	$\stackrel{-}{\sim}$	$\stackrel{\square}{-1}$	$\stackrel{\infty}{\square}$
용	\％잉	$\stackrel{\circ}{\circ}$	\％ ® $^{\circ}$	용		\％							\％${ }_{\circ}^{\circ}$	잉	\％

Muddy silt
Comments
IC 70

Station No.	Sampler Type	Date	Time From	$\begin{array}{r} \text { GMT } \\ \hline \mathrm{TO} \\ \hline \end{array}$	Lat. N to Lat. N	$\begin{gathered} \text { Long. W } \\ \text { to } \\ \text { Long. W } \end{gathered}$	Depth UCF	$\mathrm{CF}^{\mathrm{Ra}}$	$\begin{aligned} & \text { ge } \\ & \mathrm{CM} \\ & \hline \end{aligned}$	Comments
1641	G	11/5/70	0948		$32^{\circ} 06.6^{\prime}$	$09^{\circ} 22.0^{\prime}$	18	21	38	Muday silt
1642 A	G	11/5/70	0954		$32^{\circ} 06.9^{\prime}$	09 ${ }^{\circ} 22.6{ }^{\prime}$	19	22	40	Muddy silt
1642 B	GC	11/5/70		1005	$32^{\circ} 06.9^{\prime}$	09 ${ }^{\circ} 22.6^{\prime}$	19	22	40	Only a few grams of sand
1643	G	11/5/70	1012	1015	$32^{\circ} 07.2^{\prime}$	$09^{\circ} 22.9{ }^{\prime}$	20	23	41	Muddy silt
1644	G	11/5/70	1024	1027	$32^{\circ} 07.6^{\prime}$	$09^{\circ} 24.0{ }^{\prime}$	22	25	45	Brown mud
1645	G	11/5/70	1034	1037	$32^{\circ} 08.4{ }^{\prime}$	$09^{\circ} 25.6^{\prime}$	21	24	43	Muddy gravel
1646	G	11/5/70	1046	1049	$32^{\circ} 08.5^{\prime}$	$09^{\circ} 26.2^{\prime}$	21	24	43	Shell sand
1647	G	11/5/70	1057	1100	$32^{\circ} 08.8{ }^{\prime}$	$09^{\circ} 27.1^{1}$	22	25	45	Coarse shell sand
1648	G	11/5/70	1109	1112	$32^{\circ} 09.1^{\prime}$	$09^{\circ} 28.4{ }^{\prime}$	25	28	51	Coarse shell sand
1649	G	11/5/70	1120	1126	$32^{\circ} 09.8{ }^{\prime}$	$09^{\circ} 30.0^{\prime}$	26	29	53	Rock fragments
1650	G	11/5/70	1136	1140	$32^{\circ} 10.7{ }^{\prime}$	$09^{\circ} 30.9{ }^{\prime}$	28	31	57	Coarse shell sand
TRAVERSE 35										
1651	G	11/5/70	1153	1156	$32^{\circ} 09.31$	09 ${ }^{\circ} 32.1{ }^{\prime}$	27	30	55	Medium shell sand
1652	G	11/5/70	1204	1208	$32^{\circ} 09.0^{\prime}$	$09^{\circ} 31.1^{\prime}$	25	28	51	Medium shell sand
1653	G	11/5/70	1216	1220	$32^{\circ} 08.5^{\prime}$	09 ${ }^{\circ} 30.4{ }^{\prime}$	25	28	51	Shell sand
1654	G	11/5/70	1227	1230	$32^{\circ} 07.8^{\prime}$	$09^{\circ} 29.5{ }^{\prime}$	23	26	47	Shell sand
1655	G	11/5/70	1237	1240	$32^{\circ} 07.4{ }^{\prime}$	09 ${ }^{\circ} 28.1{ }^{\prime}$	19	22	40	Shell sand

IC 70

IC 70
$\begin{array}{lll}\text { Depth } & \text { Range } \\ \text { UCF } & C F & C M\end{array}$
$2 \quad 14 \quad 26$
12
13

										$\begin{aligned} & \text { od } \\ & \text { C్N } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { C } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { "o } \\ & \text { 荡 } \end{aligned}$	O 品 0		\％
$\begin{aligned} & \underset{\text { H }}{\sim} \\ & \text { Un } \end{aligned}$	$\begin{aligned} & \text { H } \\ & \text { - } \end{aligned}$	$\begin{aligned} & \underset{H}{H} \\ & \text { H1 } \end{aligned}$	$\begin{aligned} & \text { H } \\ & \text { - } \end{aligned}$	范	$\begin{aligned} & \text { T } \\ & \substack{0 \\ 0} \end{aligned}$	$\begin{aligned} & \text { '0 } \\ & \text { 荡 } \end{aligned}$	$\begin{aligned} & \text { ס } \\ & \text { N } \\ & \text { N } \end{aligned}$				$\begin{aligned} & \text { H } \\ & \text { d } \\ & \text { dign } \end{aligned}$		$\begin{aligned} & \text { H } \\ & \text { 息 } \end{aligned}$	E 0 世 \mathbf{U} 0 8	$\begin{aligned} & \underset{\sim}{H} \\ & \underset{\sim 1}{c} \end{aligned}$
$\begin{aligned} & \text { po } \\ & \text { º } \\ & \frac{0}{2} \end{aligned}$		$\begin{aligned} & \text { 产 } \\ & \text { N } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { خ̀ } \\ & \text { 号 } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { E } \\ & \text { E } \\ & \text { O } \\ & \text { M } \end{aligned}$	$\begin{aligned} & \text { H } \\ & \text { - } \\ & \text { 品 } \end{aligned}$	$\begin{aligned} & \text { H } \\ & \text { - } \\ & \text { 㥕 } \end{aligned}$			$\begin{aligned} & \text { H } \\ & \text { 岕 } \\ & \text { 年 } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \dot{y} \\ & \tilde{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & H \\ & \tilde{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \text { H } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \mu \\ & \tilde{0} \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & \text { on } \\ & \text { N } \\ & 0 \\ & 0 \end{aligned}$
$\stackrel{\bullet}{\sim}$	$\stackrel{\infty}{\sim}$	\cdots	$\stackrel{-1}{-1}$	$\stackrel{\text { ¢ }}{+}$	$\underset{\sim}{\Perp}$	¢	$\stackrel{9}{7}$	＋	－n	กn	＋	$\stackrel{\sim}{+}$	$\stackrel{10}{*}$	－	$\stackrel{M}{\square}$
$\underset{\sim}{\text { H/ }}$	$\stackrel{n}{n}$	아N	$\stackrel{\sim}{\sim}$	$\stackrel{n}{N}$	$\stackrel{N}{N}$	$\stackrel{\sim}{\sim}$	$\stackrel{N}{N}$	$\stackrel{\sim}{\sim}$	～	N	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{n}{\sim}$	$\stackrel{\sim}{\sim}$	＋
N	$\stackrel{m}{-1}$	$\xrightarrow{\text { r }}$	아N	N	N	$\stackrel{N}{N}$	N	$\stackrel{N}{\sim}$	$\stackrel{\text { Nิ }}{ }$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{N}$	$\stackrel{\sim}{\sim}$	N	웅	\cdots

$\begin{aligned} & \text { m} \\ & \text { n} \\ & \sim \\ & 0 \\ & \text { g } \\ & 0 \end{aligned}$			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { oj } \\ & \dot{0} \\ & \text { N } \\ & \text { og } \\ & 0 \end{aligned}$	in N N o O	$\begin{aligned} & \text { on } \\ & \infty \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ö } \\ & 0 \\ & 0 \\ & 0 \\ & \text { o } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { H} \\ & \text { N } \\ & \text { N } \\ & \text { O } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \dot{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { in } \\ & \dot{m} \\ & \dot{m} \\ & \text { on } \end{aligned}$	$\begin{aligned} & -\quad \\ & \text { m } \\ & m \\ & m \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \text { N } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & - \\ & \text { N } \\ & \text { - } \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	- 0 0 0 0 0 0
$\begin{aligned} & \text { - } \\ & \dot{N} \\ & 0 \\ & \dot{N} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \dot{n} \\ & 0 \\ & 0 \\ & \text { N } \end{aligned}$	$\begin{aligned} & \dot{W} \\ & \dot{M} \\ & 0 \\ & \text { N } \end{aligned}$	$\begin{aligned} & \dot{\infty} \\ & \dot{M} \\ & 0 \\ & 0 \\ & ल \end{aligned}$	$\begin{aligned} & 0 \\ & \text { in } \\ & 0 \\ & 0 \\ & \text { N } \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \text { ni } \\ & 0 \\ & 0 \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { in } \\ & \text { in } \\ & 0 \\ & \text { in } \\ & \text { N } \end{aligned}$	0 0 0 0 0 N	$\begin{aligned} & \bar{m} \\ & 0 \\ & 0 \\ & 0 \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { ō } \\ & \dot{0} \\ & 0 \\ & 0 \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { ò } \\ & \text { ni } \\ & 0 \\ & 0 \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { in } \\ & \text { in } \\ & 0 \\ & 0 \\ & \text { n } \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ \text { in } \\ 0 \\ 0 \\ \text { N } \end{gathered}$	$\begin{aligned} & -\infty \\ & \dot{\infty} \\ & \dot{O} \\ & 0 \\ & N \\ & N \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \dot{1} \\ & 0 \\ & \text { in } \\ & \text { N } \end{aligned}$	∞ 0 0 0 0 N
$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \infty \\ & \\ & \underset{\sim}{\prime} \end{aligned}$	$\begin{aligned} & \text { H} \\ & \text { O} \\ & \text { H} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{n} \\ & \underset{\sim 1}{\prime} \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { Ho } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \stackrel{+}{N} \\ & \underset{N}{\prime} \end{aligned}$	$\begin{aligned} & \text { Nin } \\ & \underset{N}{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & -H \\ & N \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{-1}{\sim} \\ & \text { N } \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{N}{n} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{N}{+} \\ & \underset{N}{N} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{N}{\sim} \\ & \underset{N}{n} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \underset{N}{N} \end{aligned}$	$\stackrel{N}{N} \underset{N}{N}$	H N
$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\gamma} \end{aligned}$	$\begin{aligned} & \underset{\sim}{m} \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \text { H } \\ & \text { O } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{N}{\sim} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { O } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { or } \\ & \text { N- } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { H } \\ & \text { N } \\ & \text { N } \end{aligned}$	$\begin{gathered} M \\ \underset{N}{n} \\ \hline \end{gathered}$	$\begin{aligned} & N \\ & 0 \\ & N \end{aligned}$	$\begin{aligned} & \stackrel{m}{\underset{1}{N}} \\ & \underset{N}{n} \end{aligned}$	$\begin{aligned} & \text { m } \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \mathbb{N} \\ & \underset{\sim}{*} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{H}{H} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { N } \end{aligned}$	N N	$\stackrel{\sim}{N}$

Lat．N	Long．W
to	to
Lat．N	Long．W

$09^{\circ} 23.3^{\prime}$
$09^{\circ} 23.4^{\prime}$
$09^{\circ} 24.7^{\prime}$
$09^{\circ} 26.0^{\prime}$
$09^{\circ} 26.9^{\prime}$
$09^{\circ} 27.5^{\prime}$
$09^{\circ} 28.8^{\prime}$
$09^{\circ} 30.0^{\prime}$
$09^{\circ} 30.9^{\prime}$
$09^{\circ} 32.1^{\prime}$
$09^{\circ} 34.8^{\prime}$
$09^{\circ} 33.5^{\prime}$
$09^{\circ} 33.1^{\prime}$
$\begin{array}{lll}\overline{0} & \bar{N} & 0 \\ 0 & 0 & 0 \\ m & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$
IC 70

Station	Sampler		Time	GMT			Dept			
No.	Type	Date	From	T0	Lat. N	Long. W	UCF	CF	CM	Comments
1687	G	11/5/70	2252	2255	$32^{\circ} 03.3^{\prime}$	09 ${ }^{\circ} 28.8^{\prime}$	17	20	36	Sand
1688	G	11/5/70	2307	2312	$32^{\circ} 02.8{ }^{\prime}$	09 ${ }^{\circ} 27.5^{\prime}$	18	21	38	Muddy sand
1689	G	11/5/70	2319	2322	$32{ }^{\circ}{ }^{\circ} .^{\prime}$	09 ${ }^{\circ} \mathbf{2 6 . 4}{ }^{\prime}$	15	18	32	Muddy sand
1690	G	11/5/70	2333		$32^{\circ} 02.0^{\prime}$	09 ${ }^{\circ} 25.5^{\prime}$	12	14	26	Muddy sand
1691	G	11/5/70	2342		$32^{\circ} 01.6^{\prime}$	09 ${ }^{\circ} 25.2^{\prime}$	11	13	24	Muddy sand
1692	G	11/5/70	2352		$32^{\circ} 01.4{ }^{\prime}$	09 ${ }^{\circ} 24.5^{\prime}$	10	12	23	Muddy sand
1693	G	11/6/70	0002		$32^{\circ} 01.0^{\prime}$	$09^{\circ} 24.0^{\prime}$	9	11	21	Muddy sand
TRAVERSE 38										
1694	G	11/6/70	0023		$31^{\circ} 59.5^{\prime}$	09 ${ }^{\circ} 25.5^{\prime}$	8	10	19	Muddy sand
1695	G	11/6/70	0033		$32^{\circ} 00.0^{\prime}$	$09^{\circ} 26.0^{\prime}$	10	12	23	Muddy sand
1696	G	11/6/70	0040		$32^{\circ} 00.5^{\prime}$	$09^{\circ} 26.9^{\prime}$	11	13	24	Muddy sand
1697	G	11/6/70	0047		$32^{\circ} 00.7^{\prime}$	09 ${ }^{\circ} 27.5^{\prime}$	12	14	26	Muddy sand
1698	G	11/6/70	0059		$32^{\circ} 01.0^{\prime}$	$09^{\circ} 28.3^{\prime}$	16	19	34	Muddy sand
1699	G	11/6/70	0113		$32^{\circ} 01.5^{\prime}$	09 ${ }^{\circ} 30.0^{\prime}$	18	21	38	Muddy sand
1700	G	11/6/70	0123		$32^{\circ} 01.6^{\prime}$	$09^{\circ} 31.0^{\prime}$	16	19	34	Muddy sand
1701	G	11/6/70	0135		$32^{\circ} 02.0^{\prime}$	09 ${ }^{\circ} 32.0^{\prime}$	17	20	36	Muddy sand
1702	G	11/6/70	0147		$32^{\circ} 02.6^{\prime}$	$09^{\circ} 32.8{ }^{\prime}$	17	20	36	Muddy sand

IC 70

IC 70

IC 70
IC 70

IC 70

IC 70
Lat. N Long. W

IC 70

IC 70

Station No. \qquad	Sampler Type	Date	$\begin{aligned} & \text { Time } \\ & \text { From } \end{aligned}$	$\begin{gathered} \text { GMT } \\ \text { TO } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Lat. } N \\ & \text { to } \\ & \text { Lat. } N \end{aligned}$	$\begin{gathered} \text { Long. W } \\ \text { to } \\ \text { Long. W } \\ \hline \end{gathered}$	Depth UCF	$\mathrm{CF}^{\text {R }}$	nge ${ }_{\text {cM }}$	Comments		
1832	G	11/9/70	0247	0253	$31^{\circ} 23.9{ }^{\prime}$	09 ${ }^{\circ} 57.6^{\prime}$	40	43	79	Mud	.	
1833	G	11/9/70	0302	0308	$31^{\circ} 23.9{ }^{\prime}$	$10^{\circ} 00.0^{\prime}$	48	51	94	Mud		
1834	G	11/9/70	0323	0328	$31^{\circ} 23.9{ }^{\prime}$	$10^{\circ} 01.6^{\prime}$	58	62	113	Mud		
1835	G	11/9/70	0339	0345	$31^{\circ} 23.9{ }^{\prime}$	$10^{\circ} 03.7{ }^{\prime}$	63	67	122	Mud		
TRAVERSE	51											
1836	G	11/9/70	0927	0932	$31^{\circ} 16.9^{\prime}$	$09^{\circ} 52.2^{\prime}$	61	65.	119	Mud		
1837	G	11/9/70	0950	0955	$31^{\circ} 16.9{ }^{\prime}$	09 ${ }^{\circ} 57.5^{\prime}$	55	59	107	Mud	\cdot	
1838	G	11/9/70	1008	1013	$31^{\circ} 16.8{ }^{\prime}$	$09^{\circ} 56.0^{\prime}$	48	51	94	Hard bottom		
1839	G	11/9/70	1023	1029	$31^{\circ} 16.8{ }^{\prime}$	$09^{\circ} 54.6{ }^{\prime}$	37	40	73	Mud		
1840	G	11/9/70	1040	1043	$31^{\circ} 16.9^{\prime}$	$09^{\circ} 53.0^{\prime}$	40	43	79	Mud		
1841	G	11/9/70	1056	1059	$31^{\circ} 16.9^{\prime}$	$09^{\circ} 52.0^{\prime}$	36	39	72	Hard bottom		
1842	G	11/9/70	1109	1113	$31^{\circ} 16.9^{\prime}$	$09^{\circ} 51.3^{\prime}$	30	33	60	Fine sand		
1843	G	11/9/70	1121	1125	$31^{\circ} 16.8^{\prime}$	$09^{\circ} 50.0^{\prime}$	19	22	40	Fine sand		
TRAVERSE												
1844	G	11/9/70	1204	1208	$31^{\circ} 11.5^{\prime}$	$09^{\circ} 51.6^{\prime}$	25	28	51	Shell sand	\checkmark	-
1845	G	11/9/70	1219	1224	$31^{\circ} 11.5^{\prime}$	$09^{\circ} 53.0^{\prime}$	38	41	75	Mud		

IC 70
$\begin{array}{cccc}\text { Lat. } N & \text { Long. } & & \\ \text { to } & \text { to } & \text { Depth } & \text { Range } \\ \text { Lat. } N & \text { Long. } W & \text { UCF } & \text { CF }\end{array}$

38	41	75	Mud
40	43	79	Mud
40	43	79	Mud
46	49	90	Muddy sand and pebbles
25	29	53	Hard bottom
23	26	47	Rock fragments
64	68	124	Mud with sand
46	49	90	Mud with sand
42	45	83	Rock fragments and sand
40	43	79	Shell sand
40	43	79	Mud and sand
38	41	75	Brown mud
30	33	60	Brown mud

| $\begin{array}{c}\text { Station } \\ \text { No. }\end{array} \begin{array}{l}\text { Sampler } \\ \text { Type }\end{array}$ |
| :---: | :---: |

$0 \quad 0 \quad 0 \quad 0$ | TRAVERSE 53 |
| :--- |
| 1851 | | 1852 | G |
| :--- | ---: |
| TRAVERSE | 54 |
| 1854 | G | N゙

1855
1856
1857

~~~
1859
1860
IC 70
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Station & \multicolumn{2}{|l|}{Sampler} & \multirow[t]{2}{*}{\begin{tabular}{l}
Time \\
From
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{l}
GMT \\
To
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Lat. } N \\
\text { to } \\
\text { Lat. } N
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Long. } W \\
\text { to } \\
\text { Long. } W
\end{gathered}
\]} & \multirow[t]{2}{*}{\begin{tabular}{l}
Depth \\
UCF
\end{tabular}} & \multicolumn{2}{|l|}{Range} & & - \\
\hline No. & Type & Date & & & & & & CF & CM & Comments & \\
\hline \multicolumn{12}{|l|}{TRAVERSE 55} \\
\hline 1861 & G & 11/12/70 & 1115 & 1125 & \(30^{\circ} 21.7^{\prime}\) & \(09^{\circ} 37.5^{\prime}\) & 6 & 8 & 15 & Mud over hard sand & - \\
\hline 1862 & G & 11/12/70 & 1135 & 1138 & \(30^{\circ} 21.7^{\prime}\) & \(09^{\circ} 38.10^{\prime}\) & 10 & 12 & 23 & Hard mud, fine sand & \\
\hline 1863 & G/GC & 11/12/70 & 1150 & 1204 & \(30^{\circ} 21.7^{\prime}\) & \(09^{\circ} 39.2^{\prime}\) & 13 & 15 & 28 & Hard fine sand & \\
\hline \multicolumn{2}{|l|}{TRAVERSE 56} & & & & & & & & & & \\
\hline 1865 & G & 11/12/70 & 2337 & & \(29^{\circ} 31.2^{\prime}\) & \(10^{\circ} 36.8^{\prime}\) & 83 & 88 & 160 & Sand & \\
\hline 1866 & G & 11/12/70 & 2356 & & \(29^{\circ} 29.8^{\prime}\) & \(10^{\circ} 33.8^{\prime}\) & 57 & 61 & 111 & Shell sand & \\
\hline 1867 & G & 11/13/70 & 0018 & & \(29^{\circ} 28.5^{\prime}\) & \(10^{\circ} 32.31\) & 57 & 61 & 111 & Fine sand & \\
\hline 1868 & G & 11/13/70 & 0035 & & \(29^{\circ} 26.8^{\prime}\) & \(10^{\circ} 31.0^{\prime}\) & 53 & 57 & 104 & Sand & \\
\hline 1869 & G & 11/13/70 & 0056 & & \(29^{\circ} 25.9^{\prime}\) & \(10^{\circ} 29.0^{\prime}\) & 35 & 38 & 70 & Mudidy sand & \\
\hline 1870 & G & 11/13/70 & 0110 & 0130 & \(29^{\circ} 24.4^{\prime}\) & \(10^{\circ} 28.1{ }^{\prime}\) & 27 & 30 & 55 1 & Sand & \\
\hline 1871 & G & 11/13/70 & 0152 & 0155 & \(29^{\circ} 23.8^{\prime}\) & \(10^{\circ} 26.3{ }^{\prime}\) & 22 & 25 & 45 & Algal crust & \\
\hline 1872 & G & 11/13/70 & 0215 & 0220 & \(29^{\circ} 21.5^{\prime}\) & \(10^{\circ} 25.0^{\prime}\) & 26 & 29 & 53 & Small sand sample and & coral \\
\hline 1873 & G & 11/13/70 & 0236 & & \(29^{\circ} 20.1{ }^{\prime}\) & \(10^{\circ} 22.8^{\prime}\) & 23 & 26 & 47 & Coarse shell sand & \\
\hline 1874 & G & 11/13/70 & 0253 & & \(29^{\circ} 18.9^{\prime}\) & \(10^{\circ} 20.5^{\prime}\) & 21 & 24 & 43 & Shell sand & \\
\hline 1875 & G & 11/13/70 & 0311 & & \(29^{\circ} 17.3^{\prime}\) & \(10^{\circ} 19.0^{\prime}\) & 18 & 21 & 38 & Shell sand & \(\cdot\) \\
\hline
\end{tabular}
IC 70

IC 70
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Station } \\
\text { No. } \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Sampler \\
Type
\end{tabular} & Date & Time From & \[
\begin{array}{r}
\text { GMT } \\
\text { TO } \\
\hline
\end{array}
\] & Lat. N to Lat. N & \[
\begin{gathered}
\text { Long. W } \\
\text { to } \\
\text { Long. W } \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { Depth } \\
& \text { UCF }
\end{aligned}
\] & \[
\mathrm{CF}^{\mathrm{Ra}}
\] & \[
\begin{aligned}
& \text { ge } \\
& C M \\
& \hline
\end{aligned}
\] & Comments \\
\hline 1893 & G & 11/13/70 & 1914 & 1919 & \(23^{\circ} 47.0^{\prime}\) & \(11^{\circ} 07.8^{\prime}\) & 35 & 38 & 70 & Muddy sand \\
\hline 1894 & G & 11/13/70 & 1926 & 1930 & \(28^{\circ} 45.5^{\prime}\) & \(11^{\circ} 06.9^{\prime}\) & 30 & 33 & 60 & Muddy sand \\
\hline \(\frac{\text { TRAVERSE }}{1898}\) & G8 & 11/15/70 & 2215 & 2225 & \(28^{\circ} 15.0^{\prime}\) & \(11^{\circ} 55.2{ }^{\prime}\) & 18 & 21 & 38 & Mud \\
\hline 1899 & G & 11/15/70 & 2247 & & \(28^{\circ} 17.0{ }^{\prime}\) & \(11^{\circ} 57.5^{\prime}\) & 22 & 25 & 45 & Fine sand \\
\hline 1900 & G & 11/15/70 & 2314 & & \(28^{\circ} 19.5^{\prime}\) & \(11^{\circ} 59.5^{\prime}\) & 23 & . 26 & 47 & Coarse shell sand \\
\hline 1901 & G & 11/15/70 & 2340 & & \(28^{\circ} 22.0^{\prime}\) & \(12^{\circ} 01.0^{\prime}\) & 26 & 29 & 53 & Mud and shell sand \\
\hline 1902 & G & 11/16/70 & 0007 & & \(28^{\circ} 24.5^{\prime}\) & \(12^{\circ} 03.2^{\prime}\) & 27 & 30 & 55 & Some sand \\
\hline 1903 & G & 11/16/70 & 0034 & 0042 & \(28^{\circ} 26.8^{\prime}\) & \(12^{\circ} 05.2^{\prime}\) & 28 & 31 & 57 & Shell sand \\
\hline 1904 & G & 11/16/70 & 0108 & 0112 & \(28^{\circ} 29.0^{\prime}\) & \(12^{\circ} 07.5^{\prime}\) & 31 & 34 & 62 & Shell sand \\
\hline 1905 & G & 11/16/70 & 0142 & & \(28^{\circ} 31.2^{\prime}\) & \(12^{\circ} 09.5{ }^{\prime}\) & 48 & 51 & 94 & Sand \\
\hline 1906 & G & 11/16/70 & 0206 & & \(28^{\circ} 34.9{ }^{\prime}\) & \(12^{\circ} 11.2^{\prime}\) & 50 & 54 & 98 & Sand \\
\hline
\end{tabular}
B. SAHARAN SHELF SAMPLES
\begin{tabular}{llll}
\begin{tabular}{c} 
Sample \\
No,
\end{tabular} & Latitude & Longitude & Depth
\end{tabular} Sample Description

TR 15
\begin{tabular}{lllll}
\begin{tabular}{l} 
Sample \\
No.
\end{tabular} & Latitude & Longitude & Depth & Sample Description \\
\hline 40 & \(23^{\circ} 33^{\prime} \mathrm{N}\) & \(16^{\circ} 55^{\prime} \mathrm{W}\) & 145 & Tan shelly sand \\
42 & \(24^{\circ} 21^{\prime} \mathrm{N}\) & \(15^{\circ} 49^{\prime} \mathrm{W}\) & 29 & \begin{tabular}{l} 
Shell fragments and \\
gravel
\end{tabular} \\
43 & \(24^{\circ} 25^{\prime} \mathrm{N}\) & \(15^{\circ} 57^{\prime} \mathrm{W}\) & 40 & Tan shell sand \\
44 & \(24^{\circ} 31^{\prime} \mathrm{N}\) & \(16^{\circ} 09.5^{\prime} \mathrm{W}\) & 60 & Tan shell sand \\
45 & \(24^{\circ} 36^{\prime} \mathrm{N}\) & \(16^{\circ} 18^{\prime} \mathrm{W}\) & 73 & Tan shell sand \\
46 & \(24^{\circ} 39^{\prime} \mathrm{N}\) & \(16^{\circ} 24^{\prime} 5^{\prime} \mathrm{W}\) & 182 & Tan shell sand \\
47 & \(24^{\circ} 38^{\prime} \mathrm{N}\) & \(16^{\circ} 23.5^{\prime} \mathrm{W}\) & 90 & Tan shell sand \\
48 & \(25^{\circ} 27.5^{\prime} \mathrm{N}\) & \(14^{\circ} 48^{\prime} 5^{\prime} \mathrm{W}\) & 35 & Rock \\
50 & \(25^{\circ} 31^{\prime} \mathrm{N}\) & \(14^{\circ} 55^{\prime} \mathrm{W}\) & 70 & Shell sand \\
51 & \(25^{\circ} 32.5^{\prime} \mathrm{N}\) & \(14^{\circ} 57.5^{\prime} \mathrm{W}\) & 82 & Tan shell sand \\
52 & \(25^{\circ} 41^{\prime} \mathrm{N}\) & \(15^{\circ} 10^{\prime} \mathrm{W}\) & 150 & Tan shell sand \\
53 & \(25^{\circ} 38.5^{\prime} \mathrm{N}\) & \(15^{\circ} 06.5^{\prime} \mathrm{W}\) & 91 & Tan shell sand \\
57 & \(26^{\circ} 50.5^{\prime} \mathrm{N}\) & \(13^{\circ} 53^{\prime} \mathrm{W}\) & \(73^{\circ} 54^{\prime} \mathrm{W}\) & 100
\end{tabular}

DIS 21
\begin{tabular}{|c|c|c|c|c|c|}
\hline Station & Sampler & \multicolumn{2}{|c|}{Location} & \multirow[t]{2}{*}{Depth
(m)} & \\
\hline No. & Type & Latitude & Longitude & & Description \\
\hline 6561 & G & \(27^{\circ} 28^{\prime} \mathrm{N}\) & \(13^{\circ} 30^{\prime} \mathrm{W}\) & 75 & Coarse grey-green shelly sand \\
\hline 6562 & G & \(26^{\circ} 43.1{ }^{\prime} \mathrm{N}\) & \(13^{\circ} 52.6{ }^{\prime} \mathrm{W}\) & 64 & Small sample fine grey-green sand \\
\hline 6563 & G & \(26^{\circ} 16.4{ }^{\prime} \mathrm{N}\) & \(14^{\circ} 42.5{ }^{\prime} \mathrm{W}\) & 147 & Small sample fine brown sand \\
\hline 6564 & G & \(25^{\circ} 31.8^{\prime N}\) & \(14^{\circ} 59^{\prime} \mathrm{W}\) & 75 & Ill-sorted brown shelly sand \\
\hline 6565 & G & \(25^{\circ} 07^{\prime} \mathrm{N}\) & \(15^{\circ} 10^{\prime} \mathrm{W}\) & 45 & Very small sample shelly sand \\
\hline 6566 & G & \(24^{\circ} 45.2^{\prime} \mathrm{N}\) & \(15^{\circ} 37^{\prime} \mathrm{W}\) & 32 & Coarse browny-pink ill-sorted shelly sand \\
\hline 6567 & G & \(24^{\circ} 49.5^{\prime} \mathrm{N}\) & \(15^{\circ} 45.5^{\prime} \mathrm{W}\) & 45 & Light brown ill-sorted coarse shelly sand \\
\hline 6568 & G & \(24^{\circ} 55.0^{\prime} \mathrm{N}\) & \(15^{\circ} 54.7^{\prime} \mathrm{W}\) & 64 & Light brown ill-sorted coarse shelly sand. \\
\hline 6569 & G & \(25^{\circ} 00.5^{\prime N}\) & \(16^{\circ} 03.4{ }^{\prime} \mathrm{W}\) & 75 & Light brown ill-sorted coarse shelly sand \\
\hline 6570 & G & \(25^{\circ} 06^{\prime} \mathrm{N}\) & \(16^{\circ} 12.4{ }^{\prime} \mathrm{W}\) & 211 & Gray-green well-sorted medium sand \\
\hline 6573 & G & \(25^{\circ} 16.6^{\prime N}\) & \(16^{\circ} 30.8^{\prime} \mathrm{W}\) & 1402 & Gray-green well-sorted fine sand (small sample) \\
\hline 6574 & G & \(25^{\circ} 11.5^{\prime N}\) & \(16^{\circ} 21.7^{\prime} \mathrm{W}\) & 830 & Gray-green well-sorted fine sand (small sample) \\
\hline 6585 & G & \(24^{\circ} 10.9^{\prime N}\) & \(16^{\circ} 17^{\prime} \mathrm{W}\) & 55 & Gray brown well-sorted medium sand \\
\hline 6587 & G & \(23^{\circ} 44^{\prime} \mathrm{N}\) & \(16^{\circ} 35^{\prime} \mathrm{W}\) & 49 & Light gray coarse shell sand (small sample) \\
\hline
\end{tabular}

DIS 21
\begin{tabular}{|c|c|c|c|c|c|}
\hline Station No. & Sampler Type & Latitude & Longitude & \begin{tabular}{l}
Depth \\
(m)
\end{tabular} & Description \\
\hline 6588 & G & \(23^{\circ} 00^{\prime} \mathrm{N}\) & \(16^{\circ} 56^{\prime} \mathrm{W}\) & 60 & Brown coarse shell sand \\
\hline 6589 & G & \(22^{\circ} 10.3{ }^{\prime N}\) & \(16^{\circ} 55^{\prime} \mathrm{W}\) & 40 & Gray-green wellsorted fine sand (small sample) \\
\hline 6590 & G & \(22^{\circ} 10.5^{\prime} \mathrm{N}\) & \(17^{\circ} 06.3^{\prime} \mathrm{W}\) & 55 & Gray-green medium sand \\
\hline 6591 & G & \(22^{\circ} 10.5^{\prime} \mathrm{N}\) & \(17^{\circ} 16.5^{\prime} \mathrm{W}\) & 75 & Gray-green mediumcoarse sand \\
\hline 6592 & G & \(22^{\circ} 11^{\prime} \mathrm{N}\) & \(17^{\circ} 22^{\prime} \mathrm{W}\) & 92 & Gray-green coarse sand \\
\hline 6593 & G & \(22^{\circ} 11^{\prime} \mathrm{N}\) & \(17^{\circ} 27^{\prime} \mathrm{W}\) & 752 & Gray-green fine sand (small sample) \\
\hline 6594 & G & \(22^{\circ} 11.6^{\prime} \mathrm{N}\) & \(17^{\circ} 37.9^{\prime} \mathrm{W}\) & 1259 & Brown fine sand (small sample) \\
\hline 6621 & G & \(21^{\circ} 38.8^{\prime N}\) & \(17^{\circ} 18.7^{\prime} \mathrm{W}\) & 68 & Gray-green coarse sand \\
\hline 6622 & G & \(21^{\circ} 10.3{ }^{\prime N}\) & \(17^{\circ} 15.8{ }^{\prime} \mathrm{W}\) & 45 & Gray-green medium sand (small sample) \\
\hline 6623 & G & \(20^{\circ} 47^{\prime} \mathrm{N}\) & \(17^{\circ} 10.4{ }^{\prime} \mathrm{W}\) & 34 & Gray-green medium sand \\
\hline 6624 & G & \(20^{\circ} 46^{\prime} \mathrm{N}\) & \(17^{\circ} 21^{\prime} \mathrm{W}\) & 57 & Gray-green fine sand \\
\hline 6625 & G & \(20^{\circ} 46^{\prime} \mathrm{N}\) & \(17^{\circ} 31.3^{\prime} \mathrm{W}\) & 79 & Gray-green fine sand \\
\hline 6626 & G & \(20^{\circ} 46^{\prime} \mathrm{N}\) & \(17^{\circ} 36.8^{\prime} \mathrm{W}\) & 96 & Gray-green medium sand \\
\hline 6627 & G & \(20^{\circ} 47^{\prime} \mathrm{N}\) & \(17^{\circ} 42^{\prime} \mathrm{W}\) & 578 & Gray-green medium sand (small sample) \\
\hline 6628 & G & \(20^{\circ} 47.1^{\prime N}\) & \(17^{\circ} 49^{\prime} \mathrm{W}\) & 921 & Gray-green medium sand (small sample) \\
\hline
\end{tabular}

AII 59
\begin{tabular}{|c|c|c|c|c|}
\hline Station No. & Latitude & Longitude & \begin{tabular}{l}
Depth \\
(M)
\end{tabular} & Sample Description \\
\hline 1741 & \(23^{\circ} 45^{\prime} \mathrm{N}\) & \(17^{\circ} 02{ }^{\prime} \mathrm{W}\) & 256 & \\
\hline 1742 & \(23^{\circ} 52.3^{\prime N}\) & \(17^{\circ} 00.5{ }^{\prime} \mathrm{W}\) & 1050 & \\
\hline 1744 & \(26^{\circ} 20^{\prime} \mathrm{N}\) & \(14^{\circ} 37^{\prime} \mathrm{W}\) & 240 & \\
\hline 1745 & \(26^{\circ} 32^{\prime} \mathrm{N}\) & \(14^{\circ} 51^{\prime} \mathrm{W}\) & 1000 & \\
\hline 1746 & \(26^{\circ} 53^{\prime \prime} \mathrm{N}\) & \(15^{\circ} 16^{\prime} \mathrm{W}\) & 2840 & \\
\hline
\end{tabular}

AII 75
\begin{tabular}{|c|c|c|c|c|c|}
\hline Sample No. & Sampler & Latitude & Longitude & \begin{tabular}{l}
Depth \\
(m)
\end{tabular} & \\
\hline 29 & EUS & \(24^{\circ} 42^{\prime} \mathrm{N}\) & \(15^{\circ} 41^{\circ} \mathrm{W}\) & 46 & Medium to coarse grained bioclastic sand, light brown \\
\hline 30 & EUS & \(24^{\circ} 28.5^{\prime N}\) & \(15^{\circ} 50^{\prime} \mathrm{W}\) & 100 & Medium to finegrained bioclastic sand, light brown \\
\hline 31 & EUS & \(24^{\circ} 15.5^{\prime N}\) & \(15^{\circ} 59.5^{\prime} \mathrm{W}\) & 80 & Medium to coarse grained bioclastic sand, light brown \\
\hline 32 & EUS & \(24^{\circ} \mathrm{O} 2^{\prime} \mathrm{N}\) & \(16^{\circ} 08^{\prime} \mathrm{W}\) & 8 & Medium grained bioclastic sand, light brown \\
\hline 33 & EUS & \(22^{\circ} 54{ }^{\prime} \mathrm{N}\) & \(16^{\circ} 56.1{ }^{\prime} \mathrm{W}\) & & Sandy shell fragmen \\
\hline
\end{tabular}

AII 82
\begin{tabular}{|c|c|c|c|c|c|}
\hline Station No. & Sampler Type & Date & Latitude & Longitude & \[
\begin{gathered}
\text { Depth } \\
\mathrm{CM} \\
\hline
\end{gathered}
\] \\
\hline 1 & VV & 4/29/74 & \(21^{\circ} 19^{\prime} \mathrm{N}\) & \(17^{\circ} 05^{\prime} \mathrm{W}\) & 25 \\
\hline 2 & VV & 5/2/74 & & & 13 \\
\hline 3 & VV & 5/2/74 & \(20^{\circ} 58^{\prime} \mathrm{N}\) & & 28 \\
\hline 4 & VV & 5/3/74 & \(20^{\circ} 58^{\prime} \mathrm{N}\) & & 30 \\
\hline 5 & VV & 5/3/74 & \(20^{\circ} 58^{\prime \prime} \mathrm{N}\) & & 28 \\
\hline 6 & VV & 5/6/74 & \(20^{\circ} 58^{\prime} \mathrm{N}\) & & 26 \\
\hline 7 & BC & 5/17/74 & \(21^{\circ} 40^{\prime} \mathrm{N}\) & \(17^{\circ} 01.4^{\prime W}\) & 30 \\
\hline 8 & BC & 5/17/74 & \(21^{\circ} 18.9^{\prime N}\) & \(17^{\circ} 05.5^{\prime} \mathrm{W}\) & 39 \\
\hline 9 & lVV & 5/18/74 & 21037.9'N & \(17^{\circ} 19.9^{\prime} \mathrm{W}\) & 90 \\
\hline 10 & 1VV & 5/18/74 & 21*59.1'N & \(17^{\circ} 12.5^{\prime} \mathrm{W}\) & 57 \\
\hline 11 & 1VV & 5/19/74 & \(22^{\circ} 00.7^{\prime} \mathrm{N}\) & \(17^{\circ} 00.2^{\prime} \mathrm{W}\) & 35 \\
\hline 12 & 1VV & 5/19/74 & \(22^{\circ} 00.4^{\prime N}\) & \(17^{\circ} 26.2^{\prime} \mathrm{W}\) & 240 \\
\hline 13 & 1VV & 5/20/74 & \(21^{\circ} 40^{\prime} \mathrm{N}\) & \(17^{\circ} 27.5^{\prime} \mathrm{W}\) & 225 \\
\hline 14 & 1 VV & 5/21/74 & \(21^{\circ} 39^{\prime} \mathrm{N}\) & \(17^{\circ} 27^{\prime} \mathrm{W}\) & 100 \\
\hline 15 & BC & 5/21/74 & \(20^{\circ} 58.4^{\prime N}\) & \(17^{\circ} 06.3^{\prime} \mathrm{W}\) & 30 \\
\hline 16 & IVV & 5/21/74 & \(21^{\circ} 00.3{ }^{\prime} \mathrm{N}\) & \(17^{\circ} 34.9^{\prime} \mathrm{W}\) & 140 \\
\hline 17 & BC & 5/21/74 & \(20^{\circ} 59.8^{\prime \prime} \mathrm{N}\) & 17041'W & 480 \\
\hline 18 & 1VV & 5/22/74 & \(21^{\circ} 00.5^{\prime N}\) & \(17^{\circ} 21.6^{\prime} \mathrm{W}\) & 65 \\
\hline 19 & lVV & 5/22/74 & \(21^{\circ} 20^{\prime} \mathrm{N}\) & \(17^{\circ} 26.7^{\prime} \mathrm{W}\) & 100 \\
\hline 20 & lVV & 5/22/74 & \(21^{\circ} 20^{\prime} \mathrm{N}\) & \(17^{\circ} 29.2^{\prime} \mathrm{W}\) & 230 \\
\hline 21 & BC & 5/23/74 & \(21^{\circ} 22.2^{\prime \prime} \mathrm{N}\) & \(17^{\circ} 38.2^{\prime} \mathrm{W}\) & 500 \\
\hline 22 & lVV & 5/23/74 & \(21^{\circ} 39^{\prime} \mathrm{N}\) & \(17^{\circ} 28.8^{\prime} \mathrm{W}\) & 366 \\
\hline 23 & BC & 5/23/74 & \(21^{\circ} 39.7{ }^{\prime} \mathrm{N}\) & \(17^{\circ} 41.2^{\prime} \mathrm{W}\) & 832 \\
\hline 24 & lVV & 5/25/74 & \(21^{\circ} 42.2^{\prime} \mathrm{N}\) & \(18^{\circ} 09.2^{\prime} \mathrm{W}\) & 1820 \\
\hline 25 & BC & 5/25/74 & \(21^{\circ} 42.2^{\prime N}\) & \(18^{\circ} 09.2{ }^{\prime} \mathrm{W}\) & 1820 \\
\hline 26 & 1VV & 5/26/74 & \(22^{\circ} 00.5^{\prime N}\) & \(17^{\circ} 27.1\) 'W & 540 \\
\hline 27 & BC & 5/27/74 & \(21^{\circ} 25.4{ }^{\prime} \mathrm{N}\) & \(17^{\circ} 03.5^{\prime} \mathrm{W}\) & 27 \\
\hline
\end{tabular}

IC 68
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Station } \\
\text { No. } \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
Sampler \\
Type
\end{tabular} & Date & \[
\begin{aligned}
& \text { Time } \\
& \text { From }
\end{aligned}
\] & \[
\begin{array}{r}
\text { GMT } \\
\hline \text { TO } \\
\hline
\end{array}
\] & Lat. N to Lat. N & \[
\begin{aligned}
& \text { Long. } \mathrm{K} \\
& \text { to } \\
& \text { Long. W }
\end{aligned}
\] & Depth
UCF & \[
C^{\mathrm{Rc}}
\] & \[
\begin{aligned}
& \text { 1ge } \\
& \text { CM } \\
& \hline
\end{aligned}
\] & Comments \\
\hline 237 & G & 7/2/68 & 2005 & 2017 & \(23^{\circ} 32.1{ }^{\prime}\) & \(16^{\circ} 57.4^{\prime}\) & 58 & 60 & 110 & Shells \\
\hline 238 & BD/PD & 7/2/68 & 2035 & 2057 & \[
\begin{aligned}
& 23^{\circ} 32^{\prime} \\
& 23^{\circ} 31.7^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 16^{\circ} 54.8^{\prime} \\
& 16^{\circ} 54.2^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 55 \\
& 55
\end{aligned}
\] & \[
\begin{aligned}
& 57 \\
& 57
\end{aligned}
\] & \[
\begin{aligned}
& 104 \\
& 104
\end{aligned}
\] & Shells \\
\hline 239 & BD/PD & 7/2/68 & 2129 & 2205 & \[
\begin{aligned}
& 23^{\circ} 31.4^{\prime} \\
& 23^{\circ} 31.7^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 16^{\circ} 50^{\prime} \\
& 16^{\circ} 49.5^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 45 \\
& 42
\end{aligned}
\] & \[
\begin{aligned}
& 46 \\
& 43
\end{aligned}
\] & \[
\begin{aligned}
& 84 \\
& 79
\end{aligned}
\] & Shells and shelly limestone \\
\hline 240 & G & 7/2/68 & 2230 & 2239 & \(23^{\circ} 31.1^{\prime}\) & \(16^{\circ} 45.9{ }^{\prime}\) & 32 & 33 & 60 & Shelly sand \\
\hline 241 & BD/PD & 7/2/68 & 2257 & 2312 & \[
\begin{aligned}
& 23^{\circ} 30.7^{\prime} \\
& 23^{\circ} 30.4^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 16^{\circ} 43.2^{\prime} \\
& 16^{\circ} 42.6^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 32 \\
& 32
\end{aligned}
\] & \[
\begin{array}{r}
33 \\
33
\end{array}
\] & \[
\begin{aligned}
& 60 \\
& 60
\end{aligned}
\] & Shelly sand in pipe \\
\hline 242 & G & 7/2/68 & 2356 & 2405 & \(23^{\circ} 30.3^{\prime}\) & \(16^{\circ} 36^{\prime}\) & 19 & 20 & 37 & Shells \\
\hline 243 & GC & 8/2/68 & 0053 & 0107 & \(23^{\circ} 30^{\prime}\) & \(16^{\circ} 28.9{ }^{\prime}\) & 17 & 18 & 33 & 3" shell fragments \\
\hline 244 & G & 8/2/68 & 0155 & 0200 & \(23^{\circ} 29.5{ }^{\prime}\) & \(16^{\circ} 22^{\prime}\) & 16 & 17 & 31. & Shell fragments \\
\hline 245 & G & 8/2/68 & 0247 & 0253 & \(23^{\circ} 29^{\prime}\) & \(16^{\circ} 15.5{ }^{\prime}\) & 12 & 13 & 24 & Shell fragments \\
\hline 246 & G & 8/2/68 & 0335 & 0340 & \(23^{\circ} 28.2^{\prime}\) & \(16^{\circ} 08.8^{\prime}\) & 13 & 14 & 26 & Shell fragments \\
\hline 247 & G & 8/2/68 & 0353 & 0355 & \(23^{\circ} 28.2^{\prime}\) & \(16^{\circ} 06.5^{\prime}\) & 10 & 11 & 20 & Shell fragments \\
\hline 249 & BD/PD & 9/2/68 & 0741 & 0845 & \[
\begin{aligned}
& 26^{\circ} 29.5^{\prime} \\
& 26^{\circ} 29^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 15^{\circ} 01.5^{\prime} \\
& 15^{\circ} 01^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 776 \\
& 696
\end{aligned}
\] & \[
\begin{aligned}
& 798 \\
& 715
\end{aligned}
\] & \[
\begin{aligned}
& 1452 \\
& 1301
\end{aligned}
\] & Glob. mud \\
\hline 250 & BD/PD & 9/2/68 & 0910 & 1035 & \[
\begin{aligned}
& 26^{\circ} 27.5^{\prime} \\
& 26^{\circ} 26.8^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 14^{\circ} 59^{\prime} \\
& 14^{\circ} 58^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 558 \\
& 528
\end{aligned}
\] & \[
\begin{aligned}
& 574 \\
& 543
\end{aligned}
\] & \[
\begin{array}{r}
1045 \\
988
\end{array}
\] & Glob. mud and some coral \\
\hline
\end{tabular}
IC 68
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Station } \\
& \text { No. } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Sampl \\
Type
\end{tabular} & Date & Time From & \[
\begin{array}{r}
\text { GMT } \\
\text { TO } \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\text { Lat. } N \\
\text { to } \\
\text { Lat. } N \\
\hline
\end{array}
\] & \[
\begin{gathered}
\text { Long. W } \\
\text { to } \\
\text { Long. } W \\
\hline
\end{gathered}
\] & \[
\begin{aligned}
& \text { Depth } \\
& \text { UCF }
\end{aligned}
\] & \(\mathrm{CF}^{\mathrm{Ra}}\) & ge & Comments \\
\hline 251 & GC & 9/2/68 & 1100 & 1140 & \(26^{\circ} 24.4{ }^{\prime}\) & \(14^{\circ} 54.7\) ' & 532 & 547 & 996 & \(41 / 2 \mathrm{ft}\). mud \\
\hline 252 & BD/PD & 9/2/68 & 1237 & 1404 & \[
\begin{aligned}
& 26^{\circ} 21.5^{\prime} \\
& 26^{\circ} 21^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 14^{\circ} 51.3^{\prime} \\
& 14^{\circ} 50.3^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 363 \\
& 312
\end{aligned}
\] & \[
\begin{aligned}
& 373 \\
& 321
\end{aligned}
\] & \[
\begin{aligned}
& 679 \\
& 584
\end{aligned}
\] & Coral and sand \\
\hline 255 & G & 9/2/68 & 1644 & 1648 & \(26^{\circ} 17.1^{\prime}\) & \(14^{\circ} 45^{\prime}\) & 113 & 116 & 212 & Shell sand \\
\hline 256 & G & 9/2/68 & 1707 & 1717 & \(26^{\circ} 14.6^{\prime}\) & \(14^{\circ} 43^{\prime}\) & 75 & 77 & 141 & Shell sand \\
\hline 257 & G & 9/2/68 & 1732 & 1740 & \(26^{\circ} 13.2{ }^{\prime}\) & \(14^{\circ} 41^{\prime}\) & 57 & 59 & 108 & Shell sand \\
\hline 258 & BD/PD & 9/2/68 & 1758 & 1819 & \[
\begin{aligned}
& 26^{\circ} 11.5^{\prime} \\
& 26^{\circ} 11.3^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 14^{\circ} 38^{\prime} \\
& 14^{\circ} 39^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 46 \\
& 44
\end{aligned}
\] & \[
\begin{aligned}
& 47 \\
& 45
\end{aligned}
\] & \[
\begin{aligned}
& 86 \\
& 82
\end{aligned}
\] & Shell sand \\
\hline 259 & BD/PD & 9/2/68 & 1832 & 1847 & \[
\begin{aligned}
& 26^{\circ} 11.1^{\prime} \\
& 26^{\circ} 11.2^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 14^{\circ} 39^{\prime} \\
& 14^{\circ} 38.5^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 45 \\
& 45
\end{aligned}
\] & \[
\begin{aligned}
& 46 \\
& 46
\end{aligned}
\] & \[
\begin{aligned}
& 84 \\
& 84
\end{aligned}
\] & Shelly limestone \\
\hline 260 & BD/PD & 9/2/68 & 1920 & 1940 & \[
\begin{aligned}
& 26^{\circ} 11.1^{\prime} \\
& 26^{\circ} 10.7^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 14^{\circ} 37.7^{\prime} \\
& 14^{\circ} 38^{\circ}
\end{aligned}
\] & \[
\begin{aligned}
& 41 \\
& 39
\end{aligned}
\] & \[
\begin{aligned}
& 42 \\
& 40
\end{aligned}
\] & \[
\begin{aligned}
& 77 \\
& 73
\end{aligned}
\] & Shell fragments \\
\hline 261 & BD/PD & 9/2/68 & 1955 & 2035 & \[
\begin{aligned}
& 26^{\circ} 10.6^{\prime} \\
& 26^{\circ} 10.5^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 14^{\circ} 36.5^{\prime} \\
& 14^{\circ} 37^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 32 \\
& 32
\end{aligned}
\] & \[
\begin{aligned}
& 33 \\
& 33
\end{aligned}
\] & \[
\begin{aligned}
& 60 \\
& 60
\end{aligned}
\] & Shell limestone \\
\hline 262 & BD/PD & 9/2/68 & 2112 & 2140 & \[
\begin{aligned}
& 26^{\circ} 09.8^{\prime} \\
& 26^{\circ} 09.5^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 14^{\circ} 36.7^{\prime} \\
& 14^{\circ} 36.5^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 32 \\
& 25
\end{aligned}
\] & \[
\begin{aligned}
& 33 \\
& 26
\end{aligned}
\] & \[
\begin{aligned}
& 60 \\
& 48
\end{aligned}
\] & Coral and shell sand \\
\hline 263 & BD/PD & 9/2/68 & 2200 & 2219 & \[
\begin{aligned}
& 26^{\circ} 09.1^{\prime} \\
& 26^{\circ} 09.1^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 14^{\circ} 34.5^{\prime} \\
& 14^{\circ} 34^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 19 \\
& 17
\end{aligned}
\] & \[
\begin{aligned}
& 20 \\
& 18
\end{aligned}
\] & \[
\begin{aligned}
& 37 \\
& 33
\end{aligned}
\] & Shell limestone and.shell sand \\
\hline 264 & BD/PD & 9/2/68 & 2248 & 2309 & \[
\begin{aligned}
& 26^{\circ} 08.6^{\prime} \\
& 26^{\circ} 08.8^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 14^{\circ} 32.3^{\prime} \\
& 14^{\circ} 33^{\prime}
\end{aligned}
\] & \[
\begin{aligned}
& 15 \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& 16 \\
& 16
\end{aligned}
\] & \[
\begin{aligned}
& 29 \\
& 29
\end{aligned}
\] & Limestone and shell sand \\
\hline
\end{tabular}
- 92 -

SECTION III
SAMPLE TEXTURE

\section*{III SAMPLE TEXTURE}

The following data section provides all available sample texture information. The size divisions used are as follows:

Particle diameters \(>2 \mathrm{~mm}\) (phi <-1)
\(0.0625-2 \mathrm{~mm}\) (phi =-1 to phi = 4)
\[
<0.0625 \mathrm{~mm}
\] (phi > 4)

The sand and gravel components were determined by wet sieving; the clay fraction by centrifuging techniques.

The texture classification numbers for the gravel-sand-mud or sand-silt-clay analyses are based on the following diagram (after Shepard, 1954);


A MOROCCAN SHELF SAMPLES
 Sand-Silt-Clay
Classification Clay/
Mud




 \begin{tabular}{c} 
Sample \\
No. \\
\hline
\end{tabular}


Gravel-Sand-Mud
Classification
- 97 -


Sand-Silt-Clay
Classification
Clay/
Mud
\% Mud
(Silt + Clay)

x \(\begin{array}{r}\text { 苟 } \\ \hline 1\end{array}\)



\begin{tabular}{c} 
Sample \\
No. \\
\hline
\end{tabular}












 x. ch


\(\stackrel{-}{0}\)
0
0
0
0
0
\begin{tabular}{c} 
Sample \\
No. \\
\hline
\end{tabular}





 20



\begin{tabular}{c} 
Sample \\
No. \\
\hline
\end{tabular}










ボ o \(\begin{array}{r}\text { n } \\ \text { 荷 }\end{array}\)


 \begin{tabular}{r}
\(\substack{0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
\hline \\
\hline}\)
\end{tabular}







\(0600^{\circ}{ }^{n} O_{-1}^{\infty}\)

水

\[
69
\]

II


\[
8
\]

\[
\begin{aligned}
& \% \\
& \text { Silt } \\
& \hline
\end{aligned}
\]



x







 ○






 か० \(\begin{array}{r}\text { 号 } \\ \text { 岂 }\end{array}\)
 ＋
r－1
\(\times 0\)


20
\begin{tabular}{c} 
Sample \\
NO． \\
\hline
\end{tabular}
1843
1845
1847
1861 B
1863
1865
1866
1867
1868
18 1868
\begin{tabular}{|c|c|}
\hline  &  \\
\hline
\end{tabular}
응
AII 59
\[
\begin{aligned}
& \text { Clay/ } \\
& \text { Mud } \\
& \hline
\end{aligned}
\] Sand-Silt-Clay
classification



\begin{tabular}{|r|r|r|r|r|r|}
0 \\
0 \\
0 \\
0 \\
0
\end{tabular}\(|\)
\begin{tabular}{l}
\(\begin{array}{c}\text { Sample } \\
\text { NO. }\end{array}\) \\
\hline \\
\(1747 A\) \\
\(1747 B\) \\
1748 \\
1749 \\
1750
\end{tabular}



\begin{tabular}{c}
\(\begin{array}{c}\text { Sample } \\
\text { No. }\end{array}\) \\
\hline \\
34 \\
35
\end{tabular}
- 110 -

B SAHARAN SHELF SAMPLES


Sand－Silt－Clay
Classification离完 \％Mud
\((\) Silt + Clay \()\)










\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{AII 59} \\
\hline \[
\begin{gathered}
\text { Sample } \\
\text { No. } \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
\% \\
Gravel
\end{tabular} & \begin{tabular}{l}
\% \\
Sand
\end{tabular} & \[
\begin{aligned}
& \% \\
& \text { Silt } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \% \\
& \text { clay }
\end{aligned}
\] & \[
\begin{aligned}
& \text { \% Mud } \\
& \text { (Silt + Clay) }
\end{aligned}
\] & Clay/ Mud & Sand-Silt-Clay Classification & Gravel-Sand-Mud Classification \\
\hline 1742 & & 13 & & & 87 & & & \\
\hline 1744 & & 91 & & & 9 & & . & \\
\hline 1745 & & 81 & & & 19 & & & \\
\hline 1746 & & 14 & & & 86 & & & \\
\hline \multicolumn{9}{|l|}{AII 75} \\
\hline \[
\begin{gathered}
\text { Sample } \\
\text { No. } \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
\% \\
Gravel
\end{tabular} & \[
\begin{aligned}
& \% \\
& \text { Sand }
\end{aligned}
\] & \[
\begin{aligned}
& \% \\
& \text { Silt } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \% \\
& \text { clay }
\end{aligned}
\] & \[
\begin{aligned}
& \text { \% Mud } \\
& \text { (Silt + Clay) }
\end{aligned}
\] & \begin{tabular}{l}
clay/ \\
Mud
\end{tabular} & Sand-Silt-Clay Classification & Gravel-Sand-Mud Classification \\
\hline 29 & & 98 & 1 & 1 & 2 & . 50 & 4 & , \\
\hline 30 & & 98 & 1 & 1 & 2 & . 50 & 4 & \(\vec{\omega}\) \\
\hline 31 & & 97 & 2 & 1 & 3 & . 33 & 4 & 1 \\
\hline 32 & & 97 & tr & 3 & 3 & . 99 & 4 & \\
\hline
\end{tabular}



20 获

 AII 82 \begin{tabular}{l} 
\% \\
Sand \\
\hline
\end{tabular}
 \(\begin{array}{r}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline 0\end{array}\)
\begin{tabular}{c} 
Sample \\
No. \\
\hline
\end{tabular}

- 115 -

SECTION IV
FINE SAND FRACTION; COMPOSITION

SECTION IV: FINE SAND FRACTION: COMPOSITION
As before, samples are grouped by cruise, and listed by sample number, with Moroccan samples preceding Saharan samples. Analyses were made on the fine sand fraction (125 to 250 micrometers in size) because this fraction occurs in most of the world's shelf sediments, thus allowing a means of intercomparison between different continental margins. Analyses were made by counting 300 grains under a binocular microscope; feldspars were stained for identification (see Milliman, 1972, for further details). All minerals are reported in percentages of the fine sand fraction.

Mineral Names
Qtz = quartz
K.Feld= potash feldspar

Plag = plagioclase
Glauc = glauconite
Mica = mica plates
Heavies = magnetite, rutile, amphiboles, et cetera
Rock Frag = rock fragments
Abbreviations: \(F / F+Q=\) ratio of feldspar to quartz plus feldspar \(\mathrm{K} / \mathrm{Na}=\) ratio of potash feldspar to plagioclase

Mineralogical Classification
\(\mathrm{A}=\operatorname{arkosic}(\mathrm{F} / \mathrm{F}+\mathrm{Q}=\) more than 25 percent)
\(S A=\) subarkosic ( \(F / F+Q=10-25\) percent)
SO = suborthoquartzitic ( \(\mathrm{F} / \mathrm{F}+\mathrm{Q}=5-10\) percent)
\(O\) = orthoquartzitic ( \(F / F+Q=\) less than 5 percent)
- 117 -
A. MOROCCAN SHELF SAMPLES

TR 15
\(\begin{array}{clllllllll}\text { Sample } & \% & \% K & \% & \text { F/ } & & \% & \% & \% & \text { \% Rock } \\ \text { No. } & \text { Qtz } & \text { Feld } & \text { Plag } & \text { F+Q } & \text { K/Na } & \text { Glauc } & \text { Mica } & \text { Heavies } & \text { Frag }\end{array}\)
\begin{tabular}{lrrrlllll}
70 & 27 & 6 & 4 & A & 1.5 & 60 & & tr \\
75 & 57 & 12 & 14 & A & .86 & 16 & & tr \\
76 & 17 & 5 & 2 & A & 2.5 & 75 & & tr \\
77 & 36 & 9 & 6 & A & 1.5 & 47 & & tr \\
83 & 55 & 14 & 20 & A & .7 & 10 & & tr \\
84 & 52 & 9 & 15 & A & .6 & 24 & & tr \\
85 & 40 & 6 & 7 & SA & .86 & 47 & tr & tr \\
90 & 35 & 2 & 8 & SA & .25 & 54 & & tr \\
91 & 56 & 16 & 20 & A & .8 & 7 & 1 & tr \\
99 & 53 & 9 & 17 & A & .53 & 20 & & 1 \\
106 & 59 & 4 & 10 & A & .4 & 25 & & 2 \\
117 & & & & A & & \(>95\) & & \\
118 & 71 & 6 & 12 & SA & .5 & 8 & & tr \\
122 & 52 & 3 & 6 & SA & .5 & 39 & & \\
125 & 55 & 4 & 10 & SA & .4 & 20 & &
\end{tabular}

IC 68
\(\begin{array}{rllllllll}\text { Sample } & \% & \text { \%K } & \% & \text { F/ } & \% & \% & \% & \% \text { Rock } \\ \text { No. } & \text { Otz } & \text { Feld } & \text { Plag } & \text { F+O } & \text { K/Na } & \text { Glauc } & \text { Mica } & \text { Heavies }\end{array}\) No. Qtz Feld Plag \(\mathrm{F}+\mathrm{Q} \mathrm{K} / \mathrm{Na}\) Glauc Mica Heavies Frag
\begin{tabular}{lrrrlll}
\hline & & & & & \\
266 & 49 & 22 & 20 & A & 1.1 & 6 \\
267 & 9 & \(\operatorname{tr}\) & 2 & & \(\mathrm{tr} / 2\) & 88 \\
268 & & & & & & 15 \\
269 & 27 & 5 & 2 & SA & 2.5 & 64 \\
270 & 62 & 4 & 9 & SA & .44 & 24 \\
271 & & & & & & 10 \\
272 & & & & & & 10 \\
273 & & & & & 40 \\
274 & tr & tr & tr & & \(\operatorname{tr} / \mathrm{tr}\) & \(>95\) \\
275 & & & & & & 20 \\
276 & 14 & 2 & 2 & SA & 1 & 81
\end{tabular}

IC 69
\begin{tabular}{clllllllll} 
Sample & \(\%\) & \(\% K\) & \(\%\) & \(F /\) & & \(\%\) & \(\%\) & \(\%\) & \%Rock \\
No. & \(Q t z\) & Feld & Plag & F+Q & \(\mathrm{K} / \mathrm{Na}\) & Glauc & Mica & Heavies & Frag
\end{tabular}
829100
830100

831 98
832 95
833 98
834 98
835 99
836 98 837 98
838 99
839 98

840 

841100
847
848
851


852
853
854
855
860
862
867
870
873

874
100
875
876
877
879
882
885
891
893
894
896
898
221
4 SA . 25
95
903
905
908
912
913
922
tr 45
5
\(<5\)
50
\(<5\)
50

IC 69
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Sample No. & \[
\begin{aligned}
& \% \\
& \text { Qtz }
\end{aligned}
\] & \[
\begin{aligned}
& \% \mathrm{~K} \\
& \text { Feld }
\end{aligned}
\] & \% Plag & \[
\begin{aligned}
& F / \\
& F+Q
\end{aligned}
\] & \(\mathrm{K} / \mathrm{Na}\) & \begin{tabular}{l}
\% \\
Glauc
\end{tabular} & \begin{tabular}{l}
\% \\
Mica
\end{tabular} & \begin{tabular}{l}
\% \\
Heavies
\end{tabular} & \% Rock Frag \\
\hline 923 & 15 & 1 & 1 & SA & 1 & 79 & & & \\
\hline 926 & 53 & 9 & 13 & A & . 69 & 23 & & & \\
\hline 927 & & & & & & <5 & & & 40 \\
\hline 928 & 61 & 13 & 21 & A & . 62 & 2 & & & \\
\hline 929 & & & & & & \(<5\) & & & \\
\hline 930 & & & & & & 10 & & & \\
\hline 931 & & & & & & \(<5\) & & & 50 \\
\hline 932 & & & & & & \(<5\) & & & \\
\hline 933 & & & & & & \(<5\) & & & \\
\hline 934 & & & & & & 25 & & & \\
\hline 935 & & & & & & 15 & & & \\
\hline 936 & & & & & & 15 & & & 30 \\
\hline 937 & & & & & & 45 & & & 25 \\
\hline 940 & & & & & & 25 & & & \\
\hline 942 & & & & & & 95 & & & \\
\hline 944 & & & & & & 95 & & & \\
\hline 949 & & & & & & 50 & & & \\
\hline 950 & & & & & & \(>60\) & & & \\
\hline 951 & & & & & & 99 & & & \\
\hline 952 & & & & & & 94 & & & \\
\hline 958 & & & & & & 65 & & & \\
\hline 959 & & & & & & 90 & & & \\
\hline 961 & & & & & & \(>70\) & & & \\
\hline 963 & & & & & & \(>90\) & & & \\
\hline 964 & & & & & & \(>90\) & & & \\
\hline 965 & & & & & & \(>95\) & & & \\
\hline 966 & & & & & & 60 & & & \\
\hline 968 & & & & & & 90 & & & \\
\hline 969 & & & & & & 85 & & & \\
\hline 970 & & & & & & tr & & & \\
\hline 976 & & & & & & 60 & & & \\
\hline 977 & & & & & & 99 & & & \\
\hline 979 & & & & & & \(>95\) & & & \\
\hline 980 & & & & & & 99 & & & \\
\hline 981 & & & & & & 99 & & & \\
\hline 987 & & & & & & 50 & & & \\
\hline 988 & & & & & & \(>80\) & & & \\
\hline 989 & & & & & & 99 & & & \\
\hline 991 & & & & & & 90 & & & \\
\hline 992 & & & & & & 98 & & & \\
\hline 993 & & & & & & 98 & & & \\
\hline 999 & & & & & & 75 & & & \\
\hline
\end{tabular}

IC 69
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Sample No. & \[
\begin{aligned}
& \% \\
& \text { Qtz }
\end{aligned}
\] & \[
\begin{aligned}
& \% \mathrm{~K} \\
& \text { Feld }
\end{aligned}
\] & \% Plag & \[
\begin{aligned}
& F / \\
& F+Q
\end{aligned}
\] & \(\mathrm{K} / \mathrm{Na}\) & \begin{tabular}{l}
\[
\%
\] \\
Glauc
\end{tabular} & \begin{tabular}{l}
\% \\
Mica
\end{tabular} & \begin{tabular}{l}
\[
\%
\] \\
Heavies
\end{tabular} & \% Rock Frag \\
\hline 1003 & & & & & & \(>85\) & & & \\
\hline 1005 & & & & & & 50 & & & \\
\hline 1006 & & & & & & 50 & & & \\
\hline 1007 & & & & & & 60 & & & \\
\hline 1016 & & & & & & 60 & & & 10 \\
\hline 1018 & & & & & & \(>90\) & & & \\
\hline 1020 & & & & & & 95 & & & \\
\hline 1021 & & & & & & 50 & & & \\
\hline 1022 & & & & & & 70 & & & \\
\hline 1023 & & & & & & \(>85\) & & & \\
\hline 1030 & & & & & & 70 & & & \\
\hline 1031 & & & & & & \(>95\) & & & \\
\hline 1032 & & & & & & \(>90\) & & & \\
\hline 1033 & & & & & & 75 & & & \\
\hline 1034 & & & & & & \(>90\) & & & \\
\hline 1037 & & & & & & 60 & & & \\
\hline 1038 & & & & & & \(>90\) & & & \\
\hline 1046 & & & & & & 20 & & & 35 \\
\hline 1047 & & & & & & \(<5\) & & & 35 \\
\hline 1063 & & & & & & 5 & & & 40 \\
\hline 1064 & & & & & & \(<10\) & & & 25 \\
\hline 1065 & & & & & & 10 & & & 35 \\
\hline 1069 & & & & & & 95 & & & \\
\hline 1070 & & & & & & 100 & & & \\
\hline 1072 & & & & & & 99 & & & \\
\hline 1078 & & & & & & \(>90\) & & & \\
\hline 1079 & & & & & & \(<10\) & & & \\
\hline 1080 & & & & & & 15 & & & 30 \\
\hline 1081 & & & & & & 15 & & & 25 \\
\hline 1084 & & & & & & 60 & & & \\
\hline 1086 & & & & & & 98 & & & \\
\hline 1088 & & & & & & 98 & & & \\
\hline
\end{tabular}

IC 70
\begin{tabular}{clllllllll} 
Sample & \(\%\) & \(\% K\) & \(\%\) & \(F /\) & & \(\%\) & \(\%\) & \(\%\) & \(\%\) Rock \\
No. & Qtz & Feld & Plag & F+Q & K/Na & Glauc & Mica & Heavies & Frag
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 1203 & 80 & 9 & 6 & SA & 1.48 & 3 & 2 \\
\hline 1227 & 71 & 13 & 6 & SA & 2.2 & 8 & 1 \\
\hline 1284 & 73 & 8 & 9 & SA & . 85 & 3 & 7.5 \\
\hline 1319 & 66 & 9 & 11 & SA & . 78 & 13.5 & 1 \\
\hline 1329 & 66 & 14 & 7 & SA & 2.12 & 3 & 8 \\
\hline 1340 & 75 & 7 & 9 & SA & . 75 & 3 & 3 \\
\hline 1350 & & & & & & \(>75\) & \\
\hline 1432 & & & & & & 100 & \\
\hline 1434 & 59 & 18 & 25 & A & . 69 & 23 & 6 \\
\hline 1522 & 69 & 15 & 8 & SA & 1.84 & 7 & . 51 \\
\hline 1528 & 78 & 9 & 6 & SA & 1.45 & 6 & 1 \\
\hline 1565 & 61 & 21 & 9 & A & 2.25 & 7 & 1 \\
\hline 1571 & 62 & 15 & 17 & A & . 90 & 4 & 1 \\
\hline 1599 & 57 & 13 & 11 & A & 1.19 & 18 & 2 \\
\hline 1605 & 52 & 17 & 18 & A & . 95 & 9 & 4 \\
\hline 1651 & 69 & 17 & 5 & SA & 3.53 & 5 & 4 \\
\hline 1657 & 58 & 12 & 9 & A & 1.33 & 15 & 6 \\
\hline 1663 & 52 & 16 & 22 & A & . 72 & 7 & 3 \\
\hline 1689 & 71 & 11 & 6 & SA & 1.71 & 8 & 3 \\
\hline 1719 & 71 & 17 & 3 & SA & 5.3 & 7 & 2 \\
\hline 1725 & 55 & 18 & 20 & A & . 94 & 6 & . 6 \\
\hline 1731 & 68 & 16 & 8 & A & 2.0 & 4 & 4 \\
\hline 1775 & 48 & 17 & 19 & A & . 89 & 12 & 4 \\
\hline 1781 & 58 & 12 & 12 & A & 1 & 13 & 4 \\
\hline 1797 & 38 & 26 & 29 & A & . 90 & 4 & . 5 \\
\hline 1805 & 64 & 16 & 11 & A & 1.37 & 6 & 2 \\
\hline 1824 & 66 & 18 & 9 & A & 1.96 & 7 & . 3 \\
\hline 1828 & & & & & & 100 & \\
\hline 1843 & 78 & 13 & 3 & SA & 4.7 & 3 & 6 \\
\hline 1861 & 33 & 25 & 25 & A & 1.02 & 11 & 6 \\
\hline 1866 & 67 & 6 & 13 & SA & . 44 & 10 & 4 \\
\hline 1870 & 68 & 14 & 11 & A & 1.3 & 5 & 1 \\
\hline 1875 & 67 & 15 & 10 & A & 1.5 & 6 & 2 \\
\hline 1887 & 54 & 12 & 3 & SA & 3.7 & 9 & 3 \\
\hline 1892 & 34 & 2 & 1 & SO & 1.75 & 60 & . 3 \\
\hline 1898 & 71 & 17 & 4 & SA & 4.17 & 6 & . 1 \\
\hline 1901 & 27 & 45 & 25 & A & 1.79 & 2 & . 6 \\
\hline
\end{tabular}

AII 59
\begin{tabular}{lllllllll} 
Sample & \(\%\) & \(\%\) K & \(\%\) & F/ & & \(\%\) & \(\%\) & \(\%\) \\
No. & Qtz & Feld & Plag & F+Q & K/Na & Glauc & Mica & Heavies
\end{tabular} \begin{tabular}{c} 
Frag Rock \\
\hline
\end{tabular}

AII 75
\begin{tabular}{clllllllll} 
Sample & \(\%\) & \(\% K\) & \(\%\) & F/ & & \(\%\) & \(\%\) & \(\%\) & \(\%\) Rock \\
No. & Qtz & Feld & Plag & F+Q & K/Na & Glauc & Mica & Heavies & Frag
\end{tabular}
\begin{tabular}{lllll} 
NO. Qtz Feld Plag \(F+Q\) & \(\mathrm{~K} / \mathrm{Na}\) & Glau \\
\(34 \quad \mathrm{tr}\) & & \(>95\)
\end{tabular}
B. SAHARAN SHELF SAMPLES

TR 15
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Sample No. & \% Qtz & \[
\begin{aligned}
& \% \text { K } \\
& \text { Feld }
\end{aligned}
\] & \[
\begin{aligned}
& \text { \% } \\
& \text { Plag }
\end{aligned}
\] & \[
\begin{aligned}
& F / \\
& F+Q
\end{aligned}
\] & K/Na & \begin{tabular}{l}
\% \\
Glauc
\end{tabular} & \begin{tabular}{l}
\% \\
Mica
\end{tabular} & \begin{tabular}{l}
\% \\
Heavies
\end{tabular} & \% Rock Frag \\
\hline 22 & 54 & 2 & 4 & A & . 5 & 35 & & tr & \\
\hline 25 & 54 & 5 & 8 & SA & . 63 & 33 & & tr & \\
\hline 33 & 95 & tr & 2 & 0 & tr/2 & 2 & & tr & \\
\hline 50 & 67 & 9 & 4 & SA & 2.25 & 18 & & 1 & \\
\hline
\end{tabular}

IC 68
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Sample No. & \% Qtz & \begin{tabular}{l}
\(\% K\) \\
Feld
\end{tabular} & \begin{tabular}{l}
\% \\
Plag
\end{tabular} & \[
\begin{aligned}
& F / \\
& F+Q
\end{aligned}
\] & \(\mathrm{K} / \mathrm{Na}\) & \begin{tabular}{l}
\% \\
Glauc
\end{tabular} & \% Mica & \begin{tabular}{l}
\% \\
Heavies
\end{tabular} & \% Rock Frag \\
\hline 226 & 89 & 3 & 1 & 0 & 3 & 4 & & & \\
\hline 228 & 87 & 5 & 2 & So & 2.5 & 5 & & & \\
\hline 235 & & & & & & 0 & & & \\
\hline 247 & 91 & 3 & 1 & 0 & 3 & 4 & & & \\
\hline 252 & 18 & 3 & 5 & A & . 6 & 73 & & & \\
\hline 257 & 73 & 5 & 11 & SA & . 45 & & & & \\
\hline 258 & & & & & & 60 & & & \\
\hline 259 & & & & & & 30 & & & \\
\hline 260 & 22 & & & & \(\operatorname{tr} / 3\) & 75 & & & \\
\hline 262 & & & & & & 5 & & & \\
\hline 264 & 61 & 7 & & & . 5 & 1 & & & \\
\hline
\end{tabular}

\section*{AII 59}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Sample No. & \[
\%
\]
Qtz & \begin{tabular}{l}
\(\%\) K \\
Feld
\end{tabular} & \% Plag & \[
\begin{aligned}
& F / \\
& F+Q
\end{aligned}
\] & K/Na & \begin{tabular}{l}
\% \\
Glauc
\end{tabular} & \begin{tabular}{l}
\% \\
Mica
\end{tabular} & \begin{tabular}{l}
\% \\
Heavies
\end{tabular} & \begin{tabular}{l}
\% Rock \\
Frag
\end{tabular} \\
\hline 1742 & & & & & & 10 & 5 & & \\
\hline 1744 & & & & & & 55 & & & \\
\hline 1745 & & & & & & 85 & & & \\
\hline 1746 & & & & & & tr & 5 & & \\
\hline
\end{tabular}

\section*{AII 75}
\begin{tabular}{rlllllllll} 
Sample & \(\%\) & \(\% K\) & \(\%\) & \(F /\) & \(\%\) & \(\%\) & \(\%\) & \(\%\) & Rock \\
No. & Qtz & Feld & Plag & F+Q & K & Glauc & Mica & Heavies & Frag
\end{tabular}

\section*{AII 82}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Sample No. & \[
\begin{aligned}
& \% \\
& \text { Qtz }
\end{aligned}
\] & \begin{tabular}{l}
\(\%\) K \\
Feld
\end{tabular} & \% plag & \[
\begin{aligned}
& F / \\
& F+Q
\end{aligned}
\] & \(\mathrm{K} / \mathrm{Na}\) & \begin{tabular}{l}
\% \\
Glauc
\end{tabular} & \begin{tabular}{l}
\% \\
Mica
\end{tabular} & \begin{tabular}{l}
\% \\
Heavies
\end{tabular} & \% Rock Frag \\
\hline 1 & & & & & & & tr & & \\
\hline 2 & & & & & & tr & & & \\
\hline 3 & & & & & & & tr & tr & \\
\hline 9 & 30 & & & & & 50 & & & \\
\hline 10 & 80 & & & & & 20 & & & \\
\hline 11 & 100 & & & & & & & & \\
\hline 12 & 70 & & & & & 30 & & & \\
\hline 13 & & & & & & tr & & & \\
\hline 16 & & & & & & tr & & & \\
\hline 17 & & & & & & 30 & & & \\
\hline 20 & 40 & & & & & 60 & & & \\
\hline 21 & 70 & & & & & 30 & & & \\
\hline 22 & 40 & & & & & 60 & & & \\
\hline 23 & & & & & & 15 & & & \\
\hline 26 & & & & & & 30 & & & \\
\hline
\end{tabular}
- 127 -

SECTION V

CLAY MINERALS

SECTION V CLAY MINERALS
Samples are grouped into cruises, and listed by sample number. Moroccan samples are followed by Saharan samples. Clay mineral contents were determined by calculating their peak area percentages from X-ray diffractograms, following the method of Biscaye (1965). The determinations were made on material finer than 2 micrometers in size, which was separated from the rest of the sediment by centrifuge, and vacuum pumped through silver filters.

We determined four major clay minerals: - montmorillonite, illite, kaolinite, and chlorite, which are presented in terms of their percentage of the less than 2 micrometer (clay) size fraction. Although the results of our calculations are recorded to the first decimal place, the method used is probably only precise to within \(\pm 5\) percent of any given value. Values given in parentheses represent the means of duplicate analyses.
- 129 -

A MOROCCAN SHELF SAMPLES
\begin{tabular}{|c|c|c|c|c|c|}
\hline Sample No. & \% Mont. & \begin{tabular}{l}
\% \\
Illite
\end{tabular} & \begin{tabular}{l}
\% \\
Kaolinite
\end{tabular} & \begin{tabular}{l}
\% \\
Chlorite
\end{tabular} & \[
\frac{\text { Illite }}{\text { Kaolinite }}
\] \\
\hline 266 & 2.7 & 82.4 & 10.3 & 4.6 & 8.00 \\
\hline 272 & 9.0 & 75.9 & 10.8 & 4.3 & 7.03 \\
\hline 274 & 7.0 & 78.8 & 8.7 & 5.5 & 9.06 \\
\hline 275 & 5.7 & 79.4 & 9.5 & 5.4 & 8.36 \\
\hline 276 & 7.1 & 76.9 & 11.2 & 4.8 & 6.87 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Sample \\
No.
\end{tabular} & \begin{tabular}{l}
\% \\
Mont.
\end{tabular} & \begin{tabular}{l}
\[
\%
\] \\
Illite
\end{tabular} & \begin{tabular}{l}
\% \\
Kaolinite
\end{tabular} & \begin{tabular}{l}
\% \\
Chlorite
\end{tabular} & \[
\frac{\text { Illite }}{\text { Kaolinite }}
\] \\
\hline 829 & (13.9) & (74.2) & (5.6) & (6.4) & (13.39) \\
\hline 831 & 7.8 & 76.9 & 7.9 & 7.4 & 9.73 \\
\hline 833 & 25.7 & 55.6 & 10.5 & 8.2 & 5.30 \\
\hline 835 & 11.6 & 76.5 & 6.0 & 5.9 & 12.75 \\
\hline 837 & 7.1 & 81.9 & 5.5 & 5.5 & 14.89 \\
\hline 838 & 9.2 & 82.2 & 4.3 & 4.3 & 19.12 \\
\hline 839 & 8.8 & 73.6 & 9.3 & 8.3 & 7.91 \\
\hline 841 & 7.7 & 81.0 & 4.6 & 6.7 & 17.61 \\
\hline 847 & 13.2 & 70.4 & 8.2 & 8.2 & 8.59 \\
\hline 851 & 7.7 & 80.7 & 5.8 & 5.8 & 13.91 \\
\hline 853 & 9.2 & 77.4 & 6.7 & 6.7 & 11.55 \\
\hline 855 & 8.1 & 78.1 & 6.9 & 6.9 & 11.32 \\
\hline 860 & 9.2 & 74.8 & 8.0 & 8.0 & 9.35 \\
\hline 861 & 8.9 & 78.5 & 5.8 & 6.8 & 13.53 \\
\hline 862 & 10.8 & 78.9 & 4.4 & 5.9 & 17.93 \\
\hline 870 & 7.1 & 79.2 & 6.9 & 6.8 & 11.48 \\
\hline 873 & 9.5 & 77.8 & 6.5 & 6.2 & 11.97 \\
\hline 875 & 10.3 & 78.3 & 4.1 & 7.3 & 19.10 \\
\hline 877 & 7.8 & 78.8 & 6.7 & 6.7 & 11.76 \\
\hline 882 & 8.5 & 79.9 & 5.8 & 5.8 & 13.78 \\
\hline 887 & 7.0 & 84.6 & 4.2 & 4.2 & 20.14 \\
\hline 890 & 7.7 & 79.5 & 4.2 & 8.6 & 18.92 \\
\hline 894 & 11.4 & 74.8 & 6.9 & 6.9 & 10.84 \\
\hline 896 & 12.1 & 72.1 & 7.9 & 7.9 & 9.13 \\
\hline 899 & 6.7 & 78.4 & 7.0 & 7.9 & 11.20 \\
\hline 901 & 6.1 & 83.7 & 3.7 & 6.5 & 22.62 \\
\hline 903 & 4.3 & 83.1 & 6.3 & 6.3 & 13.19 \\
\hline 906 & 8.9 & 80.0 & 3.7 & 7.4 & 21.62 \\
\hline 912 & 5.0 & 84.8 & 5.3 & 4.9 & 16.00 \\
\hline 920 & 5.8 & 81.7 & 6.0 & 6.5 & 13.62 \\
\hline 921 & 6.2 & 73.6 & 10.1 & 10.1 & 7.29 \\
\hline 922 & 10.8 & 79.2 & 5.0 & 5.0 & 15.84 \\
\hline 924 & 8.8 & 77.2 & 7.0 & 7.0 & 11.03 \\
\hline 926 & 7.6 & 77.2 & 7.6 & 7.6 & 10.16 \\
\hline 928 & 8.1 & 76.9 & 7.5 & 7.5 & 10.25 \\
\hline 931 & 5.0 & 81.9 & 6.4 & 6.9 & 12.77 \\
\hline 933 & 5.9 & 80.9 & 6.6 & 6.6 & 12.26 \\
\hline 935 & (31.1) & (59.9) & (4.5) & (4.5) & (13.31) \\
\hline -936 & 9.5 & 75.3 & 7.6 & 7.6 & 9.91 \\
\hline 939 & 9.2 & 72.2 & 9.3 & 9.3 & 7.76 \\
\hline 941 & 15.5 & 67.7 & 8.4 & 8.4 & 8.06 \\
\hline 942 & 9.2 & 75.9 & 6.3 & 8.6 & 12.05 \\
\hline 944 & 8.0 & 79.0 & 6.5 & 6.5 & 12.15 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Sample No. & \% Mont. & \% Illite & \[
\begin{aligned}
& \text { \% } \\
& \text { Kaolinite }
\end{aligned}
\] & \% Chlorite & \[
\frac{\text { Illite }}{\text { Kaolinite }}
\] \\
\hline 950 & 8.2 & 79.0 & 5.4 & 5.4 & 14.63 \\
\hline 951 & 9.2 & 78.0 & 4.5 & 8.1 & 17.38 \\
\hline 952 & 13.9 & 62.9 & 11.6 & 11.6 & 5.42 \\
\hline 956 & (16.8) & (69.3) & (9.5) & (9.5) & (7.98) \\
\hline 958 & 6.9 & 79.1 & 7.0 & 7.0 & 11.30 \\
\hline 961 & (10.4) & (74.6) & (6.8) & (8.3) & (11.82) \\
\hline 964 & 20.1 & 56.5 & 11.7 & 11.7 & 4.83 \\
\hline 966 & 10.9 & 74.1 & 8.1 & 6.9 & 9.15 \\
\hline 969 & 8.8 & 71.2 & 10.0 & 10.0 & 7.12 \\
\hline 970 & 8.5 & 76.5 & 7.5 & 7.5 & 10.20 \\
\hline 976 & 13.1 & 69.5 & 8.7 & 8.7 & 7.99 \\
\hline 979 & 8.7 & 73.5 & 8.9 & 8.9 & 8.26 \\
\hline 981 & 10.1 & 71.5 & 9.0 & 9.4 & 7.94 \\
\hline 987 & 11.1 & 74.5 & 7.2 & 7.2 & 10.35 \\
\hline 989 & 7.9 & 75.7 & 8.2 & 8.2 & 9.23 \\
\hline 992 & 8.1 & 77.2 & 6.3 & 8.4 & 12.25 \\
\hline 998 & 12.3 & 77.3 & 5.2 & 5.2 & 14.87 \\
\hline 999 & 7.8 & 73.0 & 9.6 & 9.6 & 7.60 \\
\hline 1020 & 7.2 & 78.8 & 9.7 & 4.3 & 8.12 \\
\hline 1029 & 8.9 & 75.1 & 6.1 & 9.9 & 12.31 \\
\hline 1035 & 9.1 & 76.9 & 7.0 & 7.0 & 10.99 \\
\hline 1039 & 8.1 & 74.1 & 8.9 & 8.9 & 8.33 \\
\hline 1048 & 13.5 & 76.2 & 4.1 & 6.2 & 18.59 \\
\hline 1053 & 5.5 & 76.3 & 9.1 & 9.1 & 8.38 \\
\hline 1065 & 11.0 & 75.8 & 6.1 & 7.1 & 12.43 \\
\hline 1072 & 9.7 & 72.3 & 6.3 & 11.7 & 11.48 \\
\hline 1078 & 17.1 & 71.0 & 5.6 & 6.3 & 12.68 \\
\hline 1083 & 7.9 & 76.6 & 6.6 & 8.9 & 11.61 \\
\hline 1088 & 10.2 & 75.3 & 4.9 & 9.6 & 15.37 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Sample } \\
\text { No. } \\
\hline
\end{gathered}
\] & \% Mont. & \[
\begin{aligned}
& \% \\
& \text { Illite }
\end{aligned}
\] & \begin{tabular}{l}
\% \\
Kaolinite
\end{tabular} & \begin{tabular}{l}
\% \\
Chlorite
\end{tabular} & \[
\frac{\text { Illite }}{\text { Kaolinite }}
\] \\
\hline 1201 & 10.8 & 79.2 & 5.0 & 5.0 & 15.84 \\
\hline 1203 & 9.3 & 77.2 & 6.3 & 7.2 & 12.25 \\
\hline 1205 & 5.9 & 80.1 & 5.8 & 8.2 & 13.81 \\
\hline 1207 & 9.7 & 77.0 & 4.9 & 8.4 & 15.71 \\
\hline 1209 & 5.4 & 80.2 & 5.0 & 9.4 & 16.04 \\
\hline 1229 & 9.6 & 78.0 & 5.1 & 7.3 & 15.29 \\
\hline 1283 & 13.8 & 76.8 & 4.7 & 4.7 & 16.34 \\
\hline 1284 & 18.1 & 74.5 & 3.7 & 3.7 & 20.14 \\
\hline 1293 & 10.2 & 77.8 & 4.8 & 7.2 & 16.21 \\
\hline 1317 & 9.4 & 63.2 & 13.7 & 13.7 & 4.61 \\
\hline 1319 & 7.1 & 77.9 & 6.2 & 8.8 & 12.56 \\
\hline 1321 & 6.9 & 82.2 & 4.0 & 6.9 & 20.55 \\
\hline 1329 & 8.0 & 77.7 & 5.7 & 8.6 & 13.63 \\
\hline 1331 & 7.1 & 80.6 & 6.1 & 6.2 & 13.21 \\
\hline 1338 & 4.3 & 79.9 & 7.9 & 7.9 & 10.11 \\
\hline 1340 & 6.1 & 71.6 & 9.8 & 12.5 & 7.31 \\
\hline 1343 & 4.8 & 77.6 & 8.8 & 8.8 & 8.82 \\
\hline 1350 & 4.7 & 79.7 & 7.8 & 7.8 & 10.22 \\
\hline 1430 & 6.7 & 77.3 & 8.0 & 8.0 & 9.66 \\
\hline 1432 & 6.9 & 82.9 & 5.1 & 5.1 & 16.25 \\
\hline 1434 & 4.2 & 84.0 & 5.9 & 5.9 & 14.24 \\
\hline 1436 & (5.1) & (78.9) & (7.3) & (8.8) & (10.99) \\
\hline 1440 & 3.8 & 84.2 & 6.0 & 6.0 & 14.03 \\
\hline 1516 & 5.3 & 78.6 & 7.5 & 8.6 & 10.48 \\
\hline 1518 & 5.0 & 81.2 & 6.9 & 6.9 & 11.77 \\
\hline 1520 & 6.4 & 78.5 & 5.0 & 10.1 & 15.70 \\
\hline 1522 & 5.1 & 81.4 & 5.8 & 7.7 & 14.03 \\
\hline 1524 & 6.9 & 83.1 & 5.3 & 4.7 & 15.68 \\
\hline 1526 & 6.8 & 82.7 & 4.5 & 6.0 & 18.38 \\
\hline 1528 & (6.2) & (81.3) & (6.0) & (6.6) & (13.85) \\
\hline 1530 & 4.8 & 83.4 & 5.9 & 5.9 & 14.14 \\
\hline 1532 & 5.9 & 80.5 & 6.8 & 6.8 & 11.84 \\
\hline 1565 & 5.5 & 80.0 & 6.4 & 8.1 & 12.50 \\
\hline 1567 & 3.9 & 83.6 & 5.6 & 6.9 & 14.93 \\
\hline 1569 & 6.3 & 85.1 & 4.3 & 4.3 & 19.79 \\
\hline 1571 & 3.7 & 80.5 & 7.1 & 8.7 & 11.34 \\
\hline 1573 & 5.1 & 81.7 & 6.3 & 6.9 & 12.97 \\
\hline 1609 & 4.3 & 87.1 & 4.3 & 4.3 & 12.97 \\
\hline 1661 & 3.8 & 89.8 & 3.2 & 3.2 & 28.06 \\
\hline 1663 & 3.7 & 88.3 & 4.0 & 4.0 & 22.08 \\
\hline 1681 & 4.6 & 82.4 & 5.6 & 7.4 & 14.71 \\
\hline 1689 & 7.9 & 77.0 & 5.7 & 9.4 & 13.51 \\
\hline 1691 & 0.0 & 88.6 & 5.7 & 5.7 & 15.54 \\
\hline
\end{tabular}

IC 70
\begin{tabular}{|c|c|c|c|c|c|}
\hline Sample No. & \begin{tabular}{l}
\% \\
Mont.
\end{tabular} & \[
\begin{aligned}
& \% \\
& \text { Illite } \\
& \hline
\end{aligned}
\] & ```
%
Kaolinite
``` & \begin{tabular}{l}
\% \\
Chlorite
\end{tabular} & \[
\frac{\text { Illite }}{\text { Kaolinite }}
\] \\
\hline 1693 & 5.3 & 86.3 & 7.7 & 0.7 & 11.21 \\
\hline 1719 & 0.0 & 89.6 & 5.2 & 5.2 & 17.23 \\
\hline 1721 & 6.9 & 84.7 & 4.2 & 4.2 & 20.17 \\
\hline 1723 & 5.3 & 83.3 & 5.7 & 5.7 & 14.61 \\
\hline 1725 & 6.1 & 81.7 & 4.8 & 7.4 & 17.02 \\
\hline 1729 & 4.8 & 85.0 & 4.4 & 5.8 & 19.32 \\
\hline 1731 & 4.7 & 82.2 & 4.7 & 8.4 & 17.49 \\
\hline 1771 & 4.6 & 84.3 & 6.1 & 5.0 & 13.82 \\
\hline 1773 & 4.7 & 83.5 & 5.9 & 5.9 & 14.15 \\
\hline 1775 & 4.9 & 83.3 & 5.9 & 5.9 & 14.12 \\
\hline 1777 & 4.3 & 81.2 & 3.9 & 10.6 & 20.82 \\
\hline 1779 & 4.1 & 83.1 & 6.4 & 6.4 & 12.98 \\
\hline 1795 & 5.5 & 84.5 & 5.0 & 5.0 & 16.90 \\
\hline 1796 & 6.0 & 82.6 & 4.8 & 6.6 & 17.21 \\
\hline 1797 & 5.7 & 83.6 & 5.0 & 5.7 & 16.72 \\
\hline 1799 & 4.4 & 82.6 & 6.5 & 6.5 & 12.71 \\
\hline 1801 & 5.7 & 84.9 & 4.0 & 5.4 & 21.23 \\
\hline 1820 & 4.0 & 89.5 & 2.4 & 4.1 & 37.29 \\
\hline 1822 & 6.6 & 83.4 & 5.0 & 5.0 & 16.68 \\
\hline 1824 & 4.0 & 85.0 & 5.5 & 5.5 & 15.45 \\
\hline 1828 & 4.8 & 83.0 & 6.1 & 6.1 & 13.61 \\
\hline 1836 & 2.8 & 87.4 & 4.9 & 4.9 & 17.84 \\
\hline 1840 & 3.8 & 86.6 & 4.8 & 4.8 & 18.04 \\
\hline 1841 & 6.5 & 85.2 & 3.2 & 5.1 & 26.63 \\
\hline 1843 & 4.0 & 87.4 & 4.3 & 4.3 & 20.33 \\
\hline 1845 & 4.9 & 85.7 & 4.7 & 4.7 & 18.23 \\
\hline 1847 & 5.3 & 84.8 & 3.8 & 6.1 & 22.32 \\
\hline 1861 & 13.0 & 73.4 & 6.8 & 6.8 & 10.79 \\
\hline 1863 & 9.8 & 77.8 & 6.2 & 6.2 & 12.55 \\
\hline 1865 & 5.4 & 76.6 & 9.0 & 9.0 & 8.51 \\
\hline 1866 & 16.6 & 71.2 & 6.1 & 6.1 & 11.67 \\
\hline 1867 & 11.1 & 74.7 & 7.1 & 7.1 & 10.52 \\
\hline 1868 & 6.6 & 80.6 & 6.4 & 6.4 & 12.59 \\
\hline 1870 & 3.9 & 87.3 & 4.4 & 4.4 & 19.84 \\
\hline 1873 & 4.2 & 80.8 & 7.5 & 7.5 & 10.77 \\
\hline 1883 & 2.9 & 83.5 & 8.6 & 5.0 & 9.71 \\
\hline 1885 & 4.2 & 80.4 & 9.7 & 5.7 & 8.29 \\
\hline 1886 & 4.1 & 82.3 & 6.8 & 6.8 & 12.10 \\
\hline 1887 & 2.2 & 82.6 & 7.6 & 7.6 & 10.87 \\
\hline 1889 & 3.9 & 80.5 & 7.8 & 7.8 & 10.32 \\
\hline 1891 & 3.4 & 80.2 & 8.2 & 8.2 & 9.78 \\
\hline 1892 & 2.5 & 79.0 & 12.4 & 6.1 & 6.37 \\
\hline 1893 & 4.5 & 81.2 & 9.2 & 5.1 & 8.83 \\
\hline
\end{tabular}
\begin{tabular}{rllllc} 
Sample & \% \\
No. & Mont. & \begin{tabular}{l}
\(\%\) \\
Illite
\end{tabular} & \begin{tabular}{l}
\(\%\) \\
Kaolinite
\end{tabular} & \begin{tabular}{l} 
\% \\
Chlorite
\end{tabular} & \begin{tabular}{c} 
Illite \\
Kaolinite
\end{tabular} \\
\hline 1894 & 4.8 & 82.4 & 6.4 & 6.4 & \\
1898 & 4.5 & 81.1 & 10.9 & 3.5 & 12.88 \\
1899 & 2.4 & 83.3 & 10.7 & 3.6 & 7.44 \\
1900 & 3.6 & 81.7 & 8.1 & 6.6 & 7.79 \\
1905 & 3.6 & 78.6 & 8.9 & 8.9 & 10.09 \\
& & & & 8.83
\end{tabular}
- 136 -

B SAHARAN SHELF SAMPLES
\begin{tabular}{cccccc}
\begin{tabular}{c} 
Sample \\
No.
\end{tabular} & \multicolumn{1}{l}{\begin{tabular}{l}
\(\%\) \\
Mont.
\end{tabular}} & \begin{tabular}{l}
\(\%\) \\
Illite
\end{tabular} & \begin{tabular}{l}
\(\%\) \\
Kaolinite
\end{tabular} & \begin{tabular}{l}
\(\%\) \\
Chlorite
\end{tabular} & \begin{tabular}{l} 
Illite \\
Kaolinite
\end{tabular} \\
\hline & & & & & \\
221 & 33.8 & 34.7 & 23.9 & 7.6 & 1.45 \\
223 & 36.0 & 49.6 & 9.1 & 5.3 & 5.45 \\
224 & 9.9 & 70.9 & 12.7 & 6.5 & 5.58 \\
225 & 20.0 & 64.0 & 11.8 & 4.2 & 5.42 \\
227 & 16.1 & 67.7 & 11.1 & 5.1 & 6.10 \\
230 & 7.1 & 72.6 & 14.8 & 5.5 & 4.90 \\
234 & 14.9 & 68.5 & 7.3 & 9.3 & 9.38 \\
237 & 11.0 & 71.2 & 13.7 & 4.1 & 5.20 \\
238 & 23.3 & 60.2 & 13.1 & 3.4 & 4.60 \\
239 & 5.7 & 78.9 & 7.7 & 7.7 & 10.25 \\
240 & 3.7 & 80.5 & 7.9 & 7.9 & 10.19 \\
241 & 10.0 & 72.7 & 13.2 & 4.1 & 5.51 \\
242 & 6.9 & 76.5 & 12.0 & 4.6 & 6.38 \\
246 & 6.7 & 75.1 & 13.4 & 4.7 & 5.60 \\
249 & 16.5 & 65.9 & 10.2 & 7.4 & 6.46 \\
250 & 15.4 & 58.9 & 19.0 & 6.7 & 3.10 \\
252 & \((9.8)\) & \((73.0)\) & \((11.2)\) & \((6.1)\) & \((6.68)\) \\
257 & 8.3 & 76.2 & 10.3 & 5.2 & 7.40 \\
258 & 10.0 & 74.9 & 9.1 & 6.0 & 8.23 \\
259 & 8.1 & 78.1 & 9.1 & 4.7 & 8.58 \\
263 & 4.5 & 80.5 & 7.5 & 7.5 & 10.73
\end{tabular}
- 138 -

SECTION VI
CHEMICAL ANALYSES AND CARBONATE ASSEMBLAAGE
\%CaCO 3 U.R.I. (TRl5) samples: Aliquots of each sample were treated with \(10 \%\) HCL.

IC 68, IC 69, IC 70, DIS2l samples: \(\%_{C a C O}^{3}\) was determined by titration with \({ }^{3}\) sodium hydroxide after dissolution in HCL, and the values corrected for soluble apatite content.

WHOI (AII 59, AII 75, AII 82) samples: \(\% \mathrm{CaCO}_{3}\) was determined by the acid-leaching technique of Twenhofel and Tyler (1941).

Organic Carbon
The organic carbon content, in percent, was measured by a gasometric technique similar to that described by Kolpack and Bell (1968), after removal of \(\mathrm{CaCO}_{3}\) by acid treatment.
\(\% \mathrm{~N}_{2}\)
\(\mathrm{C} / \mathrm{N}\)

The percent nitrogen was determined by volumetric determination of aminoid nitrogen by the micro Kjeldahl method of Kabat and Mayer (1948).

This is \%organic carbon/ \% nitrogen

\section*{\(\mathrm{CaCO}_{3}\) Assemblages}

The calcium carbonate components listed are those found within the total sand and gravel fraction ( \(>0.062 \mathrm{~mm}\) ), using either the binocular or the petrographic microscope. The carbonate assemblage code is as follows:
\begin{tabular}{|c|c|}
\hline AC & = Algal Crust \\
\hline AF & = Algal Fragments \\
\hline AL & = Algal Limestone \\
\hline BA & = Barnacle \\
\hline BFM & = Benthonic Foraminifers \\
\hline BP & = Brachiopoda \\
\hline BR & = Bryozoa \\
\hline BS & = Broken Shell \\
\hline C & = Coral \\
\hline CA & = Coralline Algae \\
\hline E & = Echinodermata \\
\hline FM & = Foraminifera \\
\hline FRGS & = Fragments \\
\hline G & = Grapestone \\
\hline L & = Limestone \\
\hline LI & = Limpet \\
\hline M & = Mollusca \\
\hline MI & = Miniacina miniacea (attached foraminifera) \\
\hline 0 & = Outcrop \\
\hline P & = Pelecypoda (Mollusca) \\
\hline PFM & = Planktonic Foraminifers \\
\hline PHOS.L & = Phosphatic Limestone \\
\hline PT & = Pteropoda (Mollusca) \\
\hline S & = Scaphopoda (Mollusca) \\
\hline SE & = Serpulidae (Annelida) worm tubes \\
\hline T & = Textularid (BFM) \\
\hline
\end{tabular}
\(\mathrm{P}_{2} \mathrm{O}_{5}\)
The phosphate content was determined colorimetrically, as \(\mathrm{P}_{2} \mathrm{O}_{5}\), using a vanadomolybdate method, modified after Ward et al. (1963).
- 141 -

A MOROCCAN SHELF SAMPLES

TR 15
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample \# & \% \(\mathrm{CaCO}_{3}\) & \%Org c & \%N & \(\mathrm{C} / \mathrm{N}\) & \(\mathrm{CaCO}_{3}\) Assemblage & \(\% \mathrm{P}_{2} \mathrm{O}_{5}\) \\
\hline 68 & 95 & & & & M & \\
\hline 69 & 75 & & & & M & \\
\hline 70 & 78 & & & & M & \\
\hline 71 & 99 & & & & M & \\
\hline 72 & 97 & & & & BR, M & \\
\hline 73 & 87 & & & & M, FM & \\
\hline 74 & 98 & & & & FM, M & \\
\hline 75 & 26 & & & & FM, M & \\
\hline 76 & 48 & & & & FM, M & \\
\hline 77 & 58 & & & & FM & \\
\hline 78 & 97 & & & & BR & \\
\hline 79 & 99 & & & & BR & \\
\hline 81 & 97 & & & & BR & \\
\hline 82 & 17 & & & & M, FM & \\
\hline 83 & 12 & & & & FM, E & \\
\hline 84 & 25 & & & & FM, E & \\
\hline 85 & 60 & & & & PFM & \\
\hline 86 & 43 & & & & PFM & \\
\hline 87 & 38 & & & & PFM & \\
\hline 88 & 14 & & & & & \\
\hline 89 & 67 & & & & & \\
\hline 90 & 44 & & & & PFM & \\
\hline 91 & 47 & & & & BR, FM & \\
\hline 92 & 47 & & & & M & \\
\hline 93 & 51 & & & & BR, FM & \\
\hline 93A & 73 & & & & BR, FM & \\
\hline 94 & 60 & & & & PFM & \\
\hline 95 & 13 & & & & PFM & \\
\hline 96 & 52 & & & & M & \\
\hline 98 & 35 & & & & 0 & \\
\hline 99 & 26 & & & & M, FM & \\
\hline 102 & & & & & \(\bigcirc\) & \\
\hline 104 & 94 & & & & BFM & \\
\hline 105 & 95 & & & & M & \\
\hline 106 & 75 & & & & M, BR & \\
\hline 108 & 80 & & & & M, FM & \\
\hline 109 & 98 & & & & BR & \\
\hline 111 & 64 & & & & PFM & \\
\hline 113 & 27.9 & & & & & \\
\hline 114 & 78 & & & & M & \\
\hline 115 & & & & & CA & \\
\hline 116 & 49.3 & & & & & \\
\hline 117 & 57 & & & & PFM & \\
\hline 118 & 34 & & & & M, E & \\
\hline 119 & 32.3 & & & & & \\
\hline
\end{tabular}

TR 15

Sample


121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

46
46
37
27.7

46
41
25.5

41
47
79
84
82
69
78
87

PFM, BFM
PFM, BFM, M
M, E, FM

M, FM
M, FM

FM, E
BR, FM
BR, M
\(B R, F M\)
M, FM
M, BR
M, BR, FM

IC 68
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample \# & \% \(\mathrm{CaCO}_{3}\) & \%Org C & \%N & \(\mathrm{C} / \mathrm{N}\) & \(\mathrm{CaCO}_{3}\) Assemblage & \(\% \mathrm{P}_{2} \mathrm{O}_{5}\) \\
\hline 111 & 75.6 & & & & & 0.43 \\
\hline 112 & 81.4 & & & & & 0.27 \\
\hline 113 & 77.5 & & & & & 0.23 \\
\hline 114 & 62.0 & & & & & 0.24 \\
\hline 115 & 33.0 & & & & & 0.15 \\
\hline 116 & 31.0 & & & & & 0.14 \\
\hline 117 & 35.9 & & & & & 0.15 \\
\hline 118 & 47.9 & & & & & 0.17 \\
\hline 119 & 74.7 & & & & & 0.12 \\
\hline 120 & 74.7 & & & & & 0.13 \\
\hline 121 & 72.7 & & & & & 0.23 \\
\hline 125 & 65.0 & & & & & 0.11 \\
\hline 126 & 75.6 & & & & & 0.14 \\
\hline 127 & 66.9 & & & & & 0.18 \\
\hline 128 & & & & & & 0.17 \\
\hline 129 & 82.4 & & & & & 1. 58 \\
\hline 133 & 84.4 & & & & & 3.04 \\
\hline 134 & 87.2 & & & & & 2.49 \\
\hline 135 & 91.1 & & & & & 0.23 \\
\hline 137 & 74.7 & & & & & 0.30 \\
\hline 138 & 48.9 & & & & & \\
\hline 139 & 86.3 & & & & & 0.20 \\
\hline 140 & 84.4 & & & & & 0.79 \\
\hline 141 & 73.8 & & & & & 0.60 \\
\hline 143 & 53.9 & & & & & 0.11 \\
\hline 144 & 61.9 & & & & & 0.11 \\
\hline 149 & 58.8 & & & & & 0.17 \\
\hline 150 & 32.8 & & & & & 0.18 \\
\hline 151 & 28.8 & & & & & 0.32 \\
\hline 153 & 57.5 & & & & & 0.60 \\
\hline 154 & 57.6 & & & & & 0.34 \\
\hline 155 & 43.9 & & & & & 0.72 \\
\hline 266 & 35 & 0.17 & 0.02 & 9.44 & & 0.11 \\
\hline 267 & 92 & & & & BR, M, BA & 0.25 \\
\hline 268 & 93 & & & & G, S, M, BR & 0.20 \\
\hline 269 & 94 & & & & M, BA, BR & 0.24 \\
\hline 270 & 94 & & & & & 0.32 \\
\hline 271 & 94 & & & & CA & 0.27 \\
\hline 272 & 91 & & & & M, BR, CA & 0.15 \\
\hline 273 & 88 & & & & & 0.18 \\
\hline 274 & 76 & & & & FM, M FRGS & 0.21 \\
\hline 275 & 89 & 0.23 & 0.04 & 5.23 & & 0.21 \\
\hline
\end{tabular}

IC 68


IC69
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Sample \# & \% \(\mathrm{CaCO}_{3}\) & \%org & C & \%N & \(\mathrm{C} / \mathrm{N}\) & \(\mathrm{CaCO}_{3}\) Assemblage & \({ }^{\%} \mathrm{P}_{2} \mathrm{O}_{5}\) \\
\hline 802 & 50.3 & & & & & & 0.20 \\
\hline 803 & 39.0 & & & & & & 0.16 \\
\hline 804 & 41.4 & & & & & & 0.27 \\
\hline 805 & 26.5 & & & & & & 0.58 \\
\hline 806 & 23.2 & & & & & & 0.19 \\
\hline 809 & & & & & & & 0.14 \\
\hline 810 & 45.2 & & & & & & 0.16 \\
\hline 811 & 46.5 & & & & & & 0.24 \\
\hline 812 & 47.5 & & & & & & 0.45 \\
\hline 813 & 47.5 & & & & & & 0.41 \\
\hline 814 & 36.9 & & & & & & 0.25 \\
\hline 815 & 41.4 & & & & & & 0.56 \\
\hline 817 & 45.8 & & & & & & 0.36 \\
\hline 818 & 43.2 & & & & & & 0.30 \\
\hline 819 & 90.7 & & & & & & 0.16 \\
\hline 820 & 82.3 & & & & & & 0.38 \\
\hline 821 & 70.3 & & & & & & 0.20 \\
\hline 822 & 68.4 & & & & & & 0.15 \\
\hline 823 & 80.1 & & & & & & 0.10 \\
\hline 824 & 73.9 & & & & & & 0.09 \\
\hline 825 & 54.3 & & & & & & 0.16 \\
\hline 826 & 66.7 & & & & & & 0.22 \\
\hline 827 & 50.6 & & & & & & 0.15 \\
\hline 829 & 63.3 & 0.21 & & 0.04 & 5.68 & L & 0.17 \\
\hline 830 & 76.8 & & & & & & 0.15 \\
\hline 831 & 56.2 & & & & & L, CA, M & 0.21 \\
\hline 832 & 30.5 & & & & & M, FM & 0.60 \\
\hline 833 & 42.6 & & & & & FM, M & 0.35 \\
\hline 834 & 53.4 & & & & & F, FM & 0.56 \\
\hline 835 & 29.4 & & & & & PFM, BFM & 1.24 \\
\hline 836 & 69.5 & & & & & M, FM, CA & 0.31 \\
\hline 837 & 66.0 & & & & & E, M & 0.90 \\
\hline 838 & 19.0 & & & & & PFM, BFM & 0.36 \\
\hline 839 & 30.3 & & & & & E, M & 0.29 \\
\hline 840 & 28.0 & & & & & BFM & 0.37 \\
\hline 841 & 26.6 & 0.45 & & 0.06 & 7.5 & FM, M & 0.56 \\
\hline 842 & 15.4 & & & & & & 0.35 \\
\hline 843 & & & & & & & 0.13 \\
\hline 844 & & & & & & & 0.18 \\
\hline 846 & 36.9 & & & & & & 1.13 \\
\hline 847 & 77.6 & & & & & M, BR, BFM & 1.69 \\
\hline 848 & 83.1 & & & & & M , \(\mathrm{BR}, \mathrm{BFM}\) & 0.56 \\
\hline 850 & 14.4 & & & & & & 0.41 \\
\hline
\end{tabular}

IC69
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Samp \# & \% \(\mathrm{CaCO}_{3}\) & \%org c & \%N & \(\mathrm{C} / \mathrm{N}\) & \(\mathrm{CaCO}_{3}\) Assemblage & \(\% \mathrm{P}_{2} \mathrm{O}_{5}\) \\
\hline 851 & 22.9 & 0.22 & 0.03 & 6.47 & PFM, BFM & 0.36 \\
\hline 852 & 56.3 & & & & FM, M & 0.31 \\
\hline 853 & 78.3 & & & & M, E, FM, BP & 0.26 \\
\hline 854 & 71.7 & & & & FM, M & 0.25 \\
\hline 855 & 73.4 & & & & M & 0.34 \\
\hline 856 & 28.2 & & & & FM & 0.16 \\
\hline 857 & 28.2 & & & & & 0.16 \\
\hline 859 & 46.7 & & & & & 0.22 \\
\hline 860 & 42.0 & & & & FM, M & 0.31 \\
\hline 861 & 28.2 & & & & & 0.18 \\
\hline 862 & 26.6 & 0.74 & 0.04 & 17.21 & FM & 0.56 \\
\hline 863 & 30.9 & & & & & 0.31 \\
\hline 864 & 60.0 & & & & & 0.34 \\
\hline 865 & 28.1 & & & & & 0.18 \\
\hline 866 & 80.6 & & & & & 0.32 \\
\hline 867 & 66.6 & & & & M, CA, BR, FM & 0.29 \\
\hline 868 & & & & & & 0.14 \\
\hline 869 & 30.4 & & & & & 0.18 \\
\hline 870 & 41.4 & & & & M & 0.20 \\
\hline 871 & 69.6 & & & & & 0.23 \\
\hline 872 & 32.6 & & & & & 0.15 \\
\hline 873 & 24.6 & & & & FM & 0.90 \\
\hline 874 & 26.5 & & & & FM, M & 0.68 \\
\hline 875 & 46.0 & 0.32 & 0.05 & 6.53 & & 0.86 \\
\hline 876 & 71.8 & & & & FM, M & 0.24 \\
\hline 877 & 88.4 & & & & M, BR, E, BA & 0.38 \\
\hline 878 & 33.1 & & & & & 0.86 \\
\hline 879 & 53.8 & & & & FM & 0.17 \\
\hline 880 & & & & & & 0.45 \\
\hline 882 & 42.4 & & & & \(\mathrm{M}, \mathrm{BR}, \mathrm{E}, \mathrm{CA}, \mathrm{FM}\) & 1.13 \\
\hline 883 & & & & & & 0.26 \\
\hline 885 & 25.3 & & & & E, M & 0.25 \\
\hline 886 & 83.6 & & & & & 0.13 \\
\hline 887 & 96.8 & & & & & 0.90 \\
\hline 888 & 89.0 & & & & & 0.11 \\
\hline 889 & 92.6 & & & & & 0.10 \\
\hline 890 & 36.1 & 0.52 & 0.09 & 5.78 & & 0.14 \\
\hline 891 & 36.0 & & & & M & 0.18 \\
\hline 892 & 85.3 & & & & & 0.11 \\
\hline 893 & 55.6 & & & & FM, M & 0.23 \\
\hline 894 & 82.1 & & & & M & 0.56 \\
\hline 895 & 67.7 & & & & & 0.68 \\
\hline
\end{tabular}

IC69
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Sample \# & \(\% \mathrm{CaCO}_{3}\) & \%org & C & \%N & \(\mathrm{C} / \mathrm{N}\) & \(\mathrm{CaCO}_{3}\) Assemblage & \(\%_{2}{ }_{2}{ }_{5}\) \\
\hline 896 & 76.9 & & & & & \(B R, ~ E, ~ M\) & 0.93 \\
\hline 897 & 40.3 & & & & & & 0.74 \\
\hline 898 & 88.1 & & & & & M, BR,MI, CA, L & 1.46 \\
\hline 899 & 69.2 & & & & & & 0.51 \\
\hline 901 & 93.3 & & & & & & 0.40 \\
\hline 902 & 96.4 & & & & & & 0.11 \\
\hline 903 & 90.8 & & & & & & 0.22 \\
\hline 904 & 86.5 & & & & & & 0.11 \\
\hline 905 & 90.0 & & & & & M, BA & \\
\hline 906 & 91.4 & 0.09 & & 0.02 & 3.75 & & 0.11 \\
\hline 907 & 96.4 & & & & & \(\mathrm{M}, \mathrm{CA}, \mathrm{BR}\) & 0.10 \\
\hline 908 & 90.2 & & & & & BR, M, MI & 0.10 \\
\hline 909 & 98.3 & & & & & CA, L, BR, M & 0.22 \\
\hline 910 & & & & & & AC & \\
\hline 911 & 92.1 & & & & & CA, BR, LI & 0.13 \\
\hline 912 & 16.2 & & & & & M & 0.19 \\
\hline 913 & 23.0 & & & & & M, FM, E & 0.11 \\
\hline 914 & 88.3 & & & & & & 0.22 \\
\hline 915 & 54.1 & & & & & & 0.22 \\
\hline 918 & 29.2 & & & & & & 0.14 \\
\hline 921 & 38.2 & & & & & FM, M & 0.14 \\
\hline 922 & 77.1 & & & & & BR, M & 0.86 \\
\hline 923 & 81.2 & & & & & BR,MI, M, T & 1.40 \\
\hline 924 & 95.2 & & & & & CA, BR, MI & 0.23 \\
\hline 925 & 80.9 & 0.16 & & 0.04 & 4 & MI, CA & 0.14 \\
\hline 926 & 45.4 & & & & & MI & 0.14 \\
\hline 927 & 10.6 & & & & & M, E & 0.13 \\
\hline 928 & 37.9 & & & & & M, E, BR, FM & 0.14 \\
\hline 929 & 97.7 & & & 0.04 & & BR, MI, CA, M, BA & 0.11 \\
\hline 930 & 95.8 & & & & & CA, MI, SE, BR & 0.09 \\
\hline 931 & 82.7 & & & & & & 0.14 \\
\hline 932 & 98.9 & & & & & BR, CA, MI, M, BA & 0.10 \\
\hline 933 & 94.5 & & & & & M, BR & 0.14 \\
\hline 934 & 92.1 & & & & & M, BR & 0.17 \\
\hline 935 & 90.8 & 0.12 & & 0.03 & 3.87 & E,M, BR, BA & 0.23 \\
\hline 936 & 38.6 & & & & & FM, M FRGS & 0.16 \\
\hline 937 & 100.0 & & & & & M, BA, L & 0.25 \\
\hline 939 & 39.8 & & & & & FM & 0.17 \\
\hline 940 & 42.3 & & & & & PFM & 0.16 \\
\hline 941 & 48.5 & & & & & & 0.63 \\
\hline 942 & 81.7 & 0.35 & & 0.06 & 6.36 & BR, P & 2.03 \\
\hline 943 & 58.5 & & & & & & 2.03 \\
\hline 944 & 92.1 & & & & & M, MI, BP, BR, CA & 0.22 \\
\hline 945 & 90.8 & & & & & MI, BR, PFM & 0.16 \\
\hline
\end{tabular}

IC69
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample \# & \(\% \mathrm{CaCO}_{3}\) & \%org C & \%N & C/N & \(\mathrm{CaCO}_{3} \mathrm{Assemblage}\) & \(\%_{2} \mathrm{O}_{5}\) \\
\hline 946 & & & & & & 0.17 \\
\hline 947 & 71.1 & & & & & 0.15 \\
\hline 949 & 95.8 & & & & BR, M, MI & 0.27 \\
\hline 950 & 96.4 & & & & M, BR & 0.31 \\
\hline 951 & 61.0 & 0.31 & 0.05 & 5.96 & BR, BFM, M & 0.20 \\
\hline 952 & 41.1 & & & & FM & 0.18 \\
\hline 953 & 74.7 & & & & & 0.29 \\
\hline 954 & 98.3 & & & & M SAND & 0.36 \\
\hline 956 & 63.4 & 0.36 & 0.05 & 7.35 & FM & 0.52 \\
\hline 958 & 82.7 & & & & BR, M, BP, CA, C & 3.33 \\
\hline 959 & 85.8 & & & & FM, M, BR, BP & 0.38 \\
\hline 960 & 95.8 & & & & CA, M, BR,MI & 0.16 \\
\hline 961 & 94.5 & 0.17 & 0.04 & 4.47 & PHOS. L, BR, M, CA & 0.20 \\
\hline 962 & 92.1 & & 0.04 & & & 0.25 \\
\hline 963 & 85.2 & & & & L, M, BP & 0.74 \\
\hline 964 & 79.6 & & & & M, BP, FM & 0.56 \\
\hline 965 & 77.1 & & & & BR, M & 0.22 \\
\hline 966 & 72.2 & & & & BR, M, FM, MI & 0.17 \\
\hline 967 & 38.4 & & & & & 0.26 \\
\hline 968 & 48.5 & & & & M, CA & 0.20 \\
\hline 969 & 47.3 & & & & M, FM, BR & 0.19 \\
\hline 970 & 80.2 & & 0.07 & & BR, M,MI, BP & 0.18 \\
\hline 971 & 67.8 & & & & & 0.15 \\
\hline 972 & 97.0 & & & & & 0.17 \\
\hline 973 & 99.4 & & & & PHOS.L, AF, M, BA & 0.18 \\
\hline 974 & 92.1 & & & & \(A L, ~ L, ~ B R\) & 0.34 \\
\hline 975 & 79.2 & & 0.05 & & & 0.28 \\
\hline 976 & 45.4 & & & & M, E, FM & 0.22 \\
\hline 977 & 59.7 & & & & & 0.32 \\
\hline 978 & 74.6 & & & & & 0.22 \\
\hline 979 & 77.7 & & & & M, BR, FM & 0.19 \\
\hline 980 & 72.6 & & & & M, BFM, E & 0.52 \\
\hline 981 & 77.0 & & & & M, FM FRGS & 0.77 \\
\hline 982 & 91.8 & & & & L, M, E, BR & 0.25 \\
\hline 984 & & & & & AC & \\
\hline 985 & 100.0 & & & & & 0.20 \\
\hline 986 & 96.9 & & & & M FRGS & 0.34 \\
\hline 987 & 94.4 & & & & BR, BP & 0.17 \\
\hline 988 & 76.5 & & & & M, E, BR, FM & 0.90 \\
\hline 989 & 65.2 & & & & BFM, M & 0.90 \\
\hline 991 & 59.9 & & & & PFM, E, M, BFM & 0.22 \\
\hline 992 & 80.3 & & & & M SAND & 3.06 \\
\hline 993 & 77.9 & & & & M & 1.80 \\
\hline 995 & & & & & AC & \\
\hline
\end{tabular}

IC 69
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample \# & \% \(\mathrm{CaCO}_{3}\) & \%org c & \%N & \(\mathrm{C} / \mathrm{N}\) & \(\mathrm{CaCO}_{3}\) Assemblage & \(\% \mathrm{P}_{2} \mathrm{O}_{5}\) \\
\hline 996 & & & & & AC & \\
\hline 997 & & & & & AC & \\
\hline 998 & 88.6 & & 0.05 & & & 0.97 \\
\hline 999 & 92.5 & & & & BR, MI & 1.58 \\
\hline 1000 & 68.4 & & & & & 0.74 \\
\hline 1002 & 92.4 & & & & E, BR, MI & 0.68 \\
\hline 1003 & 93.0 & & & & M, BFM, PFM & 0.56 \\
\hline 1005 & 94.3 & & & & BR, M,MI, BP & 0.41 \\
\hline 1006 & 88.6 & & & & BR, MI, FM, BP & 0.32 \\
\hline 1007 & 94.3 & & & & BR, M & 0.26 \\
\hline 1013 & 64.2 & & & & & 0.38 \\
\hline 1016 & 48.0 & & & & M, E, BR & 0.15 \\
\hline 1017 & 41.5 & & & & & 0.14 \\
\hline 1018 & 57.8 & & & & FM, M & 0.31 \\
\hline 1019 & 68.6 & & & & FM & 0.31 \\
\hline 1020 & 69.1 & & 0.06 & & M, FM, BR, MI & 0.31 \\
\hline 1021 & 82.4 & & & & L & 0.15 \\
\hline 1022 & 90.6 & & & & MI, M, BR, BP & 0.24 \\
\hline 1023 & 93.5 & & & & BFM, PFM, M, BR, BP & 0.74 \\
\hline 1024 & & & & & AC & \\
\hline 1.025 & & & & & AC & \\
\hline 1026 & 81.4 & & & & & 0.34 \\
\hline 1027 & & & & & CA, L, M, BR & 0.20 \\
\hline 1028 & 94.4 & & & & M, FM, CA, L & 1.53 \\
\hline 1029 & 84.3 & & 0.03 & & & 3.83 \\
\hline 1030 & 72.6 & & & & BR,MI, M, BP, E & 7.88 \\
\hline 1031 & 92.5 & & & & BR, MI, BP, M & 1.91 \\
\hline 1032 & 92.5 & & & & BP, MI, BR, M & 0.77 \\
\hline 1033 & 94.4 & & & & MI BR, M & 0.38 \\
\hline 1034 & 86.2 & & & & L & 0.37 \\
\hline 1035 & 83.3 & & 0.06 & & & 1.24 \\
\hline 1036 & 94.4 & & & & & 0.31 \\
\hline 1037 & 82.7 & & & & M, MI, BR, BP & 0.18 \\
\hline 1038 & 67.7 & & & & \(\mathrm{M}, \mathrm{BP}, \mathrm{BR}\) & 0.19 \\
\hline 1039 & 35.1 & & 0.13 & & & 0.17 \\
\hline 1040 & 45.8 & & & & & \\
\hline 1042 & & & & & & 0.22 \\
\hline 1044 & & & & & AC & \\
\hline 1045 & & & & & AC & \\
\hline 1046 & 26.8 & & & & M & 0.14 \\
\hline 1047 & 27.3 & & & & M, E & 0.15 \\
\hline 1048 & 28.7 & & 0.03 & & & 0.15 \\
\hline 1050 & 29.7 & & & & FM & 0.15 \\
\hline
\end{tabular}

IC 69
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample \# & \% \(\mathrm{CaCO}_{3}\) & \%org C & \%N & \(\mathrm{C} / \mathrm{N}\) & \(\mathrm{CaCO}_{3}\) Assemblage & \(\%_{2} \mathrm{O}_{5}\) \\
\hline 1051 & 31.4 & & & & FM, E & 0.15 \\
\hline 1052 & 31.6 & & & & FM, M, E & 0.13 \\
\hline 1053 & 41.3 & & 0.11 & & PFM & 0.14 \\
\hline 1054 & 49.3 & & & & FM, M & 0.27 \\
\hline 1056 & 86.0 & & & & FM, BR, & 0.52 \\
\hline 1057 & 63.7 & & & & & 2.61 \\
\hline 1058 & 72.0 & & & & & 1.55 \\
\hline 1059 & 62.6 & & & & & 1.35 \\
\hline 1062 & 70.1 & & & & PFM, BFM & 0.18 \\
\hline 1063 & 37.0 & & & & E & \\
\hline 1064 & 32.3 & & & & M, BR & 0.15 \\
\hline 1065 & 27.8 & & 0.06 & & FM & 0.13 \\
\hline 1066 & 30.6 & & & & FM, E & 0.13 \\
\hline 1067 & 31.1 & & & & FM, E & 0.14 \\
\hline 1068 & 32.3 & & & & PFM & 0.14 \\
\hline 1069 & 55.7 & & & & PFM & 0.16 \\
\hline 1070 & 61.5 & & & & PFM & 0.17 \\
\hline 1071 & 64.2 & & & & & 0.29 \\
\hline 1072 & 71.2 & & 0.05 & & BFM, PFM, M, BR & 0.31 \\
\hline 1073 & 78.5 & & & & M, FM & 0.35 \\
\hline 1078 & 86.6 & & 0.03 & & PFM, BFM & 0.32 \\
\hline 1079 & 70.0 & & & & M, BR, E & 1.08 \\
\hline 1080 & 48.8 & & & & M, SE, S & 0.36 \\
\hline 1081 & 27.5 & & & & FM, E, M & 0.17 \\
\hline 1082 & 28.5 & & & & FM, E & 0.15 \\
\hline 1083 & 26.0 & & 0.04 & & & 0.14 \\
\hline 1084 & 44.0 & & & & & 0.18 \\
\hline 1085 & 36.5 & & & & FM, E & 0.14 \\
\hline 1086 & 47.2 & & & & FM, M & 0.29 \\
\hline 1087 & 61.1 & & & & & 0.36 \\
\hline 1088 & 69.0 & & 0.05 & & M & 0.53 \\
\hline 1090 & 57.5 & & & & & 0.68 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Sample } \\
& \text { \# }
\end{aligned}
\] & \% \(\mathrm{CaCO}_{3}\) & \%orgc & \%N & \(\mathrm{C} / \mathrm{N}\) & \(\mathrm{CaCO}_{3}\) Assemblage & \(\% \mathrm{P}_{2} \mathrm{O}_{5}\) \\
\hline 1201 & 29.9 & & & & & 0.24 \\
\hline 1203 & 41.1 & & & & E, M & 0.36 \\
\hline 1204 & 38.3 & & & & & 0.47 \\
\hline 1205 & 36.5 & & 0.01 & & E, M & 0.71 \\
\hline 1206 & 29.9 & & & & & 0.43 \\
\hline 1208 & 81.7 & & & & & 0.18 \\
\hline 1209 & 86.9 & & & & M, BR & 0.39 \\
\hline 1210 & 27.7 & & & & & 0.14 \\
\hline 1211 & 34.8 & & & & & 0.23 \\
\hline 1212 & 27.1 & & & & & 0.17 \\
\hline 1213 & 87.8 & & & & & 0.18 \\
\hline 1216 & 91.0 & & & & & 0.28 \\
\hline 1217 & 28.1 & & & & & 0.32 \\
\hline 1218 & 28.6 & & & & & 0.28 \\
\hline 1219 & 29.2 & & & & & 0.24 \\
\hline 1220 & 27.5 & & & & & 0.24 \\
\hline 1224 & 85.6 & & & & & 0.20 \\
\hline 1227 & 29.6 & 0.01 & 0.02 & 0.6 & M, E & 0.24 \\
\hline 1229 & 25.9 & & & & M, E, FM & 0.14 \\
\hline 1230 & 25.4 & & & & & 0.19 \\
\hline 1231 & 30.1 & & & & & 0.17 \\
\hline 1232 & 24.2 & & & & & 0.31 \\
\hline 1233 & 24.5 & & & & & 0.20 \\
\hline 1234 & 24.5 & & & & & 0.17 \\
\hline 1238 & 87.1 & & & & & 0.27 \\
\hline 1239 & 90.9 & & & & & 0.16 \\
\hline 1247 & 28.4 & & & & & 0.19 \\
\hline 1248 & 28.4 & & & & & 0.20 \\
\hline 1249 & 30.0 & & & & & 0.23 \\
\hline 1250 & 27.0 & & & & & 0.22 \\
\hline 1251 & 25.9 & & & & & 0.16 \\
\hline 1255 & 24.8 & & & & & 0.26 \\
\hline 1256 & 27.1 & & & & & 0.20 \\
\hline 1257 & 29.6 & & & & & 0.23 \\
\hline 1258 & 68.5 & & & & & 0.13 \\
\hline 1270 & 31.3 & & & & & 0.22 \\
\hline 1271 & 30.4 & & & & & 0.20 \\
\hline 1272 & 29.7 & & & & & 0.20 \\
\hline 1273 & 27.5 & & & & & 0.22 \\
\hline 1274 & 26.3 & & & & & 0.19 \\
\hline 1275 & 28.8 & & & & & 0.20 \\
\hline 1276 & 26.6 & & & & & 0.22 \\
\hline 1277 & 25.7 & & & & & 0.25 \\
\hline 1278 & 29.2 & & & & & 0.22 \\
\hline 1281 & 78.0 & & & & & 0.16 \\
\hline
\end{tabular}
Sample \(\%_{C a C O_{3}} \%\) OrgC \(\quad \mathrm{C} / \mathrm{N} \quad \mathrm{CaCO}_{3} \mathrm{Assemblage} \quad \%_{2} \mathrm{O}_{5}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1282 & 89.5 & & & & & 0.17 \\
\hline 1283 & 29.3 & & 0.006 & & M, E & 0.20 \\
\hline 1284 & 27.6 & & & & M & 0.19 \\
\hline 1286 & 92.9 & & & & & 0.21 \\
\hline 1287 & 87.1 & & & & & 0.11 \\
\hline 1288 & 86.9 & & & & & 0.19 \\
\hline 1290 & 26.9 & & & & & 0.28 \\
\hline 1291 & 24.3 & 0.01 & 0.02 & 0.6 & E, M & 0.27 \\
\hline 1292 & 21.4 & & & & & 0.21 \\
\hline 1293 & 23.6 & & & & E, M & 0.23 \\
\hline 1294 & 24.0 & & & & & 0.25 \\
\hline 1295 & 26.2 & & & & & 0.22 \\
\hline 1296 & 23.5 & & & & & \[
0.22
\] \\
\hline 1297 & 25.5 & & & & & 0.34 \\
\hline 1298 & 27.6 & & & & & 0.19 \\
\hline 1299 & 24.3 & & & & & 0.28 \\
\hline 1303 & 25.6 & & & & & 0.29 \\
\hline 1304 & 24.8 & & & & & 0.28 \\
\hline 1305 & 27.8 & & & & & 0.29 \\
\hline 1306 & 29.8 & & & & & 0.32 \\
\hline 1307 & 23.7 & & & & & 0.38 \\
\hline 1308 & 25.4 & & & & & 0.39 \\
\hline 1311 & 83.4 & & & & & 0.25 \\
\hline 1314 & 86.9 & & & & & \[
0.19
\] \\
\hline 1315 & 27.5 & & & & & 0.43 \\
\hline 1316 & 29.2 & & & & & 0.22 \\
\hline 1317 & 27.0 & & & & & 0.23 \\
\hline 1319 & 27.1 & & 0.07 & & M, FM & 0.19 \\
\hline 1320 & 27.6 & & & & & 0.17 \\
\hline 1321 & 28.8 & & & & M, FM, E & 0.19 \\
\hline 1322 & 30.1 & & & & & 0.19 \\
\hline 1323 & 26.1 & & & & & 0.29 \\
\hline 1328 & 34.3 & & & & & 0.25 \\
\hline 1329 & 34.1 & & & & M & 0.32 \\
\hline 1330 & 30.1 & & & & & 0.20 \\
\hline 1331 & 31.7 & & 0.03 & & M & 0.29 \\
\hline 1332 & 77.2 & & & & & 0.29 \\
\hline 1337 & 40.8 & & & & & 0.24 \\
\hline 1338 & 29.7 & & & & FM & 0.19 \\
\hline 1340 & 28.4 & 0.8 & 0.12 & 6.5 & FM & 0.20 \\
\hline 1341 & 22.4 & & & & & 0.20 \\
\hline 1342 & 29.4 & & & & & 0.32 \\
\hline 1243 & 30.1 & & & & FM, E & 0.19 \\
\hline 1344 & 27.9 & & & & & 0.22 \\
\hline 1345 & 28.0 & & & & & 0.20 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{SECTION VI IC 70} \\
\hline Sample \# & \% \(\mathrm{CaCO}_{3}\) & \%org c & \%N & \(\mathrm{C} / \mathrm{N}\) & \(\mathrm{CaCO}_{3}\) Assemblage & \(\% \mathrm{P}_{2} \mathrm{O}_{5}\) \\
\hline 1346 & 76.8 & & & & & 0.30 \\
\hline 1347 & 74.5 & & 0.02 & & PFM, M, BFM & 1.17 \\
\hline 1349 & 76.6 & & & & & 1.95 \\
\hline 1350 & 52.2 & & & & & 6.55 \\
\hline 1351 & 77.3 & & & & & 0.45 \\
\hline 1352 & 78.7 & & & & & 0.17 \\
\hline 1354 & 45.6 & & & & & 0.20 \\
\hline 1355 & 31.0 & & & & & 0.17 \\
\hline 1356 & 30.4 & & & & & 0.19 \\
\hline 1357 & 35.6 & & & & & 0.21 \\
\hline 1365 & 92.5 & & & & & 0.17 \\
\hline 1367 & 47.7 & & & & & 0.24 \\
\hline 1368 & 47.8 & & & & & 0.17 \\
\hline 1369 & 42.3 & & & & & 0.16 \\
\hline 1371 & . 64.9 & & & & & 0.22 \\
\hline 1372 & 72.7 & & & & & 0.17 \\
\hline 1373 & 90.3 & & & & & 0.13 \\
\hline 1374 & 76.2 & & & & & 0.16 \\
\hline 1375 & 73.2 & & & & & 0.38 \\
\hline 1376 & 75.6 & & & & & 0.40 \\
\hline 1377 & 46.6 & & & & & 0.16 \\
\hline 1378 & 84.3 & & & & & 0.20 \\
\hline 1382 & 55.9 & & & & & 1.02 \\
\hline 1383 & 69.0 & & & & & 1.5 \\
\hline 1384 & 74.7 & & & & & 1.24 \\
\hline 1385 & 90.4 & & & & & 1.33 \\
\hline 1387 & 92.1 & & & & & 0.21 \\
\hline 1390 & 92.0 & & & & & 0.40 \\
\hline 1391 & 56.1 & & & & & 0.32 \\
\hline 1392 & 45.6 & & & & & 0.20 \\
\hline 1394 & 56.7 & & & & & 0.25 \\
\hline 1399 & 82.3 & & & & & 0.34 \\
\hline 1401 & 84.8 & & & & & 0.15 \\
\hline 1402 & 74.3 & & & & & 0.25 \\
\hline 1403 & 46.4 & & & & & 0.16 \\
\hline 1404 & 41.2 & & & & & 0.22 \\
\hline 1405 & 82.0 & & & & & 0.30 \\
\hline 1408 & 94.7 & & & & & 0.14 \\
\hline 1409 & 97.3 & & & & & 0.12 \\
\hline 1410 & 97.4 & & & & & 0.12 \\
\hline 1412 & 98.2 & & & & & 0.14 \\
\hline 1413 & 97.7 & & & & & 0.16 \\
\hline 1416 & 56.8 & & & & & 0.18 \\
\hline 1417 & 49.0 & & & & & 0.21 \\
\hline 1418 & 58.0 & & & & & 0.21 \\
\hline 1419 & 61.4 & & & & & 0.25 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Sample & \% \(\mathrm{CaCO}_{3}\) & \%org & C & \%N & \(\mathrm{C} / \mathrm{N}\) & \(\mathrm{CaCO}_{3}\) Assemblage & \(\% \mathrm{P}_{2} \mathrm{O}_{5}\) \\
\hline 1420 & 67.5 & & & & & & 0.17 \\
\hline 1421 & 34.0 & & & & & & 0.18 \\
\hline 1422 & 39.2 & & & & & & 0.20 \\
\hline 1423 & 62.7 & & & & & & 0.21 \\
\hline 1424 & 71.8 & & & & & & 0.42 \\
\hline 1425 & 73.8 & & & & & & 0.3 \\
\hline 1426 & 75.2 & & & & & & 0.22 \\
\hline 1427 & 77.3 & & & & & & 0.21 \\
\hline 1428 & 83.1 & & & & & & 0.15 \\
\hline 1429 & 81.6 & & & & & & 0.24 \\
\hline 1430 & 79.1 & & & 0.03 & & M, BP, MI & 0.23 \\
\hline 1431 & 74.4 & & & & & & 0.42 \\
\hline 1432 & 71.0 & & & & & M PFM & 0.27 \\
\hline 1433 & 34.9 & & & & & & 0.18 \\
\hline 1434 & 33.6 & & & 0.09 & & FM, M & 0.17 \\
\hline 1435 & 33.2 & & & & & & 0.15 \\
\hline 1436 & 42.3 & & & & & FM, M, E & 0.31 \\
\hline 1440 & 85.4 & 0.47 & & 0.12 & 4.0 & AC & 0.28 \\
\hline 1441 & 95.2 & & & & & & 0.13 \\
\hline 1442 & 87.7 & & & & & & 0.23 \\
\hline 1445 & 80.3 & & & & & & 0.22 \\
\hline 1446 & 52.3 & & & & & & 0.45 \\
\hline 1447 & 34.4 & & & & & & 0.17 \\
\hline 1448 & 32.0 & & & & & & 0.15 \\
\hline 1449 & 75.3 & & & & & & 1.15 \\
\hline 1450 & 61.8 & & & & & & 0.27 \\
\hline 1451 & 75.0 & & & & & & 0.31 \\
\hline 1452 & 69.9 & & & & & & 0.29 \\
\hline 1456 & 65.9 & & & & & & 0.40 \\
\hline 1458 & 78.8 & & & & & & 0.12 \\
\hline 1459 & 81.5 & & & & & & 0.30 \\
\hline 1460 & 70.6 & & & & & & 0.17 \\
\hline 1461 & 86.4 & & & & & & 0.25 \\
\hline 1462 & 86.1 & & & & & & 0.15 \\
\hline 1463 & 80.9 & & & & & & 1.4 \\
\hline 1464 & 74.2 & & & & & & 1.5 \\
\hline 1465 & 83.7 & & & & & & 1.1 \\
\hline 1466 & 77.7 & & & & & & 0.28 \\
\hline 1468 & 84.5 & & & & & & 0.11 \\
\hline 1469 & 74.8 & & & & & & 0.25 \\
\hline 1470 & 68.3 & & & & & & 0.25 \\
\hline 1471 & 79.4 & & & & & & 0.28 \\
\hline 1472 & 51.9 & & & & & & 0.30 \\
\hline 1473 & 39.3 & & & & & & 0.13 \\
\hline 1474 & 43.5 & & & & & & 0.39 \\
\hline 1475 & 40.3 & & & & & & 0.22 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\underset{\#}{\text { Sample }}
\] & \% \(\mathrm{CaCO}_{3}\) & \%Org C & \%N & C/N & \(\mathrm{CaCO}_{3}\) Assemblage & \(\% \mathrm{P}_{2} \mathrm{O}_{5}\) \\
\hline 1476 & 62.2 & & & & & 0.65 \\
\hline 1477 & 92.4 & & & & & 0.42 \\
\hline 1478 & 93.8 & & & & & 0.35 \\
\hline 1480 & 94.0 & & & & & 0.25 \\
\hline 1481 & 94.8 & & & & & 0.34 \\
\hline 1483 & 98.5 & & & & & 0.21 \\
\hline 1486 & 93.8 & & & & & 0.31 \\
\hline 1488 & 95.5 & & & & & 0.17 \\
\hline 1491 & 85.2 & & & & & 1.76 \\
\hline 1492 & 74.4 & & & & & 0.59 \\
\hline 1495 & 48.8 & & & & & 0.25 \\
\hline 1496 & 51.8 & & & & & 0.32 \\
\hline 1497 & 95.1 & & & & & 0.17 \\
\hline 1498 & 95.9 & & & & & 0.25 \\
\hline 1499 & 92.6 & & & & & 0.16 \\
\hline 1500 & 43.1 & & & & & 0.14 \\
\hline 1501 & 45.3 & & & & & 0.14 \\
\hline 1502 & 44.0 & & & & & 0.16 \\
\hline 1503 & 43.0 & & & & & 0.17 \\
\hline 1504 & 84.8 & & & & & 0.15 \\
\hline 1505 & 35.0 & & & & & 0.14 \\
\hline 1506 & 33.5 & & & & & 0.14 \\
\hline 1507 & 30.9 & & & & & 0.15 \\
\hline 1508 & 30.9 & & & & & 0.15 \\
\hline 1509 & 89.9 & & & & & 0.30 \\
\hline 1510 & 90.5 & & & & & 0.23 \\
\hline 1511 & 93.0 & & & & & 0.21 \\
\hline 1512 & 95.5 & & & & & 0.26 \\
\hline 1513 & 91.9 & & & & & 0.54 \\
\hline 1514 & 94.8 & & & & & 0.21 \\
\hline 1516 & 97.0 & & & & MI, M, BR, CA & 0.18 \\
\hline 1517 & 98.6 & & & & & 0.21 \\
\hline 1518 & 95.4 & & 0.03 & & BR,MI, T, M, CA & 0.12
0.30 \\
\hline 1519 & 85.5 & & & & & 0.16 \\
\hline 1520 & 49.3 & & & & FM, M, E & 0.16 \\
\hline 1521 & 42.3 & & & & & \\
\hline 1522 & 38.0 & 0.22 & 0.04 & 4.9 & FM & 0.16 \\
\hline 1523 & 42.8 & & & & & 0.16 \\
\hline 1524 & 67.5 & & & & M, BR,FM & 0.19 \\
\hline 1525 & 50.4 & & & & & 0.19 \\
\hline 1526 & 41.9 & & 0.07 & & M, FM & 0.15 \\
\hline 1527 & 44.5 & & & & & 0.16 \\
\hline 1528 & 38.0 & & & & FM, M, E & 0.14 \\
\hline 1529 & 35.4 & & & & & 0.14 \\
\hline 1530 & 89.5 & 0.06 & 0.01 & 4.3 & M SAND & 0.24 \\
\hline 1531 & 91.4 & & & & & 0.36 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(\underset{\#}{\text { Sample }}\) & \% \(\mathrm{CaCO}_{3}\) & \%Org C & \%N & \(\mathrm{C} / \mathrm{N}\) & \(\mathrm{CaCO}_{3}\) Assemblage & \% \(\mathrm{P}_{2} \mathrm{O}_{5}\) \\
\hline 1532 & 90.8 & & & & M SAND, M FRGS & 0.17 \\
\hline 1533 & 89.4 & & & & & 0.26 \\
\hline 1534 & 87.3 & & & & & 0.26 \\
\hline 1535 & 87.9 & & & & & 0.59 \\
\hline 1536 & 83.9 & & & & & 0.66 \\
\hline 1537 & 90.6 & & & & & 0.16 \\
\hline 1538 & 91.0 & & & & & 0.18 \\
\hline 1539 & 70.1 & & & & & 0.18 \\
\hline 1540 & 93.1 & & & & & 0.17 \\
\hline 1541 & 69.2 & & & & & 0.18 \\
\hline 1542 & 86.6 & & & & & 0.17 \\
\hline 1543 & 56.3 & & & & & 0.14 \\
\hline 1545 & 54.4 & & & & & 0.17 \\
\hline 1546 & 90.5 & & & & & 0.17 \\
\hline 1547 & 89.4 & & & & & 0.11 \\
\hline 1548 & 50.6 & & & & & 0.16 \\
\hline 1549 & 93.3 & & & & & 0.11 \\
\hline 1550 & 88.0 & & & & & 0.12 \\
\hline 1551 & 83.8 & & & & & 0.11 \\
\hline 1552 & 89.2 & & & & & 0.18 \\
\hline 1553 & 89.3 & & & & & 0.16 \\
\hline 1555 & 83.4 & & & & & 0.29 \\
\hline 1556 & 76.5 & & & & & 0.22 \\
\hline 1557 & 21.9 & & & & & 0.14 \\
\hline 1558 & 28.4 & & & & & 0.14 \\
\hline 1559 & 39.6 & & & & & 0.17 \\
\hline 1560 & 27.5 & & & & & 0.16 \\
\hline 1561 & 60.5 & & & & & 0.19 \\
\hline 1565 & 28.8 & & 0.04 & & M, E & 0.16 \\
\hline 1566 & 33.6 & & & & & 0.14 \\
\hline 1567 & 31.0 & & & & E, M & 0.14 \\
\hline 1568 & 40.1 & & & & & 0.17 \\
\hline 1569 & 83.1 & 0.08 & 0.02 & 4.1 & CA & 0.19 \\
\hline 1570 & 71.4 & & & & & 0.17 \\
\hline 1571 & & & & & BR, MI , BFM, 工 & \\
\hline 1573 & 91.5 & & 0.02 & & M, BR & 0.13 \\
\hline 1575 & & & & & AC & \\
\hline 1576 & 93.8 & & & & & 0.10 \\
\hline 1579 & 94.0 & & & & & 0.17 \\
\hline 1580 & 42.7 & & & & & 0.18 \\
\hline 1581 & 94.5 & & & & & 0.14 \\
\hline 1582 & 95.8 & & & & & 0.16 \\
\hline 1583 & 93.2 & & & & & 0.13 \\
\hline 1584 & 93.6 & & & & & 0.19 \\
\hline 1585 & 93.6 & & & & & 0.20 \\
\hline
\end{tabular}
SECTION VI IC 70 - 158 -

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Sample } \\
\# \\
\hline
\end{gathered}
\] & \% \(\mathrm{CaCO}_{3}\) & \%org c & \%N & \(\mathrm{C} / \mathrm{N}\) & \(\mathrm{CaCO}_{3}\) Assemblage & \% \(\mathrm{P}_{2} \mathrm{O}_{5}\) \\
\hline 1638 & 51.9 & & & & & 0.15 \\
\hline 1639 & 21.5 & & & & & 0.23 \\
\hline 1640 & 17.9 & & & & & 0.19 \\
\hline 1641 & 15.2 & & & & & 0.25 \\
\hline 1642 & 51.0 & & & & & 0.15 \\
\hline 1643 & 16.6 & & & & & 0.17 \\
\hline 1644 & 15.7 & & & & & 0.21 \\
\hline 1645 & 95.8 & & & & & 0.12 \\
\hline 1646 & 97.6 & & & & & 0.14 \\
\hline 1647 & 54.0 & & & & & 0.19 \\
\hline 1648 & 83.1 & & & & & 0.17 \\
\hline 1649 & 61.5 & & & & & 0.14 \\
\hline 1650 & 96.3 & & & & & 0.12 \\
\hline 1651 & 30.9 & & 0.01 & & M, BR, E & 0.17 \\
\hline 1652 & 72.2 & & & & & 0.17 \\
\hline 1653 & 87.6 & & & & S,BS & 0.16 \\
\hline 1654 & 44.5 & & & & & 0.14 \\
\hline 1655 & 62.3 & 0.3 & 0.01 & 31 & E, BR, BA, BS & 0.18 \\
\hline 1656 & 34.8 & & & & & 0.17 \\
\hline 1657 & 82.8 & & & & BA, BR, S, BS & 0.14 \\
\hline 1658 & 14.6 & & & & & 0.12 \\
\hline 1659 & & & 0.03 & & E, M & 0.14 \\
\hline 1660 & 10.5 & & & & & 0.17 \\
\hline 1661 & 12.7 & & & & E, M & 0.17 \\
\hline 1662 & 14.3 & & & & & 0.26 \\
\hline 1663 & 13.9 & & 0.02 & & M, FM, E & 0.22 \\
\hline 1664 & 14.8 & & & & & 0.17 \\
\hline 1666 & 4.1 & & & & & 0.15 \\
\hline 1668 & 13.2 & & & & & 0.15 \\
\hline 1669 & 12.8 & & & & & 0.14 \\
\hline 1670 & 14.5 & & & & & 0.12 \\
\hline 1671 & 10.9 & & & & & 0.17 \\
\hline 1672 & 8.7 & & & & & 0.17 \\
\hline 1673 & 10.9 & & & & & 0.17 \\
\hline 1674 & 18.0 & & & & & 0.14 \\
\hline 1675 & 14.8 & & & & & 0.20 \\
\hline 1676 & 20.0 & & & & & 0.17 \\
\hline 1677 & 67.7 & & & & & 0.11 \\
\hline 1678 & 85.6 & & & & & 0.12 \\
\hline 1679 & 32.2 & & & & & 0.15 \\
\hline 1680 & 77.8 & & & & & 0.18 \\
\hline 1681 & 87.8 & & & & \(M, B A, B R, C A, B S\) & 0.16 \\
\hline 1682 & 80.5 & & & & & 0.13 \\
\hline 1683 & 83.5 & & 0.01 & & M, BA, BRMI, BS & 0.12 \\
\hline 1684 & 88.7 & & & & & 0.08 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample \# & \% \(\mathrm{CaCO}_{3}\) & \%org c & \%N & \(\mathrm{C} / \mathrm{N}\) & \(\mathrm{CaCO}_{3}\) Assemblage & \(\% \mathrm{P}_{2} \mathrm{O}_{5}\) \\
\hline 1686 & 87.3 & & & & & 0.13 \\
\hline 1688 & 27.9 & & & & & 0.12 \\
\hline 1689 & 17.1 & & & & E, M, FM & 0.17 \\
\hline 1690 & 14.1 & & & & & 0.17 \\
\hline 1691 & 13.3 & 0.07 & 0.02 & 4.1 & M, E & 0.21 \\
\hline 1692 & 14.5 & & & & & 0.21 \\
\hline 1693 & 14.5 & & & & M, E, FM & 0.19 \\
\hline 1694 & 18.9 & & & & & 0.15 \\
\hline 1695 & 16.3 & & & & & 0.17 \\
\hline 1696 & 14.6 & & & & & 0.15 \\
\hline 1697 & 14.6 & & & & & 0.13 \\
\hline 1698 & 21.2 & & & & & 0.10 \\
\hline 1699 & 39.0 & & & & & 0.13 \\
\hline 1700 & 82.9 & & & & & 0.11 \\
\hline 1701 & 70.9 & & & & & 0.16 \\
\hline 1702 & 65.1 & & & & & 0.12 \\
\hline 1705 & 55.3 & & & & & 0.13 \\
\hline 1706 & 93.4 & & & & & 0.03 \\
\hline 1707 & 37.2 & & & & & 0.17 \\
\hline 1709 & 80.5 & & & & & 0.14 \\
\hline 1710 & 89.6 & & & & & 0.11 \\
\hline 1711 & 66.4 & & & & & 0.13 \\
\hline 1712 & 90.8 & & & & & 0.11 \\
\hline 1713 & 19.8 & & & & & 0.16 \\
\hline 1714 & 21.5 & & & & & 0.16 \\
\hline 1715 & 24.1 & & & & & 0.15 \\
\hline 1716 & 26.2 & & & & & 0.15 \\
\hline 1717 & 21.1 & & & & & 0.16 \\
\hline 1718 & 26.0 & & & & & 0.21 \\
\hline 1719 & 29.0 & & 0.02 & & M, E & 0.21 \\
\hline 1720 & 91.2 & & & & & 0.16 \\
\hline 1721 & 24.5 & & & & M, E & 0.14 \\
\hline 1722 & 25.7 & & & & & 0.17 \\
\hline 1723 & 22.7 & 0.09 & 0.01 & 8.0 & M, E & 0.17 \\
\hline 1724 & 24.5 & & & & & 0.14 \\
\hline 1725 & 17.6 & & & & M, E, F'M & 0.17 \\
\hline 1727 & 26.2 & & 0.03 & & \(B S, B R, B A\) & 0.14 \\
\hline 1728 & 83.2 & & & & & 0.10 \\
\hline 1729 & 87.9 & & & & BR, M, BA, MI & 0.10 \\
\hline 1730 & 95.9 & & & & & 0.12 \\
\hline 1731 & 90.9 & 0.12 & 0.03 & 4.9 & M, BR, FM, BA & 0.11 \\
\hline 1733 & 91.3 & & & & & 0.09 \\
\hline 1734 & 93.4 & & & & & 0.09 \\
\hline 1735 & 91.3 & & & & & 0.10 \\
\hline 1736 & 88.2 & & & & & 0.14 \\
\hline
\end{tabular}

\section*{SECTION VI IC 70}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample \# & \% \(\mathrm{CaCO}_{3}\) & \%Org c & \%N & \(\mathrm{C} / \mathrm{N}\) & \(\mathrm{CaCO}_{3}\) Assemblage & \({ }^{\%} \mathrm{P}_{2} \mathrm{O}_{5}\) \\
\hline 1737 & 90.0 & & & & & 0.11 \\
\hline 1740 & 39.5 & & & & & 0.15 \\
\hline 1741 & 22.5 & & & & & 0.12 \\
\hline 1742 & 53.6 & & & & & 0.16 \\
\hline 1743 & 25.7 & & & & & 0.18 \\
\hline 1744 & 45.5 & & & & & 0.31 \\
\hline 1746 & 35.9 & & & & & 0.18 \\
\hline 1751 & 84.4 & & & & & 0.31 \\
\hline 1754 & 82.5 & & & & & 0.21 \\
\hline 1755 & 33.0 & & & & & 0.15 \\
\hline 1758 & 95.0 & & & & & 0.16 \\
\hline 1759 & 86.1 & & & & & 0.14 \\
\hline 1761 & 63.6 & & & & & 0.66 \\
\hline 1762 & 89.2 & & & & & 0.28 \\
\hline 1763 & 37.6 & & & & & 0.20 \\
\hline 1767 & 94.7 & & & & & 0.09 \\
\hline 1768 & 92.1 & & & & & 0.11 \\
\hline 1769 & 74.1 & & & & & 0.13 \\
\hline 1770 & 74.5 & & & & & 0.14 \\
\hline 1771 & 93.8 & & & & M, BR & 0.10 \\
\hline 1772 & 95.1 & & & & & 0.10 \\
\hline 1773 & 91.8 & & 0.03 & & M, BR, BA & 0.07 \\
\hline 1774 & 91.3 & & & & & 0.11 \\
\hline 1775 & & & & & BR, M, FM, L & \\
\hline 1777 & 87.3 & 0.2 & 0.05 & 3.9 & BS, BR, FM, BA, L & 0.16 \\
\hline 1778 & 23.5 & & & & & 0.18 \\
\hline 1779 & 82.2 & & & & BS, M, BA & 0.14 \\
\hline 1780 & 86.4 & & & & & 0.13 \\
\hline 1781 & 90.3 & & 0.02 & & BS & 0.12 \\
\hline 1782 & 35.2 & & & & & 0.33 \\
\hline 1783 & 39.3 & & & & & 0.25 \\
\hline 1784 & 88.6 & & & & & 0.13 \\
\hline 1785 & 93.8 & & & & & 0.12 \\
\hline 1786 & 88.7 & & & & & 0.12 \\
\hline 1788 & 33.5 & & & & & 0.16 \\
\hline 1790 & 88.7 & & & & & 0.12 \\
\hline 1791 & 92.1 & & & & & 0.10 \\
\hline 1793 & 93.4 & & & & & 0.10 \\
\hline 1794 & 92.6 & & & & & 0.10 \\
\hline 1795 & 28.3 & & & & M, FM, E & 0.15 \\
\hline 1796 & 29.6 & 0.26 & 0.04 & 6.4 & M, E & 0.15 \\
\hline 1797 & 26.2 & & & & E, FM & 0.13 \\
\hline 1798 & 29.5 & & & & & 0.17 \\
\hline 1799 & 86.5 & & 0.10 & & M, BR, BA, E, FM & 0.13 \\
\hline 1800 & 79.6 & & & & & 0.16 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Sample } \\
\#
\end{gathered}
\] & \% \(\mathrm{CaCO}_{3}\) & \%org & C & \%N & \(\mathrm{C} / \mathrm{N}\) & \(\mathrm{CaCO}_{3}\) & Assemblage & \(\%_{2} \mathrm{O}_{5}\) \\
\hline 1801 & & & & & & M, BA, L & FRGS & \\
\hline 1803 & 45.8 & & & & & & & 0.17 \\
\hline 1804 & 92.9 & & & & & & & 0.14 \\
\hline 1805 & 35.4 & 0.06 & & 0.02 & 2.8 & M & & 0.26 \\
\hline 1806 & 54.0 & & & & & & & 0.31 \\
\hline 1808 & 73.9 & & & & & & & 2.4 \\
\hline 1809 & 62.6 & & & & & & & 0.35 \\
\hline 1810 & 65.8 & & & & & & & 0.40 \\
\hline 1811 & 46.4 & & & & & & & 0.27 \\
\hline 1812 & 27.1 & & & & & & & 0.15 \\
\hline 1813 & 26.1 & & & & & & & 0.17 \\
\hline 1814 & 21.9 & & & & & & & 0.13 \\
\hline 1815 & 37.2 & & & & & & & 0.19 \\
\hline 1816 & 34.8 & & & & & & & 0.15 \\
\hline 1817 & 33.8 & & & & & & & 0.21 \\
\hline 1820 & 44.0 & & & & & M, E, FM & & 0.23 \\
\hline 1821 & 45.7 & & & & & & & 0.23 \\
\hline 1822 & 42.4 & & & 0.08 & & M, E & & 0.20 \\
\hline 1823 & 42.7 & & & & & & & 0.25 \\
\hline 1824 & 40.1 & & & & & M, E & & 0.23 \\
\hline 1825 & 29.5 & & & & & & & 0.18 \\
\hline 1826 & 31.2 & 0.54 & & 0.12 & 4.5 & & & 0.17 \\
\hline 1827 & 30.1 & & & & & & & 0.16 \\
\hline 1828 & 66.7 & & & & & & & 0.26 \\
\hline 1830 & 32.5 & & & & & & & 0.17 \\
\hline 1831 & 43.6 & & & & & & & 0.20 \\
\hline 1832 & 47.9 & & & & & & & 0.17 \\
\hline 1833 & 30.0 & & & & & & & 0.18 \\
\hline 1834 & 30.0 & & & & & & & 0.17 \\
\hline 1835 & 25.3 & & & & & & & 0.20 \\
\hline 1836 & 30.4 & & & 0.18 & & F'M, E, M & & 0.18 \\
\hline 1837 & 32.9 & & & & & & & 0.17 \\
\hline 1840 & 31.7 & & & & & FM, E, M & & 0.17 \\
\hline 1841 & 34.3 & 0.74 & & 0.13 & 5.6 & FM, M & & 0.15 \\
\hline 1843 & 45.2 & & & & & E, M & & 0.46 \\
\hline 1844 & 47.7 & & & & & & & 0.30 \\
\hline 1845 & 46.2 & & & 0.11 & & M, BA & & 0.19 \\
\hline 1846 & 42.4 & & & & & & & 0.20 \\
\hline 1847 & & & & & & M & & \\
\hline 1848 & 68.0 & & & & & & & 0.20 \\
\hline 1850 & 68.0 & & & & & & & 0.18 \\
\hline 1854 & 47.8 & & & & & & & 0.24 \\
\hline 1855 & 42.6 & & & & & & & 1.45 \\
\hline 1856 & 88.6 & & & & & & & 0.33 \\
\hline 1857 & 91.8 & & & & & & & 0.25 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample \# & \% \(\mathrm{CaCO}_{3}\) & \%org C & \%N & \(\mathrm{C} / \mathrm{N}\) & \(\mathrm{CaCO}_{3}\) Assemblage & \(\% \mathrm{P}_{2} \mathrm{O}_{5}\) \\
\hline 1858 & 39.8 & & & & & 0.17 \\
\hline 1859 & 35.9 & & & & & 0.17 \\
\hline 1860 & 47.0 & & & & & 0.17 \\
\hline 1861 & 15.1 & & 0.01 & & M, E & 0.15 \\
\hline 1862 & 13.4 & & & & & 0.14 \\
\hline 1863 & 15.8 & & & & M, E, FM & 0.17 \\
\hline 1865 & 75.2 & & 0.04 & & CA, MI & 0.61 \\
\hline 1866 & 91.3 & & & & MI, BR, M, FM, E & 0.09 \\
\hline 1867 & 86.1 & & 0.05 & & M, E, MIFRGS, FM & 0.15 \\
\hline 1868 & 79.1 & & & & MI & 0.18 \\
\hline 1869 & 49.1 & & & & & 0.23 \\
\hline 1870 & 91.3 & & 0.04 & & CA, M, MI & 0.12 \\
\hline 1873 & 90.7 & & & & BS & 0.09 \\
\hline 1874 & 83.2 & & 0.02 & & M, BA & 0.12 \\
\hline 1875 & 80.6 & & & & BS & 0.11 \\
\hline 1878 & 94.8 & & & & & 0.23 \\
\hline 1879 & 92.2 & & 0.05 & & PFM, BFM, M & 0.27 \\
\hline 1880 & 92.4 & & & & M, FM, E, MI, BR & 0.17 \\
\hline 1883 & 89.6 & & 0.03 & & M, MI & 0.17 \\
\hline 1885 & 81.0 & & & & PHOS L, M & 0.68 \\
\hline 1886 & 90.9 & & 0.04 & & & 0.28 \\
\hline 1887 & 86.6 & & & & L & 0.29 \\
\hline 1889 & 91.3 & & 0.02 & & M & 0.27 \\
\hline 1891 & 78.4 & & & & M FRGS & 0.31 \\
\hline 1892 & 64.5 & & 0.06 & & M, E & 0.24 \\
\hline 1893 & 35.9 & & & & M, FM & 0.17 \\
\hline 1894 & 32.9 & & 0.06 & & M & 0.17 \\
\hline 1898 & 41.6 & & & & M, E, FM & 0.14 \\
\hline 1899 & 93.9 & & 0.03 & & BS & 0.12 \\
\hline 1900 & 93.8 & & & & M & 0.13 \\
\hline 1901 & 92.5 & & 0.03 & & M & 0.35 \\
\hline 1902 & 93.9 & & & & & 0.30 \\
\hline 1903 & 92.2 & & & & & 0.26 \\
\hline 1905 & & & & & M, FM & 0.32 \\
\hline
\end{tabular}

\section*{SECTION VI}

AII 59
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Sample \# & \% \(\mathrm{CaCO}_{3}\) & \%0rg c & \%N & \(\mathrm{C} / \mathrm{N}\) & \(\mathrm{CaCO}_{3}\) Assemblage & \(\% \mathrm{P}_{2} \mathrm{O}_{5}\) \\
\hline 1747A & 83 & & & & BFM & \\
\hline 1747B & 93 & & & & M, BP & \\
\hline 1748 & 60 & & & & PT & \\
\hline 1749 & 88 & & & & PFM, M & \\
\hline 1750 & 88 & & & & PFM, BFM & \\
\hline
\end{tabular}

\section*{AII 75}
\begin{tabular}{llllll}
\begin{tabular}{l} 
Sample \\
\(\#\)
\end{tabular} & \(\% \mathrm{CaCO}_{3}\) & \(\%\) org C & \(\% \mathrm{~N}\) & \(\mathrm{C} / \mathrm{N}\) & \(\mathrm{CaCO}_{3}\) Assemblage \\
\hline 34 & 94 & \(\% \mathrm{P}_{2} \mathrm{O}_{5}\) \\
35 & 67 & \(\mathrm{M}, \mathrm{E}\) \\
& & & &
\end{tabular}
- 165 -

B SAHARAN SHELF SAMPLES

TR 15
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Sample \# & \% \(\mathrm{CaCO}_{3}\) & \%org c & \%N & \(\mathrm{C} / \mathrm{N}\) & \(\mathrm{CaCO}_{3}\) & Assemblage & \(\%_{2} \mathrm{O}_{5}\) \\
\hline 22 & 41 & & & & BR, & M, FM & 0.17 \\
\hline 23 & 31 & & & & M, & BR & \\
\hline 25 & 98 & & & & M & & \\
\hline 26 & 97 & & & & & PFM & 0.10 \\
\hline 27 & 92 & & & & & & 0.12 \\
\hline 28 & 66 & & & & & E & 0.34 \\
\hline 30 & 89 & & & & BR, & M, SE & 0.23 \\
\hline 31 & 98 & & & & M & & 0.07 \\
\hline 32 & 97 & & & & & & 0.09 \\
\hline 33 & 61 & & & & M & & \\
\hline 34 & 98 & & & & & & 0.09 \\
\hline 35 & 95 & & & & M & & 0.07 \\
\hline 36 & 99 & & & & M & & 0.05 \\
\hline 37 & 99 & & & & M & & 0.05 \\
\hline 38 & 95 & & & & & & 0.05 \\
\hline 39 & 99 & & & & M & & 0.06 \\
\hline 40 & 99 & & & & M & & 0.07 \\
\hline 41 & 96 & & & & & & 0.15 \\
\hline 42 & 95 & & & & M & & 0.05 \\
\hline 43 & 97 & & & & M & & 0.08 \\
\hline 44 & 99 & & & & BR & & 0.05 \\
\hline 45 & 95 & & & & M & & 0.05 \\
\hline 46 & 99 & & & & M & & 0.09 \\
\hline 47 & 99 & & & & M & & 0.06 \\
\hline 50 & 86 & & & & & BFM & 0.30 \\
\hline 51 & 99 & & & & & BR & 0.07 \\
\hline 52 & 99 & & & & & & 0.13 \\
\hline 53 & 99 & & & & & FM & 0.25 \\
\hline 57 & 91 & & & & BFM & , E & 0.16 \\
\hline 58 & 93 & & & & M, & & 0.13 \\
\hline 59 & 94 & & & & BR & & 0.18 \\
\hline
\end{tabular}

\section*{SECTION VI}

\section*{DIS 21}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Sample \# & \% \(\mathrm{CaCO}_{3}\) & \%org C & \%N & C/N & \(\mathrm{CaCO}_{3}\) & Assemblage & \(\% \mathrm{P}_{2} \mathrm{O}_{5}\) \\
\hline 6561 & 91.9 & & & & & & 0.13 \\
\hline 6564 & 94.0 & & & & & & 0.07 \\
\hline 6566 & 94.0 & & & & & & 0.07 \\
\hline 6567 & 94.0 & & & & & & 0.06 \\
\hline 6568 & 94.0 & & & & & & 0.05 \\
\hline 6569 & 94.0 & & & & & & 0.05 \\
\hline 6570 & 92.5 & & & & & & 0.45 \\
\hline 6585 & 93.9 & & & & & & 0.17 \\
\hline 6588 & 94.0 & & & & & & 0.09 \\
\hline 6590 & 79.7 & & & & & & 0.31 \\
\hline 6591 & 92.9 & & & & & & 0.10 \\
\hline 6592 & 94.0 & & & & & & 0.10 \\
\hline 6621 & 94.0 & & & & & & 0.14 \\
\hline 6624 & 58.9 & & & & & & 0.12 \\
\hline 6626 & 94.0 & & & & & & 0.13 \\
\hline
\end{tabular}

\section*{IC68}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { Sample } \\
& \text { \# }
\end{aligned}
\] & \% \(\mathrm{CaCO}_{3}\) & \%org & C & \%N & \(\mathrm{C} / \mathrm{N}\) & \(\mathrm{CaCO}_{3}\) Assemblage & \(\% \mathrm{P}_{2} \mathrm{O}_{5}\) \\
\hline 219 & 35.0 & & & & & & 0.21 \\
\hline 221 & 55.2 & & & & & FM & 0.13 \\
\hline 222 & 48.3 & & & & & & 0.14 \\
\hline 223 & 60.0 & 0.69 & & 0.09 & 7.93 & & 0.15 \\
\hline 224 & 92.0 & & & & & M & 0.12 \\
\hline 225 & 94.0 & & & & & M, E, FM & 0.14 \\
\hline 226 & 89.0 & & & 0.05 & & & 0.16 \\
\hline 227 & 63.7 & & & & & M, BR & 0.21 \\
\hline 228 & 43.2 & & & & & M, FM, BA, BR & 0.11 \\
\hline 229 & 71.9 & & & & & & 0.31 \\
\hline 230 & 69.5 & & & & & FM & 0.30 \\
\hline 232 & 47.7 & & & & & & 0.16 \\
\hline 233 & 58.8 & & & & & & 0.17 \\
\hline 234 & 89.0 & 0.51 & & 0.08 & 6.3 & & 0.17 \\
\hline 235 & 94.0 & & & & & & 0.06 \\
\hline 237 & 92.0 & & & & & M & 0.11 \\
\hline 238 & 93.0 & & & & & M & 0.11 \\
\hline 239 & 93.0 & 0.13 & & 0.03 & 4.19 & & 0.11 \\
\hline 240 & 92.0 & & & 0.03 & 3.46 & & 0.10 \\
\hline 241 & 94.0 & & & & & M & 0.12 \\
\hline 242 & 94.0 & & & & & M, BS & 0.06 \\
\hline 243 & 93.4 & & & & & & 0.07 \\
\hline 244 & 94.0 & & & & & M & 0.07 \\
\hline 245 & 93.0 & & & & & M & 0.08 \\
\hline 246 & 69.7 & & & & & & 0.08 \\
\hline 247 & 61.9 & 0.06 & & 0.02 & 2.86 & & 0.06 \\
\hline 249 & 84.3 & 0.21 & & 0.04 & 5.12 & & 0.13 \\
\hline 250 & 76.4 & & & & & PFM & 0.16 \\
\hline 251 & 63.4 & & & & & & 0.22 \\
\hline 252 & 90.8 & 0.17 & & 0.03 & 5.0 & PFM, BFM, M & 0.28 \\
\hline 255 & 74.1 & & & & & & 5.40 \\
\hline 256 & 78.0 & & & & & & 8.30 \\
\hline 257 & 89.9 & & & & & MI, BR, M, CA, BA & 0.32 \\
\hline 258 & 86.0 & & & & & M, BR, MI, BA, CA & 4.20 \\
\hline 259 & 89.9 & & & & & M, BA, E, MI & 0.31 \\
\hline 260 & 89.8 & 0.12 & & 0.03 & 4.62 & CA, M, FM & 0.33 \\
\hline 262 & 92.9 & & & & & CA, M, BR, BA, MI & 0.15 \\
\hline 263 & 92.0 & 0.14 & & 0.04 & 3.68 & CA, M, BR & 0.11 \\
\hline 264 & 89.1 & & & & & M, BR, CA, BFM & 0.13 \\
\hline
\end{tabular}

\section*{SECTION VI}

\section*{AII 59}
\begin{tabular}{llllll}
\begin{tabular}{c} 
Sample \\
\(\#\)
\end{tabular} & \(\% \mathrm{CaCO}_{3}\) & \(\%\) Org C & \(\% \mathrm{~N}\) & \(\mathrm{C} / \mathrm{N}\) & \(\mathrm{CaCO}_{3}\) Assemblage \\
\hline 1742 & 51 & & \(\%_{2} \mathrm{O}_{5}\) \\
1744 & 90 & & PFM \\
1745 & 69 & & \(\mathrm{M}, \mathrm{BFM}\) \\
1746 & 49 & & PFM \\
\end{tabular}

AII 75
Sample
\# \(\quad\) \% \(\mathrm{CaCO}_{3} \quad \% \mathrm{Cg} \mathrm{C} \quad \% \mathrm{~N} \quad \mathrm{C} / \mathrm{N} \quad \mathrm{CaCO}_{3}\) Assemblage \(\%_{2} \mathrm{O}_{5}\)
\begin{tabular}{lll}
29 & 98 & \\
30 & 98 & M FRGS \\
31 & 94 & M FRGS
\end{tabular}

AII 82
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Sample
\# & \% \(\mathrm{CaCO}_{3}\) & \%0rg & C & \%N & \(\mathrm{C} / \mathrm{N}\) & \(\mathrm{CaCO}_{3}\) Assemblage & \(\% \mathrm{P}_{2} \mathrm{O}_{5}\) \\
\hline 1 & 47 & 0.43 & & 0.11 & 3.9 & BFM, E & \\
\hline 2 & 51 & 0.13 & & 0.03 & 4.3 & M, BA & \\
\hline 3 & 52 & 0.23 & & 0.04 & 5.8 & M, FM & \\
\hline 4 & & 0.88 & & 0.15 & 5.9 & M, FM, E & \\
\hline 5 & 52 & 0.99 & & 0.16 & 6.2 & M, FM, E & \\
\hline 6 & & 0.66 & & 0.12 & 5.5 & M, FM, E & \\
\hline 7 & 56 & 0.48 & & 0.11 & 4.4 & M, FM, E & \\
\hline 8 & 59 & 0.71 & & 0.10 & 7.1 & M, FM, E & \\
\hline 9 & 85 & 0.75 & & 0.10 & 7.5 & M, FM, E & \\
\hline 10 & 84 & 1.02 & & 0.18 & 5.7 & M & \\
\hline 11 & 72 & 0.38 & & 0.06 & 6.3 & M, BA & \\
\hline 12 & 94 & 0.36 & & 0.05 & 7.2 & M & \\
\hline 13 & 95 & 0.14 & & 0.03 & 4.7 & M & \\
\hline 14 & 88 & 0.29 & & 0.04 & 7.3 & M & \\
\hline 15 & 57 & 0.53 & & 0.11 & 4.8 & M, FM, E & \\
\hline 16 & 95 & 0.26 & & 0.05 & 5.2 & M & \\
\hline 17 & 57 & 0.73 & & 0.10 & 7.3 & PFM, M & \\
\hline 18 & 77 & 0.42 & & 0.05 & 8.4 & M & \\
\hline 19 & 97 & 0.20 & & 0.04 & 5.0 & M & \\
\hline 20 & 86 & 0.48 & & 0.06 & 8.0 & M & \\
\hline 21 & 45 & 1.45 & & 0.15 & 9.7 & PFM & \\
\hline 22 & 93 & 0.43 & & 0.06 & 7.2 & M & \\
\hline 23 & 46 & 1.09 & & 0.32 & 3.4 & PFM & \\
\hline 24 & 45 & 1.36 & & 0.23 & 5.9 & PFM & \\
\hline 25 & 45 & 1.52 & & 0.30 & 5.0 & & \\
\hline 26 & 87 & 0.59 & & 0.08 & 7.4 & M, FM & \\
\hline 27 & 58 & 0.44 & & 0.13 & 3.4 & FM, M, E & \\
\hline
\end{tabular}

\section*{REFERENCES}

Bee, A.G., 1973, The marine geochemistry and geology of the Atlantic continental shelf of central Morocco: Ph.D. Thesis (Unpub.), Univ. London, 267 pp.

Biscaye, P.E., 1965, Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans: Bull. Geol. Soc. Am., 76, 803-832.

Hathaway, J.C., Editor, 1971. Data file, continental margin program, Atlantic coast of the United States, vol. 2, sample collection and analytical data: Woods Hole Oceanog. Inst. Reference No. 71-15, 496 pp.

Kabat, E.A. and M.M. Mayer, 1948, Experimental Immunochemistry, lst Edition, C.C. Thomas Co.

Kolpack, R.L. and S.A. Bell, 1968, Gasometric determination of carbon in sediments by hydroxide absorption: Jour. Sed. Petrology, 39 (2), 617-620.

Milliman, J.D., 1972, Sediments of the east Atlantic continental margin, a preliminary report: Woods Hole Oceanog. Inst. Reference No. 72-2, Unpublished Manuscript, 7 pp.

Milliman, J.D., and C.P. Summerhayes, 1975, Continental margin sedimentation off Brazil: Contr. Sedimentology, 4, 175 pp.

Nutter, A.H., 1969, The origin and distribution of phosphate in marine sediments from the Moroccan and Portuguese continental margins: Dipl. Thesis (Unpub). Imp. Coll., Univ. London, 158 pp.

Shepard, F.P., 1954, Nomenclature based on sand-silt-clay ratios: Jour. Sed. Petrology, 24, 151-158.

Summerhayes, C.P., 1970, Phosphate deposits on the northwest African continental shelf and slope: Ph.D. Thesis (Unpub.) Univ. London, 282 pp.

Summerhayes, C.P., J.D. Milliman, S.R. Briggs, A.G. Bee, and C. Hogan, 1976, Northwest African shelf sediments: influence of climate and sedimentary processes: Jour. Geology, 84, 277-300.

Twenhofel, W.H. and S.A. Tyler, 1941, Methods of study of sediments: New York, McGraw-Hill, 183 pp.

Uchupi, E., 1971, Bathymetric atlas of the Atlantic, Caribbean and Gulf of Mexico: Woods Hole Oceanogr. Inst., Tech. Rep. Ref. No. 71-72.

Ward, F.N., H.W. Lakin, and F.C. Canney, 1963, U.S.G.S. Bulletin, ll52, p. 66.

\section*{FIGURE CAPTIONS}

Fig. 1. Distribution of all sample sites from which we have used sediment data. Closed circles represent samples included in this data file. Open circles represent samples taken by the Instituto Espanol de Oceanografia prior to 1953 for which only a visual textural and compositional appraisal was available (for Spanish sample descriptions see references in Summerhayes and other, 1976). The upper map shows most of the Moroccan coast, the lower map shows South Morocco and Spanish Sahara; the two maps overlap by one degree of latitude. The bathymetry is from British Admiralty charts (for North Morocco), from Imperial College data (for central Morocco - Summerhayes, 1970; Bee, 1973), from the Instituto Espanol de Oceanografia (for South Morocco and all of Spanish Sahara- same sources as sample data), and from the 1971 atlas by Uchupi (for continental slope at 2000 m ).

Fig. 2. Distribution of all samples (subset of closed circles in Figure 1) for which some or all of the analyses were performed at Woods Hole Oceanographic Institution. Base map is same as for Figure 1.


Fig. 1


Fig. 2


15. Supplementary Notes

No. 8* -(IDOE 76-304)
16. Abstracts

The petrology, provenance, and history of sediments from the continental shelf and upper continental slope of western Africa have been studied in some detail by scientists from the Woods Hole Oceanographic Institution as part of a long-term investigation of the marine geology of the Eastern Atlantic Continental Margin. In this data file we present the analytical data and other information relating to all of the readily available samples (1178) of sediment from northwestern Africa (off the coasts of Morocco and what was recently called Spanish Sahara). The data file contains sample locations, shipboard descriptions, size data, sand fraction composition, clay mineral composition, carbonate assemblage, and carbonate, nitrogen, and carbon contents.
17. Key Words and Document Analysis. 17a. Descriptors
1. Data File
2. Continental Margin
3. Northwest Africa
4. Sample Collection Data

17b. Identifiers/Open-Ended Terms

17c. COSATI Field/Group
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c} 
19. Security Class (This \\
Report) \\
UNCLASSIFIED
\end{tabular} & \begin{tabular}{c} 
21. No. of Pages \\
175
\end{tabular} \\
\hline \begin{tabular}{c} 
20. Security Class (This \\
Page \\
UNCLASSIFIED
\end{tabular} & 22. Price \\
\hline
\end{tabular}~~~


[^0]:    SECTION II
    SAMPLE LIST; SHIP-LOGGED DATA

