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Abstract 40 

 41 

NCEP/DOE reanalysis (R2) and Climate Forecast System Reanalysis (CFSR) surface 42 

fluxes are widely used by the research community to understand surface flux climate variability, 43 

and to drive ocean models as surface forcings.  However, large discrepancies exist between these 44 

two products, including (1) stronger trade winds in CFSR than in R2 over the tropical Pacific 45 

prior 2000; (2) excessive net surface heat fluxes into ocean in CFSR than in R2 with an increase 46 

in difference after 2000.  The goals of this study are to examine the sensitivity of ocean 47 

simulations to discrepancies between CFSR and R2 surface fluxes, and to assess the fidelity of 48 

the two products.   A set of experiments, where an ocean model was driven by a combination of 49 

surface flux component from R2 and CFSR, were carried out.  The model simulations were 50 

contrasted to identify sensitivity to different component of the surface fluxes in R2 and CFSR. 51 

The accuracy of the model simulations was validated against the tropical moorings data, 52 

altimetry SSH and SST reanalysis products. 53 

  Sensitivity of ocean simulations showed that temperature bias difference in the upper 54 

100m is mostly sensitive to the differences in surface heat fluxes, while depth of 20°C (D20) bias 55 

difference is mainly determined by the discrepancies in momentum fluxes. D20 simulations with 56 

CFSR winds agree with observation well in the western equatorial Pacific prior 2000, but have 57 

large negative bias similar to those with R2 winds after 2000, partly because easterly winds over 58 
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the central Pacific were underestimated in both CFSR and R2.   On the other hand, the observed 59 

temperature variability is well reproduced in the tropical Pacific by simulations with both R2 and 60 

CFSR fluxes. Relative to the R2 fluxes, the CFSR fluxes improve simulation of interannual 61 

variability in all three tropical oceans to a varying degree. The improvement in the tropical 62 

Atlantic is most significant and is largely attributed to differences in surface winds.  63 

 64 
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 80 

 81 

1.    Introduction 82 

           Surface fluxes (i.e. momentum, heat and freshwater fluxes) play a crucial role in the 83 

energy and water cycles of the atmosphere-ocean coupled system.  Accurate estimation of 84 

surface fluxes is particularly important in our understanding of the air-sea interactions, climate 85 

variabilities, ocean heat and freshwater budget in the mixed layer, and in estimating the earth 86 

energy budget (Chang et al. 1997; Von Schuckmann et al. 2016; Wang and McPhaden 1999; 87 

Wittenberg 2004). Surface fluxes are also needed to provide boundary forcing fields for driving 88 

ocean models, to validate atmospheric model simulations and to assess the fidelity of long-term 89 

climate change projections (Chen et al. 1999; Griffies et al. 2009b; Solomon 2007).   90 

Surface fluxes from Numerical Weather Prediction (NWP) based reanalysis systems are 91 

often used because of their uniform global coverage and long time series. Two atmosphere 92 

reanalysis, among several, have drawn particular attention in the research community: the 93 

NCEP/DOE or R2 reanalysis (Kanamitsu et al. 2002) and the NCEP Climate Forecast System 94 

Reanalysis (CFSR) (Saha et al. 2010). The R2 and CFSR reanalysis differ in many ways. For 95 

example, the R2 uses an atmosphere general circulation model (AGCM) developed around 2000, 96 

with a horizontal resolution of T62 forced by observed SST.  CFSR uses a modeling system from 97 

2007 and the first guess from a high resolution (T382) coupled atmosphere-ocean-land-sea ice 98 

forecast system. In addition to the observed data assimilated in R2, CFSR also ingests SSM/I, 99 

ERS, QuikSCAT, and WindSAT satellite surface winds, and assimilates satellite radiances 100 
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directly. It is expected that the differences in model resolutions, physical parameterizations, 101 

ingested observation data sets and data assimilation techniques will likely give rise to differences 102 

in the surface fluxes between the two reanalysis. 103 

  A few studies have been devoted to quantify the uncertainties in surface fluxes among 104 

R2, CFSR and other reanalysis products either via inter-comparisons or comparisons against 105 

independent observations (Brunke et al. 2011; Kumar and Hu 2012; Valdivieso et al. 2015). It 106 

was found that large uncertainties exist among different reanalysis products and the relative 107 

performance of individual product depends on specific variable at different time scales and 108 

varies with location.   For mean bias, Sun et al. (2003) suggested that R2 overestimated latent 109 

heat loss over the Atlantic Ocean compared with moored buoy observations. Brunke et al. (2011) 110 

found that large uncertainties exist among reanalysis turbulent fluxes and R2 had better turbulent 111 

fluxes than CFSR based on validation against data from 12 cruises. By comparing with satellite-112 

derived data over 1984-2000, Wang et al. (2011) noted that CFSR overestimated downward solar 113 

radiation fluxes over the tropical Western Hemisphere warm pool due to deficiency in 114 

cloudiness.  On sub-seasonal to interannual time scales, Wen et al. (2012) suggested that CFSR 115 

had a more realistic representation of surface fluxes associated with tropical instability waves 116 

(TIWs) compared to other reanalyses. Kumar and Hu (2012) showed that CFSR is the best 117 

reanalysis in representing air-sea feedback terms associated with ENSO among six reanalysis 118 

products.  For long-term changes, Wang et al. (2011) found that CFSR had a sudden shift around 119 

1998-2001 in the time series of the global mean of a few variables, with a substantial increase in 120 

precipitation, cloud amount, and a decrease in surface evaporation and downward solar radiation 121 
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flux. These changes were associated with the introduction of the Advanced TIROS Operational 122 

Vertical Sounder (ATOVS) data into the CFSR assimilation system, which caused a sudden 123 

jump in precipitation because of the transition to a wetter observational analysis (Zhang et al. 124 

2012).  125 

Uncertainties in surface fluxes, when used to force ocean models, could cause diversity in 126 

ocean simulations (Ayina et al. 2006; Chakraborty et al. 2014; McGregor et al. 2012; Merrifield 127 

and Maltrud 2011).  Indeed, comparisons of ocean simulations driven by various surface fluxes 128 

provide a valuable constraint on the fidelity and physical consistencies among the reanalysis 129 

products. Some studies assessed the relative performance of R2 and satellite winds for a short 130 

period (several years) through ocean simulations (Agarwal et al. 2007; Jiang et al. 2005).   131 

However, few studies assessed the impacts of uncertainties in R2 and CFSR surface fluxes on 132 

ocean simulations over a longer record.  The goals of this study are to (1) describe the salient 133 

features of discrepancies between R2 and CFSR surface fluxes, (2) understand sensitivity of 134 

ocean simulations to differences in flux components, and (3) assess the fidelity of the two 135 

reanalysis surface forcings for temperature simulation in the tropical oceans where uncertainties 136 

in surface fluxes are the largest.  Answers to these questions will not only help us quantify the 137 

impacts of uncertainties in R2 and CFSR surface fluxes on ocean simulations, but also provide 138 

the user community information on the strength and weakness of each reanalysis product.  139 

To address the goals of this study, R2 and CFSR surface fluxes spanning the period 1982-140 

2013 were used to force a series of oceanic general circulation model (OGCM) simulations. The 141 

simulations were then validated against in situ observations and satellite-derived products. The 142 
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remainder of this paper is set up as follows: section 2 describes the design of ocean simulation 143 

experiments and observed data sets for validation; section 3 provides a description of 144 

uncertainties in surface fluxes in R2 and CFSR over the tropical oceans; section 4 and 5 discuss 145 

the impacts of uncertainties in surface fluxes on the mean state and interannual variability 146 

respectively; section 6 presents the conclusions and discussions.  147 

 148 

2.  Model experiments and validation data sets 149 

2.1 Model experiments 150 

 The OGCM used in this study is the Geophysical Fluid Dynamics Laboratory (GFDL) 151 

Modular Ocean Model version 4p1 (MOM4p1) code (Griffies et al. 2009a). The MOM4p1 has 152 

been used in coupled GCMs, i.e.  GFDL CM2.5 (Delworth et al. 2012), CM3.0 (Griffies et al. 153 

2011) and ESM2 models (Dunne et al. 2012).  Readers are referred to these papers for details 154 

about the model configurations. The MOM4p1 code has also been used by a set of state-of-art 155 

coupled GCMs participating in Coupled Model Intercomparison Project phase 5 (CMIP5) 156 

(Bellenger et al. 2014), or stand-alone ocean-sea-ice models participating the Coordinated 157 

Ocean-Ice Reference Experiment phase II (CORE II) (Danabasoglu et al.2014). These model 158 

intercomparison efforts suggest that the mean and interannual variability of tropical temperature 159 

and ocean circulation are reasonably captured by MOM4p1 based models (e.g. Griffies et al. 160 

2014, Tseng et al. 2016).  161 

  In this study, the model has a global coverage with a zonal resolution of 0.5° and a 162 

meridional resolution of 0.25° between 10°S and 10°N, gradually increasing to 0.5° poleward of 163 
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30°S and 30°N.  The model has 40 layers in the vertical, with a 10m resolution from the surface 164 

to 240m, gradually increasing to about 511m in the bottom layer.   The model uses a 165 

parameterization for the effects of sub-mesoscale mixed layer eddies (Fox-Kemper et al. 2011). 166 

Prognostic tracers are advected by multidimensional piecewise parabolic scheme (MDPPM).  167 

Vertical mixing follows the nonlocal K-profile parameterization of Large et al. (1994). The 168 

horizontal mixing of momentum uses the nonlinear scheme of Smagorinsky (Griffies and 169 

Halberg 2000).  The ocean model is driven by daily mean surface fluxes of momentum, net heat 170 

and fresh-water fluxes (evaporation minus precipitation) from R2 or CFSR. The model 171 

temperature in the top level (5m) is relaxed to a daily OISST analysis (Reynolds et al. 2007) with 172 

a restoring scale of 10 days.  Since the daily OISST starts from late 1981, all the ocean 173 

simulations were carried out for the period 1982-2013. The top level salinity (5m) was relaxed 174 

toward a seasonal climatology based on the WOA 1998 (Conkright et al. 1998) with a restoring 175 

scale of 30 days. 176 

 To obtain the 1982 initial conditions the following spin up procedure was used: the model 177 

initialized from GODAS ocean analysis (Behringer and Xue 2004) and was integrated with R2 178 

surface fluxes for 20 years. Following the spin up period, two sets of simulations were driven by 179 

R2 and CFSR daily surface fluxes (surface momentum, net heat flux, and freshwater fluxes) in 180 

1982-2013, referred to as R2F and CFSRF respectively. To assess the relative contribution of the 181 

net heat fluxes (NFLX) versus momentum fluxes, two sensitivity experiments were also carried 182 

out: one is referred to as R2F_CFSRW, which is the same as R2F except the momentum fluxes 183 

were from CFSR; the other one as R2F_CFSRH, which is the same as R2F except the NFLX 184 
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were from CFSR.  All the experiments were initiated from the same 1982 initial conditions.  185 

Considering the initial adjustment in the ocean model simulations, the first four years were 186 

discarded and the study analyzed the monthly temperature of simulations in the period 1986-187 

2013.  188 

 189 

2.2 Verification data sets 190 

  Three sets of verification data were used to validate model simulations: in situ 191 

observations from tropical moored buoy arrays; sea surface height (SSH) from a satellite 192 

altimeter analysis and SST from a satellite and in situ data blended analysis. 193 

 194 

2.2.1 In situ observations from Tropical Moored Buoy Arrays 195 

Monthly temperature and depth of 20°C (D20) data from Global Tropical Moored Buoy 196 

Array (TAO/TRITON-PIRATA-RAMA) were used to validate the model simulations. The 197 

Tropical Atmospheric Ocean (TAO) array was deployed in early-1980s and completed in 1994 198 

(McPhaden et al. 1998), and later enhanced by the Triangle Trans-Ocean Buoy Network 199 

(TRITON) array in the western tropical Pacific after 2000. The TAO/TRITON array contains 200 

approximately 70 buoys covering the tropical Pacific from 8°S to 9°N and from 135°E to 95°W.   201 

The Prediction and Research Moored Array in Tropical Atlantic (PIRATA) was originally 202 

developed in 1997 and currently consists of 17 buoys (Bourlès et al. 2008). The Research 203 

Moored Array for African-Asian-Australian Monsoon Analysis and Prediction (RAMA) was 204 

deployed in the Indian Ocean since the early 2000s (McPhaden et al. 2009).     205 
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The comparison against the TAO/TRITON data was done for the 1986-99 and 2000-13 206 

periods separately, and reasons for doing so will be explained later. For each period, only the 207 

buoys with data longer than 36 months were included in the comparison. For the Atlantic and 208 

Indian Oceans, comparisons against buoy data were done only for the 2000-2013 period owing 209 

to the short buoy data record. Similar to the Pacific, only the buoys with data longer than 36 210 

months were used. For the comparison with the TAO/TRITON data, monthly climatology was 211 

calculated separately for 1986-99 and 2000-13, and was subtracted from the total field to get 212 

monthly anomalies. For the comparison with the PIRATA and RAMA data, anomalies were 213 

departures from the monthly climatology of 2000-13.  214 

Estimates of monthly turbulent fluxes are also available at some buoys from the TAO 215 

project OceanSITES page at http://www.pmel.noaa.gov/tao/oceansites/flux/main.html. The bulk 216 

air-sea fluxes are estimated by the COARE 3.0b algorithm (Fairall et al. 2003) and a complete 217 

description of the calculations can be found in Cronin et al. (2006).  It is noteworthy that TAO 218 

turbulent flux data is not an independent validation dataset because it is used directly or 219 

indirectly in R2 and CFSR. Three latest reanalysis products are used to complement the 220 

comparisons:  the 55-yr Japanese Reanalysis Project (JRA-55, Kobayashi et al. 2015; Harada et 221 

al. 2016); European Centre for Medium-Range Weather Forecast (ECMWF) Interim reanalysis 222 

(ERA-Interim, Dee et al. 2011) and NASA Modern-Era Retrospective Analysis for Research and 223 

Applications, Version 2 (MERRA-2, Molod et al. 2015). 224 

 225 

2.2.2 Sea surface temperature and sea surface height data sets 226 

http://www.pmel.noaa.gov/tao/oceansites/flux/main.html
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 For model validation, we also used the daily OISST analysis that blends ship, buoy, and 227 

satellite measurements since November 1981 on a 0.25 grid resolution (Reynolds et al. 2007).  In 228 

this study, monthly data was derived from the daily data and then interpolated onto the same grid 229 

as the model simulations. 230 

 We also used the merged sea level anomaly (SLA) data derived from simultaneous 231 

measurements of multiple satellites (TOPEX/Poseidon or Jason-1 and ERS or Envisat) by 232 

Archiving, Validation and Interpretation of Satellite Oceanographic data (AVISO). The daily 233 

SLA data since 1993 was averaged into monthly means and linearly interpolated onto the same 234 

grid as the model simulations. 235 

 236 

3.   Uncertainties in R2 and CFSR surface fluxes  237 

 We first discuss uncertainties in R2 and CFSR surface fluxes. Surface wind stress and 238 

wind stress curl are the main drivers for the upper ocean circulation. For example, zonal pressure 239 

gradient near the equator is in an approximate balance with easterly wind stress, and water mass 240 

convergence/divergence in the off-equatorial regions is largely determined by wind stress curl. 241 

On the other hand, net surface heat flux (NFLX) is an important factor modulating the mixed 242 

layer heat budget. It is conceivable that ocean simulations will be sensitive to uncertainties in 243 

both momentum and heat fluxes.  244 

 Since equatorial thermocline is largely driven by surface wind stress, we first compared 245 

zonal wind stress (ZWS) averaged over the central equatorial Pacific [165°E-125°W, 5°S-5°N] 246 

from five reanalysis products and buoy data (Fig. 1). Table 1 lists their comparison of 247 
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climatology and trend among different wind products and buoy data. Before the late 1990s, there 248 

are no sufficient observations to directly validate R2 and CFSR winds. However, the comparison 249 

with other reanalysis products suggests that the mean of easterlies in R2 is the weakest one 250 

among the five reanalysis products, while the easterlies in CFSR are comparable to those of 251 

JRA-55 and ERA-Interim. After 2000, the easterlies in R2 and CFSR are both weaker than the 252 

TAO winds, while the easterlies in JRA-55, ERA-Interim and MERRA-2 are largely consistent 253 

with the TAO winds. The R2 easterly wind has an increasing trend (-1.6x10
-4 

N/m
2
/yr) during 254 

1982-2013, which is only about 1/3 of that in JRA-55, ERA-Interim, MERRA-2.  In contrast, 255 

CFSR is an outlier and has a spurious decreasing trend (+1x10
-4

 N/m
2
).    256 

 Large differences between R2 and CFSR fluxes exist in all three tropical oceans. Figure 2 257 

shows the ZWS and NFLX in R2 and CFSR and their differences averaged over the equatorial 258 

Pacific, Indian and Atlantic Oceans. The differences in ZWS exhibit a clear shift around 1998-259 

2001 over the equatorial Pacific and Indian Oceans (shaded areas in Fig.2 a-b).  In the equatorial 260 

Pacific (Indian) Ocean, the easterly (westerly) winds are generally stronger in CFSR than those 261 

in R2 prior to 1999 and then the two products converge in the 2000s (Fig.2 a-b). Over the 262 

equatorial Atlantic Ocean, however, the differences in ZWS do not show a shift around 1999 263 

(Fig.2 c).  264 

For NFLX, CFSR has about 20-60W/m
2
 more heat input into the tropical oceans than R2 265 

(shaded area in Fig. 2d-f). In the tropical Pacific, the CFSR displays a sudden increase in NFLX 266 

around 1999 showing an upward trend (Fig. 2d). In the tropical Indian and Atlantic Oceans, 267 

however, there are weak upward trends in NFLX after 2000 (Fig. 2e-f). The time variations of 268 



 

13 

 

NFLX in R2 are largely stationary in the tropical Indian Ocean, but have a downward trend in 269 

the tropical Pacific and Atlantic Oceans (Fig. 2d, 2f).  270 

To see the influence of the shift around 1999 more clearly, the differences between CFSR 271 

and R2 fluxes are shown for the period 1982-99 and 2000-13 separately (Fig. 3.)  For ZWS, large 272 

differences occur in all tropical oceans in 1982-99. Compared to the R2 winds, the easterly trade 273 

winds in CFSR are about 0.1 dyn/cm
2
 stronger east of the dateline, and the westerly winds in the 274 

eastern equatorial Indian Ocean are stronger in CFSR than those in R2 (Fig. 3a) prior to 2000, 275 

while the discrepancies between CFSR and R2 winds reduced substantially after 2000 (Fig. 3b).  276 

Similar epochal change in wind stress curl climatology difference is also found over the southern 277 

off-equatorial region near the dateline, with strong positive wind stress curl difference only in 278 

1982-99 period.     279 

The differences in NFLX are dependent on the two periods as well (Fig 3 e-f). Compared 280 

to R2, CFSR produces excessive heat input into the ocean over most of the tropical oceans in 281 

both periods.  The excessive NFLX in CFSR was partially associated with overestimation of net 282 

short-wave radiation into the ocean owing to the deficiency in cloudiness amounts (Wang et al. 283 

2011).  The excessive NFLX in CFSR respected to R2 was particularly large after 1999, with 284 

more than 40W/m
2
 heat input over most of the tropical Oceans.  285 

The epochal shifts of difference in easterly winds and net heat fluxes between CFSR and 286 

R2 were associated with the assimilation of ATOVS data in the CFSR after 1998. Zhang et al 287 

(2012) suggested that the introduction of ATOVS data into the assimilation system resulted in a 288 

sudden jump of precipitation around 1998. The larger precipitation rate after1998 in the CFSR 289 
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led to large scale atmospheric circulation changes, including an increase in precipitation  over the 290 

ITCZ, and underestimation of the strengthening easterlies over the tropical Pacific. There was 291 

also an increase in specific humidity and hence a smaller evaporation. Consistent with Zhang’s 292 

results, there is a decrease in net shortwave flux into the ocean, net longwave flux into the 293 

atmosphere and latent heat flux loss to the atmosphere in CFSR after 1998.  The sum of 294 

reduction in net longwave flux and latent heat flux into the atmosphere outweighed the loss of 295 

shortwave into the ocean, giving rise to an increase net heat flux during 2000-13 than in 1982-99 296 

(not shown). 297 

In summary, the discrepancies between R2 and CFSR surface fluxes exhibit an epochal 298 

shift around 1999, and the differences are quite large and occur over regions where dynamical 299 

and thermodynamical processes are important.  In next two sections, we will discuss how the 300 

uncertainties and errors in R2 and CFSR surface fluxes influence the simulation of climatology 301 

and interannual variability in the tropical ocean temperature.  302 

 303 

4. Simulation of mean climatology 304 

In this section, the extent to which mean states of model temperature are sensitive to 305 

uncertainties in R2 and CFSR surface fluxes were assessed. Further, we also explored which flux 306 

component contributes to the sensitivity. Finally, we assessed the quality of temperature 307 

simulations by validating against observations. 308 

 309 

4.1 Sensitivity of mean climatology to the epochal shift around 1999   310 
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We first quantified how the epochal shift of differences in R2 and CFSR surface fluxes 311 

around 1999 influences simulation of ocean temperature. For this purpose, the R2F and CFSRF 312 

simulations, which were forced by R2 and CFSR fluxes respectively, were compared with the 313 

buoy observations directly. Figure 4 displayed two examples, in which the model departures 314 

from buoy observations and the differences between R2F and CFSRF in the western equatorial 315 

Pacific [165°E, 0°N] and the tropical North Atlantic [38°W, 15°N] were shown. At [165°E, 316 

0°N], CFSRF had a warm (cold) bias before (after) 2000 at depths of 100-200m (Fig 4b), while 317 

R2F had cold bias near 100-200m throughout most of the period (Fig. 4a). The difference 318 

between CFSRF and R2F clearly showed two shifts around 2000, one closer to the surface and 319 

the other near depths of 100-200m (Fig. 4c).  We would show later that these two shifts could be 320 

attributed to the shift in NFLX and ZWS shown in Fig. 2. At [38°W, 15°N], the CFSRF 321 

temperature was in a good agreement with the PIRATA temperature (Fig. 4e), while the R2 322 

temperature was 4
o
C too warm below 150m (Fig. 4d). In contrast to the tropical Pacific, there 323 

was no abrupt shift around 2000 in the difference between the CFSRF and R2F temperature in 324 

the tropical North Atlantic (Fig. 4f).  However, due to the clear epochal shift in temperature 325 

difference around 2000 in the tropical Pacific, the comparison between the CFSRF and R2F were 326 

conducted for the 1986-99 and 2000-13 periods separately in all subsequent analyses.   327 

We next investigated which flux component contributes to the differences in SST 328 

climatology. Since the model SST is relaxed to the daily OISST, the differences from daily 329 

OISST represent the residual errors that could not be corrected by the relaxation scheme.  Figure 330 

5a showed that the SST in CFSRF was generally 0.5
°
C warmer than that in R2F under the ITCZ 331 
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region in the tropical Pacific and much of the tropical Indian and Atlantic Oceans.   The SST 332 

difference increased to about 1°C across most of the tropical oceans in 2000-13.  To understand 333 

the relative contribution of NFLX and momentum flux differences to the SST differences, we 334 

conducted a simulation identical to R2F except that the R2 NFLX was replaced by the CFSR 335 

NFLX (R2F_CFSRH). Figure 5c-d compared the SST climatology averaged in [10°S, 10°N] 336 

from the three simulations (R2F, CFSRF and R2F_CFSRH) and OISST. The SST from 337 

R2F_CFSRH (green line) was almost identical to that from CFSRF (red line). In addition, the 338 

patterns of the SST differences between the CFSRF and R2F were very similar to those patterns 339 

of the NFLX differences between CFSR and R2 (Fig. 3e, f).   These results indicated that the 340 

difference in NFLX is the primary factor giving rise to the difference in mean SST between the 341 

R2F and CFSRF simulations. This also explained the epochal shift of CFSRF minus R2F 342 

temperature near the surface at [165°E, 0°N] shown in Fig. 4c. 343 

Compared with OISST, the SST from R2F was generally too cold, with cold biases of 344 

1°C in the eastern tropical Pacific, across most of the tropical Indian and Atlantic Oceans (Fig.5 345 

c-d).  This was consistent with earlier net heat flux comparison analyses, which suggested R2 346 

had negative NFLX bias in the tropics, especially over the tropical Atlantic (Sun et al. 2003; Xue 347 

et al. 2011).  When the CFSR heat fluxes were used, the cold SST biases in the central-eastern 348 

Pacific reduced but warm biases emerged in the western Pacific in both periods, and also 349 

appeared across the tropical Indian and Atlantic Oceans in 2000-13. It indicates that the NFLX in 350 

CFSR is likely overestimated over these regions.  This is consistent with Wang et al (2011)’s 351 
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findings that CFSR overestimates downward shortwave radiation owing to the deficiency in 352 

cloudiness.   353 

We also examined which surface flux component contributes to the biases in simulation 354 

of depth of 20°C (D20), which is an approximation for thermocline depth in the tropics.  355 

Significant differences between CFSRF and R2F were found in the western tropical Pacific and 356 

subtropical regions in 1986-99 (Fig. 6a), which coincided with locations with large differences in 357 

ZWS and wind stress curl shown in Fig. 3.  Replacing the R2 wind stress by the CFSR wind 358 

stress (R2F_CFSRW), we found that the D20 differences between R2F_CFSRW and R2F were 359 

very similar to the differences between CFSR and R2F (Fig. 6b). This suggests that the 360 

difference in wind stress is the primary factor accounting for the differences in D20. Indeed, the 361 

sensitivity of ocean response is consistent with wind-driven dynamical processes.  For example, 362 

in 1986-99, the deeper thermocline depth in the CFSRF is consistent with the response to the 363 

stronger easterlies over the central-equatorial Pacific. In 2000-13, the spatial distribution of 364 

thermocline depth in the CFSRF was similar to that in the R2F because of the convergence of the 365 

two wind products after 2000.  In subtropical regions, positive wind stress curl differences 366 

between CFSR and R2 in the southwestern Pacific induced more water convergence, and hence 367 

deeper thermocline in the CFSRF. In the northern subtropics, positive wind stress curl 368 

differences induced more water divergence and hence shallower thermocline, which was evident 369 

near 10°N-20°N in the Pacific and Atlantic Oceans. 370 

 371 

4.2 Biases of mean climatology from the buoy data 372 
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 The availability of relatively long record of TAO data allows us to validate the mean 373 

climatology for the period prior and after 2000 separately. Figure 7 showed the mean biases of 374 

temperature of R2F and CFSRF simulations across the equator in the two periods.  One common 375 

feature was that both R2F and CFSRF have warm biases near and below the thermocline in the 376 

eastern Pacific in both periods. However, the biases near the thermocline in the western Pacific 377 

were very different before 2000: R2F had large cold biases (negative D20 bias), while CFSRF 378 

agree better with the observation.  The cold biases in R2F might be partially attributed to the too 379 

weak easterly winds in R2 compared to other reanalysis winds (Table 1). After 2000, both R2F 380 

and CFSRF had cold biases less than -2
o
C near the thermocline in the western Pacific. These 381 

common cold biases in the western Pacific in R2F and CFSR were consistent with the fact that 382 

the easterly winds in R2 and CFSR over the central Pacific were underestimated (Fig. 1). On the 383 

other hand, near the surface, R2F was too cold in the central-eastern Pacific, while CFSRF was 384 

too warm in the western Pacific in both periods, which were related to large differences in NFLX 385 

between R2 and CFSR (Fig. 3e, 3f). 386 

The validation against RAMA and PIRATA buoy data was done for the 2000-13 period 387 

only due to their shorter data record.  Figure 8 showed the spatial distribution of the mean bias of 388 

D20 of R2F and CFSRF simulation from TAO/TRITON, PIRATA and RAMA data. In the 389 

tropical Pacific, both R2F and CFSRF had negative bias in the western Pacific with the largest 390 

amplitude (-20m) at 5°S and 2°N. In the eastern Pacific, both R2F and CFSR had weak positive 391 

biases in D20, consistent with the warm biases near the thermocline shown in Fig. 7c-d. 392 

Compared with PIRATA observations, both R2F and CFSRF had positive biases along the 393 
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equatorial Atlantic and subtropical North Atlantic. Compared to R2F, CFSRF reduced the 394 

positive bias in the western North Atlantic substantially, which was consistent with the 395 

comparison at [38°W, 15°N] (Fig.4d-e).  The reduction in D20 biases from R2F to CFSRF was 396 

consistent with the positive wind stress curl differences between CFSR and R2 (Fig. 3d), which 397 

led to divergence in that region. This implied that the mean wind stress curl more realistic in 398 

CFSR than in R2 over the tropical North Atlantic. In the tropical Indian Ocean, both R2F and 399 

CFSRF had warm biases in the central-western Indian Ocean, but in the eastern Indian Ocean the 400 

biases had opposite signs in R2F and CFSRF.  401 

In summary, the mean biase differences in SST simulation were most sensitive to 402 

uncertainties in NFLX, while the mean biases in D20 were mainly sensitive to ZWS and wind 403 

stress curl. Large positive SST bias in CFSRF could be attributed to excessive NFLX in CFSR 404 

relative to R2 across most of the tropical oceans. Large positive D20 differences between CFSRF 405 

and R2F before 2000 could be attributed to stronger trade winds in CFSR than in R2. After 2000, 406 

both R2F and CFSRF had large cold biases near the thermocline in the western Pacific, which 407 

could be at least partially attributed to the fact that the easterly winds in the central Pacific were  408 

underestimated by both R2 and CFSR. The reduction in D20 biases in the northwestern tropical 409 

Atlantic could be attributed to the improvement in the wind stress curl in CFSR relative to R2.  410 

 411 

5.  Simulation of interannual variability 412 
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The quality of simulated interannual variability was next assessed by anomaly correlation 413 

(AC) and root-mean-square error (RMSE) with observations that include the OISST, tropical 414 

buoy data and satellite SSH data.  415 

 416 

5.1 Simulation of sea surface temperature variability 417 

 Figure 9 showed the AC and RMSE between the model and observed SST anomalies for 418 

the period 1986-99 and 2000-13 separately.  CFSRF generally agreed with the OISST better than 419 

R2F (higher AC and smaller RMSE) for both the periods. Particularly, the simulation of SST 420 

variability was significantly improved in the tropical Indian and Atlantic Oceans. For example, 421 

in the tropical Indian Ocean, the AC increased from 0.4 to 0.7 and RMSE reduced from 0.5°C to 422 

0.2°C from R2F to CFSRF in both periods. In the tropical Pacific, CFSRF was also superior to 423 

R2F except before 2000 in the western Pacific. We noted that the AC in the tropical Pacific was 424 

generally higher than that in the other two oceans, which was likely related to the largest 425 

interannual variability associated with ENSO.  426 

To qualify the sensitivities of SST simulations to differences in NFLX and momentum 427 

flux individually, ACs of R2F_CFSRH, R2F_CFSRW, CFSRF were compared with that of R2F 428 

in Fig. 10. The AC improvement between R2F_CFSRH and R2F was very similar to that 429 

between CFSRF and R2F with the biggest improvement in the tropical Indian and Atlantic 430 

Oceans in both the periods. This suggested that the AC improvement was largely attributed to the 431 

replacement of R2 NFLX by CFSR NFLX and on interannual time scales CFSR NFLX was 432 

generally superior to R2 NFLX over most of the tropical oceans. In contrast, there was little AC 433 
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improvement between R2F_CFSRW and R2F before 2000, but after 2000 there was some AC 434 

improvement in the eastern equatorial Pacific and Atlantic Oceans due to the replacement of R2 435 

winds by CFSR winds. This suggested that CFSR winds also contributed to the improvement of 436 

SST variability in the equatorial upwelling regions after 2000. 437 

 438 

5.2 Simulation of subsurface temperature variability 439 

   The quality of simulated subsurface temperature variability was quantified by RMSE and 440 

AC with the buoy temperature.  Figure 11 displayed the averaged RMSE and AC for the buoys 441 

in the western equatorial Pacific [137°E-165°E, 5°S-5°N], and eastern equatorial Pacific 442 

[140°W-95°W, 5°S-5°N]. In general, the ocean simulations captured the observed variability 443 

quite well from surface to thermocline with AC greater than 0.7. The maximum RMSE occurred 444 

at depth near the thermocline where the observed variabilities were the highest (Fig. 11 black 445 

dotted lines). In the eastern Pacific, CFSRF agreed with TAO better than R2F from surface down 446 

to 300m as evidenced by higher AC and smaller RMSE.  In the western Pacific, R2F was 447 

superior to CFSRF near the surface in 1986-1999 (Fig. 11c), which was consistent with the 448 

validation against the OISST (Fig. 10a). After 2000, the performance of CFSRF was close to that 449 

of R2F in terms of RMSE and AC (Fig. 11 e, g).   450 

  The sensitivity to differences in wind stress and net heat fluxes between R2 and CFSR 451 

was examined next. The temperature variability within the mixed layer in the western Pacific 452 

was sensitive to both wind stress and net surface flux variations, while temperature variability in 453 

the eastern Pacific was most sensitive to wind stress variations. In the western Pacific, both 454 
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R2F_CFSRW (blue line) and R2F_CFSRH (green line) agreed with observation better than 455 

CFSRF in upper 100m before 2000 (Fig. 11a). It suggested that both R2 surface winds and net 456 

heat fluxes improved the model simulation near the surface in the western Pacific before 2000.  457 

On the other hand, in the eastern Pacific, the performance of R2F_CFSRW (blue lines) followed 458 

closely to that of CFSRF (red lines), while the performance of R2F_CFSRH (green lines) 459 

resembled that of R2F (black lines). It implied that the improvement in CFSRF was largely due 460 

to the replacement of R2 wind stress by CFSR wind stress. 461 

 Since thermocline variations provided the ocean memory for the low frequency 462 

variability such as ENSO in the tropical Pacific and Atlantic Niño in the tropical Atlantic (Chang 463 

et al. 2006; Wang et al. 2004), we next examined the capability of model simulations in 464 

capturing the observed D20 variability. Fig. 12 displayed the AC of D20 from R2F and CFSRF 465 

with the buoy data in 2000-13.  The statistics (AC, RMSE, STD) of the comparisons were 466 

summarized in Table 2. The AC was larger than 0.7 in the eastern and western equatorial Pacific 467 

and larger than 0.5 in the central equatorial Pacific. The skill of CFSRF was superior to that of 468 

R2F, particularly in the central Pacific. Both R2F and CFSRF had relatively low correlation in 469 

the central off-equatorial region [5°N-10°N]. In the tropical Atlantic Ocean, the observed 470 

variability was poorly represented by R2F especially in the western Atlantic along 38°W. When 471 

CFSR surface fluxes were used, the AC increased by 0.2 and RMSE reduced by about 4m at 472 

most of PIRATA moorings.  In the tropical Indian Ocean, the observed variability in the eastern 473 

Indian was reasonably captured by R2F (AC ~ 0.7) and CFSRF further improved the simulation 474 

skill slightly.  The AC in the southern Indian Ocean is relative low in both R2F and CFSRF. 475 
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  476 

5.3 Simulation of SSH variability 477 

 The SSH data from Altimetry provides an independent data set for validation of the ocean 478 

simulations. The AC between model and Altimetry SSH and the AC differences between 479 

simulations were shown in Fig. 13.   In the tropical Pacific Ocean, both R2F and CFSRF had 480 

high correlation with Altimetry (>0.8) in the equatorial bands [5°S-5°N] and the western 481 

subtropical Pacific. In the tropical Indian Ocean, the AC was slightly lower than that in the 482 

tropical Pacific with the AC exceeding 0.6 across most of the basin. The CFSR fluxes had 483 

slightly better SSH simulation than the R2 fluxes. 484 

 In the tropical Atlantic, however, the difference between CFSRF and R2F was 485 

remarkable.   R2F had a poor skill (i.e. AC < 0.2) in simulating SSH variability in off-equatorial 486 

Atlantic.  On the contrary, CFSRF had AC larger than 0.6 across most of the basin. Replacing R2 487 

wind stress by CFSR wind stress (R2F_CFSRW) recovered most of the skill in CFSRF. It 488 

indicated uncertainty in wind stress was the dominant factor causing the differences between 489 

R2F and CFSRF.  The results suggested that the CFSR winds were superior to the R2 winds over 490 

the tropical Atlantic Ocean.  491 

 492 

6.  Conclusions and discussions  493 

 NCEP R2 and CFSR surface fluxes are widely used by the research community to 494 

understand surface flux climate variability and to drive ocean models as surface forcings. Large 495 

discrepancies between the two products exist over regions where dynamical and 496 
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thermodynamical processes are important, including: (1) stronger easterly winds over the central 497 

tropical Pacific in CFSR than in R2 before 2000; (2) excessive net surface heat fluxes into the 498 

tropical oceans in CFSR than in R2, with an increase in difference after 2000.  The epochal shifts 499 

in surface fluxes between CFSR and R2 are associated with the inclusion of ATOV data into 500 

CFSR around 1998 (Wang et al. 2011; Xue et al. 2011; Zhang et al. 2012).      501 

We assessed the fidelity of R2 and CFSR surface fluxes by examining how well the 502 

ocean model simulations forced by those surface fluxes (referred to as R2F and CFSRF 503 

respectively) agreed with observations. A set of OGCM experiments were carried out in which 504 

an ocean model was driven by a combination of surface flux component (momentum flux, net 505 

heat flux) from R2 and CFSR spanning the period 1982-2013.  The accuracy of the model 506 

simulations was validated against OISST, tropical moored buoy data, and AVISO altimetry SSH 507 

data. The model simulations were contrasted to identify sensitivity of model simulations to 508 

momentum fluxes versus net surface heat fluxes in R2 and CFSR. 509 

One of the most salient differences between R2F and CFSRF simulations was found in 510 

the western Pacific, where simulated D20 driven by CFSR fluxes was about 15m deeper than 511 

that driven by R2 fluxes prior 2000, and then the two simulations converged after 2000. Because 512 

of the epochal shift in R2F and CFSRF differences, the comparisons between R2F and CFSRF 513 

and among other sensitivity simulations were done over the period 1986-99 and 2000-13 514 

separately.  515 

On the simulation of mean climatology, the mean bias differences in D20 were mainly 516 

sensitive to the differences in mean wind stress and wind stress curl.  Subsurface temperature 517 
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biases were generally large in all three tropical oceans in both R2F and CFSRF, which were 518 

partially attributed to the biases in surface forcings in this study. For example, the common cold 519 

biases near the thermocline in the equatorial western Pacific after 2000 in both R2F and CFSRF 520 

were partially attributed to underestimated easterly winds over the central equatorial Pacific in 521 

both R2 and CFSR.  The comparison with the TAO/TRITON winds and other reanalysis wind 522 

products confirmed that CFSR was an outlier and had a spurious decreasing trend in the easterly 523 

winds over the central equatorial Pacific.  However, the D20 biases in the western North Atlantic 524 

were substantially reduced in CFSRF compared to R2F after 2000. It implied that the mean wind 525 

stress curls were more realistic in CFSR than in R2 over this region. 526 

Mean bias difference in SST simulation were mostly sensitive to uncertainties in NFLX.  527 

R2 surface heat fluxes led to large cold SST biases in the central-eastern tropical Pacific, Indian 528 

and Atlantic Oceans. CFSR surface heat fluxes helped to reduce cold biases in the eastern 529 

Pacific, but gave rise to warm biases in the Indo-Pacific and tropical Atlantic Oceans owing to 530 

the overestimation of net shortwave fluxes in the CFSR. This result implied that R2 531 

underestimated NFLX into the tropical oceans, while CFSR overestimated NFLX over most of 532 

the tropical oceans.  533 

The simulations of interannual variability forced by R2 and CFSR fluxes had higher 534 

fidelity than the simulations of the mean climatology. In the tropical Pacific,  both R2 and CFSR 535 

fluxes reproduced the surface and subsurface temperature variability reasonably well,  and CFSR 536 

fluxes further improved the temperature variability in the eastern Pacific and off-equatorial 537 

regions. In the tropical Indian Ocean, the SST simulations driven by CFSR fluxes agreed with 538 



 

26 

 

the observation much better than those with R2 fluxes. In the Atlantic Ocean, skills of 539 

simulations from the two products were very different.  CFSR surface heat flux and wind stress 540 

reproduced realistic SST and SSH variability, respectively.  On the contrary, skill of simulation 541 

with R2 surface fluxes was very poor.  It suggested that choice of surface flux forcing was very 542 

important for ocean simulations in the tropical Atlantic Ocean.  543 

  The simulation errors discussed above can be either attributed to uncertainties in surface 544 

fluxes or errors in ocean model physics. Our conclusions could differ somewhat if a different 545 

ocean model was used. The generality of our conclusions in a wider context will require use of 546 

multi-ocean model simulations. However, assuming that errors due to ocean model physics affect 547 

model simulations with different surface forcings similarly, the relative differences between 548 

model simulations forced with R2 and CFSR forcings can be attributed to differences in the 549 

forcings. So the methodology used in this study can be used to assess the relative merits of the 550 

surface fluxes from other reanalysis products as well. 551 

Errors in surface flux forced simulations are often corrected by combining ocean 552 

observations with model solutions using ocean data assimilation systems (Balmaseda et al. 553 

2015). So understanding the sources of errors in forced simulations is very important in the 554 

context of assessing the impacts of different ocean observing systems on constraining model 555 

solutions (Xue et al. 2015). In the framework of ocean data assimilation systems, ocean 556 

observations are particularly important in regions where errors in forced simulation are 557 

large.  For example, in the tropical Pacific, both R2F and CFSRF simulations did a poor job in 558 

capturing the subsurface temperature variability in the off-equatorial central Pacific where the 559 
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subsurface temperature variability is a precursor for ENSO development (Wen et al. 2014). Our 560 

results suggested that in this particular modeling system, in situ observations are critical in 561 

correcting errors in forced simulations in this region. In the tropical Atlantic Ocean, both R2F 562 

and CFSRF simulations failed to simulate subsurface temperature variability around the north 563 

equatorial countercurrent and near the Caribbean ocean, in situ observations are particularly 564 

needed to reduce model errors in these regions. 565 

On the other hand, in regions where model simulations are sensitive to uncertainties in 566 

surface fluxes, it suggests that accurate surface forcings will be crucial in improving the ocean 567 

reanalyses. For example, CFSR winds improved subsurface temperature climatology and 568 

variability significantly compared with R2 winds in some regions. Indeed, the anomaly 569 

correlation with altimetry SSH in CFSRF simulation is at the same level or higher than that from 570 

the operational GODAS (Behringer and Xue 2004) (Fig. 10 in Xue et al. 2011).  It is noteworthy 571 

that the GODAS assimilates subsurface temperature profiles from XBT, Argo, and mooring 572 

arrays, and is driven by R2 surface fluxes.  Our results suggest that the CFSR forcings might 573 

improve GODAS accuracy further in the tropical Atlantic Ocean.  574 
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Table 1   Comparisons of zonal wind stress mean (unit in N/m2) and trend (unit in N/m2/yr)  over 715 
the central equatorial Pacific [165°E-125°W, 5°S-5°N] in TAO, R2, CFSR, JRA-55, ERA-Interim, 716 
MERRA-2. Wind stress mean was averaged in 1982-99 and 2000-13 periods, respectively. 717 
Linear wind stress trend was calculated during 1982-2013 period.   718 

 TAO R2 CFSR JRA-55 ERA-Interim MERRA-2 

1982-1999  -3.8x10-2 -4.4x10-2 -4.3x10-2 -4.1x10-2 -4.9x10-2 

2000-2013 -5.1x10-2 -4.3x10-2 -4.3x10-2 -5.2x10-2 -5.1x10-2 -5.7x10-2 

   Trend   -1.6x10-4 1x10-4 -5x10-4 -6x10-4 -4.6x10-4 

 719 

 720 

 721 

 722 

 723 

 724 

 725 

 726 

 727 

 728 
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 736 

Table 2 Comparisons of D20 anomaly from R2F, CFSRF against TAO/TRITON, PIRATA and 737 
RAMA buoy data. Shown are standard deviation (STD), root-mean-square-error (RMSE) and 738 
anomaly correlation (AC) averaged in different regions.  STD from TAO is shown in brackets.  739 
The comparison period covers from 2000-13.   740 
 741 

 742 

Region  STD(m) RMSE(m) AC 

Equatorial Western Pacific 

[137°E-165°E,5°S-5°N] 

R2F 13.4(12.8) 8.6 0.8 

CFSRF 7.8(12.8) 7.4 0.9 

Equatorial Central Pacific 

[180°-155°W,5°S-5°N] 

R2F 10.5(9.6) 9.6 0.5 

CFSRF 7.4(9.6) 6.3 0.7 

Equatorial Eastern Pacific 

[140°W-95°W,5°S-5°N] 

R2F 11.8(14) 10.1 0.7 

CFSRF 10.7(14) 8.1 0.8 

ATL3 

[20°W-0°E,3°S-3°N] 

R2F 8(6.9) 8.3 0.4 

CFSRF 5.3(6.9) 5.6 0.6 

Western Atlantic Ocean 

[38°W,4°N-20°N] 

R2F 11(9.9) 14.9 0 

CFSRF 5.6(9.9) 10.5 0.2 

Southern Indian Ocean 

[55°E-80.5°E,16°S-8°S] 

R2F 11.8(13.1) 13.6 0.4 

CFSRF 10.4(13.1) 12.7 0.4 

Equatorial Eastern Indian Ocean 

[80°E-100°E,5°S-5°N] 

R2F 9.7(10.3) 6.9 0.7 

CFSRF 7.4(10.3) 6.2 0.8 
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 751 

 752 

Figure 1 Time series of 1-yr running mean of zonal wind stress (unit in dyn/cm
2

 ) over the  753 

equatorial central Pacific (5°S-5°N, 165°E-125°W) from TAO (solid line with star), R2 (red 754 

line), CFSR (blue line) , JRA-55 (green line), ERA-Interim (purple dash line) and MERRA-2 755 

(yellow line).  756 
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 766 

Figure 2 Time series of 1-yr running mean of zonal wind stress (unit in dyn/cm2 ) averaged 

over (a) equatorial central Pacific (5°S-5°N, 165°E-125°W), (b) equatorial Indian Ocean 

(5°S-5°N, 45°E-100°E), and (c) equatorial Atlantic Ocean (5°S-5°N, 40°W-0°E) for R2 

(black line), CFSR (red line) and differences between CFSR and R2 (green shaded) . (d) – 

(f) are the same as (a-c) except for net surface heat fluxes (unit in W/m
2
 ). 
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 767 

Figure 3  Annual mean difference (CFSR minus R2) of zonal wind stress (unit in dyn/cm
2
, upper 768 

panels ), wind stress curl (unit in N/m2 X10
-7

, middle panels ) and net surface heat flux (unit in 769 

W/m
2
) for 1982-99 (left panels ) and 2000-13 (right panels).  770 
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Figure 4 Temperature differences (a) between R2F and TAO, (b) between CFSRF and 

TAO, (c) between CFSRF and R2F at TAO mooring site at [165°E, 0°N]. (d)-(f) are similar 

with (a)-(c) except at PIRATA mooring site at [38°W,15°N]. 



 

37 

 

 784 

 785 

 786 

 787 

 788 
 789 

 790 

 791 

 792 

 793 

 794 

 795 

 796 

 797 

 798 

 799 

Figure 5 Annual mean SST difference (unit in °C) between CFSRF and R2F in (a) 

1986-99, and (b) 2000-13. Zonal averaged SST in [10°S-10°N] from OISST (black 

line), R2F (blue line), CFSRF (red line) and R2F_CFSRH (green line) in (c) 1986-99, 

(d) 2000-13. 
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 800 

Figure 6 Annual mean difference of D20 (unit in m) for the period 1986-99 (left panels) and 801 

2000-13 (right panels). (a), (c) display CFSRF minus R2F, (b), (d) display R2F_CFSRW minus 802 

R2F. 803 
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Figure 7 Averaged temperature difference in the 2°S-2°N band for the period 1986-99 

(left panels) and 2000-13 (right panels). (a), (c) display R2F minus TAO, (b), (d) CFSRF 

minus TAO. Black (red) line indicates the mean temperature of 20° isotherm from TAO 

(model simulations). The vertical lines indicate where the TAO/TRITON buoys are 

located. 
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 837 

Figure 8 Comparisons of climatological mean D20 between model simulations and 

mooring measurements for the 2000-13 period. (a) R2F minus TAO, (b) 

CFSRF minus TAO. (c) R2F minus PIRATA, (d) CFSRF minus PIRATA, (e) R2F 

minus RAMA, and (f) CFSRF minus RAMA. 
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Figure 9 Anomaly correlation (AC, top two rows) and root-mean-square error (RMSE, 

bottom two rows) of simulations with the OISST for the period 1986-99 (left panels) 

and 2000-13 (right panels) respectively.  
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Figure 10 Anomaly correlation differences with the OISST for the period 1986-99 (left 

panels) and 2000-13 (panels) respectively. (a), (d) CFSRF minus R2F, (b), (e)  R2F_CFSRH 

minus R2F, and (c), (f) R2F_CFSRW minus R2F. 
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Figure 11 Root-mean-square-error (RMSE, top two rows) and anomaly correlation (AC, 

bottom two rows) between vertical temperature anomaly of model simulations and 

TAO averaged for the buoys in the western equatorial Pacific [WEST, 137°E-165°E, 

5°S-5°N], and eastern equatorial Pacific [EAST, 140°W-95°W, 5°S-5°N] for the period 

1986-99 (left panels) and 2000-13 (right panels) respectively. Black dotted lines denote 

standard deviation of TAO temperature. Black, red, blue and green lines represent results 

from R2F, CFSRF, R2F_CFSRW, and R2F_CFSRH, respectively.  
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Figure 12 Anomaly correlation of D20 from R2F (left panels) and CFSRF (right panels) 

against the (a), (d) TAO/TRITON, (b), (e) PIRATA, and (c), (f) RAMA buoy data from 

2000 to 2013. 
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 870 

 871 

 872 
 873 Figure 13   Anomaly correlation (AC) of SSH from (a) R2F and (b) CFSRF against 

AVISO altimetry during 2000-13. (c) AC difference between CFSRF and R2F, and 

(d) R2F_CFSRF and R2F. 


