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Abstract: The vulnerability of coastal systems to hazards such as storms and sea-level rise is typically
characterized using a combination of ground and manned airborne systems that have limited spatial
or temporal scales. Structure-from-motion (SfM) photogrammetry applied to imagery acquired by
unmanned aerial systems (UAS) offers a rapid and inexpensive means to produce high-resolution
topographic and visual reflectance datasets that rival existing lidar and imagery standards. Here, we
use SfM to produce an elevation point cloud, an orthomosaic, and a digital elevation model (DEM)
from data collected by UAS at a beach and wetland site in Massachusetts, USA. We apply existing
methods to (a) determine the position of shorelines and foredunes using a feature extraction routine
developed for lidar point clouds and (b) map land cover from the rasterized surfaces using a
supervised classification routine. In both analyses, we experimentally vary the input datasets to
understand the benefits and limitations of UAS-SfM for coastal vulnerability assessment. We find
that (a) geomorphic features are extracted from the SfM point cloud with near-continuous coverage
and sub-meter precision, better than was possible from a recent lidar dataset covering the same
area; and (b) land cover classification is greatly improved by including topographic data with visual
reflectance, but changes to resolution (when <50 cm) have little influence on the classification accuracy.

Keywords: coastal change; drones; elevation model; geomorphic feature extraction; land cover
classification; photogrammetry; structure-from-motion; unmanned aerial systems

1. Introduction

Coastal environments are highly dynamic systems that change in response to wind, waves, tides,
storms, and long-term sea-level. Short-term and long-term changes important to understanding the
processes and timescales driving the evolution of the coast are measured through ongoing monitoring
and observations, provided largely by remotely sensed imagery and elevation data. Positional changes
in alongshore features such as the shoreline and foredunes [1,2] can be used to quantify rates of change
and to assess the spatial variability of these features [3]. Rates of change can be related to other factors
such as the geologic framework [4–6], sediment supply [7], and human modifications [8,9]. Land cover
change analysis allows us to map the evolution of the landscape such as development, expansion,
and translation of marsh extent [10], as well as identifying habitat changes that affect beach-dependent
species, such as the federally-listed piping plover (Charadrius melodus) [11]. Updating these metrics
before and immediately after storms, and over time (weeks, seasons, years) provides critical information
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to better understand storm impacts [12], preferential site characteristics, interannual cycles [13], and the
overall morphologic and ecologic resilience of these dynamic environments to longer-term drivers such
as sea-level change [14].

Frequent data collection is needed to measure and monitor ongoing coastal change and evaluate
habitat use in these systems, but repeat surveys can be costly, time-consuming, and involve working
in sensitive or restricted environments [15]. Vantage points, coverage, and access can be limited in
ground-based surveys due to variable terrain, vegetation, and habitat sensitivity, and storm impacts
can compound access issues through erosion, overwash, or breaching, making direct measurements
difficult. Although there are remote sensing techniques that can alleviate many of the ground-based
limitations (e.g., airborne lidar and satellite imagery) [16], the platforms and data are expensive
or provide coverage at an unsuitable temporal or spatial resolution for small-scale site-specific
observation [17]. As a result, areas of interest are often surveyed using multiple techniques to assess
change over a range of timescales [18].

Unmanned Aerial Systems (UAS; sometimes referred to as drones) coupled with
Structure-from-Motion (SfM) photogrammetry offer a rapidly mobilized, and underutilized coastal
surveying alternative that can provide high-resolution aerial coverage to quickly assess storm impacts
and monitor recovery [17,19]. In this study, we evaluate the ability of these systems to map and measure
coastal features in areas with sandy shores and semi-vegetated dunes. We first use SfM to generate
a three-dimensional point cloud, a gridded digital elevation model (DEM), and a georeferenced
orthomosaic image for a representative coastal site. We then determine the applicability of these
products for use in coastal research by calculating the horizontal and vertical accuracy of elevations.
We derive shoreline and foredune positions from the point cloud, and classify land cover using the
orthomosaic and DEM. Finally, we evaluate the influence of data density and processing resolution
on the extraction of beach geomorphic features using established methods, as well as the influence of
resolution and use of topographic data on classification accuracy.

2. Materials and Methods

The field data and first-level products are distributed with detailed processing steps in the
published data [20]. Figure 1 shows the general workflow undertaken in this project.
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2.1. Study Area

Black Beach is a west-facing coastal beach that rises to semi-vegetated dunes and shelters a salt
marsh from the waters of Buzzards Bay, Massachusetts, USA (Figure 2). The general components of the
Black Beach system, including a dynamic shoreline, foredunes, and a range of vegetation, are typical
of coastal systems globally and make it a suitable test site for generating the two coastal analysis
products emphasized in this study. The positions of geomorphic features, such as those present at
Black Beach (i.e., shoreline, dune toe, and dune crest), are fundamental measures used globally for
coastal vulnerability assessment [21,22]. In addition, the array of land cover at this site is characteristic
of beaches on the U.S. mid- to south-Atlantic coast, and constitutes critical habitat for conservation.
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Figure 2. Local context of study area in (a) Massachusetts (black square) and (b) along the Buzzards
Bay coast displayed with aerial imagery acquired in summer 2013 (2013 Massachusetts DEP Natural
Color Imagery collected for NOAA, NOS, OCM between 28 May 2013 and 9 September 2013). (c) Map
of the survey at Black Beach, MA: black and white squares indicate the locations of targets used as
ground control points (GCPs); black dots represent 254 independent reference points; the orange line
represents the path flown at approximately 35 m altitude by the UAS (not including take off and
landing sequences); and white squares within the flight path represent the location of the camera at the
time of capturing each photograph.

A small tidal inlet to Great Sippewissett Marsh bisects the study area. Tides are semidiurnal with
a range of about 1.3 m; the mean high water (MHW) elevation is 0.66 m and the local mean sea level
(MSL) is 0.13 m (all elevations in this study are referenced to North American Vertical Datum of 1988
(NAVD88)) [23]. Waves generally approach from southwest during summer, and west to northwest
during the winter. The beach is characterized by medium- to coarse-grained sand, with ephemeral lags
of glacial cobbles exposed on the foreshore and lower intertidal zone. The frontal dune is generally
continuous and up to 3.5 m, and is covered with Ammophila breviligulata grass of varying density.
Secondary and tertiary dunes exhibit elevations up to 3.7 m, are less continuous, and include a variety



Remote Sens. 2017, 9, 1020 4 of 21

of vegetation including both dune grasses and woody vegetation. The adjacent salt marsh vegetation
is dominated by Spartina alterniflora in the low marsh (0.25 m–0.5 m), by S. alterniflora mixed with
S. patens around MHW, and by S. patens and Distichlis spicata in the high marsh [24,25].

On average, this portion of the Buzzards Bay shoreline is undergoing a long-term retreat of
about 0.15 ± 0.03 m/yr [26,27] and Black Beach and Great Sippewissett Inlet display decadal-scale
fluctuations in position and morphology around this long-term trend. In the last 35 to 55 years,
the shoreline has retreated about 30 m with accompanying dune retreat [28]. These geomorphological
changes have consequences for habitat. Black Beach and the adjacent Great Sippewissett Marsh are
designated as Priority Habitat of Rare Species by the Massachusetts Natural Heritage and Endangered
Species Program (NHESP) in part because the beach is used by beach-nesting shorebirds including the
least tern (Sternula antillarum) and the piping plover (Charadrius melodus), a federally-listed threatened
species [29].

2.2. UAS-SfM Processing

2.2.1. Field Data Collection

A DJI Phantom 3 Professional (Dà Jiāng Innovations Science and Technology Co., Ltd., Shenzhen,
China) quadcopter collected 250 images (12 megapixel JPEG files) with a near-nadir look angle
during two flights at approximately 35 m altitude on 18 March 2016 between approximately 1100 and
1130 EDT. Skies were cloud-free and wind speeds were about 10 m/s. The built-in camera sensor
captured an image approximately every 20 m in 15 east–west transects spaced 30 m apart (Figure 2).
Image footprints have 80% overlap with 2.5 cm pixel resolution and cover an area of approximately
300 m × 500 m. The approximate camera position at the time of each photograph was measured by a
global navigation satellite system (GNSS) receiver on-board the quadcopter and recorded in the header
of the image file [20].

Immediately prior to the aerial survey, we placed 18 black and white 1-m2 targets and surveyed
the positions of their center points for use as ground control points (GCPs). Coincident with the
quadcopter flights, we surveyed 254 reference points at roughly 5-m intervals along two north–south
transects and six east–west transects over the principal terrestrial area. Surveying was performed with
three Spectra Precision SP80 GNSS receivers (Trimble Inc., Sunnyvale, CA, USA) connected to the
Massachusetts Continuously Operating Reference Station (MaCORS) real-time kinematic (RTK) GNSS
network. Horizontal positions were referenced to World Geodetic Datum of 1984 (WGS84)/Universal
Transverse Mercator (UTM) Zone 19N and vertical positions were referenced to NAVD88, Geoid 12A.
The GCPs had an average horizontal error of 1.1 cm and vertical error of 1.4 cm and the entire set of
surveyed points had an average horizontal error of 0.9 cm and vertical error of 1.3 cm [20].

2.2.2. Structure-from-Motion

Georeferenced visual-topographic point clouds, a DEM, and an orthomosaic were produced
using SfM algorithms in Agisoft PhotoScan Professional (v1.2.6, Agisoft LLC, St. Petersburg, Russia).
SfM workflows are well-established [19,30,31] and are minimally elaborated here. Detailed processing
steps, including optimization parameters, are presented in Table A1 and distributed in the published
data [20].

The SfM workflow to generate a point cloud includes photo alignment and tie point generation,
camera optimization, geo-registration to GCPs and finally dense point cloud construction (Table A1).
The software first corrects image distortion and then uses a multi-view stereo reconstruction procedure
to place each pixel in XYZ space. This results in elevation point clouds that are 3-dimensional
positions with associated color information (red-green-blue (RGB) values). PhotoScan allows the
user to customize in the Build Dense Cloud tool whether and by how much to downscale the images
during processing.
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We created both a high- and low-density point cloud to address processing limitations.
The high-density point cloud was created after downscaling the input images to 50% (high quality
setting in PhotoScan) and the low-density cloud was created after downscaling the images to 12.5%
(low quality setting) [32]. The low-density version was created for use in geomorphic feature extraction
because existing software routines created for lidar point clouds could not tolerate the large file size
and extremely high data density of the high-density cloud.

The high-density point cloud was used to create the orthomosaic and DEM (Figure 3) in PhotoScan.
We first eliminated points that were clearly isolated from the landscape surface by viewing the point
cloud from different angles. Most of these points were associated with areas of water and were
caused by glint or other photographic artifacts. The updated point cloud was converted to a DEM
with a resolution of 5 cm × 5 cm using an Inverse Distance Weighted algorithm for interpolation.
The orthomosaic image was created by projecting the orthorectified photos, at their original resolution,
over the DEM using PhotoScan’s mosaic blending mode [33].
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2.3. Derived Products

The SfM products were evaluated for topographic error and were used to derive two second-level
datasets: beach geomorphic feature positions and a classified land cover surface. We resampled the
SfM products to a variety of resolutions and ran the processes with each of the resampled datasets.
We then compared the differences in accuracy that resulted from changes to the input parameters.

2.3.1. Geomorphic Feature Extraction

We used two feature extraction methods: one to extract shoreline position (similar to [21]) and
the other to extract the positions of foredune toe and foredune crest [34]. Both methods have been
broadly applied in U.S. coastal change assessments (e.g., [26]). Both methods were implemented
in MATLAB (Release 2015b, Natick, MA, USA) and identify positions of the given features along
cross-shore transects.

To evaluate the data densities required to extract geomorphic features, we decimated the 15-cm
(low density) point cloud to 35 cm and 50 cm spacing. We used the Subsample tool in CloudCompare
(v2.7, 2016, GPL software) to decimate the 15 cm point cloud by setting the minimum space between
points to 35 and 50 cm in turn. From each of the three datasets (one dataset per point spacing),
we performed two feature extractions: one using established processing parameters and the other with
a narrowed swath width. This resulted in six products for each of the three feature types (shoreline,
dune toe, and dune crest), enabling us to compare outputs of three point cloud densities and two sets
of processing parameters.

To automatically detect shoreline position, MHW was located along a two-dimensional cross-shore
elevation profile using a method similar to [21]. Onshore transects were cast perpendicular to
a generalized offshore coastline at the designated transect spacing. All data points within 1 m
(established parameter) or 0.5 m (narrowed width) of each transect were used in an automated process
that (1) identified points on the foreshore; (2) fit a linear regression through these foreshore points;
and (3) calculated where this regression line crossed the MHW elevation (z = 0.66 m). The intersection
of the foreshore regression line with MHW was considered the geographic location of the shoreline.
Each position that was visually identified as inaccurate when projected on its cross-shore profile
was removed (e.g., Figure 4a). Positions were considered inaccurate when the detected point did
not match the correct feature, such as a detected shoreline position that corresponded to a detached
intertidal swash bar. These methods are commonly implemented with profiles spaced every 10 or 20 m
(e.g., [21,34–36]). In this study, we maintained the 10-m transect spacing with the wider (2 m) swaths
and we shortened the alongshore distance between transects to 2 m with the narrowed (1 m) swaths.

We extracted the three-dimensional position of the foredune toe and crest along cross-shore
profiles using the methods developed by Stockdon et al. [34] (e.g., Figure 4b). Onshore transects were
cast perpendicular to the coastline and a weighted average gridding routine was applied to the point
cloud along each transect to produce cross-shore elevation profiles. As with the shoreline, we extracted
foredune positions at two processing resolutions: grid cells of 2.5 m cross-shore by 10 m alongshore
were considered low-resolution and cells of 1 m cross-shore by 2 m alongshore were considered
high-resolution. The dune crest was defined as the peak of the most seaward dune within 200 m
of the MHW shoreline. The dune toe was identified as the greatest point of inflection between the
shoreline and the dune crest. The inflection point was required to be more than 0.5 m below the dune
crest and have a negative surrounding curvature [34]. After the positions were extracted, the operator
performed several rigorous quality control checks such as viewing all the features extracted for a beach
system overlaid on the elevation data and using imagery as available [34]. If errors were identified,
the operator manually viewed the cross-shore profile and either deleted or modified the position of
the feature.
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Figure 4. Examples of feature extraction using cross-shore elevation profiles. (a) Shoreline extraction
at the transect represented by the blue swath in the center of the map (Inset 1). Shoreline positions
are represented in the map and the cross-shore elevation plots as blue points; dark blue points were
positioned from the wide swaths and light blue points were positioned from the narrow swaths.
Green points represent the foreshore region with a black line representing a linear regression fit through
those points; red vertical lines indicate the 95% confidence interval of the solution. The four plots
show profiles extracted in 2-m and 1-m alongshore swaths from the 15-cm and 50-cm spaced point
cloud (as indicated). (b) Dune feature extraction at the transect represented by the yellow band in the
map (Inset 2) from 15-cm spaced point clouds and at two swath widths, as indicated. A yellow point
represents a dune crest that was extracted successfully; a red point represents a solution rejected by the
operator. Dune toe position could not be computed in either profile and dune crest position was only
identified with the 2-m swath.

2.3.2. Land Cover Classification

Land cover was classified at four resolutions from two sets of input data using a supervised
object-based maximum likelihood classification [37–42]. The workflow is diagrammed in Figure 5.
Five land cover classes common to coastal habitat modeling (e.g., [43]) were used in the supervised
classification including: water, sand, wetland vegetation (“marsh”), non-marsh herbaceous vegetation
(“herbaceous vegetation”), and woody vegetation (“shrub”).

We measured the effect on accuracy of changes in two variables: the resolution of the input
imagery and the incorporation of topographic data. The classification described below was performed
for eight input dataset variations: (1–4) the orthomosaic (RGB bands) at four resolutions (2.5, 15, 35,
and 50 cm) and (5–8) the orthomosaic at the same four resolutions with elevation and slope (ZSl)
at twice the resolution of the imagery. The orthomosaic and the DEM were each resampled to the
three downsampled resolutions using bilinear interpolation (Resample tool in ArcGIS v10.3, ESRI,
Redlands, CA, USA). The resolutions of the elevation and slope datasets were proportionally scaled to
the imagery datasets because the DEM produced by SfM was coarser than the orthomosaic by a factor
of two. All classifications were performed with the same set of training and testing sites.

Land cover reference sites for training and validation were manually classified by reference to
the imagery and elevation. We randomly distributed 500 points within the extent of the orthomosaic
to initialize the reference dataset. This initial set was more than doubled by manually adding points
(878 additional points) to create a representative sample of the land cover classes, in which the sample
quantity in each class was roughly proportional to its coverage within the study area. A user familiar
with the study site classified each point using a combination of site knowledge, landscape context,
and visual clues in the orthomosaic and DEM. After classification, the reference points were randomly
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divided in two, to create a training dataset and a validation dataset. The set of 689 training points were
used to train the classifier and the set of validation points was further supplemented with the same
method described above, resulting in 726 validation points. The area represented by each training
point was considered to include the five pixels with centroids nearest to the point, such that training
samples represented 0.31 cm2 at 2.5 cm resolution, and 125 cm2 at 50 cm resolution.
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Figure 5. Workflow used for land cover classification. The process was performed four times, with X
equal to 2.5 cm, 15 cm, 35 cm, and 50 cm.

Segmentation was performed in GRASS GIS (v7.0, Open Source Geospatial Foundation), on the
first principal component of the three-band orthomosaic. The principal components analysis (PCA) was
performed with the i.pca program in the image toolbox (“i.pca -n input=ortho_group output=ortho_pca”).
At every resolution, the first component accounted for more than 95% of the variance in the scene,
indicating that the other components contained substantial noise and redundancy. Using the i.segment
program, contiguous pixels were grouped into segments if the degree of similarity was lower than the
unit-less level 0.05 (similarity threshold = 0.05; no minimum size; “i.segment group=pc1 output=seg_pc1
threshold=0.05”). These segmentation parameters were optimized for all four input resolutions by
(1) iteratively varying the parameters and visually assessing whether segments represented logical
objects at each resolution and (2) by comparing the classifications resulting from the best-performing
segmentation parameters.

The final segments at each resolution were used to aggregate each input information band before
running a classification on the per segment mean and standard deviation rasters. To do so, we first
vectorized the segments and converted them to ESRI shapefile format in GRASS, and then computed
means and standard deviations per segment (Zonal Statistics tool in ArcGIS v10.3). Each input layer
(i.e., each band of the orthomosaic, elevation and slope) produced two new object-based information
layers: segment means and standard deviations. Maximum likelihood classification was run on the
zonal rasters with the pre-defined training sites.

3. Results

To assess the utility of SfM photogrammetric processing for coastal change research, we examined:
(1) the application of SfM to compute coastal elevation information [44]; (2) the extraction of shoreline,
dune toe and dune crest from SfM-produced point clouds; and (3) the classification of land cover from
SfM products for use in habitat mapping.
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3.1. SfM Products: Elevation Surface Analysis

We estimated the point cloud error using a quadrature sum to combine error terms [45].
This method of quantifying error relied on comparison with the GCPs that were used to georeference
the point cloud and derivative products. As such, these calculations were performed without external
validation points. PhotoScan estimated the positional error of the GCP markers as 6 cm (root sum of
squares (RSS) error of X, Y, and Z compared to surveyed positions of these points), considering
a preset tie point accuracy value of 0.005 m. To fully capture the propagation of error among
products, we calculated the quadrature sum of the errors estimated for (a) ground control (RTK
GNSS) (1.7 cm), (b) reprojection (a measure of the precision of tie points; estimated at 1 cm), and (c) the
final photogrammetric reconstruction calculated by PhotoScan (6 cm) [46]. This produced an error
estimate of 6.7 cm, consisting of 6.1 cm horizontal error and 2.8 cm vertical error.

To determine an alternative, independent error metric, we compared a gridded elevation model
built from the point cloud to the 254 reference points (Figure 6). At each reference point, we found
the deviation of the DEM grid cell from the surveyed ground elevation. The DEM had a vertical
root mean square error (RMSEZ) of 8.7 cm. In addition to the vertical error calculated for the DEM,
we visually assessed differences in error along each transect (e.g., Figure 6b). The variation in error
between transects appears related to the land cover that they traverse. The north–south transects (N1
and N2) sampled areas with the most varied terrain and the broadest extent of vegetation and had the
greatest vertical error values. For example, the longest transect, N2 (RMSEZ of 7.7 cm), included areas
of tidally-exposed sand, dry sand, dune with herbaceous vegetation, and marsh (Figure 6b).

The magnitude of error also varied with land cover type (Table 1). The greatest deviations from
ground truth in the SfM elevation outputs occurred in areas with tall or dense vegetation. The classes
with greatest RMSEZ in decreasing order were shrub (28.3 cm, only two reference points), marsh
(12.8 cm), and herbaceous vegetation (6.2 cm). We also observed these land cover-based errors along
the transects, such as along transect N2, where the DEM closely matched the reference elevations
in the sand-covered southern half of the profile, but diverged from the reference elevations in the
wetland-dominated northern half of the transect.

Table 1. Vertical accuracy by land cover presented as mean error, mean absolute deviation (MAD), and
RMSEZ. Points were classified from the final 15-cm thematic map and manually verified. “Marsh”
includes wetland vegetation; “Herbaceous Vegetation” includes non-marsh herbaceous vegetation;
and “Shrub” includes woody vegetation.

Land Cover N Mean Error (cm) MAD (cm) RMSEZ (cm)

Herbaceous Vegetation 76 1.1 4.9 6.2
Marsh 46 11.6 11.6 12.8
Sand 102 −1.6 2.9 3.6

1 Shrub 2 23.8 23.8 28.3
Water 24 2.9 3.2 4.3

1 Two samples were used for calculations in the shrub class.
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Figure 6. Deviation of DEM elevation from GNSS-surveyed reference elevations. (a) Reference points
displayed on the DEM and symbolized by DEM deviation: small black points indicate an absolute
deviation of less than 2.5 cm; blue and larger points represent increasingly negative deviation (where
DEM measured lower elevation than reference); warm colors and larger points represent increasingly
positive deviation (where DEM measured higher elevation than reference). (b) Elevation (m) along
Transect N2 measured at reference points (black) and by the SfM DEM (red). The vertical root mean
square error (RMSEZ) for Transect N2 is 7.7 cm. (c) Histogram of DEM deviations from reference
elevations; bin width is 1 cm and the black vertical line indicates no deviation.

3.2. Geomorphic Feature Extraction

We assessed the utility of SfM for coastal change analyses by performing feature extraction
processing in an experimental set-up using the different resolution datasets described above. Of the
total number of transects evaluated, we calculated the percent of transects at which a feature position
was successfully resolved (hereafter “success rate”). We compared the success rates of feature extraction
from each dataset at each processing resolution and spatially displayed the resulting features to assess
landscape patterns associated with extraction success or failure (Figure 7; Table 2).
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Figure 7. Feature positions extracted from two swath widths. (a) Map of geomorphic feature positions
calculated from the 35-cm spaced UAS-SfM point cloud. Blue points represent shoreline; red represent
dune toe; and yellow represent dune crest. (b) Success rate (percent of transects at which a feature was
successfully solved) of shoreline, dune toe, and dune crest extraction from wide and narrow swaths
(dotted and solid lines, respectively) plotted against average point spacing of the input point cloud.

Table 2. Success rate of shoreline, dune toe, and dune crest by high- and low-resolution processing as
extracted from the same point cloud with point spacing of 15, 35, and 50 cm. Success rate is the percent
of transects at which a feature was successfully resolved.

Feature Type Swath Width (m) Number of Transects
Point Spacing

15-cm 35-cm 50-cm

Shoreline
2 47 80.9 87.2 83
1 240 85.8 89.2 86.7

Dune crest
10 50 58 56 66
2 246 76 75.6 78

Dune toe
10 50 32 30 32
2 246 55.3 58.5 55.3

There was a clear difference in success between the wide and narrow swath extractions: narrower
swaths produced greater success rates than wider swaths (Figure 7). This difference was especially
pronounced in the dune position extraction. When averaged for all point cloud spacing, dune
positions were extracted with 21% greater success by narrow swaths (67%) than by wide swaths
(46%). Extractions performed with wide swaths were particularly unfavorable for the extraction of
dune toe positions. Dune toe extraction relied on successful dune crest extraction because it was
positioned in relation to the dune crest.
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Shoreline positions were resolved for 81–89% of the profiles across all shoreline extraction routines
(both swath widths applied to all three point clouds) (Figure 7). The six sets of shoreline features
had very little deviation from each other, which indicated consistent precision, although the shoreline
positions extracted from more closely-spaced transects with narrower swaths represented greater
alongshore variability without sacrificing success or precision. In contrast to the dunes, shoreline
extraction was highly successful at both swath widths and all point cloud densities. These results
were due in part to the lack of alongshore variability in the shoreline, which facilitated successful
shoreline extraction.

We compared the solutions achieved at the 47 transects at which profiles were analyzed from both
swath widths, and observed no consistent relationship between shoreline extraction and point cloud
spacing (Figure 7; Table 2). The 2-m and 1-m swaths produced nearly identical shoreline positions
at 35-cm spacing, with an 87% success rate. The change in swath width had a greater effect on the
position solutions from the dune feature extraction in our comparison. Nineteen out of the 47 dune
toes were detected only from the 2-m swath. Dune crest extraction from 10-m swaths exhibited the
greatest variation across point clouds; the success rate produced for the 50-cm was about 10% greater
than for the 15-cm and 35-cm point clouds.

3.3. Land Cover Classification

We assessed the influence of resolution and incorporation of elevation on classification accuracy
by comparing supervised image classification outcomes from SfM products and from downsampled
datasets. The final classified images are presented in Figure 8; plots of overall accuracy for each
classification are displayed in Figure 9; and tables of accuracy metrics are presented in Table 3.
We compared the eight variations of input data by calculating both overall accuracy, which estimates
the percent of accurately classified pixels out of the total, and the kappa coefficient, which attempts
to account for chance agreement in its measure of classification success, (e.g., [47,48]). We assessed
differences among land cover by comparing producer’s and user’s accuracy. Producer’s accuracy is
the percent of the total pixels in a ground truth class that are classified correctly in the output image
and user’s accuracy is the percent of all output image pixels in a given class that are classified correctly.

Table 3. Average producer’s accuracy, user’s accuracy, overall accuracy, and kappa coefficient from
classifications run at four different resolutions using visual (RGB) and visual and topographic (RGBZSl)
data. Producer’s accuracy is the percent of the total pixels in a given reference class that were correctly
classified in the output image. User’s accuracy is the percent of all output image pixels in a given class
that were correctly classified. The last two columns present differences in accuracy and were calculated
by subtracting the RGB accuracy value from the corresponding RGBZSl value. The negative value
indicates that the RGB classification produced a greater user’s accuracy for the water class than the
RGBZSl classification.

Land Cover
Number of
Validation
Samples

RGB RGBZSl Difference (RGBZSl–RGB)
Producer’s
Accuracy

(%)

User’s
Accuracy

(%)

Producer’s
Accuracy

(%)

User’s
Accuracy

(%)

Producer’s
Accuracy

(%)

User’s
Accuracy

(%)

Herbaceous Veg. 127 58.3 48.0 82.5 83.6 24.2 35.7
Marsh 216 65.6 71.3 87.8 89.9 22.2 18.7
Sand 190 79.7 78.2 87.0 80.5 7.3 2.3
Shrub 42 86.9 55.4 97.6 77.5 10.7 22.0
Water 148 67.6 91.9 75.6 88.2 8.0 −3.7

Overall Accuracy (%) 69.7 84.7 15.1
Kappa (%) 0.6 80.1 79.5

The resolution of the input layers had little effect on overall classification accuracy. There was
greater variation in accuracy among the classifications performed with only spectral data, but that
variation did not display any dependence on resolution (Figure 9). With the spectral classification,
the greatest accuracy was achieved at 15-cm resolution and the lowest at 35-cm resolution.
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The use of topographic data in the classification had a clear positive effect on accuracy.
Classification performed with both topographic and visual reflectance data (12 information layers)
produced highly accurate classified maps without significant differences in accuracy at resolutions finer
than 50 cm (Figure 9, Table 3). The mean overall accuracy produced by RGB, elevation, and slope at the
four resolutions was about 85% with a narrow range of values, whereas mean overall accuracy from
spectral data was about 70% with a wider range. Improvements due to the inclusion of topographic
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data were especially evident in the herbaceous vegetation class. Herbaceous vegetation and marsh
were the classes most difficult to distinguish without elevation information, as they are spectrally
similar in optical data. Elevation information helped to differentiate herbaceous vegetation and marsh
because of the intrinsic stratification of the land covers by topography (Figure 8).

The greatest accuracy gains by class were seen in marsh and non-marsh herbaceous vegetation
classes (Table 3). With only spectral layers in the classification, 49% of the validation points
classified as herbaceous vegetation were classified inaccurately and about half of those were actually
marsh. When elevation and slope were included, about 80% of the herbaceous vegetation validation
points were classified accurately. Marsh had the greatest representation within the validation sites.
Without topography, 66% of them were allocated correctly, but with topography that increased to 88%.

We also observed reduced prevalence of the following errors when elevation and slope were
included: sand misclassified as herbaceous; marsh misclassified as shrub; confusion between
herbaceous vegetation and marsh; and very shallow water misclassified as herbaceous vegetation.
The images classified with elevation showed greater spatial cohesion among classes, whereas the
images classified without topography exhibit salt-and-pepper effect, in which neighboring pixels
were incorrectly assigned to different classes (Figure 8). For all land cover classes, elevation in the
classification improved the accuracy in every aspect, with the exception of user’s accuracy of the water
class (Table 3). The fewest gains were seen in the sand and water classes, which were often confused
during the classification. This is attributed to the lack of applying a water mask during either SfM or
classification processing.

4. Discussion

4.1. UAS-SfM Elevation for Coastal Zones

Our results demonstrate that UAS-SfM is an excellent source of high-quality elevation data that
compares favorably to lidar accuracy standards and is cost-effective and convenient to produce for
appropriate spatial scales. Previous works have demonstrated the high quality of elevation data
produced by UAS-SfM (e.g., [18,49–52]). We confirm these findings and build on the applicability of
these datasets to coastal assessment.

Elevation point clouds of the coastal zone generated with UAS-SfM can be produced with less error
and greater point density than published standards for airborne lidar. The most dense lidar product
available for the coastal northeastern U.S. has 35 cm Nominal Point Spacing (NPS) and was compiled
to meet RMSEZ of 5.2 cm for open terrain, which corresponds to the highest standard in the National
Enhanced Elevation Assessment (NEEA), Quality Level 0 (QL0) [53,54]. The spacing of the Black Beach
point cloud is more than six times denser than that dataset and has less vertical error than both that
product and the mid-level lidar standard of quality (e.g., NEEA QL2) [53,55]. Producing these highly
precise and highly accurate data required precise GNSS measurements and thorough distribution of
georeference targets [50].

Unlike lidar, UAS-SfM using a passive sensor (camera) is unable to consistently produce bare-earth
elevations in densely-vegetated areas [49,50]. The landscape of Black Beach included some dense
vegetation, which resulted in the inclusion of vegetation effects in our SfM point cloud. More specifically,
the SfM-derived elevations tended to exhibit a positive deviation from ground elevations in vegetated
wetland areas, where the top of densely growing vegetation was measured instead of the ground surface
recorded by GNSS surveying. However, in sand locations this effect was mitigated by lack of vegetation
from the intertidal to foredune areas (Figure 6). For our specific analyses of geomorphic features and
land cover, vegetation did not limit the quality of analysis. However, if project goals required bare earth
elevations, techniques exist to mitigate canopy effects, such as using non-nadir imaging angles [56].

A novel advantage of SfM elevation datasets is that they are coincident with spectral data.
This essentially doubles the amount of information of that offered by lidar datasets. These coincident
datasets are especially advantageous in highly dynamic systems, such as coastal zones, where storms
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and recovery from storms often cause rapid changes to the landscape (i.e., hours, days, weeks).
The UAS can be deployed rapidly for short-term measurements and SfM generates the elevation
directly from the image products, meaning that perfect synchronization between the two is intrinsic.
This synchronization is useful in many applications, such as the two explored here.

4.2. Geomorphic Feature Extraction

Our results demonstrate that established processing routines can be applied to UAS-SfM data
to extract features consistent with existing geomorphic datasets for change monitoring and research.
Profile-based feature extraction techniques have been applied to create consistent datasets of coastal
change for uses such as vulnerability assessment and coastal modeling [34,57], which are dependent
on the availability of elevation data with sufficient temporal resolution and data density to reflect
current conditions. The profile-based shoreline position extraction technique employed here was
originally designed for elevation point clouds produced by NASA ATM, which typically produced
15–20 elevation points suitable for use in analysis within a 2-m wide swath [21]. UAS-SfM datasets
produce many more points in the profile, with great enough density that the potential for analysis is
not realized by this method. Even after decimating the SfM point cloud, the decimated product was
denser in the area of interest than the densest lidar available and had a more consistent distribution
of points. If lidar data had been available for the same date, we infer that resolving the cross-shore
profiles and confidently extracting feature positions might have been more successful from SfM point
clouds than from lidar due to their consistent point spacing and density.

The chief advantage of SfM data for feature extraction is the increased precision of both the
method and the resulting positions. Narrower swath widths were possible because of the high density
of the SfM data; these narrower swaths resulted in more successful extraction overall and more
precise feature positioning than from the wider swaths typically used. Furthermore, narrower swaths
were particularly suitable for detecting features in variable coastal areas because the profiles had
greater tolerance for small-scale alongshore variability than wider swath profiles. This tolerance was
especially advantageous for resolving dune features, which tended to have greater variability than
shoreline positions.

4.3. Land Cover Classification

High-quality elevation datasets can facilitate analyses of changing landscapes. Previous studies,
which were performed at different scales and in different environments, suggested that elevation
is a powerful variable in automated land cover classification [37,56,58]. However, it is uncommon
to have high-resolution elevation data accompanying coastal imagery datasets. At this coastal site,
we found that temporally coincident elevation and imagery improved the classification workflow;
the synchronized SfM datasets facilitated manual training site classification and greatly improved
automated image segmentation and supervised classification. The high-resolution of the imagery and
the coincident elevation surface enabled the identification of contiguous features, which were used
as the base units in object-based classification. In the supervised classification routine, the addition
of elevation and slope data greatly improved classification accuracy whereas changes to the spatial
resolution had minimal influence on accuracy. In temperate-latitude coastal areas such as Black
Beach, topographic data are especially advantageous because land cover type is highly dependent
on elevation. For example, sandy beaches with patches of coarse sediment tended to be found at
low elevations at Black Beach, dune grass was more elevated, and isolated dwarf trees were easily
distinguished in the DEM.

The classification was in part facilitated by the vegetation canopy effect because differences in
elevation and slope helped to discriminate vegetation. The potential exists for combining elevation and
classified vegetation surfaces to produce bare-earth elevations by identifying height offsets based on
vegetation type. Canopy height models, such as those produced by [56] could improve the classification
ability even further by allowing the characterization of more specific vegetation structure.
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4.4. Advantages, Trade-Offs, and Limitations

Our study shows that the dual dataset of high-resolution imagery and elevation produced by
UAS-SfM can be used for a variety of applications. Examples include confirmation of the positions
of dynamic coastal features, particularly shorelines; derivation of features such as wet-dry lines with
elevation information; masking water features; assisting in visual validation; and providing additional
information during habitat classification routines, which we found dramatically increased land cover
classification accuracy. We were able to use existing routines used in coastal change assessments
to extract features from SfM data, which are therefore straightforward to incorporate to update
coastal vulnerability assessments. More frequent surveys that provide time series measurements
of storm response and recovery could be used to improve modeling and better resolve coastal processes
and the relative influence of drivers of change in a given area. Furthermore, UAS could enhance
models of coastal change through temporally frequent surveys to capture short-term changes related
to storm impact and recovery, similar to previous work using stereophotogrammetry and lidar for
change assessments [8]. Although the datasets are highly accurate and precise, using them for change
assessment will require rigorous calibration between the datasets, such as those performed for lidar
data [8,52].

Differences in imagery resolution have distinct trade-offs that are important to consider when
planning future work. Although we were able to produce results at several resolutions, we found
few gains are provided by dataset resolution finer than 35 cm (both point spacing and pixel size).
The classification quality was not degraded at lower image resolutions (≤50 cm); therefore, it appears
that higher altitude surveys that provide greater spatial coverage and lower resolutions could be flown
without affecting results negatively. The principal advantage of the 2.5 cm resolution imagery in this
survey was a minimized need for time-intensive in situ reference surveying. For example, we were able
to confidently identify small sand pits among the dunes that might otherwise have required additional
in situ labor to distinguish the sand from the surrounding dry grass. Expanding upon the goals of this
project, high-resolution imagery could be used to visually identify parameters important for habitat
suitability, such as species use of an area and the associated sediment grain size. Thus, an opportunity
exists to optimize resolution to meet scientific goals by identifying the smallest object that should be
distinguishable in the imagery.

In addition to the advantages described above, data collection with UAS presents limitations.
In addition to the dependence on suitable meteorological conditions [19,59], coverage is limited,
particularly when compared with the extents available through manned aircraft platforms, making
UAS better suited to small-scale and high-resolution projects. However, as this study demonstrates,
such high-resolution studies can provide valuable information on trade-offs in study design and aid in
the selection of appropriate platforms and resolution.

The accuracy of the photogrammetric product described here currently relies on thoroughly
distributed and highly accurate ground control, although we expect this to be mitigated with increased
precision of onboard UAS GNSS devices. UAS operations are also somewhat limited by environmental
conditions, requiring low wind levels (in this case <10 m/s), dry conditions, and adequate lighting.
Furthermore, this project did not encounter some of the UAS deployment limitations that might be
expected for coastal areas, such as study site accessibility or a dense population of humans or other
organisms (e.g., flocks of resting or roosting birds) using the beach that would introduce error and
uncertainty in the elevations and classifications.

Despite these limitations, our assessment shows that products generated with these datasets can
be integrated with existing workflows to expand records of coastal features and to enhance research
into coastal vulnerability. With more immediate, flexible, and less resource-intensive deployment than
established technologies for measuring coastal change, UAS-SfM is well-suited for repeat surveys to
assess spatial and temporal changes at small spatial extents and to better understand how these may
be linked with site-specific processes along the coast.
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5. Conclusions

SfM applied to low-altitude aerial imagery such as that collected by UAS provides highly
accurate visual reflectance and topographic data with elevation precision only slightly degraded
from survey-grade RTK GNSS, better than typical airborne lidar and covering a continuous area.
We show that SfM products can be used to derive datasets of geomorphic features and classified land
cover consistent with publicly available elevation and imagery datasets. These techniques enable
extraction of geomorphic features at higher resolutions and with greater precision than previously
possible. They improve land cover classification accuracy by adding coincident elevation data to the
image analysis. We find that data densities greater than 35 cm resolution do not contribute to improved
processing or product accuracy with these techniques.

UAS surveys can be processed similarly to lidar and other aerial or satellite surveys for coastal
research assessments, but with more immediate, flexible, and less resource-intensive deployment.
UAS-SfM imagery and derived topographic data are available at considerably higher resolutions and
spatial point densities than other surveying methods, resulting in higher precision of both derived
products and extracted features, particularly in sandy beach areas. The capability for rapid deployment,
survey collection, and data processing makes UAS an optimal survey tool to conduct repeat surveys
over areas of limited spatial coverage, and can be coupled with other types of data to improve our
understanding of process-based coastal change over timescales of days, weeks, seasons, and years.
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Appendix A

Table A1. Parameters used during SfM processing to create the dense point cloud.

Process Step Process Description PhotoScan Tools and Parameters Output Properties

Add photos

Loaded all 250 cameras with high
(>0.5 estimated) quality.
Convert camera coordinates to
projected coordinate system.
Define camera location accuracy.

“Estimate Image Quality”
“Convert”

To: NAD83 UTM Zone 19N
Reference Settings:

Camera accuracy (m): 10

Range of image
quality: 0.69–1.26

Import GCPs

Associated ground coordinates with
GCP targets visible in images.
Manually checked the placement of
each GCP in the image.

“Detect markers”
Tolerance: 50%

Labeled each GCP in text file to correspond to
the name of the marker in PhotoScan.
“Import Markers . . . ” to load GCP text file

Northing: Local_N
Easting: Local_E
Altitude: Local_Z

Display all the images with a GCP present and
adjust the position of the marker if necessary.
Reference Settings:

Tie point accuracy (m): 0.005
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Table A1. Cont.

Process Step Process Description PhotoScan Tools and Parameters Output Properties

Align photos Generated sparse point cloud of tie
points between photos.

“Align Photos”
Accuracy: High
Pair preselection: Reference
Key point limit: 5000
Tie point limit: 0

Aligned 211 photos

Optimize
camera
calibration 1

Iteratively eliminated tie points to
achieve an optimal error estimate.
Optimized cameras after deleting set
of points.
Selected points based on several
criteria of accuracy.

“Gradual selection”
Reconstruction uncertainty: Level 10
Reconstruction uncertainty: Level 10
Projection accuracy: Level 9
Projection accuracy: Level 6
Reprojection error: Level 0.5 (~10% of
remaining points)

Manually delete points that are obviously
removed from the general surface.

Initial marker error:
0.62 m
Initial marker error:
0.58 pix
Final marker error:
0.05 m
Final marker error:
0.366 pix

Dense
point cloud

Rotated and resized the region.
Built the dense point cloud.

Rotate and resize the region to be generally
orthogonal to lines of latitude and to limit the
extent to just outside of the area with GCPs.
“Build Dense Cloud”

Quality: High
Depth filtering: Mild

67,885,040 points
in the dense
point cloud.

Refine the
point cloud

Manually deleted points that are
obviously separate from the surface.

Rotate the point cloud to view from the side
and manually delete chunks of points that are
isolated from the surface.

Generate
outputs

Exported a point cloud for
shoreline extraction.
Exported a DEM.
Exported an orthomosaic.

“Build DEM”
Source data: Dense Cloud
Interpolation: Enabled

“Build Orthomosaic”
Type: Geographic
Surface: DEM
Blending mode: Mosaic

DEM resolution:
4.95 cm

1 Iterations were performed with the following target values: reconstruction uncertainty: 10; projection accuracy:
3; reprojection error: 0.3 pixels. If approximately more than 20% of the points were flagged at the target value,
the threshold was adjusted to select only about 10% of the points.
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