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Introduction
Atmospheric deposition is an important source of 
bioactive trace elements to the surface ocean and can play 
a large role in marine primary productivity (Boyd et al., 
2010; Baker et al., 2016). In particular, the deposition of 
mineral dust to the open ocean has received increasing 
attention (Duce and Tindale, 1991; Baker et al., 2016), as 
it is a major source of Fe, a known limiting micronutri-
ent (e.g., Martin and Gordon, 1988). Other biologically rel-
evant trace elements such as Ni, Cu, and Zn derived from 
atmospheric deposition play important roles in enzymatic 
processes and may influence phytoplankton productivity 
(e.g., Dupont et al., 2010; Mackey et al., 2015 and references 
therein). There have been many studies on the cycling of 
atmospherically derived Fe and other trace elements in 
the surface ocean (e.g., Prospero, 1999; Baker and Croot, 
2010 and references therein; Buck et al., 2010); however, 
little research has focused on the air-sea interface where 
trace elements initially enter the water column.

The sea surface microlayer is the thin, organic-rich layer 
at the air-sea interface covering approximately 71% of the 
Earth’s surface (Franklin et al., 2005; Cunliffe et al., 2009). 
Generally defined as 10 to 1,000 µm in thickness (Cunliffe 
et al., 2013), the microlayer is enriched in organic com-
pounds that create a semi-rigid film-like layer over the 
surface ocean. Due to this organic enrichment, the micro-
layer has physicochemical and biological properties that 
are different from the underlying water column (Hardy, 
1982; Liss and Duce, 2005; Cunliffe et al., 2013), making it 
a unique environment.

The microlayer is the physical link between the sea 
surface and lower atmosphere and is therefore linked to 
the biogeochemical cycling of trace elements and other 
compounds in the marine environment (Liss and Duce, 
2005). The presence of surface-active organic compounds 
within the microlayer can alter the chemical composition 
of the aerosols. Baker and Croot (2010) emphasize that the 
presence of ligands and surfactants within the microlayer 
would enhance the dissolution of atmospherically derived 
Fe. There are two dominant fluxes of trace elements to the 
microlayer: rising bubbles and atmospheric deposition. 
Previous research showed that the microlayer was ele-
vated in particulate trace elements compared to the water 
column (e.g., Barker and Zeitlin, 1972; Duce et al., 1972; 
Brügmann et al., 1992; Grotti et al., 2001); however, these 
observations alone are not enough to deconvolute and 
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quantify the sources of trace elements to the microlayer. 
The solubility of Fe in seawater (pH 8.1) can be as low as 
0.01 nM (Liu and Millero, 2002). However, the presence 
of organic ligands can increase the solubility of Fe greater 
than ten-fold (Gledhill and Buck, 2012), making it more 
bioavailable. The enhanced solubilization of aerosol Fe as 
well as other trace elements could have profound impacts 
on primary productivity, yet there is a lack of data spe-
cifically addressing the solubilization of trace elements by 
organic compounds in the microlayer or the potential bio-
logical responses resulting from this process.

The goal of this study was to determine the fate of 
atmospheric aerosols in the microlayer. Specifically, we 
measured the concentrations of dissolved and particulate 
Al, Fe, Ni, Cu, Zn, and Pb in the microlayer, water column, 
and aerosols in the Florida Keys during the spring and 
summer months. These elements, except Al and Pb, are 
bioactive trace elements important in primary productiv-
ity (Morel and Price, 2003). Al and Pb are used as tracers 
of aerosols: Al for lithogenic sources and Pb for anthropo-
genic sources.

Methods
Study sites
Sampling took place during two field campaigns in the Flor-
ida Keys (Figure 1), one during a “dusty” season (July 2014) 
and one during a “non-dusty” season (May 2015). For a typi-
cal July “dusty” season, the dust flux is approximately 17 mg 
m–2 d–1 in this region (Prospero and Mayol-Bracero, 2013). 
Sea surface microlayer and underlying water column sam-
pling took place July 25 through 27, 2014, approximately 
500 m offshore of the Keys Marine Laboratory, Layton, 
FL, USA (lat: 24.825832, long: –80.814262) in the Florida 
Bay (FB) and July 28, 2014, approximately 700 m offshore 
of Curry Hammock State Park, Marathon, FL, USA (lat: 
24.740892, long: –80.981041) in the coastal Atlantic Ocean 
(AO). Aerosol samples were collected July 23 through 28, 
2014, in Curry Hammock State Park. For a typical May 

“non-dusty” season, the dust flux is approximately 4.3 mg 
m–2 d–1 in this region (Prospero and Mayol-Bracero, 2013). 
Microlayer and water column sampling took place May 5 
through 9, 2015, approximately 1,000 m offshore of the 
MOTE Tropical Research Laboratory, Summerland Key, FL, 
USA (lat: 24.740892, long: –81.981041) in the Summerland 
Key Bay (SB), and May 6 and 9, 2015, approximately 14 km 
offshore at the Looe Key National Marine Sanctuary (lat: 
24.550933, long: –81.417201; LK). Aerosol samples were 
collected May 4 through 10, 2015, at MOTE.

Sea surface microlayer and underlying water column 
sample collection and analysis
Sea surface microlayer samples were collected from a 
plastic kayak using a hollow quartz tube sampling device 
described in Ebling and Landing (2015). Briefly, the 
quartz tube was dipped vertically into the water column 
until most of the surface area below the handle was sub-
merged. It was then slowly pulled vertically out of the 
water (5–10 cm s–1) and held over a funnel attached to 
a receiving bottle where the microlayer sample dripped 
off the quartz tube. This process was repeated until 125 
to 550 mL of sample was collected. Corresponding under-
lying water column samples (30 cm depth) were also 
collected from the kayak wherein a closed bottle was sub-
merged under water, opened, and closed again underwa-
ter to prevent mixing with the microlayer. Shoulder-length 
polyethylene gloves were worn to minimize trace element 
contamination. Immediately after sample collection, the 
microlayer and water column samples were filtered using 
47 mm 0.2 µm polycarbonate track-etched (PCTE) mem-
brane filters by vacuum filtration. The seawater samples 
were acidified with 6 M quartz distilled HCL (q-HCl) to a 
final concentration of 0.024 M q-HCl and the filters were 
frozen until analysis.

The microlayer and water column samples were ana-
lyzed for dissolved, reactive particulate, and refractory 
particulate trace element concentrations. Dissolved trace 
elements were pre-concentrated and extracted from the 
high salt content of seawater by a cation exchange column 
method described in Milne et al. (2010). Reactive particu-
late trace elements were leached from the filters using a 
4.4 M acetic acid (q-HAc) with 0.02 M hydroxylamine hydro-
chloride (HH) solution as described in Berger et al. (2008). 
Refractory particulate trace elements were digested using 
microwave digestion with concentrated (15.8 M) q-HNO3 
and concentrated (28 M) HF (Optima) to dissolve the 
residual particulate matter (Ebling and Landing, 2015). All 
samples were analyzed using a Thermo-Scientific Element 2  
(E2) high resolution inductively-coupled plasma mass 
spectrometer (HR-ICP-MS). Reactive and refractory par-
ticulate concentrations were summed to calculate the 
total particulate trace element concentrations in the 
microlayer and water column. For the dissolved trace ele-
ments, analytical precision was determined through repli-
cate analysis of deep (1000 m, SAFe-D2) seawater samples 
from the SAFe inter-comparison project (Johnson et al., 
2007). For the reactive particulate trace elements, analyti-
cal precision was determined through replicate analysis of 
a multi-element check standard on the E2 HR-ICP-MS as 

Figure 1: Sampling locations. Locations of the sampling 
sites during the field campaigns in 2014 from the Keys 
Marine Laboratory (KML, in Florida Bay) and Curry Ham-
mock State Park (in the coastal Atlantic Ocean), and in 
2015 from MOTE Tropical Research Laboratory and Looe 
Key National Marine Sanctuary. Scale bar is 10 km. DOI: 
https://doi.org/10.1525/elementa.237.f1

https://doi.org/10.1525/elementa.237.f1
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there is currently no standard reference material for reac-
tive particulate suspended matter (Ebling and Landing, 
2015). Certain refractory trace elements such as Ti and 
Zr have very low solubility in the reactive leach solution. 
Low concentrations of such elements in the leach solu-
tion helps to demonstrate that small refractory particles 
were not carried over into the samples, and were therefore 
monitored for all particulate samples in this study. For 
the refractory particulate trace elements, analytical pre-
cision was determined through replicate analysis of the 
sediment standard reference material NIST-2704 (Buffalo 
River Sediment).

Aerosol sample collection and analysis
Aerosol samples, integrated over 24 hours, were collected 
using a high-volume aerosol sampler (model 5170-VBL, 
Tisch Environmental) which pulls air at approximately 
1.2 m3 min–1 through 12 replicate acid-washed 47 mm 
nitrocellulose filter disks (Whatman 41). Filters were fro-
zen until analysis.

Instantaneous aerosol leaches (a.k.a. UHP-soluble) 
were conducted using the method described in Buck 
et al. (2010); very rapid flow-through leaching (10–20 
seconds) using 100 mL of ultra-high purity (UHP) 
deionized water (>18 MΩ*cm; pH = 6.0). Total aerosol 

digestions were conducted using a microwave digestion 
scheme with concentrated q-HNO3 and concentrated HF 
(Optima), as described in Morton et al. (2013). All sam-
ples were analyzed using the E2 ICP-MS. The 2014 aerosol 
samples were analyzed for UHP-soluble and total trace 
element concentrations. The 2015 aerosol samples were 
analyzed for total trace element concentrations only. To 
determine the overall precision, selected aerosol samples 
were analyzed in triplicate and the average RSD values 
were calculated and applied to all other aerosol samples.

Ten-day (240-hour) air mass back trajectories (AMBTs) 
for the 2014 and 2015 field campaigns were simulated 
using the GDAS meteorology data set in the publicly 
available NOAA Air Resources Laboratory Hybrid Single-
Particle Lagrangian Integrated Trajectory (HYSPLIT) model 
(Stein et al., 2015; Rolph, 2017). Even though samples 
were collected 2–3 m above sea level, arrival heights of 
500, 1,000, and 1,500 m were chosen to represent trajec-
tories within and above the marine boundary layer (400 to 
1,200 m thickness).

Results 
Figure 2 shows the wind speeds over the course of both 
field campaigns. For 2014, the average wind speed was 
2.5 ± 0.8 m s–1 and for 2015, the average wind speed was 

Figure 2: Ancillary data. Wind speeds over the course of the 2014 (A) and 2015 (B) field campaigns. The red solid line 
indicates the average wind speed and the red dashed lines indicating ±1 S.D. The grey bars represent when paired 
microlayer and water column samples were collected. DOI: https://doi.org/10.1525/elementa.237.f2
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3.8 ± 2.0 m s–1. The grey shaded bars indicate when sea 
surface microlayer and underlying water column sample 
pairs were collected. Overall, the sampling took place 
when wind speeds were less than 4 m s–1 in 2014 and less 
than 6 m s–1 in 2015. There were no recorded rain events 
during the 2014 sampling period and only one rain event 
occurred during the 2015 sampling period (May 5, 2015, 
17:00–18:00 UTC) after the first microlayer and water col-
umn paired sampling (May 5, 2015, 12:00 UTC).

Tracking aerosols
An aerosol depth model (Naval Research Laboratory: 
http://www.nrlmry.navy.mil/aerosol/) was used to 
explore whether the air column over the sampling loca-
tion contained high or low concentrations of dust. This 
model uses global meteorological fields from the Navy 
Operational Global Atmospheric Prediction System 
(NOGAPS; Hogan and Rosmond, 1991; Hogan and Brody, 
1993) to forecast dust concentrations at 6-hour inter-
vals. Figures 3 and 4 show the model output during 

the 2014 and 2015 field campaigns, respectively. Each 
panel corresponds to a microlayer and water column 
collection time point associated with a 24-hour inte-
grated aerosol sample. In 2014, there appears to have 
been dust over the study site during three of the four 
sampling time points (Figure 3) from July 26 to July 28. 
In 2015, there does not appear to have been dust over 
the study site during the five sampling time points  
(Figure 4).

“Dusty” season trace element distributions in the 
sea surface microlayer, underlying water column, and 
atmospheric aerosols
Trace element concentrations in the dissolved and total par-
ticulate fractions of the sea surface microlayer and under-
lying water column as well as the atmospheric aerosols for 
the 2014 field campaign are presented in Figures 5, 6, 
and 7. Overall sample replicates showed ±20% variability 
with the exception of the dissolved Al, Fe, and Zn concen-
trations on July 26, 2014, (approximately ±50%). Given 

Figure 3: 2014 aerosol optical depths. Modeled aerosol optical depths (Naval Research Laboratory; http://www.
nrlmry.navy.mil/aerosol/) for the 2014 sea surface microlayer and underlying water column sampling periods. The 
study site is circled in black and the green contour lines (following the color scale bar) represent the optical dust 
depth (based on light scattering at 550 nm). DOI: https://doi.org/10.1525/elementa.237.f3

http://www.nrlmry.navy.mil/aerosol/
http://www.nrlmry.navy.mil/aerosol/
http://www.nrlmry.navy.mil/aerosol/
https://doi.org/10.1525/elementa.237.f3
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the potential heterogeneity of the microlayer (Wurl and 
Obbard, 2004), this variability is not unexpected. In the 
dissolved fraction, there is an overall trend that the micro-
layer and water column did not differ over the course of 
the four sampling days with the exception of Zn, where 
concentrations were often below the detection limit and, 
therefore, could not be compared directly (Figure 6D). 
Temporally, dissolved Al and Fe appeared higher in con-

centration on July 26 compared to July 25 (Figures 5A 
and 5D); however, the difference is not significant con-
sidering the replicate variability. Geographically, most dis-
solved trace element concentrations were similar between 
the FB location and the AO on July 28 (Figures 5A, 5D, 
6A and 6D), with a slight decrease in the Ni concentra-
tion in the AO (Figure 7A) and a slight increase in the Pb 
concentration in the AO (Figure 7D).

Figure 4: 2015 aerosol optical depths. Modeled aerosol optical depths (Naval Research Laboratory; http://www.
nrlmry.navy.mil/aerosol/) for the 2015 sea surface microlayer and underlying water column sampling periods. The 
study site is circled in black and the green contour lines (following the color scale bar) represent the optical dust 
depth (based on light scattering at 550 nm). DOI: https://doi.org/10.1525/elementa.237.f4

http://www.nrlmry.navy.mil/aerosol/
http://www.nrlmry.navy.mil/aerosol/
https://doi.org/10.1525/elementa.237.f4
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As with the dissolved trace elements, in the particulate 
fraction the microlayer and water column did not differ 
over the four days, with the exceptions of Ni, where water 
column concentration on July 25 was higher compared 
to the microlayer (Figure 7B), and Zn, where water col-
umn concentrations were higher on July 25 and July 26 
compared to the microlayer (Figure 6E). When examining 
temporal changes in the particulate trace element con-
centrations in the microlayer and water column samples, 
a pattern emerges. Most elements increased by factors 
of 2 to 5 on July 26, 2014, when compared to the previous 
day (Figures 5B, 5E, 6B, 6E, 7B and 7E). A similar pattern 
emerges in the aerosol samples. For all trace elements, 
concentrations in the third 24-hour integrated sample 
(start date: July 26, 2014) were elevated 1.6 to 13 times 

compared to the concentrations in the previous sample 
(Figures 5C, 5F, 6C, 6F, 7C and 7F).

“Non-dusty” season trace element distributions in 
the sea surface microlayer, underlying water column, 
and atmospheric aerosols
Dissolved and particulate trace element concentrations in 
the sea surface microlayer and underlying water column, 
as well as the atmospheric aerosols for the 2015 field cam-
paign, are presented in Figures 8, 9 and 10. As with the 
2014 samples, overall sample replicates showed ±20% 
variability with the few exceptions in the dissolved Zn 
concentrations on May 5 in SB and May 9 on LK (approxi-
mately ±40%; Figure 9D). In the dissolved fraction, there 
is an overall trend that the microlayer and water column 

Figure 5: 2014 Al and Fe concentrations. Dissolved Al (A) and Fe (D) concentrations in the sea surface microlayer 
(SML) and underlying water column (UWC) in the Florida Bay (FB; solid red circles = SML; open red triangles = UWC) 
and coastal Atlantic Ocean (AO; solid black circles = SML; open black triangles = UWC). Total particulate Al (B) and Fe 
(E) concentrations in the SML and UWC in the FB and AO. Total Al (C) and Fe (F) concentrations in 24-hour integrated 
aerosol samples. Solid red lines show the average microlayer concentrations and the dashed red lines show the aver-
age water column concentrations. DOI: https://doi.org/10.1525/elementa.237.f5
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did not differ over the course of the study with the excep-
tions of Al and Fe, where microlayer concentrations 
were consistently lower compared to the water column 
(Figures 8A and 8D) and Zn, where microlayer concen-
trations were consistently higher compared to the water 
column (Figure 9D). There were some slight increases 
and decreases from day to day in the dissolved trace ele-
ments concentrations; however, the overall dissolved 
trace element distributions did not seem to vary over time 
except for Zn, where microlayer concentration increased 
2.5 times between May 7 and 8 in SB (Figure 9D). The 
dissolved trace element concentrations did, however, vary 
between the two locations as the dissolved trace element 
concentrations at LK were significantly lower in compari-

son to the dissolved trace element concentrations at SB 
(Figures 8A, 8D, 9A and 10D).

As with the dissolved trace elements, the microlayer and 
water column particulate fractions do not differ over the 
course of the study with the exceptions of Al and Fe, where 
water column concentrations were consistently higher 
than in the microlayer (Figures 8B and 8E). Particulate 
Al, Fe, and Pb were significantly lower in concentration 
at LK compared to SB, illustrating the difference between 
the two sites (Figures 8B, 8E and 10E). When examining 
the temporal change in the microlayer and water column 
samples, no clear pattern emerges. The atmospheric aero-
sols concentrations were fairly low throughout the cam-
paign (Figures 9C, 9F and 10C) with the exceptions of Al 

Figure 6: 2014 Cu and Zn concentrations. Dissolved Cu (A) and Zn (D) concentrations in the sea surface microlayer 
(SML) and underlying water column (UWC) in the Florida Bay (FB; solid red circles = SML; open red triangles = UWC) 
and coastal Atlantic Ocean (AO; solid black circles = SML; open black triangles = UWC). Total particulate Cu (B) and 
Zn (E) concentrations in the SML and UWC in the FB and AO. Total Cu (C) and Zn (F) concentrations in 24-hour inte-
grated aerosol samples. Solid red lines show the average microlayer concentrations and the dashed red lines show the 
average water column concentrations. DOI: https://doi.org/10.1525/elementa.237.f6
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(Figure 8C), Fe (Figure 8F), and Pb (Figure 10F), where 
concentrations increased by a factor of 2 to 8 on May 9, 
2015.

Discussion
Dusty season vs. non-dusty season
Aerosols originate from many sources, including desert 
regions, biomass burning, and anthropogenic emissions. 
The regions where the aerosols were initially generated 
have often been correlated with their chemistry to spec-
ulate on their impacts to the surface ocean (Spokes and 
Jickells, 1996; Baker et al., 2006; Sedwick et al., 2007) 
and to inform predictive models concerning the marine 
carbon cycle (e.g. Tagliabue et al., 2014). There are several 

ways in which aerosol origin can be identified. In this 
study, the NOAA HYSPLIT AMBTs were used to identify 
aerosol origin. Figure 11 shows example AMBTs for both 
the 2014 and 2015 field campaigns. The AMBT for July 
26, 2014, shows a North African source (Figure 11B).  
Combining this model and the aerosol optical depth 
model, the aerosols collected for this day almost certainly 
originated from North Africa and presumably represent 
a typical summer Saharan dust event for the region (e.g. 
Prospero 1999; Trapp et al., 2010).

Other tracers of aerosol origin used in this study were 
elemental ratios, specifically Ti, V, Mn, and Fe normalized 
to Al. Aluminum is used as an indicator of lithogenic 
origin in aerosol composition and TE/Al ratios can reflect 

Figure 7: 2014 Ni and Pb concentrations. Dissolved Ni (A) and Pb (D) concentrations in the sea surface microlayer 
(SML) and underlying water column (UWC) in the Florida Bay (FB; solid red circles = SML; open red triangles = UWC) 
and coastal Atlantic Ocean (AO; solid black circles = SML; open black triangles = UWC). Total particulate Ni (B) and 
Pb (E) concentrations in the SML and UWC in the FB and AO. Total Ni (C) and Pb (F) concentrations in 24-hour inte-
grated aerosol samples. Solid red lines show the average microlayer concentrations and the dashed red lines show the 
average water column concentrations. DOI: https://doi.org/10.1525/elementa.237.f7
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different mineralogical composition (Guieu et al., 2002). 
Table 1 shows the Ti/Al, V/Al, Mn/Al, and Fe/Al ratios 
of four aerosol samples collected during the 2014 field 
campaign. The TE/Al ratios can be used to trace lithogenic 
aerosols, but should be interpreted with caution, as North 
African aerosols tend to have, for example, higher Fe/Al 
ratios compared to the global average upper continental 
crust (Shelley et al., 2015; Table 1). Three out of the four 
aerosol samples in the 2014 field campaign show similar 
Ti/Al, Mn/Al, and Fe/Al ratios that are comparable to the 
North African aerosol ratios. These three samples also had 
AMBTs suggesting that the air masses came from North 
Africa, whereas the lower Ti/Al, Mn/Al, and Fe/Al ratios 

on July 23 correspond to an AMBT that showed a marine 
origin (Figure 11A).

The dissolved trace element concentrations in the micro-
layer and water column showed little variability over the 
2014 sampling time frame (Figures 5, 6 and 7), even with 
a significant dust event in the area. The UHP-soluble aero-
sol leaches collected for this field campaign showed low 
solubilities for trace elements such as Al and Fe (0.35 and 
0.23%, respectively). Combined with the relatively high 
background concentrations of dissolved Al and Fe com-
pared to the open ocean, these low solubilities could 
explain why there appears to be little to no effect on the 
dissolved trace element concentrations in the microlayer 

Figure 8: 2015 Al and Fe concentrations. Dissolved Al (A) and Fe (D) concentrations in the sea surface microlayer 
(SML) and underlying water column (UWC) in the Summerland Key Bay (SB; solid red circles = SML; open red 
triangles = UWC) and Looe Key National Marine Sanctuary (LK; solid black circles = SML; open black triangles = UWC). 
Total particulate Al (B) and Fe (E) concentrations in the SML and UWC in the SB and LK. Total Al (C) and Fe (F) con-
centrations in 24-hour integrated aerosol samples. Solid red lines show the average microlayer concentrations and 
the dashed red lines show the average water column concentrations. DOI: https://doi.org/10.1525/elementa.237.f8
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from atmospheric deposition. When comparing the par-
ticulate trace element concentrations in the microlayer to 
the aerosol concentrations a different pattern emerges. 
As mentioned above, most trace element concentrations 
in the microlayer increased by factors of 2 to 5 on July 
26, 2014, which coincides with an observed increase in 
atmospheric aerosol concentrations (Figures 5, 6 and 7). 
Hoffman et al. (1974) also observed high Fe concentra-
tions off the coast of North Africa in the microlayer when 
there was significant continental dust.

Elemental ratios were also calculated for the microlayer 
and water column particulate samples collected dur-
ing the 2014 field campaign to compare to the aerosol 
elemental ratios (Table 2). The microlayer ratios are very 

similar to the aerosol ratios, with three exceptions (all on 
July 28): the Ti/Al ratio in the AO (0.17 for the microlayer 
versus 0.06 for the aerosol) and the Mn/Al ratios in the 
FB (0.135 for the microlayer versus 0.009 for the aerosol) 
and the AO (0.024 for the microlayer versus 0.009 for the 
aerosol). The water column ratios are also very similar to 
the aerosol ratios, with five exceptions (all on July 28): 
the Ti/Al ratios on in the FB (0.23 for the water column 
versus 0.06 for the aerosol) and the AO (0.31 for the water 
column versus 0.06 for the aerosol), the V/Al ratio in the 
AO (0.23 for the water column versus 0.002 for the aero-
sol), the Mn/Al ratios in the FB (0.163 for the water col-
umn versus 0.009 for the aerosol) and the AO (0.070 for 
the water column versus 0.009 for the aerosol), and the 

Figure 9: 2015 Cu and Zn concentrations. Dissolved Cu (A) and Zn (D) concentrations in the sea surface microlayer 
(SML) and underlying water column (UWC) in the Summerland Key Bay (SB; solid red circles = SML; open red 
triangles = UWC) and Looe Key National Marine Sanctuary (LK; solid black circles = SML; open black triangles = UWC). 
Total particulate Cu (B) and Zn (E) concentrations in the SML and UWC in the SB and LK. Total Cu (C) and Zn (F) 
concentrations in 24-hour integrated aerosol samples. Solid red lines show the average microlayer concentrations and 
the dashed red lines show the average water column concentrations. DOI: https://doi.org/10.1525/elementa.237.f9
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Fe/Al ratio in the AO (1.07 for the water column versus 
0.50 for the aerosol). The AO microlayer sample, in gen-
eral, appears to be enriched in trace elements compared 
to the aerosol sample, indicative of possible scavenging 
onto particles. This observation further applies to the AO 
water column sample, where all four ratios are enriched 
compared to both the corresponding aerosol and micro-
layer samples. The FB ratios show some enrichment in 
the microlayer and water column samples compared to 
the aerosol samples, but not as strongly as in the AO 
sample.

The aerosols collected during the 2015 field campaign 
originated from either North America (Figure 11C) or the 
Atlantic Ocean (Figure 11D). Their relatively low trace ele-
ment concentrations (Figures 8, 9 and 10) compared to 
the North African aerosols collected in 2014 support our 

conclusion that sampling in 2015 occurred during a low 
dust period which corresponds to a non-dust season.

The dissolved and total particulate trace element 
concentrations in the microlayer and water column 
showed little variability during the 2015 field campaign 
(Figures 8, 9 and 10). As we believe that dust deposi-
tion was low in the region, the concentrations were likely 
influenced by other factors. Rising bubbles from the 
underlying water column act as another source of trace 
elements to the microlayer (Hardy, 1982; Cuong et al., 
2008) when there is no significant dust in the region. Cu, 
Zn, Ni, and Pb concentrations in the 2015 microlayer sam-
ples indicate a trace element composition similar to the 
corresponding water column, suggesting an underlying 
water column source (Figures 9A, 9D, 10A and 10D). 
There was notable depletion in the dissolved Al and Fe 

Figure 10: 2015 Ni and Pb concentrations. Dissolved Ni (A) and Pb (D) concentrations in the sea surface microlayer 
(SML) and underlying water column (UWC) in the Summerland Key Bay (SB; solid red circles = SML; open red 
triangles = UWC) and Looe Key National Marine Sanctuary (LK; solid black circles = SML; open black triangles = UWC). 
Total particulate Ni (B) and Pb (E) concentrations in the SML and UWC in the SB and LK. Total Ni (C) and Pb (F) 
concentrations in 24-hour integrated aerosol samples. Solid red lines show the average microlayer concentrations and 
the dashed red lines show the average water column concentrations. DOI: https://doi.org/10.1525/elementa.237.f10

https://doi.org/10.1525/elementa.237.f10


Ebling and Landing: Trace elements in the sea surface microlayerArt. 42, page 12 of 17  

concentrations in the microlayer compared to the water 
column (Figures 8A and 8D). This phenomenon has been 
observed elsewhere: Ebling and Landing (2015) showed 
depletion in dissolved Al and Fe in the Bay of Villefranche, 
France, when there was no significant atmospheric input 
to the microlayer. Depletions in dissolved constituents in 
the microlayer that are statistically significant are difficult 
to maintain in the face of molecular diffusion from the 
underlying water column. Diffusive mixing with a molecu-
lar diffusion coefficient on the order of 10–5 cm2 s–1 yields 
displacement of about 100 µm in less than 10 seconds. 

Thus, significant depletion that is long-lived (or perhaps 
at steady-state) would require a removal mechanism that 
is fast relative to diffusion. There was notable depletion 
in particulate Al and Fe in the microlayer compared to 
the water column as well. Hunter (1980) also reported 
depletion in particulate Fe and Mn in the North Sea. 
While Hunter’s argument was that lithogenic trace ele-
ments such as Mn and Fe would not favor the organic 
rich microlayer, apparent depletions in particles in the 
microlayer could result from sediment resuspension in 
shallow environments (such as SB) where the underlying 

Figure 11: Air mass back trajectories. Ten-day air mass back trajectory (AMBT) simulations from example microlayer 
and water column sampling periods in 2014 (A and B) and 2015 (C and D), with arrival heights of 500 m (red), 
1,000 m (blue), and 1,500 m (green). DOI: https://doi.org/10.1525/elementa.237.f11
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water column becomes enriched in particles. In addition, 
particle settling will constantly remove particles from the 
microlayer into the water column.

Residence times of atmospheric trace elements in the 
sea surface microlayer
An important parameter when studying the impact of 
atmospheric deposition to the microlayer is the resi-
dence time (τ) of the variable of interest: the mean time 
of replacement based on the reservoir inventory and the 
input flux. In this study residence times for dissolved and 
particulate trace elements were calculated using the fol-
lowing equation:

	 [ ] / aerosolSML
TE J= ×τ δ � (1)

where [TE]SML is the concentration of trace element (TE) in 
the sea surface microlayer (SML), δ is the microlayer thick-
ness (50 µm; Ebling and Landing, 2015), and Jaerosol is the 
flux of aerosol trace element which can be calculated from 
the aerosol concentration and the dry deposition velocity 
for mineral dust of approximately 1,000 m d–1 (Duce et al., 
1991). Residence times were calculated for July 26, 2014, 
in FB and July 28, 2014, in both locations (FB and AO), 
as these were the days with significant dust in the region 
(Figure 9). Residence times for dissolved trace elements 
were calculated from the dissolved microlayer trace ele-
ment concentrations and fluxes of UHP-soluble aerosol 
trace elements. Residence times for particulate trace ele-
ments were calculated from the total particulate trace ele-
ment concentrations and the fluxes of total aerosol trace 
elements.

Table 1: Comparison of selected trace element ratiosa in aerosols of this study with aerosols of North African origin 
from other studies in the region, oceanic aerosols of North African origin, and the global average upper continental 
crust. DOI: https://doi.org/10.1525/elementa.237.t1

Location (date, 2014) Ti/Al V/Al Mn/Al Fe/Al Reference

Florida Keys (July 23)b 0.01 (0.001) 0.001 (0.0001) 0.004 (0.0003) 0.20 (0.02) This study

Florida Keys (July 24) 0.05 (0.005) 0.006 (0.0005) 0.010 (0.0008) 0.47 (0.04) This study

Florida Keys (July 25) 0.06 (0.006) 0.002 (0.0002) 0.009 (0.0007) 0.50 (0.04) This study

Florida Keys (July 26) 0.06 (0.006) 0.002 (0.0002) 0.009 (0.0007) 0.50 (0.04) This study

Miami/Barbados –c – 0.012 0.70 Trapp et al., 2010

Barbados – 0.002 0.011 0.51 Arimoto et al., 1995

At sea 0.08 0.003 0.013 0.77 Shelley et al., 2015

At sea 0.12 0.005 0.012 0.66 Buck et al., 2010

At sea – – 0.010 0.58 Baker et al., 2013

Global average upper 
continental crust

0.04 0.0007 0.007 0.44 Taylor and McLennan, 
1995

aBy mass, with 1 S.D. values for aerosols from this study given in parentheses.
bAerosol sample not of North African origin.
cNot available.

Table 2: Selected trace element ratios (by mass) in particulate samples of the sea surface microlayer and underlying 
water column during the 2014 field campaign. DOI: https://doi.org/10.1525/elementa.237.t2

Sample type Date Locationa Ti/Al V/Al Mn/Al Fe/Al

Sea surface microlayer July 25 FB 0.08 0.003 0.012 0.50

July 26 FB 0.06 0.002 0.013 0.47

July 28 FB 0.09 0.003 0.135 0.61

July 28 AO 0.17 0.005 0.024 0.57

Underlying water column July 25 FB 0.09 0.003 0.016 0.51

July 26 FB 0.08 0.002 0.016 0.47

July 28 FB 0.23 0.003 0.163 0.60

July 28 AO 0.31 0.023 0.070 1.07

aFB indicates Florida Bay; AO, coastal Atlantic Ocean.

https://doi.org/10.1525/elementa.237.t1
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Table 3 shows the residence times for dissolved and par-
ticulate trace elements in the microlayer. Residence times 
of dissolved trace elements ranged from 5.3 minutes for 
Al to 210 minutes (3.5 hours) for Cu. Residence times of 
particulate trace elements ranged from 0.27 minutes (16 
seconds) for Al to 3.4 minutes for Pb. Generally, residence 
times were longer in FB on July 26 compared to July 28. 
While the literature is consistent in the observation that 
particulate trace elements are usually enriched in the 
microlayer, it is less consistent with respect to the parti-
cle residence times in the microlayer, with reports ranging 
from a few seconds to tens of minutes (e.g., Duce et al., 
1972; Hoffman et al., 1974; Hardy et al., 1985). Hoffman 
et al. (1974) estimated the residence time of particulate 
Fe in the microlayer as a few seconds for a Saharan dust 
deposition event, whereas Eisenreich (1982) estimated 
the microlayer residence times for a suite of total trace 
elements (dissolved plus particulate) in the microlayer 
of Lake Superior ranging from 20 to 79 minutes. In our 
2014 FB experiment, the inventory of particulate Fe in 
the microlayer (50 µm thick) on July 26 was 1,150 ng 
m–2. Using an aerosol dry deposition velocity of 1,000 m 
d–1 (~1 cm s–1; typical for 1 µm mineral dust aerosols), the 
aerosol Fe concentration of 774 ng m–3 should result in 
the deposition of 537 ng m–2 min–1. This calculation yields 
a residence time (τ) for particulate Fe in the microlayer 
(with respect to aerosol Fe input) on the order of 2 minutes 
(Table 3). When the aerosol Fe concentration dropped to 
448 ng m–3, the deposition rate should have dropped to 
311 ng m–2 min–1. If the decrease in the particulate Fe con-
centration in the microlayer between July 26 and July 28 
was in response to the lower aerosol concentration, then 
the loss rate of particulate Fe from the microlayer must 
have been greater than the input rate of 311 ng m–2 min–1, 
yielding τ = ~ 1 minute with respect to particulate Fe loss. 
The fact that the dissolved and particulate Fe concentra-
tions in the underlying water column closely track those 
in the microlayer supports our conclusion that there must 
be rapid transfer of particles through the microlayer and 
into the upper ocean. These short residence time esti-
mates for particulate Fe in the microlayer are not incon-
sistent with an upper limit estimate for the Stokes settling 
velocity of a 1 µm particle (ρ = 2.5) in pure seawater on 

the order of 50 µm min–1. However, it is unlikely that such 
rapid settling velocities would apply for particles that are 
interacting with the gel-like, organic-rich film that charac-
terizes the microlayer (Wurl and Holmes, 2008).

While the residence times for dissolved and particu-
late trace elements in this study are reasonably consist-
ent with those determined from these previous studies, 
as well as from controlled tank experiments (Hardy et al., 
1985; Ebling et al., unpublished data), the absolute values 
must be taken with caution. The aerosol deposition 
velocity of 1,000 m d–1 is probably a lower limit because 
it accounts for aerosol dry deposition only. Including wet 
deposition, which often accounts for about 50% of the 
total aerosol deposition, raises the bulk deposition veloc-
ity to about 2,000 m d–1 (Kadko et al., 2015). Using this 
higher bulk deposition velocity would lower the residence 
times by a factor of two. Furthermore, the aerosol sample 
from July 26, 2014, represents a 24-hour integrated sam-
ple, when the actual aerosol concentrations during that 
period may have varied considerably. Given the appar-
ently very short residence times for both dissolved and 
particulate trace elements in the microlayer, short-term 
variations in the actual aerosol concentrations would pro-
duce proportional short-term variations in the fluxes and 
inverse effects on the residence times (Eq. 1). External fac-
tors such as wind (Figure 2) and waves also vary on short 
times scales compared to the 24-hour integrated aerosol 
sampling, which can also complicate residence time cal-
culations as the microlayer is greatly affected by these  
factors (Cunliffe et al., 2013).

Conclusions
In summary, this study investigated dissolved and par-
ticulate trace element concentrations in the sea surface 
microlayer, underlying water column, and atmospheric 
aerosols during “dusty” (July 2014) and “non-dusty” 
(May 2015) periods in the Florida Keys. We observed a 
significant North African dust event during the 2014 field 
campaign. In turn, we observed elevated total particulate 
trace element concentrations in the microlayer during 
this event. From this dust event, residence times of dis-
solved and particulate trace elements in the microlayer 
ranged from a few minutes to a few hours. While the pro-

Table 3: Residence times (τ in minutes) of trace elements in sea surface microlayer samples from the 2014 field 
campaign. DOI: https://doi.org/10.1525/elementa.237.t3

Location, date, form Al Fe Ni Cu Zn Pb

FB, July 26, dissolved 12 (7)a 26 (20) 50 (5) 180 (7) 14 (3) 94 (25)

FB, July 28, dissolved 5.3 (1.9) 8.2 (4.1) 49 (5) 200 (8) 10 (2) 14 (3)

AO, July 28, dissolved 6.2 (0.6) 8.1 (1.7) 44 (5) 210 (10) 12 (2) 37 (7)

FB, July 26, particulate 2.2 (0.2) 2.1 (0.1) 2.5 (1.1) 1.7 (0.5) 1.3 (0.4) 3.4 (0.6)

FB, July 28, particulate 0.54 (0.04) 0.67 (0.04) 0.48 (0.22) 0.84 (0.25) 1.9 (0.5) 2.5 (0.5)

AO, July 28, particulate 0.27 (0.31) 0.30 (0.29) 1.7 (1.1) 1.1 (1.0) 1.8 (2.8) 1.5 (2.6)

aParenthetic values are 1 S.D. of the residence time.
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cesses that could alter the trace element concentrations 
and dissolved/particulate fractionations within the micro-
layer were not explored in this study, the residence times 
suggest that trace elements are retained long enough in 
the microlayer to be altered chemically and biologically. 
The next step will be to look at the organic complexa-
tion of trace elements as well as the biological response 
of various microorganisms found in the microlayer dur-
ing atmospheric deposition events. Both processes will be 
explored from samples collected in the Florida Keys dur-
ing the summer months of 2016.

Data Accessibility Statement
Seawater trace element concentrations: Biological & 
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