1	Thin	crust	and	expo	osed	mantle	control	sulfide

- 2 differentiation in slow-spreading ridge magmas
- 3 Jakub Ciazela^{1,2*}, Henry J.B. Dick³, Juergen Koepke¹, Bartosz Pieterek², Andrzej
- 4 Muszynski², Roman Botcharnikov^{1,4}, and Thomas Kuhn⁵
- 5 ¹Institut für Mineralogie, Leibniz Universität Hannover, Callinstr. 3, 30167 Hanover,
- 6 Germany
- ⁷ ²Institute of Geology, Adam Mickiewicz University, ul. Bogumiła Krygowskiego 12, 61-
- 8 680 Poznań, Poland
- ⁹ ³Department of Geology and Geophysics, Woods Hole Oceanographic Institution, MS #8,
- 10 McLean Laboratory, Woods Hole, Massachusetts 02543-1539, USA
- ⁴Institut für Geowissenschaften, Guttenberg Universität Mainz, J.-J. Becher Weg 21,
- 12 55128 Mainz, Germany
- ⁵Bundesanstalt für Geowissenschaften und Rohstoffe, Stilleweg 2, 30655 Hanover,
- 14 Germany
- 15 *E-mail: j.ciazela@mineralogie·uni-hannover.de; phone: +49 511 762 2322
- 16 ABSTRACT

Gabbroic veins enclosed in mantle peridotite from ocean core complexes next to oceanic transform faults demonstrate sub-crustal crystallization of silicate minerals from a MORB-like melt. Cooler lithosphere there may also affect sulfide crystallization and the metal budget of the lower and upper crust but the related sulfide behavior is poorly understood. Here, we use chalcophile elements to trace sulfide crystallization in a suite of MORBs erupted at the Kane Megamullion south of the Kane Fracture Zone along the

23	Mid-Atlantic Ridge. Cool lithosphere there is inferred from a low magma supply, and
24	lithostratigraphic evidence for thin crust with abundant mantle rock exposed to the
25	seafloor (Dick et al., 2008). We show that the concentrations of Cu, Zn, As, Ga, Pb, Sb
26	and Tl in the Kane Megamullion MORBs rise linearly with melt differentiation expressed
27	by decreasing MgO and Ni content. The low-pressure fractional crystallization within the
28	crust thus occurs at sulfide-undersaturated conditions. Sulfide-undersaturated MORBs are
29	unusual. At the Kane Megamullion, however, the thin crust allows melt to more
30	extensively interact with the shallow and serpentinized mantle. We argue that sulfur and
31	chalcophile elements have been lost from the melt due to sulfide crystallization during
32	melt-rock reaction in the shallow mantle.

33 INTRODUCTION

34 Mid-ocean ridge basalts (MORB) are both the most abundant and the most-35 studied rocks from the Earth's oceans, and represent 75% of the Earth's annual magma 36 production (Crisp, 1984). The main process controlling MORBs differentiation is low-37 pressure fractional crystallization of olivine, plagioclase, and clinopyroxene within the 38 crust (White and Klein, 2013). Sulfides also appear to form there as chalcophile element 39 concentrations decrease gradually with MORB differentiation (Jenner and O'Neill, 2012; 40 Francis, 1990). This implies that, on average, cumulates in the lower ocean crust would 41 be richer in chalcophile elements than the overlying lavas and dikes. However, the global 42 average gabbro Cu concentration (71 \pm 19 ppm, σ ; Coogan, 2014) appears lower than the 43 global average MORB Cu concentration (81 \pm 25 ppm, σ ; White and Klein, 2013), and 44 much lower than in the primitive MORBs (~120 ppm Cu; Lee et al. 2012). An appealing 45 way to explain this discrepancy would be to assume that a significant portion of sulfide

46	crystallization occurs in the shallow mantle. The general concept of sub-crustal
47	crystallization is already well known for silicate minerals (White and Klein, 2013). Early
48	crystallization can be triggered by a thicker cooler lithosphere at slow-spreading ridges,
49	particularly in regions with lower magma supply as in the vicinity of fracture zones
50	(Herzberg, 2004; Villiger et al., 2007). However, little is known about: 1) the extent to
51	which sulfides are involved in sub-crustal differentiation; 2) what the principle
52	crystallization mechanism is; and 3) what the implications for the subsequent
53	differentiation of chalcophile elements in the crust are.
54	In order to understand the effect of a cooler lithosphere on sub-crustal sulfide
55	crystallization, we investigated a suite of MORBs from a region of thin crust indicative of
56	low magma supply from the slow-spreading Mid-Atlantic Ridge (MAR). We find they
57	have an anomalous pattern of chalcophile element differentiation with respect to typical
58	MORBs. We interpret this pattern as caused by sub-crustal sulfide precipitation during
59	melt interaction with the shallow mantle.
60	SAMPLES
61	The studied MORBs come from the Kane Megamullion ocean core complex
62	(OCC) adjacent to the Kane Fracture Zone (23°38'N) at the MAR (Dick et al., 2008). As
63	with other OCC's, Kane Megamullion exposes lower crust and mantle rocks in the

64 footwall of a detachment fault. Oceanic detachment faults are long-lived low-angle

65 plutonic growth faults that usually form along slow-spreading ridges during periods of

- low to intermediate magma supply (Cann et al., 1997; Tucholke et al., 1998). Basalt
- 67 carapace on the seafloor is discontinuous. Dick et al. (2008) mapped the extent of the
- 68 lavas and interpret it to have either erupted off axis, or to be a remnant of the hanging

69	wall. We have selected nine cogenetic MORBs collected during Jason II Dives 110 and 111,
70	and Dredge 1 from one pillow basalt formation (23°34'N, 45°19'W) located ~5 km south of
71	the Kane Fracture Zone (Dick et al. 2008). All our samples are undeformed, minimally
72	seafloor weathered to fresh, aphyric (cryptocrystalline) to 1%-olivine-phyric basalts. Two
73	samples preserve glassy rims. The cryptocrystalline matrix is largely plagioclase, olivine
74	and clinopyroxene with minor titanomagnetite and ilmenite.
75	METHODS
76	Whole-rock major element contents were analyzed by X-ray Fluorescence (XRF)
77	spectroscopy at the Federal Institute for Geosciences and Natural Resources, Hanover,
78	Germany. An ELTRA CS 800 carbon/sulfur Analyzer (Institute of Mineralogy, Leibniz
79	University of Hanover, Germany) was used to determine whole-rock sulfur contents
80	using the analytical procedure of Lissner et al. (2014). Chalcophile element
81	concentrations were determined by a combination of instrumental neutron activation
82	analysis (INAA), and inductively coupled plasma - mass spectrometry (ICPMS), both
83	conducted by Activation Laboratories Ltd., Ontario, Canada with the Ultratrace 5
84	analytical package. Mineral major and trace element compositions were determined with
85	a Cameca SX100 electron microprobe (EPM) and an ELEMENT-XR (Thermo Scientific,
86	Germany) fast-scanning sector field inductively coupled plasma ICPMS coupled to a
87	femtosecond laser ablation (fs-LA) system (Solstice, Spectra-Physics, USA) at the
88	Institute of Mineralogy, Leibniz University of Hanover, Germany.
89	RESULTS
90	Major and trace element compositions of the whole-rock samples as well as for

92	4). Our glasses and whole-rock samples have MgO contents between 8.3% and 6.1%
93	(Fig. 1) suggesting that the basalts represent moderately evolved mid-ocean ridge melts.
94	Compositions of both investigated glasses are consistent within 5% with the respective
95	whole-rocks (Fig. 1). A high Na ₈ of 3.1% (Na ₂ O content normalized to 8 wt.% MgO;
96	Klein and Langmuir, 1987) is in agreement with the high Na_8 found in other MORBs
97	formed under the thin crust at the Southwest Indian Ridge, the Gakkel Ridge, and the
98	MAR from 13° to 35°N (White and Klein, 2013).
99	The basalts display a Cu trend that contrasts with the global MORB trend:
100	between 8.3–6.0 wt.% MgO, Cu increases linearly from 60 to 100 ppm with a coefficient
101	of determination (\mathbb{R}^2) of 0.90, whereas non-plume-related MORBs from the global
102	reference data set of Jenner and O'Neill (2012) show the Cu concentrations decreasing
103	from 80 to 60 ppm over the same MgO range (Fig. 1). The increasing Cu trend in the
104	Kane Megamullion MORBs is matched by increasing Zn, As, Pb, Tl, Sb, and Ga. For
105	example, Zn rises from 85 to 115 ppm with decreasing MgO ($R^2 = 0.94$; Fig. 2). Similar
106	trends are observed against another differentiation index, the Ni content, with R^2 values
107	of 0.86 for Cu, and 0.71 for Zn. Chalcophile elements thus behaved incompatibly during
108	the differentiation of the Kane Megamullion MORBs, implying that this occurred under
109	sulfide-undersaturated conditions. These observations are critical as sulfur in MORBs is
110	often lost by degassing during eruption (e.g., Alt and Shanks, 2011). This can be also the
111	case for the Kane Megamullion MORBs as suggested by increasing Cl/S ratio upon
112	cooling (Fig. DR1; cf. Lesne et al., 2011).
113	In a correlation matrix of Zn, Cu, Pb, As, Sb and Tl, coefficients of determination
114	between element pairs are all above 0.7 (Table DR5), with the exception of Tl ($R^2 =$

115	0.24-0.52). These strong correlations imply that the chalcophile element contents are
116	controlled by a common parameter. In the absence of sulfide this parameter is likely
117	element partitioning between melt and clinopyroxene, where $D_{\text{Ni}} > D_{\text{Ga}} > D_{\text{Zn}} > D_{\text{Cu}} >$
118	D_{Sb} (Fig. 3; Jochum et al., 2011). Indeed, Ni/Ga, Ga/Zn, Zn/Cu and Cu/Sb all fall with
119	decreasing Mg# in our basalts. Ni/Ga falls from 7.8 to 5.9 ($R^2 = 0.92$), and the others
120	from 0.20 to 0.15 ($R^2 = 0.90$), from 1.3 to 1.0 ($R^2 = 0.72$) and from 309 to 72 ($R^2 = 0.83$),
121	respectively. Therefore, the Sb concentration in the most evolved Kane Megamullion
122	MORBs is ~15 times larger than the initial Sb concentration at 8.3 MgO wt.%. In
123	contrast, Cu, Zn, and Ga concentrations increase more modestly, and Ni decreases (Fig.
124	3).
125	DISCUSSION
126	Data summarized on Figures 1-3 is consistent with Kane Megamullion MORBs
127	having evolved by low-pressure fractional crystallization under sulfide-undersaturated
128	conditions, and with other MORBs from the Kane area (22–25°N, Fig. DR2; Bryan et al.,
129	1981). Differentiation of chalcophile elements under sulfide-undersaturated conditions is
130	known from plume-related MORBs of Jenner and O'Neill (2012). The plume-related
131	MORBs differ, however, from the Kane Megamullion MORBs by their elevated Cu
132	contents, with Cu ₈ (Cu content at 8 wt.% MgO) ranging from 130 to160 ppm.
133	In principle, Cu-poor MORBs could be derived from a sulfide-poor mantle (Fig.
134	1: Model A). A primitive melt with only 25 ppm Cu formed at a typical degree of mantle
135	partial melting at the Kane Megamullion (11%–14%; Dick et al., 2010) would require a
136	mantle source with ~8 ppm Cu at 1.8 GPa or ~12 ppm Cu at 4.5 GPa (Lee et al., 2012).
137	Cu-poor depleted mantle is known for example from the Finero orogenic peridotites with

138	7 ppm average Cu (Garuti et al., 1984). At Kane Megamullion, however, Cu-poor mantle
139	is unrealistic as spinel harzburgites there contain on average 28 ppm Cu (Table DR6).
140	Assuming that a typical mantle source with ~30 ppm Cu produces primitive basalt
141	melts with ~120 ppm Cu (Lee et al., 2012; Fig. 1), an initial depletion process driving Cu
142	concentrations from 120 to 60 ppm Cu is required. We thus propose an alternative model
143	involving two steps of magmatic differentiation (Fig. 1: Model B; Fig. 4). In the first
144	step, chalcophile elements are removed from the melt during its ascent through the
145	mantle (orange color in Figures 1 and 4). The second step is exactly the same as in model
146	A, with low-pressure sulfide-undersaturated fractional crystallization in the crust (red
147	color in Figures 1 and 4).
148	We propose that melt-mantle reaction is the differentiation mechanism that drove
149	the chalcophile elements concentrations to low levels during the first step. The Kane
150	Megamullion dunites, plagioclase harzburgites, and mantle-gabbro contacts, which all
151	interacted with MORB-like melt (Dick et al., 2010), contain enhanced Cu concentrations
152	(57–230, 90–209, up to 305 ppm, respectively). Sulfides have been found in mantle
153	samples from a variety of other settings that underwent melt-rock reaction, including in
154	mantle xenoliths (Lorand et al., 2003; Wang et al., 2009; Chen et al., 2014), orogenic
155	mantle sections (Rehkämper et al., 1999; Lorand et al., 1993) abyssal peridotites
156	(Rehkämper et al., 1999; Lorand et al., 1993) and potentially slow-spreading ridge
157	ophiolites (Madrigal et al. 2015; Schwarzenbach et al., 2016). Such an enrichment of
158	mantle in various elements, including chalcophile elements, due to melt-mantle reaction
159	is called refertilization (e.g., Niu, 2004).

160	The mechanism of sulfide crystallization from a melt interacting with mantle has
161	not yet been fully explained. The aforementioned broad spectrum of tectonic settings,
162	encompassing a wide range of temperatures and pressures, suggests that neither
163	temperature nor pressure is crucial for controlling the refertilization of mantle by
164	chalcophile elements. The difference in Fe content between a melt and the mantle,
165	though, could be a common factor for all the settings and trigger sulfide crystallization
166	during mantle-melt reaction. The sulfur concentration at sulfide saturation (SCSS)
167	strongly decreases with the decreasing iron content of the melt, especially in the range of
168	5-15 wt.% FeO (O'Neill and Mavrogenes, 2002; Haughton et al., 1974; Ariskin et al.,
169	2013). The FeO content in average MORB is ~10.5 wt.% (Gale et al., 2013), and FeO ₈
170	(the FeO content at an MgO value of 8 wt.%) for the Kane Megamullion MORB is 10.6
171	wt.% FeO (Table DR1). By contrast, the average mantle peridotite contains 8.0 wt.% FeO
172	(Lyubetskaya and Korenaga, 2007), and the median FeO content in the Kane
173	Megamullion spinel harzburgites is 7.6 wt.%. Based on the model of Ariskin et al.
174	(2013), SCSS should fall from 1500 to 900 ppm if FeO content of a melt would decrease
175	from 10.6 to 7.6 wt.% FeO. A further drop of SCSS is expected by increasing the Ni
176	content of the melt (Ariskin et al., 2013). Fe and Ni in melt are buffered by the exchange
177	reaction with large amount of olivine on the conduit walls that causes Fe loss (Dick and
178	Natland, 1996; Falloon et al., 2001) and Ni gain (Hart and Davis, 1978) in the melt, both
179	of which could lead to sulfide crystallization. The Fe loss causing sulfide crystallization
180	could also be achieved by simple olivine or spinel crystallization as proposed by Luguet
181	and Lorand (1999) and Luguet et al. (2003). Both would, however, trigger a simultaneous
182	Ni loss, which could possibly cancel the effect of Fe loss.

183	Refertilization of the mantle with sulfides is only moderate in most of the tectonic
184	settings listed above. For example, typical refertilized orogenic mantle contains a
185	moderately elevated Cu concentrations of ~50 ppm Cu (Lorand et al., 2013), whereas the
186	Cu content of the Kane Megamullion re-fertilized mantle is enhanced up to ~300 ppm.
187	This excessive enrichment and the accompanied depletion of Kane Megamullion MORBs
188	thus seem to be setting-specific, and linked to the very thin crust and the shallow mantle
189	in the area. The additional conductive cooling brought by hydrothermal circulation in this
190	ultrashallow mantle accelerates melt solidification upon reaction with the mantle (Fig. 4).
191	In addition, hydrothermal circulation introduces high amounts (up to ~15 wt.%, Table
192	DR7) of water into the shallow mantle. High water content of the Kane Megamullion
193	MORBs (up to 1.8 wt.% in glass, and up to 2.7 wt.% in bulk-rocks), and possible
194	crystallization of clinopyroxene before plagioclase (Fig. 3, cf. Danyushevsky, 2001) may
195	indicate that the water was partially stored in the altered peridotite already before mantle-
196	melt reaction. We have documented contact metamorphism along the recovered
197	serpentinite-gabbro contacts at the Kane Megamullion, which suggests the melt-
198	serpentinite reaction in fact takes place (Fig. DR3). The water lowers the solidus
199	temperature of the melt-mantle reaction allowing a yet larger amount of melt to react with
200	the conduit walls, and yet more efficient FeO loss. Consequently, sub-crustal sulfide
201	crystallization from the Kane Megamullion MORBs can be excessive with respect to
202	MORBs erupted on a completely developed oceanic crust.
203	CONCLUSIONS

204 MORBs at slow and ultraslow-spreading ridges with low magma supply rates
205 may become sulfide-undersaturated due to extensive sub-crustal sulfide crystallization

206	following melt reaction with the mantle. The crystallization of sulfides during melt-
207	mantle reaction could be achieved by lowering the level of sulfide concentration at
208	sulfide saturation in the portion of melt that was depleted in FeO. This process may be
209	global, but it becomes increasingly significant at ridge segments with thin crust, where
210	the melt-mantle reaction can proceed to very shallow depths. In addition, conductive
211	cooling related to hydrothermal circulation and high water content of the serpentinized
212	peridotite boost the intensity of the melt-rock reaction.
213	ACKNOWLEDGMENTS
214	We thank editor Brendan Murphy, Claude Herzberg, John Mavrogenes, and an
215	anonymous reviewer for their thorough and insightful comments. In addition, we would
216	like to acknowledge D. Neave, F. Ridolfi, J. Feige, C. Zhang, F. Holtz, and L. Kirchhoff
217	from the Leibniz Universität Hannover, and M. Ciążela, J. Nowak and A. Żelaźniewicz
218	from the Polish Academy of Sciences. This research was funded by a Diamond Grant of
219	the Polish Ministry of Science and Higher Education (DI2012 2057 42 to Ciazela), and
220	partially supported by the European Association of Geochemistry (Early Career Science
220 221	Ambassador grant to Ciazela) and the National Science Foundation (grant #'s
220 221 222	Ambassador grant to Ciazela) and the National Science Foundation (grant #'s OCE1434452 and OCE1637130 to Dick).

- Alt, J.C., and Shanks, W.C., 2011, Microbial sulfate reduction and the sulfur budget for a
- 225 complete section of altered oceanic basalts, IODP Hole 1256D (eastern Pacific):
- Earth and Planetary Science Letters, v. 310, p. 73–83,
- doi:10.1016/j.epsl.2011.07.027.

228	Ariskin, A.A., Danyushevsky, L.V., Bychkov, K.A., McNeill, A.W., Barmina, G.S., and
229	Nikolaev, G.S., 2013, Modeling solubility of Fe-Ni sulfides in basaltic magmas: The
230	effect of nickel: Economic Geology and the Bulletin of the Society of Economic
231	Geologists, v. 108, p. 1983–2003, doi:10.2113/econgeo.108.8.1983.
232	Bryan, W.B., Thompson, G., and Ludden, J.N., 1981, Compositional variation in normal
233	MORB from 22°-25° N; Mid-Atlantic Ridge and Kane Fracture Zone: Journal of
234	Geophysical Research, v. 86, p. 11815–11836, doi:10.1029/JB086iB12p11815.
235	Cann, J.R., Blackmann, D.K., Smith, D.K., McAllister, E., Janssen, B., Mello, S.,
236	Avgerinos, E., Pascoe, A.R., and Escartin, J., 1997, Corrugated slip surfaces formed
237	at ridge-transform intersections on the Mid-Atlantic Ridge: Nature, v. 385, p. 329-
238	332, doi:10.1038/385329a0.
239	Cannat, M., Mevel, C., Maia, M., Deplus, C., Durand, C., Gente, P., Agrinier, P.,
240	Belarouchi, A., Dubuisson, G., Humler, E., and Reynolds, J.R., 1995, Thin crust,
241	ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22° -
242	24°N): Geology, v. 23, p. 49–52, doi:10.1130/0091-
243	7613(1995)023<0049:TCUEAR>2.3.CO;2.
244	Chen, MM., Tian, W., Suzuki, K., Tejada, MLG., Liu, FL., Senda, R., Wei, CJ.,
245	Chen, B., and Chu, ZY., 2014, Peridotite and pyroxenite xenoliths from Tarim, NW
246	China: Evidences for melt depletion and mantle refertilization in the mantle source
247	region of the Tarim flood basalt: Lithos, v. 204, p. 97–111,
248	doi:10.1016/j.lithos.2014.01.005.

- 249 Coogan, L.A., 2014, The lower oceanic crust, *in* Rudnick, R.L., ed., The Crust, Vol. 4,
- 250 Treatise on Geochemistry, Second Edition (Holland, H.D., and Turekian, K.K., eds.):
- 251 New York, Elsevier, p. 497–541, doi:10.1016/B978-0-08-095975-7.00316-8.
- 252 Crisp, J.A., 1984, Rates of magma emplacement and volcanic output: Journal of
- Volcanology and Geothermal Research, v. 20, p. 177–211, doi:10.1016/0377-
- 254 0273(84)90039-8.
- 255 Danyushevsky, L.V., 2001, The effect of small amounts of H2O on crystallisation of
- 256 mid-ocean ridge and backarc basin magmas: Journal of Volcanology and Geothermal
- 257 Research, v. 110, p. 265–280, doi:10.1016/S0377-0273(01)00213-X.
- 258 Dick, H.J.B., Lissenberg, C.J., and Warren, J.M., 2010, Mantle Melting, Melt Transport,
- and Delivery Beneath a Slow-Spreading Ridge: The Paleo-MAR from 23 15 N to 23
- 260 45'N: Journal of Petrology, v. 51, p. 425–467, doi:10.1093/petrology/egp088.
- 261 Dick, H.J.B., and Natland, J.H., 1996, Late-stage melt evolution and transport in the
- shallow mantle beneath the East Pacific Rise: Proceedings of the Ocean Drilling
- 263 Program. Scientific Results, v. 147, p. 103–134.
- 264 Dick, H.J.B., Tivey, M., and Tucholke, B.E., 2008, Plutonic foundation of a slow-
- spreading ridge segment: Oceanic core complex at Kane Megamullion, 23°30′N,
- 266 45°20'W: Geochemistry Geophysics Geosystems, v. 9, Q05014,
- 267 doi:10.1029/2007GC001645.
- Falloon, T.J., Danyushevsky, L. V., and Green, D.H., 2001, Peridotite Melting at 1 GPa:
- 269 Reversal Experiments on Partial Melt Compositions Produced by Peridotite-Basalt
- 270 Sandwich Experiments: Journal of Petrology, v. 42, p. 2363–2390, doi:
- 271 10.1093/petrology/42.12.2363.

272 273	Francis, R.D., 1990, Sulfide globules in mid-ocean ridge basalts (MORB), and the effect
274	of oxygen abundance in FeSO liquids on the ability of those liquids to partition
275	metals from MORB and komatiite magmas: Chemical Geology, v. 85, p. 199–213,
276	doi:10.1016/0009-2541(90)90001-N.
277	Gale, A., Dalton, C.A., Langmuir, C.H., Su, Y., and Schilling, J.G., 2013, The mean
278	composition of ocean ridge basalts: Geochemistry Geophysics Geosystems, v. 14,
279	p. 489–518, doi:10.1029/2012GC004334.
280	Garuti, G., Gorgoni, C., and Sighinolfi, G.P., 1984, Sulfide mineralogy and chalcophile
281	and siderophile element abundances in the Ivrea-Verbano mantle peridotites
282	(Western Italian Alps): Earth and Planetary Science Letters, v. 70, p. 69-87,
283	doi:10.1016/0012-821X(84)90210-3.
284	Hart, S.R., and Davis, K.E., 1978, Nickel partitioning between olivine and silicate melt:
285	Earth and Planetary Science Letters, v. 40, p. 203–219, doi:10.1016/0012-
286	821X(78)90091-2.
287	Haughton, D.R., Roeder, P.L., and Skinner, B.J., 1974, Solubility of sulfur in mafic
288	magmas: Economic Geology and the Bulletin of the Society of Economic
289	Geologists, v. 69, p. 451-467, doi:10.2113/gsecongeo.69.4.451.
290	Herzberg, C., 2004, Partial crystallization of mid-ocean ridge basalts in the crust and
291	mantle: Journal of Petrology, v. 45, p. 2389–2405, doi:10.1093/petrology/egh040.
292	Jenner, F.E., and O'Neill, H.S.C., 2012, Analysis of 60 elements in 616 ocean floor
293	basaltic glasses: Geochemistry Geophysics Geosystems, v. 13, Q02005,
294	doi:10.1029/2011GC004009.

295	Jochum, K.P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D.E., Stracke,
296	A., Birbaum, K., Frick, D.A., Günther, D., and Enzweiler, J., 2011, Determination of
297	Reference Values for NIST SRM 610–617 Glasses Following ISO Guidelines:
298	Geostandards and Geoanalytical Research, v. 35, p. 397-429, doi:10.1111/j.1751-
299	908X.2011.00120.x.
300	Klein, E.M., and Langmuir, C.H., 1987, Global Correlations of Ocean Ridge Basalt
301	Chemistry with Axial Depth and Crustal Thickness: Journal of Geophysical
302	Research, v. 92, p. 8089-8115, doi:10.1029/JB092iB08p08089.
303	Lee, CT., Luffi, P., Chin, E.J., Bouchet, R., Dasgupta, R., Morton, D.M., Le Roux, V.,
304	Yin, Q., and Jin, D., 2012, Copper systematics in arc magmas and implications for
305	crust-mantle differentiation: Science, v. 336, p. 64–68, doi:10.1126/science.1217313.
306	Lesne, P., Kohn, S.C., Blundy, J., Witham, F., Botcharnikov, R.E., and Behrens, H.,
307	2011, Experimental simulation of closed-system degassing in the system basalt-
308	H2O-CO2-S-Cl: Journal of Petrology, v. 52, p. 1737-1762,
309	doi:10.1093/petrology/egr027.
310	Lissner, M., König, S., Luguet, A., le Roux, P.J., Schuth, S., Heuser, A., and le Roex,
311	A.P., 2014, Selenium and tellurium systematics in MORBs from the southern Mid-
312	Atlantic Ridge (47–50°S): Geochimica et Cosmochimica Acta, v. 144, p. 379–402,
313	doi:10.1016/j.gca.2014.08.023.
314	Lorand, J.P., Keays, R.R., and Bodinier, J.L., 1993, Copper and noble metal enrichments
315	across the lithosphere-asthenosphere boundary of mantle diapirs: Evidence from the
316	lanzo lherzolite massif: Journal of Petrology, v. 34, p. 1111-1140,

317 doi:10.1093/petrology/34.6.1111.

- Lorand, J.-P., Luguet, A., and Alard, O., 2013, Platinum-group element systematics and 318 319 petrogenetic processing of the continental upper mantle: A review: Lithos, v. 164-320 167, p. 2–21, doi:10.1016/j.lithos.2012.08.017. 321 Lorand, J.P., Reisberg, L., and Bedini, R.M., 2003, Platinum-group elements and melt 322 percolation processes in Sidamo spinel peridotite xenoliths, Ethiopia, East African 323 Rift: Chemical Geology, v. 196, p. 57–75, doi:10.1016/S0009-2541(02)00407-2. 324 Luguet, A., and Lorand, J., 1999, Fe-Ni-Cu sulphides of abyssal peridotites from the 325 MARK area (Mid-Atlantic ridge, 20–24°N): Geomaterials, v. 329, p. 637–644. 326 Luguet, A., Lorand, J.-P., and Seyler, M., 2003, Sulfide petrology and highly siderophile 327 element geochemistry of abyssal peridotites: a coupled study of samples from the 328 Kane Fracture Zone (45°W 23°20N, MARK area, Atlantic Ocean): Geochimica et 329 Cosmochimica Acta, v. 67, p. 1553–1570, doi:10.1016/S0016-7037(02)01133-X. 330 Lyubetskaya, T., and Korenaga, J., 2007, Chemical composition of Earth's primitive 331 mantle and its variance: 1. Method and results: Journal of Geophysical Research, 332 v. 112, p. B03211, doi:10.1029/2005JB004223. 333 Madrigal, P., Gazel, E., Denyer, P., Smith, I., Jicha, B., Flores, K.E., Coleman, D., and 334 Snow, J., 2015, A melt-focusing zone in the lithospheric mantle preserved in the 335 Santa Elena Ophiolite, Costa Rica: Lithos, v. 230, p. 189–205, doi: 336 10.1016/j.lithos.2015.04.015.
- 337 Niu, Y., 2004, Bulk-rock major and trace element compositions of abyssal peridotites:
- 338 Implications for mantle melting, melt extraction and post-melting processes beneath
- 339 Mid-Ocean ridges: Journal of Petrology, v. 45, p. 2423–2458,
- doi:10.1093/petrology/egh068.

341	O'Neill, H.S.C., and Mavrogenes, J.A., 2002, The Sulfide Capacity and the Sulfur
342	Content at Sulfide Saturation of Silicate Melts at 1400°C and 1 bar: Journal of
343	Petrology, v. 43, p. 1049–1087, doi:10.1093/petrology/43.6.1049.
344	Rehkämper, M., Halliday, A.N., Alt, J., Fitton, J.G., Zipfel, J., and Takazawa, E., 1999,
345	Non-chondritic platinum-group element ratios in oceanic mantle lithosphere:
346	Petrogenetic signature of melt percolation?: Earth and Planetary Science Letters,
347	v. 172, p. 65–81, doi:10.1016/S0012-821X(99)00193-4.
348	Schwarzenbach, E.M., Gill, B.C., Gazel, E., and Madrigal, P., 2016, Sulfur and carbon
349	geochemistry of the Santa Elena peridotites: Comparing oceanic and continental
350	processes during peridotite alteration: Lithos, v. 252-253, p. 92-108, doi:
351	10.1016/j.lithos.2016.02.017
352	Tucholke, B.E., Lin, J., and Kleinrock, M.C., 1998, Megamullions and mullion structure
353	defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge: Journal of
354	Geophysical Research, v. 103, p. 9857–9866, doi:10.1029/98JB00167.
355	Villiger, S., Müntener, O., and Ulmer, P., 2007, Crystallization pressures of mid-ocean
356	ridge basalts derived from major element variations of glasses from equilibrium and
357	fractional crystallization experiments: Journal of Geophysical Research. Solid Earth,
358	v. 112, p. 1–18, doi:10.1029/2006JB004342.
359	Wang, K.L., O'Reilly, S.Y., Griffin, W.L., Pearson, N.J., and Zhang, M., 2009, Sulfides
360	in mantle peridotites from Penghu Islands, Taiwan: Melt percolation, PGE
361	fractionation, and the lithospheric evolution of the South China block: Geochimica et

362 Cosmochimica Acta, v. 73, p. 4531–4557, doi:10.1016/j.gca.2009.04.030.

363	White, W.M., and Klein, E.M., 2013, Composition of the Oceanic Crust, in Rudnick,
364	R.L., ed., The Crust, Vol. 4, Treatise on Geochemistry, Second Edition (Holland,
365	H.D., and Turekian, K.K., eds.): Oxford, UK, Elsevier, p. 457–496,
366	doi:10.1016/B978-0-08-095975-7.00315-6.
367	
368	FIGURE CAPTIONS
369	
370	Figure 1. Cu versus MgO contents of the Kane Megamullion MORBs (red) compared to
371	non-plume-related MORBs from the reference data set of Jenner and O'Neill (2012;
372	gray). Models A and B are two possible scenarios for the early MORB differentiation
373	(see Discussion). Modified after Jenner and O'Neill, 2012.
374	
375	Figure 2. Chalcophile element versus MgO contents of the Kane Megamullion MORBs.
376	
377	Figure 3. Ratios of actual to initial (for MgO wt. $\% = 8.3$) chalcophile element contents
378	versus MgO contents of the Kane Megamullion MORBs. Note that element
379	concentrations grow proportionally fast to the decreasing clinopyroxene-melt partition
380	coefficients (D_{cpx}), which are <0.02 for Sb, 0.07–0.36 for Cu, 0.41–0.50 for Zn, 0.74 for
381	Ga, and 2.6–4.4 for Ni (Jochum et al., 2011).
382	
383	Figure 4. Lithosphere profile in the Kane area as proposed by Cannat et al. (1995) along
384	with the Cu concentration observed in the Kane Megamullion basalts (red) and the

- 385 predicted Cu concentrations at the first stage of differentiation (orange). Modified after
- 386 Dick et al., 2006.
- 387
- 388 1GSA Data Repository item 2017xxx, xxxxxxx, is available online at
- 389 http://www.geosociety.org/datarepository/2017/ or on request from
- 390 editing@geosociety.org.

±

Figure DR1. Bulk-rock Cl/S ratios versus bulk-rock contents of MgO in the Kane Megamullion MORBs.

Figure DR2. Bulk-rock copper content versus bulk-rock MgO in the Mid Atlantic Ridge Kane MORB's (22-25°N, Bryan et al., 1981) plotted on top of Figure 1.

Figure DR3. Thin-section microphotography of a serpentinite-gabbro contact with a distinct zone of contact metamorphism (yellow) between the serpentinite host rock and the gabbro vein. Sample 21-9. Plane-polarized transmitted light. Atg, Antigorite. Tr, Tremolite.

±

Table DR1. Major and trace element composition of MORBs from the Kane Megamullion OCC

Sample	1-2	110-1	110-2	111-2	111-3	111-4	111-7	111-16	111-17
Mg#	0.51	0.53	0.55	0.54	0.61	0.57	0.60	0.61	0.60
major elements (wt.%)									
SiO ₂	46.3	46.6	47.8	47.4	49.0	48.1	49.0	49.4	47.8
TiO ₂	1.76	1.64	1.59	1.65	1.58	1.64	1.57	1.55	1.62
Al_2O_3	17.2	16.4	15.9	16.4	15.7	16.0	15.6	15.6	16.1
Fe ₂ O ₃	11.7	11.0	10.6	10.9	10.6	10.7	10.5	10.4	10.8
MnO	0.17	0.19	0.18	0.16	0.18	0.18	0.18	0.18	0.18
MgO	6.23	6.27	6.70	6.42	8.32	7.22	8.09	8.26	8.09
CaO	11.5	11.4	11.1	11.2	11.2	11.5	11.0	11.1	11.4
Na ₂ O	2.94	3.02	3.03	3.08	2.71	2.83	2.79	2.74	2.78
K ₂ O	0.09	0.18	0.17	0.16	0.14	0.26	0.20	0.16	0.12
P_2O_5	0.33	0.32	0.22	0.28	0.14	0.21	0.15	0.15	0.22
L.O.I.	1.6	2.7	2.5	2.1	0.1	1.0	0.4	0.1	0.5
Total	99.7	99.8	99.8	99.8	99.6	99.7	99.6	99.6	99.7
Chalcophile elements (pp	om)								
Cu	101	102	96	103	61	81	72	64	62
As	50	39	23	37	-	14	3	-	17
Zn	116	105	99	110	85	90	86	82	88
Ga	17.9	17.2	17.6	18.5	17.2	17.3	16.6	16.5	16.1
Pb	1.3	1.2	1.2	1.2	0.9	1.1	0.9	1.1	1.0
Se	2	1.7	1.7	1.8	2.1	2	2.2	1.3	2.3
Sb	1.4	0.8	1.0	1.0	-	0.6	-	-	0.2
Tl	0.09	0.43	0.12	0.20	-	0.07	-	-	-
Ni	110	102	113	111	125	114	126	129	126
Ag	0.06 -		0.07 -		-	0.07	-	0.24	0.07
Bi -	-		0.03 -		-	-	0.02	0.11	0.02
Cd	0.2	0.3	0.2	0.2	0.1	0.2	0.2	0.2	0.2
Te -		0.4 -			-	-	0.2	0.2	0.2
Hg	30	10 -			-	20	-	10	10
Ge	0.2	0.6	0.3	0.3	0.2	0.5	0.2	0.2	0.3

LOI - loss-on-ignition

The estimates of analytical precision (1 SD) are as follows: Cu, $\pm 1.5\%$; Cd, $\pm 33.3\%$; Ge, $\pm 7.1\%$; Ga, $\pm 1.5\%$; Pb, $\pm 7.1\%$; Tl, $\pm 1.5\%$; major elements $\pm 1-2\%$, and were determined by repeated measurements of unknown samples. The estimates of analytical accuracy are as follows: As, $\pm 3.7\%$; Cu, $\pm 5.3\%$; Cd, $\pm 14.6\%$; Ge, $\pm 7.1\%$; Ga, $\pm 17.0\%$; Hg, $\pm 31.3\%$; Pb, $\pm 4.5\%$; Sb, $\pm 5.3\%$; Te, $\pm 11.7\%$; Tl, $\pm 10.6\%$ and were determined by measurements of variuos certified material (GXR-1, GXR-4, GXR-6, SDC-1, SAR-M (U.S.G.S), DNC, SBC-1, DMMAS).

Samula	1	-2	11	0-1	11	0-2	11	1-2	11	1-3	11	1-4	11	1-7	111	-16	111	-17
Sample	n 5	SD	5	SD	8	SD	7	SD	4	SD	6	SD	8	SD	4	SD	7	SD
major elements (wt%)																	
SiO ₂	39.8	0.4	39.9	0.1	40.0	0.3	40.1	0.1	40.0	0.5	39.9	0.3	40.1	0.3	40.2	0.3	39.8	0.4
Al_2O_3	0.01	0.02	0.02	0.04	0.0	0.0	0.04	0.05	0.07	0.08	0.02	0.04	0.01	0.04	0.14	0.15	0.17	0.17
TiO ₂	0.02	0.04	0.0	0.0	0.0	0.0	0.01	0.02	0.0	0.0	0.0	0.0	0.01	0.04	0.04	0.05	0.06	0.05
CaO	0.32	0.04	0.3	0.0	0.33	0.05	0.32	0.03	0.31	0.04	0.3	0.0	0.36	0.05	0.4	0.1	0.4	0.1
FeO	13.7	0.7	13.4	0.2	13.2	0.3	13.5	0.3	13.7	0.8	13.4	0.3	14.0	0.4	13.5	0.4	14.1	1.1
MnO	0.2	0.1	0.23	0.01	0.2	0.1	0.2	0.1	0.1	0.1	0.25	0.02	0.1	0.1	0.21	0.04	0.2	0.2
MgO	45.9	0.8	46.2	0.3	46.6	0.2	46.6	0.3	45.4	0.6	45.4	0.2	45.1	0.4	44.8	0.6	45.0	1.3
NiO	0.22	0.02	0.220	0.003	0.210	0.007	0.210	0.008	0.21	0.02	0.22	0.01	0.15	0.02	0.21	0.02	0.19	0.03
Cr ₂ O ₃	0.04	0.06	0.0	0.0	0.0	0.0	0.02	0.05	0.0	0.0	0.0	0.0	0.0	0.0	0.03	0.06	0.04	0.06
Total		100.0		100.0		100.4		100.8		99.6		99.3		99.8		99.4		99.7
Fo (%)		85.1		85.5		85.7		85.5		85.1		85.2		84.7		84.9		84.4
trace elements (µ	ıg∕g)																	
Co (59)	148	15	168	1	164	7	157	6	160	13	162	4	130	18	155	6	140	12
Ni (60, 61, 62)	1747	163	1771	22	1683	59	1656	64	1653	183	1731	101	1217	179	1680	137	1502	271
Cu (63)	14	13	7	8	4	4	11	8	10	13	3	3	22	16	23	5	34	20
Zn (67)	92	20	80	7	68	8	73	7	95	7	79	3	82	20	98	19	78	15
Ga (71)	0.6	0.3	0.16	0.04	0.17	0.05	0.20	0.08	0.5	0.7	0.3	0.4	1.8	1.1	0.9	0.5	1.5	1.6
Ge (74)	3.19	-	1.18	0.08	1.19	0.09	1.14	0.09	1.22	0.02	1.2	0.1	1.3	0.1	-	-	-	-
As (75)	-		1.9	2.5	1.2	2.5	3.6	3.8	0.2	0.1	0.1	0.0	0.5	0.1	-	-	1.9	0.1
Se (77)	-		4.7	0.3	5.4	0.7	5.0	0.4	4.0	0.6	4.3	0.3	4.0	0.5	-	-	-	-
Pd (106)	0.014	-	0.004	0.003	0.004	0.002	0.003	0.000	0.004	0.002	0.003	0.001	0.005	0.002	-	-	-	-
Cd (111)	-		0.021	0.004	0.023	0.004	-	-	0.03	0.01	-	-	0.051	0.009	-	-	-	-
In (115)	-		0.028	0.001	0.022	0.002	0.025	0.002	0.016	0.006	0.024	0.004	0.027	0.008	-	-	-	-
Sn (118)	2.1	0.8	5.8	0.3	4.6	0.2	5.4	0.6	2.2	1.0	4.4	0.3	2.7	1.1	3.1	1.5	3.9	0.3
Sb (121)	-		0.20	0.09	-	-	0.09	-	0.12	0.05	-	-	-	-	-	-	-	-
Te (125)	-	-	0.08	0.03	0.08	0.03	0.09	-	0.09	-	-	-	-	-	-	-	-	-
Pt (195)	5.7	9.5	1.6	2.3	1.0	1.2	0.9	0.9	2.8	2.7	1.0	1.6	1.1	0.5	4.5	3.4	6.6	8.1
Au (197)	1.1	-	0.11	0.09	0.09	0.04	-	-	0.11	0.06	-	-	0.1	-	0.4	-	0.4	-
Pb (206, 208)	0.9	0.8	0.3	0.3	0.5	0.7	1.0	0.7	0.8	0.5	0.11	0.06	1.4	0.6	1.6	1.4	1.2	0.4
Bi (209)	-		0.005	0.002	0.04	0.06	0.08	0.07	0.02	0.02	-	-	0.06	0.04	-	-	0.034	0.003

Table DR2. Major and trace element composition of olivines from the Kane Megamullion MORBs

Fo=100*(molar Mg/(Mg+Fe+Ca+Mn)); NiO was determined using LA-ICPMS; SD - standard deviation

Samula		1.	-2	110)-1	11	0-2	11	1-2	11	1-3	11	1-4	11	1-7	11	1-16	111	-17
Sample	n	2	SD	3	SD	4	SD	3	SD	5	SD	5	SD	6	SD	2	SD	3	SD
major elements	5 (w	t%)																	
SiO ₂		53.0	0.4	52.7	1.5	52.5	0.8	54.0	1.0	51.8	0.7	52.0	1.5	51.8	0.4	51.9	0.1	51.6	0.5
Al_2O_3		27.6	0.5	28.8	0.9	28.5	1.4	28.3	0.4	29.4	0.7	28.5	0.7	29.7	0.3	28.8	0.1	28.6	1.0
K ₂ O		0.2	0.1	0.1	0.0	0.1	0.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TiO ₂		0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.1	0.0	0.1	0.0	0.1	0.0	0.1	0.0	0.1	0.0
CaO		11.4	1.1	11.9	1.1	12.0	1.5	12.0	0.8	13.7	0.5	12.8	0.9	13.7	0.2	13.2	0.3	13.3	0.5
FeO		1.4	0.4	0.8	0.3	1.4	0.8	1.2	0.1	0.7	0.1	0.8	0.1	0.8	0.1	0.9	0.1	1.1	0.4
MnO		0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Na ₂ O		4.5	0.5	4.8	0.5	4.8	0.5	4.8	0.3	3.6	0.3	3.9	0.5	3.7	0.1	3.8	0.1	3.9	0.3
MgO		0.3	0.1	0.1	0.0	0.1	0.1	0.3	0.1	0.3	0.1	0.3	0.1	0.3	0.0	0.4	0.0	0.6	0.4
Total			98.5		99.5		99.4	1	100.7		99.7		98.5		100.0		99.0		99.3
Or (%)			1.1		0.3		0.4		0.3		0.2		0.3		0.2		0.2		0.2
Ab (%)			41.2		44.9		41.7		41.1		33.0		34.3		32.8		34.2		35.0
An (%)			57.7		54.8		57.9		58.6		66.8		65.5		67.0		65.6		64.7
trace elements	(µg	/g)																	
Co (59)		13	-	57	77	46	57	19	15	11	7	41	58	6	5	14	18	28	13
Ni (60)		81	-	26	-	75	38	36	15	48	16	45	34	39	32	119	43	135	167
Cu (65)		71	95	42	32	140	90	55	37	61	42	48	18	34	23	87	16	61	24
Zn (66)		54	6	58	10	66	8	64	17	42	26	48	17	44	13	85	8	87	44
Ga (69, 71)		15	1	19.0	0.6	17.0	0.9	18	8	14	2	16.9	0.9	16	2	16.7	1.0	16.3	0.7
Ge (74)		-	-	-	-	1.7	-	-	-	1.6	0.4	1.8	0.1	1.1	-	2.1	-	-	-
As (75)		-	-	18	13	56	37	16	18	0.73	0.06	0.33	0.08	0.5	-	2.39	0.05	0.7	-
Se (77)		-	-	-	-	12	8	-	-	5	2	6.3	0.7	-	-	9.3	-	-	-
In (115)		-	-	-	-	0.11	0.03	-	-	0.063	0.003	0.07	0.01	0.04	-	0.07	0.003	0.06	-
Sn (118)		7	1	6	1	7	1	6	1	5	2	5.5	0.3	3	1	3.6	0.6	5.6	0.8
Pt (195)		0.64	0.09	8.9	-	12	12	3.8	-	2	2	2	2	2	3	3	2	9	7
Tl (203,205)		-	-	-	-	-	-	-	-	0.0215	0.0007	0.05	0.03	0.03	-	0.04	-	-	-
Pb (206,208)		1.1	0.5	2.0	0.7	3	1	2.4	0.5	1.8	0.5	1.3	0.6	1.6	0.8	1.6	0.1	2	-
Bi (209)		-	-	0.07	-	0.11	0.07	0.09	0.03	0.05	0.01	0.020	0.003	0.11	0.09	0.04	-	-	-

Table DR3. Major and trace element composition of plagioclase from the Kane Megamullion MORBs

Or=100*(molar K/(Ca+Na+K)); Ab=100*(molar Na/ (Ca+Na+K)); An=100*(molar Ca/(Ca+Na+K)); SD - standard deviation

Table DR4. Major and trace element composition of clinopyroxenes from the Kane Megamullion MORBs

Samula	1-2	2	110	110-1		110-2		-2	111-3		111-4	
n	4	SD	8	SD	5	SD	4	SD	5	SD	5	SD
major elements (wt%))											
SiO ₂	45.9	0.7	46.4	1.6	48.6	1.2	47.9	0.6	45.4	2.0	47.1	0.5
Al_2O_3	5.9	1.3	5.0	1.0	3.6	0.8	5.3	0.7	6.2	1.9	5.8	0.3
K ₂ O	0.0	0.0	0.01	0.01	0.0	0.0	0.01	0.02	0.0	0.0	0.01	0.03
TiO ₂	3.3	0.3	2.5	0.6	2.1	0.6	2.3	0.2	3.3	0.7	2.5	0.1
CaO	21.1	1.1	19.4	1.0	19.8	0.8	19.7	1.1	20.5	1.0	20.4	0.2
FeO	10.7	1.7	11.9	1.9	10.4	1.4	10.7	0.8	12.3	0.8	8.7	0.8
MnO	0.1	0.1	0.3	0.1	0.3	0.1	0.2	0.2	0.1	0.2	0.20	0.03
Na ₂ O	0.6	0.2	0.5	0.1	0.5	0.1	0.5	0.2	0.5	0.1	0.4	0.1
MgO	11.2	0.5	12.2	0.9	13.6	1.1	13.2	0.7	10.2	0.7	12.9	0.5
Cr ₂ O ₃	0.04	0.08	0.0	0.0	0.1	0.1	0.2	0.2	0.1	0.1	0.2	0.1
Total		98.9		98.2		99.0		100.0		98.7		98.2
En (%)		37.6		41.3		43.5		42.9		36.0		41.7
Fs (%)		11.3		11.4		10.9		11.1		11.8		10.9
Wo (%)		51.0		47.3		45.6		46.0		52.1		47.4
trace elements ($\mu g/g$)												
Co (59)	32	5	54	35	35	5	46	14	37	7	43	8
Ni (60)	84	22	69	33	52	21	158	115	75	50	69	41
Cu (63)	33	16	45	31	28	17	27	8	78	35	33	12
Zn (66)	58	24	94	40	56	12	62	3	124	52	68	12
Ga (69, 71)	14	2	14	3	12	2	10	1	13	1	13	1
Ge (74)	3	-	11	-	3.3	1.0	-	-	3.8	-	3.30	0.04
As (75)	1.4	0.1	19	15	11	6	13	-	1	-	-	-
Pd (106)	0.025	0.006	-	-	0.03	0.01	-	-	-	-	0.02	-
In (115)	0.12	0.01	0.20	0.08	0.19	0.05	-	-	0.17	0.02	0.12	0.02
Sn (118)	6.7	0.7	7	2	5.6	1.0	6.5	-	4.0	0.5	5.0	0.7
Pt (195)	3	5	-	-	8	7	-	-	1.1	0.7	0.2	-
Pb (208)	0.6	0.5	1.8	0.6	2	1	2	1	3	2	0.7	0.2
Bi (209)	-	-	0.4	0.2	0.5	0.6	-	-	0.25	0.05	-	-

En=100*(molar Mg/(Mg+Fe+Ca)); Fs=100*(molar Fe/ (Mg+Fe+Ca)); Wo=100*(molar Ca/(Mg+Fe+Ca)).

SD - standard deviation

Table DR5. Correlation matrix for chalcophile elements of the Kane Megamullion MORBs													
	Zn	Cu	Pb	As	Sb	T1	Ni						
Zn		1											
Cu	0.	85	1										
Pb	0.	71	0.72	1									
As	0.	96	0.77	0.72	1								
Sb	0.	90	0.85	0.83	0.85	1							
Tl	0.	35	0.52	0.29	0.40	0.24	1						
Ni	0.	71	0.86	0.59	0.72	0.71	0.71	1					

The values represent coefficients of determination (R^2)

Table DR6. Chalcophile element contents (wt.%) of Kane Megamullion spinel harzburgites

	(ppm)											(ppb)		
Label	S	Cu	As	Zn	Ga	Pb	Se	Sb	T1	Ni	Ag	Bi	Cd	
5-1	159	40	35	68	1.6	0.5	2.6	1.5	0.24	1860	-	-	100	
5-31A	142	17	3	56	11.7	0.6	0.5	-	0.06	1120	-	-	-	
14-44	142	7	11	47	1.9	-	0.4	0.4	0.36	2050	-	-	-	
14-70	81	9	5	43	3.9	-	0.3	-	0.13	1800	-	-	-	
17-17	210	47	29	101	2.0	-	0.6	0.5	0.24	1590	-	-	-	
19-10A	188	39	22	91	1.8	-	0.2	0.7	1.96	1810	-	20	100	
19-11A	283	69	20	110	2.2	0.8	0.8	0.9	0.39	1720	-	-	-	
19-18A	81	52	45	126	2.3	1.1	1.2	1.4	1.58	1870	-	70	-	
19-31	215	59	45	111	2.4	0.7	-	2.1	1.71	1900	-	30	-	
112-44A	241	11	5	72	1.2	0.7	1.6	0.3	0.14	1930	-	-	-	
112-49	332	52	17	69	1.4	0.8	0.7	0.8	0.26	1670	-	20	-	
112-71	84	21	23	82	2.1	0.9	-	1.4	0.28	1300	-	-	-	
112-84	184	38	3	67	1.5	1.5	-	-	-	2030	-	-	-	
113-40	129	14	25	50	1.2	0.6	0.1	0.3	0.63	1230	-	-	-	
113-55A	561	21	22	127	3.0	1.0	-	1.8	3.30	1600	-	-	-	
113-57A	32	25	10	115	1.8	0.8	-	0.4	0.41	1110	-	-	-	
113-59A	45	23	9	171	1.6	0.9	-	0.4	0.70	1400	-	-	-	
114-9	6	8	5	36	2.0	0.6	0.2	0.3	-	1380	-	20	-	
114-19A	212	24	13	55	1.8	1.2	-	0.5	0.58	1610	90	100	-	

The estimates of analytical precision (1 SD) are as follows: Cu, $\pm 1.5\%$; Cd, $\pm 33.3\%$; Ge, $\pm 7.1\%$; Ga, $\pm 1.5\%$; Pb, $\pm 7.1\%$; Tl, $\pm 1.5\%$; and were determined by repeated measurements of unknown samples. The estimates of analytical accuracy are as follows: As, $\pm 3.7\%$; Cu, $\pm 5.3\%$; Cd, $\pm 14.6\%$; Ge, $\pm 7.1\%$; Ga, $\pm 17.0\%$; Hg, $\pm 31.3\%$; Pb, $\pm 4.5\%$; Sb, $\pm 5.3\%$; Te, $\pm 11.7\%$; Tl, $\pm 10.6\%$ and were determined by measurements of variuos certified material (GXR-1, GXR-4, GXR-6, SDC-1, SAR-M (U.S.G.S), DNC, SBC-1, DMMAS). After Ciazela et al. (under review, Geochimica et Cosmochimica Acta).

Table DR7. Major element contents (wt.%) of Kane Megamullion spinel harzburgites

Label	SiO ₂	TiO ₂	Al_2O_3	Fe ₂ O ₃ *	MnO	MgO	CaO	Na ₂ O	K_2O	P_2O_5	LOI	Total
5-1	38.6	0.02	1.21	9.07	0.13	36	1.25	0.07	0.01	0.04	12.9	99.2
5-31A	38.9	0.12	1.41	10.15	0.13	36.4	0.56	0.02	0.02	0.02	11.6	99.3
14-44	39.1	0.01	1.33	8.29	0.09	36.2	0.62	0.11	0.02	0.01	13.3	99.3
14-70	40.0	0.05	2.06	9.83	0.12	34.7	1.12	0.15	0.05	0.01	11.1	99.3
17-17	38.7	0.02	1.33	8.00	0.10	36.8	0.29	0.06	0.02	0.02	13.8	99.3
19-10A	34.8	0.02	1.06	8.54	0.17	32.5	5.87	0.08	0.02	0.03	16.1	99.3
19-11A	39.3	0.02	1.68	8.31	0.13	35.9	0.34	0.1	0.03	0.03	13.3	99.2
19-18A	37.6	0.04	1.58	11.31	0.16	33.5	1.81	0.14	0.03	0.07	12.9	99.2
19-31	36.5	0.02	1.71	9.38	0.15	31.6	5.28	0.15	0.01	0.07	14.1	99.1
112-44A	39.4	0.01	1.04	8.20	0.12	37.7	0.3	-	-	0.01	12.5	99.3
112-49	39.7	0.02	1.37	8.47	0.11	37.1	0.54	0.02	0.01	0.02	11.9	99.3
112-71	40.4	0.02	1.35	8.25	0.15	36	0.33	0.11	0.03	0.03	12.6	99.3
112-84	42.2	0.02	1.45	8.51	0.13	40.3	1.16	-	0.01	0.00	5.4	99.2
113-40	36.1	0.01	1.09	7.80	0.07	34.3	4.66	0.07	0.03	0.02	15.1	99.3
113-55A	40.4	0.12	1.78	15.09	0.20	33.8	1.79	0.16	0.02	0.09	5.8	99.3
113-57A	39.3	0.02	1.37	8.16	0.12	37.6	0.06	0.08	0.01	0.01	12.6	99.3
113-59A	38.5	0.01	1.07	10.52	0.14	36.9	0.03	0.05	0.01	0.01	12.2	99.4
114-19A	39.3	0.02	1.33	8.23	0.11	37.5	0.40	0.02	0.01	0.01	12.4	99.3

 $Fe_2O_3^* = Total Fe as Fe_2O_3 LOI - loss-on-ignition (-) below detection limit.$

The estimates of analytical precision (1 SD) are between 1 and 2% and were determined by repeated measurements of unknown samples. After Ciazela et al. (under review, Geochimica et Cosmochimica Acta).