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Underwater Glider Observations and the Representation 
of Western Boundary Currents in Numerical Models
By Robert E. Todd and Lea Locke-Wynn

Western boundary currents are important oceanic components of 
Earth’s climate system. In the subtropics, the Gulf Stream, Kuroshio, 
East Australian Current, Agulhas Current, and Brazil Current con-
tribute to poleward heat transport. Low-latitude western bound-
ary currents, such as the Somali Current, Mindanao Current, and 
New Guinea Coastal Undercurrent, are key connections between 
the subtropical gyres and equatorial current systems. Western 
boundary currents are generally narrow (O(100) km wide) with 
strong currents (O(1) m s–1) and large property gradients, making 
them a challenge to both observe and simulate.

Autonomous underwater gliders (Rudnick, 2016) that cross strong 
subsurface gradients (i.e., fronts) associated with western boundary 
currents provide high-resolution observations that strongly impact 
numerical simulations of those currents. Such simulations are not 
well constrained by other assimilated observations that either do 
not capture the subsurface structures of the fronts (e.g.,  satel-
lite observations) or have coarser spatial resolution. Rudnick et al. 
(2015) and Schönau et  al. (2015) previously provided evidence 
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FIGURE 1. Gulf Stream observations along the US East Coast. Tightly 
spaced mean sea surface height contours (gray) denote the mean posi-
tion of the Gulf Stream. The percentage of nominal Argo coverage (one 
float per 3° × 3° box) during 2008–2014 is shaded in reds and blues 
(courtesy of P.E. Robbins, WHOI). Green lines indicate the locations 
of sustained subsurface observations in the Florida Strait, along the 
AX10 XBT line (a high-density repeat XBT transect run by NOAA), and 
along the M/V Oleander line (see http://po.msrc.sunysb.edu/Oleander 
for more information). Blue lines indicate trajectories of 11 Spray glider 
missions completed through May 2017. The 200 m isobath (black) 
denotes the edge of the continental shelf.

that assimilation of glider observations led to improved state esti-
mates of the Loop Current and Mindanao Current, respectively. We 
demonstrate the impact of real-time glider observations on an oper-
ational forecast model’s representation of the Gulf Stream.

Spray underwater gliders (Sherman et al., 2001; Rudnick et al., 
2016) are currently surveying across the Gulf Stream between 
Florida and New England (Todd, 2017). Gliders are advected down-
stream as they cross the Gulf Stream and are navigated upstream 
in more quiescent waters on the flanks of the boundary current. 
Due to inherent Gulf Stream variability, gliders are generally unable 
to occupy repeat transects. Figure  1 illustrates how these glider 
observations fill a 1,500-km-long gap between sustained measure-
ments of the Gulf Stream’s subsurface structure in the Florida Strait 
(e.g., Baringer and Larsen, 2001) and those southeast of New York 
and New Jersey (e.g., Flagg et al., 2006; Molinari, 2011). With float 
density decreasing dramatically within the Gulf Stream and on its 
shoreward side, the Argo program cannot (and is not intended to) 
thoroughly sample the Gulf Stream along the continental margin; 
gliders can ably fill this role. 

Spray gliders in the Gulf Stream typically measure temperature, 
salinity, absolute velocity (Todd et al., 2017), chlorophyll a fluores-
cence, and acoustic backscatter. Resolution between profiles is a 
function of profiling depth, with profiles to 1,000 m separated by 
approximately 5 km in cross-stream distance and 5.5 hours in time 
(see Todd, 2017, for examples of cross-Gulf Stream transects). Real-
time observations are returned via the Iridium satellite network 
with temperature and salinity measurements distributed via the 
Integrated Ocean Observing System (IOOS) Glider Data Assembly 
Center (DAC) and Global Telecommunications System (GTS) and 
by email to the US Naval Oceanographic Office (NAVOCEANO) for 
operational usage. 

NAVOCEANO produces daily four-day forecasts for a US East 
Coast domain using the regional Navy Coastal Ocean Model 
(NCOM US East) that assimilate all available observations in the 
region, including Spray glider data, using the Navy Coupled Ocean 
Data Assimilation (NCODA) system. Assimilation of subsurface 
observations collected by gliders results in substantial shifts in the 
location of the Gulf Stream front between successive forecasts 
(e.g., Figure 2). In November 2015, inclusion of glider observations 
collected on November 12 shifted the simulated location at which 
the Gulf Stream separates from the continental margin near Cape 
Hatteras, North Carolina, (as indicated by the 15°C isotherm inter-
secting the 200 m isobath) southwestward by approximately 15 
km (Figure 2a,c). Southwest of Cape Hatteras, inclusion of glider 
observations collected on

 March 7, 2017, shifted a meander crest (again indicated by the 
15°C isotherm) southwestward by roughly 70 km (Figure 2b,d). For 
both time periods, simulated temperature profiles better agree 
with observations following assimilation of additional observations 
(Figure 2e,f). 

Autonomous underwater glider surveys fill a critical gap in sus-
tained subsurface monitoring of the Gulf Stream along the US East 
Coast. Spray glider observations have demonstrated impact on 
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FIGURE  2. Impacts of real-time Gulf Stream 
glider observations on NAVOCEANO’s opera-
tional simulations for (top) November 13, 2015, 
and (bottom) March 8, 2017. (a,b) Temperature 
at 200 m (color shading) from the forecast runs 
24 hours before the indicated dates. (c,d) Nowcast 
temperature at 200 m (color shading) for the 
same dates. In (a–d), real-time glider observa-
tions of temperature at 200 m that were available 
for assimilation are shown by the colored mark-
ers along the gliders’ magenta trajectories (ear-
liest observations shown at the southern bound-
ary are from November 3, 2015, and March 2, 
2017, respectively), the 15°C isotherm is black, 
and the 200 m isobath is gray. (e,f) Temperature 
profiles at the locations indicated by the magenta 
stars in (c,d). Midpoints of glider profiles (black) 
were sampled at (e) 10:24 on November 12, 2015, 
and (f) 07:40 on March 7, 2017. Pre- and post- 
assimilation simulated profiles (blue and red) are 
from the model runs shown in (a–d).

NAVOCEANO’s operational modeling of the Gulf Stream. Previous 
and ongoing surveys with gliders in western boundary currents glob-
ally (e.g., Davis et al., 2012; Rainville et al., 2013; Rudnick et al., 2013, 
2015; Schaeffer and Roughan, 2015; Schönau et al., 2015; Todd et al., 
2016; Krug et al., 2017; Schönau and Rudnick, 2017; Todd, 2017) prom-
ise to provide key observational constraints for a variety of numeri-
cal modeling efforts. 
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