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Abstract: The ocean basins have almost exactly the correct surface area and average 9 

depth to hold Earth’s water. This study asserts that three processes are responsible for 10 

this.  First, the crust is thickened by lateral compression from mountain formation. 11 

Second, Earth’s continental crust is leveled by erosion.  Third, due to the efficiency of 12 

erosion, the average elevation is a few hundred meters above sea level. A theoretical fluid 13 

model, suggested partly by laboratory experiments, includes an ocean of specified depth. 14 

The resulting continents are tabular (that is, their elevation view is rectangular).  The 15 

surface lies above sea level, contributing to a well-known double maximum in Earth’s 16 

elevation corresponding to continents and ocean basins. Next, a simple hydrostatic 17 

balance between continent and ocean gives average depth and area of present oceans and 18 

continents within 33%. Further calculations with a suitable correction to fit present Earth 19 

cover a wide range of possible crust volumes for earlier Earth.  With the present water 20 

volume, ocean area always exceeds 25% of the globe. For all possible water volumes, 21 

average continental crust thickness always exceeds 23.4 km. This may explain why 22 

cratons have thicknesses comparable to younger crust so that they are found on Earth’s 23 

surface today. Therefore, mountain building, and erosion have enabled water to carve its 24 

own cistern in the form of the accumulated ocean basins. The wide range of areas and 25 

depths of oceans and continents found here can constrain  models of early earth. Similar 26 

calculations can be done for earthlike planets as well. 27 
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1.  Introduction 1 

It is well known that Earth’s ocean basins average approximately 3800 m (2.5 2 

miles) depth covering approximately 70% of the surface and containing 97% of the 3 

world’s water (e.g. Sverdrup et al. 1942). The deep ocean basins contain even closer to 4 

100% of Earth’s liquid water during glacial periods. Therefore, continents and oceans 5 

have come to a balance so that the ocean basins hold almost all of the water.  This 6 

balance possibly has some effect on planetary climate, although there is at least one 7 

suggestion that this might only apply to second order (Kuhn et al 1989).  8 

Geochemists know that orogeny, volcanism, and sedimentation, contribute to the 9 

chemical evolution and building of continental material (e. g. Dewey and Windley 1981, 10 

McLennan and Taylor 1983, Cogley 1984, Taylor and McLennan 1995, Saal et al. 1998, 11 

Clift and Vannuchi 2004, Hawkesworth et al. 2010, Walther 2005, O’Neill et al. 2015). 12 

The mechanical consequences of orogeny, volcanism and sedimentation seem to be 13 

studied less. How did the continents and ocean basins mechanically evolve so that the 14 

oceans have exactly the correct area and average depth to hold Earth’s water?  However, 15 

the overall dimensions of continents and oceans have their origin in the balances between 16 

mountain building and erosion rate (Harrison 1994, Zhang 2005, et al., Roberts 2015). 17 

Here, the freeboard concept (Wise 1972, 1974) is added as in Whitehead and Clift 2009, 18 

which leads to mean continent elevation being only a few hundred meters above sea level.  19 

Mountain building is a direct consequence of the great rigid “tectonic” plates 20 

moving over Earth’s surface. It is well known that the ocean floor on each plate is 21 

produced and moves away from mid-ocean ridges at divergent margins, and the floor is 22 

consumed by sinking (subducting) into the interior of the earth (the mantle) in subduction 23 

zones at convergent margins. Therefore, any fixed thing within a plate, including a 24 

continent, migrates from divergent to convergent margins.  Once a continent arrives at a 25 

subduction zone, compression and orogeny occurs and mountain belts are produced 26 

(Press 2003, Johnson and Harley 2012). Over 80 orogenic events exist in the geological 27 

record over roughly four billion years (Kearey et al. 2009, Johnson and Harley 2012) 28 

pointing to the possibility of plate tectonics existing over that period of time. Although 29 

each event has a special story (e.g. Royden 1993a, Kaufman and Royden 1994, Huerta et 30 

al. 1996, 1998, 1999, Thatcher et al. 1999, Yin and Harrison 2000), during each event, 31 
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the continental crust is thickened.  Orogeny produces a thickness increase of 2.5% in the 1 

past 65 my (Clift and Vannuchi 2004, Whitehead and Clift 2009). The thickening 2 

decreases the total continent area by 1.7% and consequentially increases ocean area. 3 

This persistent crustal thickening is balanced to first order by redistribution of 4 

continental material by erosion (Harrison 1994). The erosion rates are sufficiently great 5 

to erode the continent surface down to an elevation close to sea level. Estimates of time 6 

scales for erosion of mountain belts are a few hundred million years, [Veizer and Jansen 7 

1985; Harrison 1994, Zhang 2005, Clift et al. 2009]. The average surface elevation is 8 

presently only 835 meters above sea level, so earth has tabular continents that lead to the 9 

well-known double maximum in elevation distribution (Sverdrup et al. 1942, Harrison 10 

1988, 1990 1998, Harrison et al 1981, 1983, 1985).  This distribution is not observed for 11 

other rocky planets and moons (Uchupi and Emery 1993).  12 

The eroded continental material deposited on the seafloor is ultimately buried at 13 

subduction zones (Clift et al., 2009).  This material feeds volcanism that produces new 14 

continent material through andesitic lavas at continent margins. (Gazel et al. 2015). The 15 

cycle of water into and out of the mantle is also involved in generating new continental 16 

crust (Höning and Spohn 2016). Another contributor to continent area increase is internal 17 

deformation, which is best documented as strongly localized divergence within 18 

mountainous regions [Kaufman and Royden, 1994], [Huerta et al., 1998, 1999], [Royden, 19 

1993b, Huerta et al., 1996], [Thatcher, et al., 1999], [Bird, 1979, Kay and Kay, 1993] 20 

[Conrad and Molnar, 1997, Houseman and Molnar, 1997]. For example, calculations 21 

based on measurements of Himalayan spreading and uplift have produced estimates of 22 

the viscosity of the continental material [England and Molnar, 1997, Flesch et al., 2000]. 23 

There is no present estimate of continent divergence globally. 24 

Finally, the freeboard effect notes that continent edges are almost exactly at sea 25 

level as a consequence of erosion, which is more effective under air than under the ocean 26 

surface (Wise 1972, 1974, Harrison, 1998, 1999, Hynes, 2001, McElroy and Wilkinson, 27 

2005).  This effect, plus the strength of erosion (loc. cit.) limits the average elevation of 28 

the continents to under 1 km above the sea surface.  29 
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 1 
Figure 1.  Processes altering the thickness and areas of continents and oceans to first order.   2 

 3 

The balance between mountain building; continent extension; erosion; 4 

sedimentation; the burial of sediments in the mantle; and the eventual return of some of 5 

the sediment material and water to the continents is summarized in Figure 1. The purpose 6 

of this paper is to present a simple fluid mechanical model of this and to report some 7 

consequences of ensuing calculations.  In Section 2, some fluid experiments show how 8 

thickening of a floating fluid from convergence of an underlying fluid leads to elevation 9 

of the surface.  In Section 3, a fluid theory produces the tabular nature of continents when 10 

the floating fluid is in the presence of an ocean.  In Section 4, a simple calculation 11 

explores a basic consequence of the constraint that continent elevation has a fixed value 12 

above sea level. This simple isostatic calculation quantifies one of the fundamental 13 

features of earth and oceans, yet it appears to be absent from textbooks and summarizing 14 

articles about Earth (e. g. Schubert and Sandwell, 1989, Turcotte and Schubert 2002, 15 

Press 2003, Grotzinger and Jordan 2010, King 2015, Condie 2016). Then, additional 16 

calculations use other possible volumes of crust and water for an earlier Earth constraint.  17 

 18 
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 1 

2.  Suggestive laboratory experiments  2 

Laboratory experiments were constructed to quantify the balance of crustal 3 

thickening and spreading. The first experiment has a layer of high viscosity silicon oil 4 

floating above corn syrup in a rectangular container (Figure 2).  The roller on the right 5 

rotates counterclockwise, and the one on the left rotates clockwise at the same rate.  6 

Convergence at the oil-syrup interface driven by the two rollers thickens the center of the 7 

layer of floating oil and elevates the surface (Figure 2b).  For sufficient roller speed, the 8 

oil separates from the walls (Figure 2c). Vertical thickening along the center of the tank 9 

increases with roller speed (Figure 3). This agrees with a linear theory developed in the 10 

Appendix. Using densities and viscosities of the laboratory materials, the maximum 11 

elevation of the top surface e , (see the table in supplementary material for a list of 12 

symbols) as a function of roller angular rotation rate Ω , is given by the formula 13 

e =1.36×10−3Ω  and the depression of the interface din  is given by din = 3.31×10
−3Ω14 

.  Therefore, elevation is proportional to driving rate  Ω .  15 

 (a) 16 

(b) (c) 17 

Figure 2. (a) The experimental apparatus with a flow driven by 2 rollers.  This produces two 18 
overturning cells in the bottom fluid that exert stress to the upper fluid.  (b) The top layer 19 
thickens at the center with upward deflection of the center for slow roller speed.  (c) At 20 
higher roller speed, the surface layer is swept into an isolated body.  21 
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 1 
Figure 3. Elevation of the top and depression of the interface as a function of roller rotation rate 2 

Ω . The dashed lines are from equations (A20) and (A21) in. 3 

 4 

 The second experiment shows that the elevated surface is not dependent on 5 

Newtonian viscosity.  It has a top layer of 600 polypropylene balls of 0.64 cm diameter 6 

combined with 100 balls of 0.32 cm diameter floating in silicon oil with kinematic 7 

viscosity 10 cm2 s-1 lying under air. The combination of sizes of balls produces a mushy 8 

matrix. They occupy half of the interior volume of a transparent circular cylinder whose 9 

rotational axis is tangential to gravity. A circulation cell in the oil is driven by steady 10 

slow counterclockwise rotation, sweeping the floating balls toward the descending region 11 

on the left (Figure 4). There, the balls collect in a deep patch. The surface of the balls in 12 

the patch lies above the level of the fluid, even though they are located above the 13 

descending oil.  14 

 15 
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Figure 4. Photograph of a cluster of floating spheres in a counterclockwise slowly rotating 1 

cylinder 13.3 cm in diameter half full of silicon oil. The camera looks along both the axis 2 
of the cylinder and along the rotation axis.  Gravity is directed downward.  3 

 4 
All experiments show that the top surface of the thickened patch extends upward.  The 5 

elevation of the top layer in Figure 3 depends on the speed of the driving, so this 6 

experiment does not include the two different rates of erosion under air and under water 7 

that are vital to Wise’s explanation of freeboard. Therefore, a simplified model and its 8 

theory is developed that will incorporate the two different rates of flattening for continent 9 

surfaces below and above water consistent with the freeboard concept.  10 

3.  A mechanical model of a continent with the ocean present.  11 

This model has floating viscous fluid that is thickened by convergence from a 12 

velocity imposed at the base of the continent material. To incorporate gravitational 13 

spreading that balances this convergence, we take note of a popular parameterization for 14 

erosion that flattens the continent surface in accordance with the relation  15 

.          (1) 
16 

 17 

Typically, the erosion rate K is proportional to an erosion coefficient determined by the 18 

land size, and inversely proportional to an erosion boundary layer depth and an isostatic 19 

factor (e.g. Zhang 2005).  In addition, K typically is a nonlinear function of slope.  20 

However,  for simplicity our model makes K a constant and we assign a viscosity to the 21 

continent material, making it a Newtonian fluid. 22 

Our model is a simplification of the dynamics of the continental crust (Figure 5a). 23 

Flow at the base of the crust imposed by mantle flow pushes the deep continental 24 

material toward the right (Figure 5a,b). The surface tilts upward toward the right to 25 

provide a hydrostatic pressure gradient to drive the return flow. This is the exact balance 26 

discussed by Zhang (2005), who parameterized erosion more fully than is to be done 27 

here. Although earth has more than one continent, this model represents an average of all 28 

the continents.  29 
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 1 
Figure 5.  Elevation views of the simplified equilibrium state of the continents and oceans.  2 

Vertical direction is stretched greatly. (a) A cartoon of the dynamics. Surface flow 3 
corresponding to erosion is generated by viscous flow within the continent, driven by 4 
bottom velocity. (b) Geometry of the theory. The surface flow shown by dashed arrows 5 
represents downhill movement of the surface through erosion.  6 

 7 

In the mathematical model (Figure 5b), three fluids representing ocean, continent 8 

and mantle have densities ρo , ρc , and ρm . They all lie in a field of gravity with 9 

acceleration g downward. Air lies over everything but it has negligible density and 10 

viscosity. The ocean has depth d0, and the continent has kinematic viscosity ν. The 11 

continent has three regions: 1. The first is an old continent region under the ocean 12 

surface.  2. This is an old continent region lying under air. 3. Finally there is a region of 13 

mountains.  14 

In all three regions, motion is imposed at the base of the continent by specifying 15 

velocities.  Regions 1 and 2 are characterized by different surface restoring forces as 16 

models of erosion under water and under air, and they have a constant positive normal 17 
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speed U1=U2. Region 3 has a greater normal speed U3. This faster flow rate under 1 

mountains represents convergence of the mantle in subduction zones that produce 2 

mountain belts. The return flows are shown in Figure 5b by dashed arrows.  Return flows 3 

are meant to represent and to simulate erosion and not actual creep of the continent 4 

material. Slope is largest in Region 1 from a smaller restoring force that represents small 5 

erosion rate. Regions 2 and 3 are characterized with two different bottom speeds. 6 

Therefore, the mountains have a greater return flow in a negative direction than the return 7 

flow of old continent under air.  This is represented by the dashed arrow under L3. 8 

Surface slope is smallest in region 2.  9 
 10 

The continent thickness and surface slope are calculated as a function of the ocean 11 

depth, velocities, and physical properties of the materials.  It will be assumed that the 12 

aspect ratio d0/L2 is small.  Although the speeds are free to vary over wide ranges of 13 

possible relevance to Earth, Stokes flow is anticipated. This limit is defined using the 14 

speed under region 2 as a typical speed so that  U2d0 ν ≪1 .  To model the weak erosion 15 

rate of the continent surface under water compared to erosion rate of the continent surface 16 

under the atmosphere, we specify  ρ2 − ρ1 ≪ ρ2 . In other words, this model uses a small 17 

surface restoring force to represent small erosion under the ocean. Thus, the density of 18 

ordinary water is not used but instead a density close to continent density is given for the 19 

ocean.  This small density difference is an artifice to insure that the surface restoring 20 

force of the continent under water is much less than the surface restoring force to the 21 

continent under air.  22 

In this model, the flow within the continent is the only unknown flow.  The 23 

continent fluid obeys continuity and Stokes flow. 24 

 25 

 ∇ ⋅ !ui = 0           (2) 26 

∇pi = µ∇
2 !ui − gρc

⌢
k          (3) 27 

with !ui  the velocity vector and pi  the pressure. The ocean and atmosphere are low in 28 

viscosity compared to the continent, producing negligible stresses on the continent except 29 

for hydrostatics. In addition, atmospheric pressure is zero at sea level and along the 30 
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continent surface.  Third, the flow is strictly two dimensional in the vertical and lateral 1 

plane.  2 

The vertical origin is located at the ocean floor (Figure 5), and the lateral origin is 3 

located at the continent-sea surface point of intersection. Taking the limit  d0
2 L2

2 ≪1 , 4 

(with L2 a typical lateral length), the common lubrication approximation exists with 5 

negligible vertical velocities and lateral derivatives. The hydrostatic equation governs 6 

vertical forces for the continents.  7 

We first develop the equations in the regions under air, (Regions 2 and 3) The 8 

pressure obeys pi=0 at z =hi(x) (i=2,3), where hi is the surface elevation above the ocean 9 

floor.  The hydrostatic approximation is 10 

pi = gρc hi − z( )          (4) 11 

Therefore, the lubrication approximation is valid in the lateral direction, and since it has 12 

only vertical derivatives, the equation in each region is  13 

1
ρc

∂pi
∂x

= g ∂hi
∂x

= ν ∂2ui
∂z2

        (5) 14 

with solution  15 

ui =
g
ν
∂hi
∂x

z2

2
+ Aiz + Bi

 .       (6)
 16 

This approach resembles simple lubrication theory as applied for example for 17 

asthenospheric flow and return flow (Turcotte and Schubert 2002). The depth of the base 18 

of the continent is determined by setting pressure below it to the hydrostatic value using 19 

the hydrostatic approximation,  20 

z = δhi x( )           (7)  21 

where δ = ρc ρm − ρc( ) .  We set ui=Ui there to get 22 

Bi =Ui −
g
ν
∂hi
∂x

z2

2
+ Aiδhi .        (8) 23 

 In addition, the lateral shear at the continent surface is set to zero giving 24 
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Ai = −
g
ν
∂hi
∂x

hi .         (9) 1 

Inserting these in (6),  2 

 
ui =

g
ν
∂hi
∂x

1
2 z2 − δ 2hi

2( ) − hi z + δhi( )( ) +Ui .      (10) 3 

Lateral volume flux Fi is  4 

 Fi = ui dz
−δ hi

hi

∫ = − 1
3
g
ν
∂hi
∂x

1+ δ( )3 hi3 +Ui 1+ δ( )hi .     (11) 5 

Steady State 6 

For a continent that is steady and fully developed, Fi=0 so that 7 

∂hi
∂x

=
3νUi

ghi
2 1+ δ( )2

.         (12) 8 

This integrates to  9 

 hi
3 =

9νUix
g 1+ δ( )2

+ Ci .         (13) 10 

In region 2, h=0 at x=0 so C2 = d0
3  and the elevation is 11 

h2
3 = d0

3 +
9νU2x
g 1+ δ( )2

 .        (14) 12 

In region 3, the integration starts from the point where the surfaces are matched at x=L2 so 13 

the elevation is  14 

h3
3 = d0

3 +
9νU3x
g 1+ δ( )2

+
U2 −U3( )νL2
g 1+ δ( )2

.       (15) 15 

Now we consider regions 1 under water.  To calculate the surface, we use (13) with g  16 

replaced by reduced gravity g ' = g ρc − ρo( ) ρc  so that 17 

h1
3 = d0

3 +
9νU1x

g ' 1+ δ( )2
.         (16)  18 

The lateral length for region 1 is found setting h=0, at x=-L1 so  19 

L1 =
g ' 1+ δ( )2 d03

9U1ν
 .         (17) 20 
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Since we specify g’<<g, for the purpose of determining a volume of the crust in this 1 

region, we approximate L1=0.  2 

For use in the following section, it is necessary to find the volume of the 3 

continent. Assuming that this 2 dimensional model has a typical width w in the third 4 

direction, and noting that the total depth of the continent at each point is given by 5 

1+δ( )hi x( ) , the volume of each region is  6 

V1 = 0            (18) 7 

V2 = w 1+ δ( ) d0
3 +
9U2νx
g

⎛
⎝⎜

⎞
⎠⎟

1
3

dx
0

L2

∫

= 3
4 w 1+ δ( ) 9U2ν

g
⎛
⎝⎜

⎞
⎠⎟

1
3

L2 +
gd0

3

9U1ν
⎛
⎝⎜

⎞
⎠⎟

4
3

−
gd0

3

9U1ν
⎛
⎝⎜

⎞
⎠⎟

4
3⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

    (19) 8 

V3 = 3
4 w 1+ δ( ) 9U3ν

g
⎛
⎝⎜

⎞
⎠⎟

1
3

L2 + L3 +
g 1+ δ( )2 d03
9U3ν

+
U2 −U3( )L2
9U3

⎛

⎝⎜
⎞

⎠⎟

4
3

− L2 +
g 1+ δ( )2 d03
9U3ν

+
U2 −U3( )L2
9U3

⎛

⎝⎜
⎞

⎠⎟

4
3⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

  (20) 9 

It is convenient to approximate these volumes.  10 

V1 = 0 .           (21) 11 

In regions 2 and 3, the elevation is expanded as a Taylor series about the left hand point 12 

that starts each region so that  13 

V2 = wd0 1+ δ( )L2 1+
νU2L2

6g 1+ δ( )2 d03
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
      (22) 14 

V3 = wd0 1+ δ( )L3 1+
νU2L2

3g 1+ δ( )2 d03
⎛

⎝⎜
⎞

⎠⎟
1+ νU3L3

3g 1+ δ( )2 d03
⎛

⎝⎜
⎞

⎠⎟
    (23) 15 

To make realistic tabular continents, the term on the right within the brackets in 16 

(22) must be small so that the old continent has roughly constant thickness. This is true if 17 

νU2L2
6g 1+ δ( )2 d03

< 1 .  Using present Earth values in mks units of g=10 ms-2, d0=3800 m, ρ 2 18 

=2800 kg/m3, ρ 3 =3300 kg/m3, and L2=107 m, this requires that νU2 < 2.5×10
3 .  If one 19 

uses a speed associated with 0.1 times a value for mantle convection of .3×10−9  ms-1 the 20 
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continent kinematic viscosity in this model has to be significantly smaller than 22.5x1012 1 

m2s-1.  This is a value lower than commonly used mantle viscosity values that are 2 

approximately 1017 m2s-1 (Turcotte and Schubert 2002), but such a small value is 3 

appropriate here since it quantifies the effects of erosion.  It is similar in magnitude to 4 

values of erosion by Zhang (2005) with timescales of 108 years, and who used an 5 

empirical value for uplift rate of similar magnitude that fits the present continents.  The 6 

smallness of this viscosity compared to mantle viscosity gives a measure of the strength 7 

of erosion needed for Earth to have tabular continents (also discussed by Zhang loc.cit.). 8 

This low value suggests that the early experiments in Section 2 and the theory in 9 

Appendix 1 might be revisited using lower continent viscosity. However, a layer 10 

corresponding to the ocean should also be added.  In region 3, one would specify a lateral 11 

length perhaps L3=106 m with bottom speed 20 times greater. 12 

The important result for this model of the continent is that the body is not tabular 13 

because of its strength, but because the rate for erosion flattening the continent is greater 14 

than the rate of mountain generation.  This result is also pointed out by Zhang (loc.cit.).  15 

However, we also have added the fact that the ocean imposes a freeboard constraint.  16 

Although it can be argued that the freeboard-orogeny-erosion balance applies to earth, 17 

supporting this through analysis from data about orogeny in addition to the rates of 18 

erosion already quantified by Zhang (loc.cit.) is beyond the scope of this paper. 19 

 20 

Transient adjustment 21 

The surface evolution is driven by conservation of volume flux  22 

1+δ( )∂hi
∂t

=
∂Fi
∂x

,         (24)  23 

which can be advanced numerically.  The timescale is ν gd0
2 , the speed scale is 24 

U2ν gd0
2  and the dimensionless area flux scale is gd0

3 ν . Figure 6 shows a calculation in 25 

which there is only one region corresponding to Region 2 with no Region 3.  The surface 26 

h gradually approaches a slope with a value of 3 x 10-5. Note that an initial bump is 27 

substantially smoothed out after one time unit.   28 
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1 

Figure 6.  Transient response of surface elevation and flux driven by a moving bottom. (a) 
2 

Uniform speed U2ν/gdc
2=10-5. A bump that is initially placed in the middle relaxes with 

3 

time. Elevation values are multiplied by five to show details. Time is normalized by 
4 

dividing by timescale ν/gdc. Time intervals are 0.1 units. A value of 10-3 is subtracted 
5 

from flux to offset it from zero. (b) There are different driving speeds in two regions. On 
6 

the right, the speed is ten times greater. Time intervals are 0.01 units before t=0.1, then 
7 

intervals are 0.1 up to t=1, then intervals are 1 (blue/green) up to t=4.  Flux F  is 
8 

normalized by dividing by gdc
3 / ν and a value of 0.15x10-3 is subtracted to offset it from 

9 

zero.    
10 

 11 

4.  Areas and thicknesses of ocean and continent 12 

In section 2, the experiments essentially had no ocean at all, so d0=0. In section 3, 13 

the ocean depth d0 is specified. Here, the value of d0 is determined using simple 14 

hydrostatic equations. In the previous section, the pressure under the ocean was not a 15 

factor in the model. The pressure under the continents was hydrostatic and consistent 16 

with lubrication theory. In this section, the ocean lies over Earth’s mantle and contributes 17 

to pressure in the mantle. The mantle, continent and ocean are not moving and a 18 

hydrostatic balance exists between ocean and continent. The cartoon in Figure 7a (taken 19 

from Figure 1) shows the factors contributing to the thickness of the continent. The 20 

cartoon in Figure 7b shows the hydrostatic model analyzed here.  The continents are 21 

aggregated together as one solid body that is floating on a liquid mantle. It lies next to a 22 

motionless liquid ocean.  23 
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 1 
Figure 7. (a) Sketch of the first-order factors modifying the thickness of the continental crust. (b) 2 

The hydrostatic balance of ocean basins and continents.  (Simplified from Figure 5 in 3 
Whitehead and Clift, 2009). 4 

 5 
Pressures within the mantle under ocean and continent are calculated using 6 

hydrostatics and set equal to each other.  Mantle pressure under the oceans equals the 7 

weight per unit area from the accumulation of ocean water of depth do and mantle of 8 

thickness dm. This is set equal to the weight per unit area under the continents of 9 

thickness dc due to the continental crust. Hydrostatic pressure is calculated using the 10 

densities of ocean (ρo = 1030 kg m-3), continent (ρc = 2800 kg m-3), and mantle (ρm 11 

=3300 kg m-3). The equality of pressure under ocean and continent obeys the formula 12 

2800gdc=1030gdo+3300gdm+3300gD      (25) 13 

with g the acceleration of gravity. The constant D is added to the equation to correct for 14 

everything left out of this model.  The list of possible causes of corrections is long and 15 

includes many layers in the ocean floor, within the continents and in the upper mantle as 16 

well as features of mantle convection and even the density of air.  17 

Defining E as the elevation of the continent above sea level, and using the relation 18 

E+do+dm=dc to eliminate dm from (25), 19 
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 E =
3300 − 2800

3300
dc −

3300 −1030
3300

d0 + D .     (26) 1 

Next, the known values of the volumes of continental crust and water are incorporated.  2 

Using volume V, area A and the subscript o for ocean, and c for continent, where  3 

dc=Vc/Ac          (27)  4 

and  5 

do=Vo/Ao          (28) 6 

Using the fact that the two areas add up to the surface area of Earth  7 

Ao+Ac =510x106 km2         (29) 8 

Ao is eliminated using (28) and (29) and (26) becomes 9 

E =
500
3300

dc −
2270V0dc

3300 5.1×108dc −Vc( )       (30) 10 

This reduces to the quadratic equation for crust thickness 11 

2.55 ×1011dc
2 − 500Vc + 2270Vo −1.683×10

12 D − E( )( )dc − 3300Vc D − E( ) = 0  (31)  12 

with solution  13 

dc = F ± F2 +1.294 ×10−8Vc D − E( )       (32) 14 

where F = 500Vc + 2270Vo −1.683×10
12 D − E( )( ) 5.10 ×1011 . 15 

Does (32) produce a reasonable prediction of depth of continental crust on Earth 16 

as a function of water and crust volumes? First, we ignore all deviations between this 17 

model and Earth by setting D=0 and using the values Vc=7.679x109 km3 and 18 

Vo=1.178x109 [Whitehead and Clift 2009].  Using the present value of continent 19 

elevation above the sea surface E=0.835 km [Turcotte and Schubert 2002] in equation 20 

(32), we get dc=28.1 km. This depth is 73% of the present average crust thickness dc = 21 

38.4 km, [Whitehead and Clift 2009].  Continent area using this thickness and the present 22 

volume of crust is 2.67x108 km2, which is 133% of the actual area of 2x108 km2.  23 

Consequent ocean area is 2.53x108 km2, which is 81% of the actual area of 3.10x108 km2. 24 

The fact that all these values are within 34% of earth’s values indicates that this 25 

extremely crude model is a good first approximation.  26 

It is clear that secular changes in the value of D might arise, for example from 27 

secular changes in heat flow (Schubert and Reymer 1985). It is not the object here to 28 
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determine a better value of the present value of D from direct geophysical measurements 1 

(e.g. Gossler and Kind 1996), although that would make a useful future study. Instead, 2 

we use the present crust thickness dc = 38.4 to calculate the value of D for present Earth 3 

and it is D=-2.369 km. Naturally, using (26) with this value of D gives the present value 4 

of ocean depth do =3.8 km [Whitehead and Clift 2009] as well as the correct ocean and 5 

continent areas.  6 

It is useful to insert D=-2.369 km in (32) and find possible thicknesses and areas 7 

for earlier earth by considering plausible ranges of volumes of early continental crust and 8 

water. Here Earth’s present area is used. In addition, since early erosion is not easily 9 

quantified, a number of values of E [Müller et al. 2008] are considered. Figure 8a shows 10 

the continental crust thickness as a function of Vc for assorted values of E using the 11 

present day value of D and the present ocean volume (a value consistent with the present 12 

ocean area Ao =310x106 km2, and ocean depth do=3.8 [Whitehead and Clift 2009]. Values 13 

of ocean depth (Figure 8b) can also be found since it is linearly related to crust thickness 14 

by (26).  The curves are the same as those in 8a but with different offset.   15 

  16 
Figure 8. (a) Thickness of the continental crust as a function of continental crust volume using 17 

(32). The solid curves are for 5 different values of mean continent elevation above sea 18 
level E (in km) and the sixth with present elevation E=0.835 km is shown as a dashed 19 
curve.  The star shows present Earth. (b) Ocean depth using (26). Water volume is fixed 20 
at the present value Vo=1.178x109 km3 and D=-2.369 km.  21 

 22 
Figure 8 shows a number of things: First, dc extends from approximately 25 to 66 23 

km in thickness. Second, the spread of the curves for different values of E means that 24 
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continent thickness is sensitive in detail to continent elevation and hence, presumably to 1 

erosion rate.  Third, since E and D are subtracted in equation (32), thickness is also 2 

sensitive to the exact value of D. Therefore, if early continent or mantle structures differ 3 

significantly from their present structures, the effect would be similar to the effects of 4 

different levels of erosion. Fourth, ocean depth varies considerably because do ranges 5 

from just over 2 km up to almost 11 km. Since (26) shows that d0 is linearly proportional 6 

to dc, the curves in (a) and (b) have the same shape even though relative offsets are 7 

different.  Fifth, and most importantly, even with this wide range of E (hence D), 8 

continental crust thickness never is less than 25 km. The result that crustal thickness 9 

exceeds a certain value is consistent with the fact that the crust of cratons has thicknesses 10 

of the order of present crust (King 2005), resulting in cratons covering a significant part 11 

of the present continents (Figure 9). 12 

(a) (b) 13 
Figure 9.  (a) Map of geological provinces of the world.  The shields are cratons extending to the 14 

surface and the platforms are cratons covered with sediment. (From public domain by 15 
USGS - http://earthquake.usgs.gov/data/crust/maps.php). (b) Continental crust thickness 16 
(km). (From public domain by USGS -17 
http://quake.wr.usgs.gov/research/structure/CrustalStructure/). 18 
 19 
The crust thickness dc is related to areas of continent and ocean in (27)-(29). 20 

Figure 10 shows results for the same parameters as used to make Figure 8 plotted against 21 

areas.  First, we see again dc<25 km.  Second, continent area extends up to approximately 22 

80% of the total area of earth in the limit of three times the present crust volume. Third, 23 

ocean area correspondingly is as small as 20% in the same limit. Fourth, very small 24 

values of Vc result in vanishing continent area so that Earth is largely covered by water. 25 

Fifth, present Earth (stars) is in a region sensitive to changes so relative thickness and 26 

areas change with different volumes of materials and erosion rates. Summarizing the 27 
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results shown in Figures 8 and 10, continent crustal thickness is likely to range between 1 

the extremes of 25 to 70 km, but for all crust volumes, continent area is less than 80% of 2 

earth’s area and the ocean area is more than 20%. 3 

 4 
Figure 10. (a) Continent thickness as a function of the areas of the continents and oceans. Solid 5 

curves are for 5 different values of mean continent elevation above sea level E and the 6 
sixth dashed curve is for present elevation. (b) Ocean depth versus areas of the continents 7 
and oceans collapses to a single curve for all E. Water volume is fixed at the present 8 
value Vo=1.178x109 km3 and D=-2.369 km. 9 
 10 
Next, we investigate sensitivity of continent crust thickness and ocean depth to 11 

the volume of planetary water Vo. Since past values are poorly constrained, a wide range 12 

of values of water volume from 0.01 to 10 times the present volume is used.  Mean 13 

continent elevation is set to the present value E=0.835 km. Figure 11 shows crust 14 

thickness as a function of crust volume and areas.  Crust thickness extends from 23.4 km 15 

to almost 180 k. Figure 12 shows ocean depth.  It ranges from almost zero to 35 km.   16 
 17 

 18 
 19 
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 1 
 2 
Figure 11. Continental crust thickness for 8 values of the ratio of water volume to the present 3 

value as a function of (a) continental crust volume and (b) areas of oceans and continents 4 
(the dashed lines are offset from the solid lines and they use the scale shown on the right). 5 
The stars show present Earth. E=0.835 km and D=-2.369 km. 6 
 7 

 8 

Figure 12.  As in Figure 11 but for ocean depth instead of crust thickness. 9 
In summary, the analysis in this section shows that continental crust is greater 10 

than about 22 km (Figures 8, 10, 11, and 12). With present water volume on Earth, 11 

continents occupy less than about 75% of Earth’s area, and oceans occupy more than 12 

25% of the surface area. These results assume first that there are circumstances where 13 

continents have evolved long enough for the dynamic balance described here to have 14 

become established on  earth. Second, it assumes Earth has similar material properties 15 

and weathering rates so that erosion is strong enough to limits the elevation of the 16 

continent material. Third, it assumes similar values of D.  17 

5. Summary  18 

Floating oil thickens when subjected to convergence by an underlying fluid, but it 19 

thickens with convergence speed and thus has shortcomings as a model of continents on 20 

earth.  A theoretical fluid model using an ocean layer of given thickness and Newtonian 21 

viscosity produces a tabular continent. Using the hydrostatic pressure balance under the 22 

continents and ocean basins and using the fact that the average continent surface 23 

elevation is less than 1 km above the ocean surface, calculations show that the average 24 

thicknesses and the areas of Earth’s continents and oceans are readily estimated as a 25 
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function of volumes of continental crust and water. For application to earlier earth, and 1 

for almost all possible volumes, the continental crust exceeds 22 km in thickness and 2 

total continent area is less than 75% of Earth’s surface.  This constraint may be useful to 3 

those studying the evolution of Earth. If suitable changes in surface area are made, 4 

calculations may also be useful for other earthlike planets or moons. 5 

Admittedly, the kinetic details and consequences from erosion are crudely 6 

represented in the simplified model in section 3.  This does not seem to matter because if 7 

erosion is strong enough to level mountains in a fraction of a planet’s lifetime, the tabular 8 

nature of continents is not sensitive to erosion rates.  Our model poorly represents other 9 

aspects of erosion, too. Material is not swept off the top of the continents, moved to the 10 

oceans or to low regions of a continent and swept into the mantle at subduction zones 11 

only to be partially returned by volcanism in this model.  However, even though this 12 

model does not produce a realistic cycle of mantle material from surface to mantle and 13 

back, a statement of conservation of the total continent material at any one time plus the 14 

conservation of water on the planet is used to determine areas and average thickness of 15 

oceans and continents.  16 

The theory in Section 3 shows that that tabular continents arise from the simple 17 

balance between orogeny, erosion and freeboard. This balance is likely to exist over wide 18 

ranges of governing parameters with predictable thicknesses and areas of ocean and 19 

continental crust linked to volumes of continental crust and water. In the process, water 20 

on Earth, through the act of erosion on land, (and water on any other earthlike planet) has 21 

carved its own cistern.  This cistern, the ocean, holds most all of the water and causes 22 

orogeny and erosion on the continents to form tabular continents. Note also that the 23 

tabular nature of continents certainly has effects on the collision and breaking apart of the 24 

individual continents during Wilson cycles. Therefore, Earth’s water exerts a first order 25 

effect on the areas of continents and oceans and presumably thereby it affects the pattern 26 

of mantle circulation throughout all the depth of the mantle possibly all the way to the 27 

core.   28 
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 5 
Appendix  The deflection of a crustal layer by mantle circulation 6 
 7 

This two-layer calculation gives the amount of thickening and thinning of floating 8 

fluid from circulation of fluid below in the limit of large viscosity (Whitehead 2003). A 9 

layer of viscous fluid representing continental crust lies above a circulating mantle. The 10 

top layer (Figure A1) has viscosity, µ1  density ρ1  and average thickness d.  It lies above 11 

the “mantle” fluid with viscosity µ2  density ρ2 , and average depth Dm  in a field of 12 

gravity g. Simplifications are: 1. Only steady flows are considered. 2. The matching 13 

conditions between layers are applied at the level mean interfaces so that the equations 14 

are linear. 3. The flows exist for small Reynolds number so that inertial forces are much 15 

smaller than viscous forces.  4. The flow is two-dimensional. 16 

 17 

 18 

Figure A1.  The two layer model driven by velocity at the lower boundary.   19 

Accordingly, the equations of two-dimensional viscous flow are used 20 

 0 = −∇pi + µi∇
2 !ui        (A1) 21 
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where i=1, 2 denote the top and bottom layers, respectively, with  !ui = ui
⌢
i + wi ĵ  and the 1 

î and ĵ unit vectors in the horizontal and vertical directions.  The continuity equation is  2 

∂ui
∂x

+
∂wi

∂z
= 0     .    (A2) 3 

The boundary conditions at the interface between the two layers (which is taken to be at 4 

z=0) are the matching of lateral velocity u1=u2 vertical velocity w1=w2, and lateral stress 5 

µ1
∂u1
∂z

+
∂w1
∂x

⎛
⎝⎜

⎞
⎠⎟
= µ2

∂u2
∂z

+
∂w2
∂x

⎛
⎝⎜

⎞
⎠⎟ . 6 

In addition, the condition of vertical stress determines a value for interface deflection η2 . 7 

2µ1
∂u1
∂x

+ P1 − 2µ2
∂u2
∂x

− P2 = g ρ2 − ρ1( )η2       (A3) 8 

Boundary conditions on the top of the upper layer are applied at z=d.  These conditions 9 

are zero vertical velocity, zero lateral stress (often called free-slip), and zero vertical 10 

stress that will produce a value for η1 .  The final two boundary conditions are imposed at 11 

the bottom of the deep layer at z=-Dm.  They are that the vertical velocity is equal to zero, 12 

that w2=0, and that the imposed velocity u2=U sin kx.   13 

The solutions are of the form  14 

wi = Ai sinh kz + Bizsinh kz + Cizcosh kz{ }coskx .    (A4) 15 

The boundary and interface conditions can be expressed as the matrix equation 16 

kcD −sD − kDmcD cD + kDmsD 0 0 0
−sDm DmsD −DmcD 0 0 0
k 0 1 −k 0 −1
0 µ2 0 0 −µ1 0
0 0 0 sd dsd dcd
0 0 0 2k2sd 2kcd + 2k2dsd 2ksd + 2k2dcd

×

A2
B2
C2

A1
B1
C1

=

Uk
0
0
0
0
0

17 

           (A5) 18 
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where cD=coshkDm, cd=coshkd, sD=sinhkDm and sd=sinhkd. The solutions for the 1 

constants are 2 

A1 = 2Uk
2lµ2 sD − kDmcd[ ] / Det  3 

B1 = 2Uk
2µ2 sD − kDmcD[ ](sd)2 / Det  4 

C1 = −2Uk2µ2 sD − kDmcd[ ]sdcd / Det  5 

A2 = 2Uk
2 µ1DmsD(sd)

2 + µ2DmcD −kd + sdcd( )⎡⎣ ⎤⎦ / Det  6 

B2 = 2Uk
2 µ1 sD − kDmcD( )(sd)2⎡⎣ ⎤⎦ / Det  7 

C2 = 2Uk
2 −µ1kDmsD(sd)

2 + µ2sD kd − sdcd( )⎡⎣ ⎤⎦ / Det  8 

where 9 

Det = −2kµ1 (sD)
2 − k2Dm

2⎡⎣ ⎤⎦(sd)
2 + 2kµ2 sDcD − kDm[ ] kd − sdcd[ ]. 10 

 The solution for η1  gives values of the elevation of the surface corresponding to 11 

continent elevation  12 

η1
d

= η01
kDm cosh kDm − sinh kDm[ ] 2kd cosh kd − 3sinh kd[ ]

sinh2 kDm − k2Dm
2⎡⎣ ⎤⎦sinh

2 kd + µ0 sinh kDm cosh kDm − kDm[ ] sinh kd cosh kd − kd[ ]13 

            (A6) 14 

where η01 =
2Uk2µ2
gρ1

and µ0 = µ2 / µ1 . The solution for η2 gives the depth of the 15 

deflection of the interface between the two fluids corresponding to “continental roots” 16 

η2
d

= η02
kDm cosh kDm − sinh kDm[ ] + λ sinh kDm sinh

2 kd + µ0λ cosh kDm sinh kd cosh kd − kd[ ]
sinh2 kDm − k2Dm

2⎡⎣ ⎤⎦sinh
2 kd + µ0 sinh kDm cosh kDm − kDm[ ] sinh kd cosh kd − kd[ ]17 

            (A7) 18 

where η02 =
2Uk2µ2
g ρ2 − ρ1( ) and λ = Dm / d . 19 
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Since continental crust is very thin compared to the depth of the mantle we take 1 

kd small in (A6) and (A7) and also take the crust to be more viscous than the mantle 2 

(England and Molner 1997), so  µ0 = µ2 / µ1 ≪1 .  Then, (A6) (A7) simplify to 3 

η1
d

=
−2Uµ2k kDm cosh kDm − sinh kDm[ ]

gρ1d sinh2 kDm − k2Dm
2⎡⎣ ⎤⎦

     (A8)
 

4 

η2 =
−ρ1η1
ρ2 − ρ1

         (A9) 5 

 An important result in these limits is that the viscosity of the top layer has 6 

dropped out and is not important in determining the deflections.  This arises because the 7 

surface and the interface develop values that allow stress from the mantle circulation to 8 

balance buoyant restoring forces produced by topography.  Therefore, this simplified 9 

model of the production of continent by mantle convergence does not depend on the 10 

viscosity of the continents, or if continent viscosity is a proxy for a very small value of 11 

erosion, it does not depend on the strength of erosion. 12 

Figure A2 shows values of deflection divided by layer depth for Equations A6 13 

and A7 and for equations (A8) and (A9). For this calculation, the velocity ms-14 

1 was used, which is the spreading rate of the Pacific plate.  This model therefore has the 15 

same magnitude for the flow speeds in the deep and top shallow mantle, which is 16 

appropriate for uniform viscosity mantle convection. The other parameters used are the 17 

acceleration of gravity g=9.8 ms-2, density difference between mantle and continent with 18 

the typical value  kg/m3, and upper layer thickness d=15 km.  This is the 19 

value if all continental crust were spread evenly over the globe.  This calculation is an 20 

estimate of what happens in two cases, first, before the continent material is segregated 21 

into lumps and second, what happens in the experiments in Figure 2.  Panel (a) has the 22 

� 

U = 3×10−9

ρ2 − ρ1 = 600
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results for whole mantle convection with Dm=2880 km.  The viscosity used is the well-1 

known value for deep mantle convection  pa-s. The ratio of viscosity between the 2 

lower and upper layer are  and  in equations (A6) for the surface and (A7) 3 

for the interface (long and short dashes, respectively).  In addition, curves from equations 4 

(A8) and (A9) are plotted as solid curve and they lie very close to the curve for 5 

, so that excellent agreement exists between the general formulas and the 6 

approximations. Generally speaking, the value of the viscosity of the upper layer is not 7 

important as long as viscosity is more than ten times greater than mantle viscosity. 8 

For parameters with the deflection of order one, the layer would break up and the 9 

calculation is invalid.  Panel (a) indicates that cells with wavelength greater than about 10 

6000 km produce interface deflections indicating break up (thick grey line). Therefore, in 11 

this model, continental crust could not cover earth but would instead be broken up into 12 

lumps of individual continent. Panel (a) also shows that wavelengths shorter than about 13 

5000 km would not form proto-continent, but longer wavelengths produce a bottom 14 

interface amplitude of order one.  15 

The size of deflection for parameters associated with shallow mantle convection 16 

(mantle layer 600 km deep and viscosity of  pa s) are shown in figure A2b. The 17 

break-up criterion is not found since the amplitude is not close to one even for the longest 18 

wavelength mantle motion.  19 

1021
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(a)  (b) 1 

Figure A2 Elevation of the surface of the top layer and the interface between the two layers as a function of 2 
the driving wavelength (a) Results for a deep mantle flow.  The long dashed lines are for3 
µ0 = 10

2 the short dashed lines are for µ0 = 10
−2  and the solid lines are for equations (A1) and 4 

(A2). The thick grey line indicates the order one amplitude limit of the calculation.  (b). Results 5 
for shallow lower layer.  The symbols are from the approximations in equations (A1) and (A2) and 6 
the solid curves from equations (A6) and (A7). 7 

 8 
A close view of the velocity field using parameters for both the crust and mantle 9 

with µ0 = 10  is shown in Figure A3.  The upper panel has stretched vertical coordinates 10 

and a different velocity axis scale than the lower panel.  The predominant stress exerted 11 

by the lower layer onto the upper layer is from shear µ2
∂u2
∂z

⎡
⎣⎢

⎤
⎦⎥

 (the boundary condition 12 

 imposes the stress component µ2
∂w2
∂x

⎡
⎣⎢

⎤
⎦⎥
= 0 ).  The shear imposed by the lower 13 

layer drives a flow in the upper layer that has a return flow near the surface driven by the 14 

surface elevation slope.  The overturning cell in the top layer is opposite in sense from 15 

the overturning cell in the lower layer.  The shear exerted by the bottom circulation is 16 

almost completely balanced by the surface elevation slope so that the surface elevation 17 

slope is not a function of the viscosity of the upper layer.  The balance between surface 18 

elevation and stress at the base of the surface layer might also be true for mountain belts 19 

over a convecting mantle and thus used to estimate shear stress that the mantle exerts on 20 

the bottom of mountain belt. The stress induced by surface slope has been used in 21 

w = 0
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conjunction with Global positioning data of divergence to estimate an equivalent 1 

viscosity for the Himalayas (England and Molnar 1997). 2 

 3 

Figure A3.  Lateral and vertical velocity profiles. 4 

 5 
Finally this is applied to the roller experiment shown in Fig. 3 using (A8) and 6 

(A9) and simplifying near the origin 7 

η1 =
3Uµ
2ρ1gDm          (A20)

 8 

and for the surface between oil and syrup 9 
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η2 =
3Uµ

2 ρ2 − ρ1( )gd 2k         (A21)  
1 

 
2 

We use velocity given by U=2πΩ , and the following physical values:  syrup density ρ 2 

3 

=1439 kg/m3, silicon oil density ρ 1 =1020 kg/m3, syrup viscosity 32.3 Pa-s, with roller 
4 

radius r=0.018 m, depth between rollers and the oil/syrup interface d=0.04 m, and 
5 

wavenumber k=39 m-1 to get, in meters 
6 

 
7 

η1 = 1.36 ×10
−3Ω

         (A22) 
8 

and  
9 

 10 
η2 = 3.31×10

−3Ω .
        (A23). 

11 

These are shown as dashed curves in Figure 3.
 12 
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