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Abstract 11 

Robust evidence exists that certain extreme weather and climate events, especially daily 12 

temperature and precipitation extremes, have changed in regard to intensity and frequency over 13 

recent decades. These changes have been linked to human-induced climate change, while the 14 

degree to which climate change impacts an individual extreme climate event (ECE) is more 15 

difficult to quantify. Rapid progress in event attribution has recently been made through 16 

improved understanding of observed and simulated climate variability, methods for event 17 

attribution and advances in numerical modelling. Attribution for extreme temperature events is 18 

stronger compared to other event types, notably those related to the hydrological cycle. Recent 19 

advances in the understanding of ECEs, both in observations and their representation in state-of-20 

the-art climate models, open new opportunities for assessing their effect on human and natural 21 

systems. 22 

Improved spatial resolution in global climate models and advances in statistical and dynamical 23 

downscaling now provide climatic information at appropriate spatial and temporal scales. 24 

Together with the continued development of Earth System Models that at increasing complexity 25 

simulate biogeochemical cycles and interactions with the biosphere, these make it possible to 26 

develop a mechanistic understanding how ECEs affect biological processes, ecosystem 27 

functioning and adaptation capabilities. Limitations in the observational network, both for 28 

physical climate system parameters and even more so for long-term ecological monitoring, have 29 

hampered progress in understanding bio-physical interactions across a range of scales. New 30 

opportunities for assessing how ECEs modulate ecosystem structure and functioning arise from 31 

better scientific understanding of ECEs coupled with technological advances in observing 32 

systems and instrumentation. 33 
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1. Introduction and motivation 37 

A recent publication by the National Academy of Sciences (NAS 2016) is the latest addition to a 38 

series of focused summary reports (IPCC 2012a; 2013; Grotjahn et al. 2014) that highlight 39 

mounting evidence that extreme weather and climate events have been changing in regard to 40 

intensity, frequency, and duration in the last few decades. Daily temperature and precipitation 41 

extremes in particular have been observed to increase in frequency and intensity, which has been 42 

linked to human-induced climate change (Bindoff et al. 2013; Zwiers et al. 2013; Stott 2016). 43 

In contrast, the degree to which climate change impacts an individual extreme weather or 44 

climatic event is more difficult to determine and quantify. This applies especially when 45 

considering that a variety of natural and anthropogenic factors, such as internal modes of climate 46 

variability, various man-made emissions, land-use change etc., need to be taken into account 47 

when attributing individual weather or climate events to causal factors. Solow (2015) cautioned 48 

that the concept of attributable risk for single events in a climate change context is inherently 49 

difficult given the rarity of extreme climatic events (ECEs) and the limited reliable climatic 50 

record. Extreme events by definition are rare occurrences and in most places few examples of 51 

past events are seen in the observational record (NAS 2016). 52 

However, recent rapid progress in event attribution has been made through improved 53 

understanding of observed and simulated climate variability, increasing observational 54 

capabilities, methods for event attribution, and advances in numerical modelling. The American 55 

Meteorological Society’s annual report of extreme events that occurred in the previous year was 56 

first published in 2012 with 6 extreme event studies for the year 2011 (Peterson et al. 2012). The 57 

number of studies rose sharply to 32 extreme events last year (Herring et al. 2015), covering all 58 

continents and much broader types of events and impacts during 2014 (Stott 2016). The National 59 

Academy of Sciences report thus concluded that “in many cases, it is now often possible to make 60 

and defend quantitative statements about the extent to which human-induced climate change (or 61 

another causal factor, such as a specific mode of natural variability) has influenced either the 62 

magnitude or the probability of occurrence of specific types of events or event classes (NAS 63 

2016).” 64 

There has also been substantial progress made recently in assessing ECEs according to the latest 65 

Intergovernmental Panel on Climate Change (IPCC) assessment report 5 (AR5), compared to the 66 

previous AR4 report (IPCC 2013; Alexander 2016). Recent advances in the understanding of 67 

ECEs, both in observations and their representation in state-of-the-art climate model simulations, 68 

open new opportunities for assessing the effect of ECEs on human and natural systems at 69 

relevant scales. In particular, improved spatial resolution in global climate models combined 70 

with advances in statistical and dynamical downscaling (e.g., regional model configurations) 71 

now provide climatic information at the appropriate spatial and temporal scales: with these, it is 72 

possible to develop a mechanistic understanding how ECEs in the physical climate system affect 73 

biological processes, ecosystem functioning and adaptation capabilities. 74 
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It is evident that ECEs, especially large-scale events such as subcontinental-scale drought or 75 

heatwaves, can have profound effects on ecosystems (Smith 2011). This was shown for example 76 

for arid and semiarid ecosystems in response to hydroclimatic disturbances associated with El 77 

Niño-Southern Oscillation (ENSO) events in Australia and the Americas (Holmgren et al. 2006 78 

and references therein): more specifically, ECEs can trigger ecosystem-level disturbances 79 

through changing species composition and diversity (i.e., organisation) and functional attributes 80 

(Parmesan et al. 2000). For marine ecosystems, ECEs are also considered a key driver of 81 

biodiversity patterns (e.g., Wernberg et al. 2016). Addressing how such episodic events affect 82 

species distribution is regarded as crucial to advance predictive models of species distribution 83 

and ecosystem structure in the future, beyond their current basis on gradual warming trends 84 

(Wernberg et al. 2013). Though when assessing 238 widespread species in England, Palmer et al. 85 

(2016) found extreme biological responses linked individualistically to climate, but long-term 86 

trends of widespread species were not (yet) simultaneously dominated by ECEs.  87 

The representation of large-scale to regional-scale ECEs is within the capabilities of current 88 

generation climate models, while ECEs on local and subgrid-scale (on the order of metres to 89 

dozens of kilometres) still pose challenges. The specifics of the ecosystem response, including 90 

initial resistance, evolution of the response, and the system’s resilience to return to its original 91 

condition, depend on the characteristics of the biological system and the level of the disturbance 92 

(Parmesan et al. 2000). When considering ECEs as disturbances, these include frequency, 93 

intensity, duration, seasonality, and preconditioning. Recent improvements have been made in 94 

the observational networks to evaluate ECE characteristics with regard to data homogeneity 95 

(Alexander 2016), as well as spatial and temporal coverage and resolution through advanced 96 

technologies. Remotely sensed data sets of the climate system with short return intervals at 97 

identical locations and near-global coverage (Frank et al. 2015) provide major advances in 98 

understanding changes by quantifying processes and spatiotemporal states of the atmosphere, 99 

land and oceans (Yang et al. 2013). This applies to biological systems for example through 100 

global satellite monitoring of climate-induced vegetation disturbances (McDowell et al. 2015) or 101 

ocean colour remote sensing for phytoplankton blooms since the 1970s (Blondeau-Patissier et al. 102 

2014). As such, satellite-based data sets are becoming long enough to be used in detection-103 

attribution studies for ECEs (Easterling et al. 2016). 104 

This review provides an overview of the current understanding of changes in ECEs and how they 105 

are quantified. For a detailed assessment of ECEs, the reader is referred to recent papers 106 

providing an in-depth review of various aspects of changes in ECEs, their detection and 107 

attribution (e.g., Westra et al. 2014; Alexander 2016; Easterling et al. 2016; Stott et al. 2016). 108 

Here, particular focus is on ECEs with ecological relevance and covering different realms of the 109 

climate system and across a range of spatial and temporal scales. It is by no means meant as an 110 

exhaustive accounting of changes in ECEs or their ecological impacts, but focuses mostly on 111 

ecosystems and community ecology. The remainder of the review is structured as follows: 112 

Section 2 defines ECEs and highlights how their definition might affect the assessment of 113 
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changes, while Section 3 reviews detection and attribution of events. Section 4 details observed 114 

and simulated changes in ECEs with ecological relevance, along with examples from the 115 

terrestrial/atmosphere and ocean realms. Section 5 discusses current challenges and opportunities 116 

in understanding how ECEs affect biological systems, followed by conclusions provided in 117 

Section 6. 118 

 119 

2. Extreme climatic events 120 

Different definitions for ECEs exist, such as those detailed in Table 1 in van de Pol et al. (2016) 121 

in this issue. In this review, we follow the climatological definition used by the IPCC Special 122 

Report on Extreme events (IPCC 2012a) for a climate extreme (extreme weather or climate 123 

event; Figure 1): i.e., the occurrence of a weather or climate variable above (below) a threshold 124 

value near the upper (lower) end of the range of observed records of the variable. Definitions of 125 

thresholds can vary, but are typically 10%, 5% or 1% relative to a reference period, though 126 

absolute thresholds are sometimes considered as well (e.g., for critical threshold temperatures for 127 

physiological responses; Seneviratne et al. 2012). However, in absolute terms, what is considered 128 

an extreme event will vary in different locations: ECE characteristics are intimately tied to a 129 

location’s mean climatic condition and its variability. For example, a record daily maximum 130 

temperature in the Sahara is higher than for Alaska; for the latter, the absolute value for this 131 

record temperature will also exhibit much greater seasonal dependence given the temperature 132 

range between winter and summer at higher latitudes. 133 

Several characteristics of extreme events are of interest. These include the magnitude of ECEs, 134 

the probability or return frequency, the duration of the ECE, the spatial extent, timing, onset date, 135 

or seasonality, and preconditioning (Seneviratne et al. 2012). Preconditioning in this context 136 

refers to antecedent conditions that facilitate or enable a certain extreme event to occur or modify 137 

its characteristics. For example, antecedent soil moisture deficits that accumulate over the course 138 

of several months in winter/spring have been shown to exacerbate summer heat wave and 139 

drought conditions (e.g., Fischer et al. 2007), as dry soils may amplify extreme maximum 140 

temperatures through feedbacks with evapotranspiration (Whan et al. 2015; Meehl et al. 2016). 141 

Changes in these ECE characteristics have been investigated in climate change studies, though 142 

the majority of research has focused on ECE changes with regard to magnitude and 143 

probability/return frequency. 144 

To define ECEs, thresholds, percentiles, or return values are defined with respect to a reference 145 

period, which is often historical, i.e. 1961-1990. The choice of reference period can affect the 146 

assessed changes and whether it is considered to be static or transient (Seneviratne et al. 2012; 147 

Sippel et al. 2015): if ECEs are defined based on a percentile of the probability distribution, 148 

shifts in the mean (without any change in the shape of the distribution) will not lead to a relative 149 

change in the frequency of the extremes. Sippel et al. (2015) cautioned, though, that 150 

standardisation to a reference period can introduce an inhomogeneity when calculating 151 
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temperature variability and extremes, with a risk of arbitrarily inflating extremes, and suggested 152 

an analytical correction. A series of studies demonstrate that observed changes in the frequency 153 

of extremes are consistent with overall shifts in the distribution (e.g., Ballester et al. 2010; 154 

Hartmann et al. 2013; Rhines and Huybers 2013). While counts of threshold exceedance, such as 155 

frequency and duration, closely follow mean changes, variations in intensity or severity are 156 

considerably more sensitive to changes in the shape of the probability distribution (Fig. 1; e.g., 157 

Fischer and Schär 2010; Hartmann et al. 2013). There is also ongoing debate about the role of 158 

changes in the variance and higher order moments, such as skewness, in addition to the mean 159 

(Hartmann et al. 2013). Furthermore, the statistics of ECEs are particularly sensitive to data 160 

availability, quality, and consistency. 161 

Some limitations were previously noted with regard to defining ECEs as probability-based or 162 

threshold-based (Seneviratne et al. 2012): events from the extreme tails of the probability 163 

distribution do not necessarily have to be extreme in terms of impact. Impact-related thresholds 164 

are variable in space and time, such that definitions for ECEs need to be modified for different 165 

locations and time periods (e.g., seasons). To account for this, ECEs can be defined 166 

quantitatively in two ways: (1) related to a specific threshold (possibly impact-related); or (2) 167 

related to their probability of occurrence (Seneviratne et al. 2012). These definitions are not 168 

necessarily diametric; impacts on society or ecosystem responses are often extreme, irrespective 169 

of whether a probability- or threshold-definition has been used. 170 

 171 

3. Detection and attribution of ECEs 172 

Reliable detection and attribution of changes in specific climatic events and their impacts are key 173 

for understanding the scientific basis of climate change and for successful decision making to 174 

enable adaptation and mitigation (Hegerl et al. 2010; Easterling et al. 2016). Similarly, to assess 175 

how ECEs impact structure and functioning of populations, individual species, or entire 176 

ecosystems, detection and attribution approaches are crucial. 177 

Detection refers to the process of demonstrating that an ECE characteristic (or climate variable 178 

more broadly) has changed with respect to some previous period in a defined statistical sense; 179 

however, no reason for that change is provided (Hegerl et al. 2010; Easterling et al. 2016). In 180 

observations, such a change is identified if its likelihood of occurrence by chance due to internal 181 

variability alone is considered to be small (Bindoff et al. 2013). In contrast, attribution is the 182 

process of assessing the relative contributions from multiple causal factors to an ECE change or 183 

event; it also assigns a statistical confidence to this conclusion. Attribution is thus more complex 184 

than detection, as it combines statistical analysis with physical understanding (Bindoff et al. 185 

2013; Solow 2016). One can attribute an observed ECE change to a specific causal factor 186 

through demonstrating that the change is consistent with a process-based model that includes this 187 

factor and is inconsistent with an alternate model that is otherwise identical, but excludes the 188 
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factor. This assessment also needs to take into account internal chaotic variability and 189 

uncertainties in observations and responses to external causal factors (Bindoff et al. 2013). 190 

Approaches for detection and attribution for a particular event can be classified into two 191 

categories (IPCC 2013): (1) studies that use the observational record to assess whether a change 192 

in the probability or magnitude of an ECE has occurred; (2) studies based on climate model 193 

simulations (coupled or using a subset of components only) to compare characteristics of the 194 

event in simulations with and without anthropogenic climate change; a combination of both 195 

approaches is often used as well (IPCC 2013). Stott (2016) further divides the latter into two 196 

types of methods as follows: (1) exceeding a certain climate index in extended coupled climate 197 

model simulations with and without climate change; (2) using a large ensemble of atmosphere-198 

only simulations that use observed boundary conditions, such as sea surface temperatures (SST), 199 

to evaluate if the climate index of interest, with or without the factor included, occurs at a 200 

changed frequency (Stott 2016; Stott et al. 2016). This approach is not limited to atmosphere-201 

only configurations, where an atmospheric model is forced by observed boundary conditions 202 

(e.g., SST), but could also be applied to ocean models forced with atmospheric boundary 203 

conditions (e.g., winds, precipitation, heat fluxes). 204 

Overall, the evidence for detecting a human influence on temperature extremes has strengthened 205 

since the IPCC Special Report on Extreme events (IPCC 2012a).  Global-scale daily temperature 206 

extremes have increased in frequency and intensity since the 1950s, very likely due to 207 

anthropogenic influences, and heat wave probabilities have doubled in some locations (IPCC 208 

2013). Stott (2016) also highlights that specific event attribution for extreme temperature events, 209 

such as record daily temperatures or heat waves, is stronger compared to other types of events, 210 

notably those related to changes in the hydrological cycle.  211 

Despite substantial recent improvements in models, reanalyses1 and satellite records, detection 212 

and attribution of human influence on the water cycle and in particular regional precipitation 213 

remains challenging (Zwiers et al. 2013; Alexander 2016; Sarojini et al. 2016; Stott et al. 2016). 214 

To disentangle the complex regional-scale changes in precipitation, a highly noisy variable, 215 

several factors are likely to affect the anthropogenic response: (1) how external forcing affects 216 

internal modes of climate variability, which can alter the frequency or amplitude of the mode or 217 

in turn modify its precipitation teleconnections; (2) responses to different external drivers (e.g., 218 

aerosols, ozone) vary for precipitation; (3) the spatial expression of the precipitation response to 219 

external forcing contains signals that are due to  thermodynamic as well as dynamic changes, 220 

which arise due to altered atmospheric energetics, moisture content, and large-scale circulation 221 

(Sarojini et al. 2016).  222 

                                                            
1 Reanalyses combine observations with an unchanging data assimilation scheme and model to 
provide a dynamically consistent estimate of the climate state over the instrumental period (CDG 
2016). 
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4. Changes in ECEs with ecological relevance 223 

Robust changes in many ECEs have been observed in the second half of the 20th Century. Shifts 224 

in the frequency of ECEs can arise due to different changes, as highlighted exemplarily for a 225 

temperature distribution in Figure 1: ECEs can occur more frequently due to a shift in the mean, 226 

be associated with shifts in the variability of the distribution, as well as changes in its symmetry 227 

or skewness (Fig. 1; IPCC 2012b). 228 

 229 

4.1 Terrestrial/atmosphere 230 

a) Temperature extremes 231 

For temperature, changes in the distribution are especially pronounced for increases in maximum 232 

and minimum temperatures (Donat et al. 2013b). There is robust evidence across multiple 233 

datasets that minimum temperatures across the globe are rising faster, which could lead to a 234 

decline in the daily temperature range (IPCC 2013). Globally, a decrease in the number of cold 235 

days and nights is considered very likely, while the number of warm days and nights increased. 236 

Regional variations exist, with Europe and Asia exhibiting especially pronounced decreases in 237 

cold nights (Choi et al. 2009; Donat et al. 2013a, b). For North America, it is projected that the 238 

total area experiencing freezing days will contract by ~6% by 2070, with the number of freezing 239 

days declining by 10-90 days depending on the region (Rawlins et al. 2016). It has been shown 240 

for the U.S. (Meehl et al. 2009, Rowe and Derry 2012), Australia (Trewin and Vermont 2010) 241 

and Europe (Beniston 2015) that the ratio of daily record high temperatures to daily record low 242 

temperatures has been increasing, with the average for the first decade of the 21st Century for 243 

these regions being about two to one (i.e., two daily record highs are set for every one daily 244 

record low). The shift in the chances for more record highs than record lows relates to the 245 

increase in average temperatures over this time period in these locations. This ratio is projected 246 

to increase in the future as the climate continues to warm (Meehl et al. 2009; Beniston 2015; 247 

Meehl et al. 2016).  248 

Confidence in trends in temperature extremes is high for North and Central America (e.g., 249 

Peterson et al. 2008), Europe (e.g., Andrade et al. 2012), Asia (e.g., Choi et al. 2009), Southeast 250 

Asia and Oceania (e.g., Caesar et al. 2011). Trends in the climate models with regard to the 251 

frequency of extreme warm and cold days and nights since the 1950s are consistent with 252 

observations and are projected to continue to change into the 21st Century (IPCC 2013). A 253 

decrease of frost days, an increase in growing season length, an increase in the number of warm 254 

nights, and an increase in heat wave intensity over the U.S. have been attributed mostly to 255 

increases in human-produced greenhouse gases (Meehl et al. 2007). Heat-related extremes and 256 

some precipitation extremes have also been attributed to human influences on climate (Coumou 257 

and Rahmstorf 2012). Changes in regional temperature extremes have been associated with 258 

changing global and regional atmospheric circulation and SST patterns (Scaife et al. 2008; 259 

Hartmann et al. 2013). High temperature extremes have been shown to substantially affect 260 
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individual species, as shown for example for negative effects on clutch size for a particular bird 261 

species (Marrot et al. 2016) and on overwintering success of butterfly species in the UK (Long et 262 

al. 2016), or for ecosystems through overall contractions or shifts in the distribution range of 263 

species habitat, as critical temperature thresholds are exceeded (Fischlin et al. 2007; Handmer et 264 

al. 2012).  265 

b) Precipitation extremes 266 

According to theoretical thermodynamic understanding, the water-holding capacity of the 267 

atmosphere scales with temperature and an intensification of extreme precipitation is expected in 268 

a warming world (e.g., Trenberth et al. 2003; Meehl et al. 2005; Held and Soden 2006; Wentz et 269 

al. 2007; Pall et al. 2011; Hartmann et al. 2013; Lehmann et al. 2015). According to the well-270 

known Clausius-Clapeyron relationship, the saturation-specific humidity increases by ~7% per 271 

°C of warming, with higher levels of moisture available and intensifying rainfall. This was also 272 

found in observed annual maximum daily rainfall rate increases of 5.9-7.7% for globally 273 

averaged surface temperatures (Westra et al. 2013). However, in their review of subdaily 274 

extreme rainfall changes, Westra et al. (2014) described observed and simulated rates of extreme 275 

precipitation increases double of that suggested by Clausius-Clapeyron at temperatures below 276 

20°C. Short-duration (<1day) storms were most likely to occur more often, which might increase 277 

the frequency and magnitude of flash floods (Westra et al. 2014). Since the 1950s, heavy 278 

precipitation events have likely increased in frequency over land globally, especially over North 279 

America and Europe, while confidence in heavy precipitation over other land areas was only 280 

medium (IPCC 2013). A shift to more extreme precipitation patterns with more heavy rainfall 281 

and longer dry intervals (Tebaldi et al. 2006) has been shown to decrease the rain use efficiency 282 

across biomes. This is most pronounced for arid grasslands and Mediterranean forests (16-20%), 283 

due to higher water stress conditions and reduced vegetation production (Zhang et al. 2013). 284 

Feng et al. (2013) also highlighted changes in the rainfall seasonality in the tropics over the 20th 285 

Century: they observed increasing interannual variability of seasonality over large parts of the 286 

dry tropics (arid and semi-arid regions), with shifts in seasonal magnitude, timing, and duration, 287 

all factors that are of importance for local ecological processes. 288 

Changes in regional precipitation can arise due to both a thermodynamic as well as a dynamic 289 

contribution (i.e., including changes in circulation, modes of variability, and teleconnections; 290 

Sarojini et al. 2016). Westra et al. (2014) highlighted the importance of research efforts focusing 291 

on improving our understanding of local-scale thermodynamic effects and large-scale 292 

atmospheric circulation in modulating subdaily extreme rainfall intensity. A series of studies 293 

have recently found that regional SST warming played a role in intensifying extreme 294 

precipitation events (Evans and Boyer-Souchet 2012; Meredith et al. 2015; Trenberth et al. 2015; 295 

Ummenhofer et al. 2015). For example, Australia experienced extreme rainfall conditions during 296 

the 2010/11 La Niña event that led to extensive flooding in the northeast of the country 297 

(Ummenhofer et al. 2015 and references therein). As demonstrated in atmospheric circulation 298 

model experiments based on 2010/11 ocean conditions with and without long-term warming 299 
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included, both dynamic and thermodynamic factors led to the intensification of the rain-300 

producing atmospheric circulation conditions (Ummenhofer et al. 2015). The resultant 301 

widespread wet conditions in the interior of the Australian continent, which included a rare 302 

filling of Lake Eyre (Pook et al. 2014), led to unusually high growth of the semi-arid vegetation, 303 

accounting for record global terrestrial carbon uptake in 2010/11 (Poulter et al. 2014). 304 

c) Heat waves and droughts 305 

Heat waves over large areas of Europe, Australia, and Asia have likely become more frequent, 306 

while droughts more intense and/or longer in many regions since the 1970s (IPCC 2013). Severe 307 

heat waves, such as the one in Europe in 2003 (Beniston et al. 2004; Stott et al. 2004; Fischer et 308 

al. 2007; Garcia-Herrera et al. 2010), Australia in 2009, Russia in 2010 (Matsueda 2011; 309 

Barriopedro et al. 2011; Trenberth and Fasullo 2012), and the USA in 2010/11 (Hoerling et al. 310 

2013), are often associated with persistent blocking high pressure systems (Meehl and Tebaldi 311 

2004). These circulation regimes are projected to become more frequent, intense, and persistent 312 

in the 21st Century, leading to an intensification of heatwaves in Europe and North America 313 

(Meehl and Tebaldi 2004). Summers like 2003 over Europe are likely to occur twice a decade in 314 

the late 21st Century (Christidis et al. 2015). Assessing seasonal temperature and circulation 315 

regime changes over Europe for 1960-2000, Cassou and Cattiaux (2016) found an earlier onset 316 

of summer: they related this to an earlier disappearance of winter snow in Eastern Europe that 317 

hastened the typical summertime formation of a blocking high pressure system over Europe. This 318 

was associated with more clear-sky days with increased incoming short-wave radiation and 319 

anomalous easterly advection of warm air from the continental interior earlier in the year 320 

(Cassou and Cattiaux 2016).  321 

During the 2003 heatwave, unprecedented reduction in Europe’s gross primary productivity 322 

occurred that reversed the effect of four years of net ecosystem carbon sequestration, with a 30% 323 

reduced primary productivity and lower ecosystem respiration (Ciais et al. 2005). Several recent 324 

reviews (Reichstein et al. 2013; Frank et al. 2015) investigated how ECEs affect terrestrial 325 

ecosystems and, in particular, the carbon cycle. ECEs, such as droughts and heatwaves, severely 326 

affect forests and grasslands through changes in plant physiology, phenology and carbon 327 

allocation. They also lead to increased tree mortality, shifts in vegetation composition, 328 

degradation and desertification, along with erosion (Reichstein et al. 2013). Advances have been 329 

made recently in understanding how droughts affect tropical forests on molecular, cellular, 330 

individual, species, community and landscape level (Corlett 2016). In a review on ecological 331 

impacts of droughts on the Amazon, Asner and Alencar (2010) found the hydrological function 332 

of floodplains significantly affected by droughts and fires and burn scars were more frequent 333 

during drought years; they also highlighted the importance of integrating multiple lines of 334 

evidence from remote sensing of hydrological, disturbance-fire, and physiological impacts with 335 

field measurements, to reduce uncertainty of basin-level responses to drought (Asner and 336 

Alencar 2010). Droughts are most likely to have the largest and most long-lasting impacts 337 

globally due to large indirect and lagged impacts and long recovery especially for forest 338 
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ecosystems (Frank et al. 2015). Examples include the rapid subcontinental die-off of woody 339 

plants during the 2000-2004 drought in the Southwest United States, when >90% of the 340 

dominant pine species died as a consequence of 15 months of soil water content deficits 341 

(Breshears et al. 2005, Rich et al. 2008); the intense 2005 drought affecting the Amazon forest 342 

ecosystem to a degree that reversed its role as a long-term carbon sink (Phillips et al. 2009); and 343 

a global overview of drought and heat-induced tree mortality studies from the Americas, 344 

Australia, Europe, and Asia, indicating that no forest type or climate zone is invulnerable to 345 

ECEs even in environments not normally considered water-limited (Allen et al. 2010). 346 

Focusing on the 2003 European summer, Garcia-Herrera et al. (2010) concluded that a 347 

northward displacement of the North Atlantic subtropical high and anomalous Mediterranean 348 

SST contributed to the heat wave. Investigating the role of soil moisture-atmosphere interactions, 349 

Fischer et al. (2007) found an early spring soil moisture deficit to be instrumental in accounting 350 

for the severity of the summer heat wave in Europe. They linked the decrease in springtime soil 351 

moisture to a precipitation deficit along with strong positive radiative anomalies and early 352 

vegetation green-up (Fischer et al. 2007). Similarly, Wolf et al. (2016) found increased 353 

vegetation growth and carbon uptake during the record-breaking warmth and early arrival of 354 

spring 2012. Increased carbon uptake in spring could have enhanced depletion of soil water 355 

through higher evapotranspiration and exacerbated summer drought conditions, highlighting the 356 

importance of land-atmosphere feedbacks during ECEs (Sippel et al. 2016). For the Great Plains 357 

in the Midwest US, enhanced local land-atmosphere feedbacks are likely associated with an 358 

amplification of future heat waves due to stronger subseasonal summertime temperature 359 

variability (Teng et al. 2016). 360 

Droughts can also affect freshwater ecosystems, such as streams, rivers, lakes and wetlands, 361 

stressing and depleting both fauna and flora as shown for the so-called Big Dry or Millennium 362 

Drought for Southeast Australia (Bond et al. 2008 and references therein), floodplains in the 363 

Amazon (Asner and Alencar 2010) and in a review based on studies from the US, Europe and 364 

Australia, while impacts particularly in Asia, Africa, and South America have not been 365 

documented in the published literature (Mosley 2015). Droughts can result in poor water quality, 366 

habitat loss and changed biotic interactions, which will impact aquatic biota and ecosystem 367 

functioning in both flowing and standing water systems, where the effects of drought on 368 

population and community structure are better understood than impacts on ecosystem processes 369 

(Bond et al. 2008). 370 

d) Wildfires 371 

The frequency of wildfires is related to temperature, moisture and fuel loads, which in turn are 372 

affected by species composition and age structure (Parmesan et al. 2000). Littell et al. (2009) 373 

found antecedent climatic conditions, such as winter precipitation for shrub and grassland 374 

ecosystems and summer droughts in forests, to be an important factor accounting for trends in 375 

the areal extent burned in the western US. Extended periods of drought, especially if they are 376 

followed by extreme heat and low humidity, provide ideal conditions for wildfires, often incited 377 
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by lightning associated with thunderstorms at the end of the drought (Parmesan et al. 2000). 378 

Assessing changes in fire severity in the western US, Miller et al. (2009) found substantial 379 

increases in mean and maximum fire size and the annual area burned since the 1980s, indicating 380 

that forest fuels were no longer a limiting factor for fire occurrence. Sudden changes in wildfire 381 

activity in forests in the northern Rocky Mountains in the mid-1980s, with more frequent large-382 

scale fires, longer-lasting wildfires and a longer wildfire season, were associated with earlier 383 

spring snowmelt and increased spring and summer temperatures (Westerling et al. 2006). In light 384 

of warming regional temperatures and changing precipitation, along with current trends in 385 

increasing wildfire severity, it is important to address the implications of ongoing fire 386 

suppression. Especially since severe wildfires can have extensive ecological impacts, including 387 

forest fragmentation, erosion rates, carbon sequestration, wildlife habitat availability, and post-388 

fire seedling recruitment (Miller et al. 2009). Several studies emphasised the importance of the 389 

interaction of the physical climate system and biological processes across temporal and spatial 390 

scales to explain climate-wildfire interactions: Marlon et al. (2012) ascertained that improved 391 

understanding of the causes and consequences of forest wildfires in the western US is crucially 392 

dependent on integrated information of climate change and human activity across a range of 393 

temporal scales. Parisien and Moritz (2009) advocated further work for improved understanding 394 

of direct causal factors that control wildfires across a range of spatial scales. Alencar et al. (2015) 395 

linked increased fire incidence in dense forests in the Amazon basin to severe, ENSO-related 396 

droughts, when the end of the dry season was delayed by a month, resulting in larger burn scars 397 

and overall extent of the area burned; in contrast, open and transitional forests with higher 398 

deforestation rates burned more frequently, suggesting that climate-mediated forest flammability 399 

was exacerbated by landscape fragmentation (Alencar et al. 2015). Investigating preconditioning 400 

of devastating bushfires in Southeast Australia in February of 1983 and 2009, Cai et al. (2009) 401 

associated these with characteristic Indian Ocean conditions with a positive Indian Ocean 402 

Dipole, rather than El Niño events, through impacts on soil moisture, as shown for prolonged 403 

Southeast Australian droughts (Ummenhofer et al. 2009). 404 

 405 

 406 

4.2 Ocean 407 

a) Marine heat waves and cold spells 408 

In analogy to heat waves in the atmosphere, the marine environment also experiences sustained 409 

extreme temperature events, so called ‘marine heat waves’. It is defined as a prolonged discrete 410 

event with anomalously warm water and characteristics include its spatial extent, intensity, 411 

duration, and rate of evolution (Hobday et al. 2016). Marine heat waves can have extensive 412 

ecological implications, including shifts in species range (Smale and Wernberg 2013), local 413 

extinctions (Wernberg et al. 2016) and economic impacts when affecting aquaculture or 414 

important fishery species (Mills et al. 2013). Some of the recent observed marine heat waves 415 

with extensive ecological implications occurred in the northern Mediterranean in 2003 (Garrabou 416 
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et al. 2009), the 2011 ‘Ningaloo Niño’ in Western Australia (Wernberg et al. 2013), and in the 417 

northwest Atlantic in 2012 (Mills et al. 2013). Investigating the frequency of marine heat waves 418 

in the North Pacific and Atlantic since the 1950s, Scannell et al. (2016) found the probability of 419 

marine heat waves to be a trade-off between size, duration, and intensity, which are modulated 420 

by a region’s specific variability, as well as by modes of climate variability and anthropogenic 421 

warming. Marine heat waves have been observed more frequently in the last decades and are 422 

projected to become more frequent in a warming climate (Hobday et al. 2016), though decadal 423 

variability likely plays a role as well (Feng et al. 2015). Wernberg et al. (2013, 2016) linked 424 

regime shifts of Western Australian temperate reef ecosystems to continuing ocean warming and 425 

extreme marine heat waves. These resulted in a significant range contraction of kelp forests, 426 

which were being replaced by communities typical of subtropical and tropical waters (Wernberg 427 

et al. 2013, 2016). Di Lorenzo and Ohman (2013) showed that cumulative responses to 428 

atmospheric forcing can help explain large-amplitude state transitions in marine ecosystems, 429 

allowing better interpretation of both abrupt responses and gradual changes (e.g., to long-term 430 

warming) in biological systems. 431 

An example of a record-setting ocean heat wave was the one that occurred in the North Pacific 432 

from 2013-2015 (Di Lorenzo and Mantua 2016). It was one of the largest marine heat waves 433 

ever recorded, with SST anomalies exceeding three standard deviations in consecutive years (Di 434 

Lorenzo and Mantua 2016). It is possible that this record-breaking ocean heat wave could have 435 

been the most ecologically significant in recorded history (Di Lorenzo and Mantua 2016). 436 

Impacts included sea lion, whale, and sea bird mortality events (NOAA 2016a,b, Opar 2015), 437 

very low ocean primary productivity (Whitney 2015), and the largest algal bloom on record that 438 

negatively impacted shellfish along the western coast of North America (NOAA 2016c). This 439 

event was characterised by an overall warming trend in the North Pacific Ocean superimposed 440 

with anomalously warm interannual SSTs in the Gulf of Alaska and along the west coast of 441 

North America that persisted and grew due to alternating mid-latitude-tropical and tropical-mid-442 

latitude interactions, with the possibility that such events could increase in the future in 443 

association with an increase in winter-time variance of climate over the North Pacific (Di 444 

Lorenzo and Mantua 2016). 445 

Another example of an ocean heat-wave impact was associated with the 2015-2016 El Niño that 446 

produced extremely high tropical SSTs in regions where coral reefs experienced the third mass 447 

bleaching event in recorded history (NOAA 2015). All these mass bleaching events occurred in 448 

conjunction with El Niño events since 1997 (first mass bleaching was 1998, the second was 449 

2010; NOAA 2015), and occurred when steadily rising SSTs from human-caused warming had 450 

warm El Niño SST anomalies superimposed, thus crossing the tolerance threshold and causing 451 

reefs to bleach. In previous mass bleaching events, a certain percentage of bleached reefs died, 452 

thus raising the prospect of large-scale coral reef mortality arising from this ECE related to the 453 

2015-2016 El Niño event. For example, there was a reported bleaching of over 90% of the Great 454 

Barrier Reef in Australia by early 2016 (ARC 2016). The prospects for even greater mass 455 
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bleaching events increase during future El Niño events as the climate continues to warm, with 456 

dire consequences for the overall health and sustainability of coral reef ecosystems (Buddemeier 457 

et al. 2004).  458 

In contrast, marine cold spells can also severely impact ecosystem structure (e.g., Lirman et al. 459 

2011; Firth et al. 2011). Subtropical Florida experienced a severe cold spell in early 2010, with 460 

severe impacts for terrestrial and marine species, including coral reef communities (Lirman et al. 461 

2011), non-native crabs (Canning-Clode et al. 2011) and important gamefish (Adams et al. 462 

2012). According to Lirman et al. (2011), the Florida Reef Tract experienced the most severe 463 

coral mortality on record in response to the cold-water anomaly in January 2010, which 464 

disproportionately affected shallow reef habitats that had exhibited resilience to prior disturbance 465 

events. However, such abnormal cold winters may be a critical ‘reset’ mechanism for marine 466 

invasive species, as the cold snap can limit the range expansion of subtropical species (Canning-467 

Clode et al. 2011). For a non-native crab that had extended its range into the southern US and 468 

mid-Atlantic coast from the Caribbean, Canning-Clode et al. (2011) suggested that this explained 469 

the crab’s sudden disappearance after 2010, as the subtropical species had been unable to tolerate 470 

the prolonged extreme cold temperatures in early 2010. 471 

b) Other ECEs affecting marine biological systems 472 

Reviewing how marine organisms in the coastal environment are affected by climate change, 473 

Harley et al. (2006) distinguished changes in the physical environment related to sea level rise, 474 

changing circulation, pH, CO2, and UV. Emergent ecological responses could be divided into 475 

distributional shifts (e.g., zonation patterns and biogeographical ranges), changes in species 476 

composition, diversity and community structure, changing primary and secondary production 477 

and population dynamics (Hartley et al. 2006). ECEs are likely a controlling factor how changes 478 

in the physical environment exert their influence on biological systems in the marine 479 

environment. In addition to the temperature-related marine heat waves and cold snaps, these 480 

ECEs include, for example, severe storms (Byrnes et al. 2011; Sanchez-Vidal et al. 2012; De’ath 481 

et al. 2012), extreme wave activity (Smale and Vance 2016), extreme sea level (Woodworth et 482 

al. 2011; Rhein et al. 2013), and salinity changes and floods (Gillanders and Kingsford 2002; 483 

Marques et al. 2007; Lejeusne et al. 2009).  484 

In a synthesis study, Vose et al. (2014) examined changes in ECEs associated with extratropical 485 

storms, winds and waves, and found that storm frequency and intensity had increased in the 486 

Northern Hemisphere cold season since the 1950s, along with an increase in extreme winds over 487 

the oceans since the 1980s. Extreme waves along the Pacific US coast have increased moderately 488 

since the 1950s, while the evidence for other US coastlines is inconclusive (Vose et al. 2014). 489 

Extreme wave heights have been observed to increase in many regions around the world, such as 490 

for the US Pacific Northwest (Ruggiero et al. 2010; Vose et al. 2014), along the South American 491 

Pacific coast since the 1980s (Izaguirre et al. 2013) and for the North Atlantic over the 20th 492 

Century (Bertin et al. 2013). Using a multi-model ensemble, Hemer et al. (2013) found the 493 

annual mean significant wave height to decrease by 25% globally by 2070-2100, while only 7% 494 
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of ocean areas, mostly in the Southern Ocean, exhibited an increase over the same timeframe. In 495 

contrast, according to Mori et al. (2013), significant wave height is projected to increase globally 496 

by 15% by the end of the 21st Century, exceeding the projected changes in surface pressure and 497 

wind speed. Similarly, Wang et al. (2014) found significant wave height increases in the eastern 498 

Pacific and for the Southern Hemisphere extratropics by the end of the 21st Century. Extreme 499 

wave heights are also likely to double and triple in coastal regions, such as for Chile, the Gulf of 500 

Bengal, South and East Asian coasts and the Gulf of Mexico due to increased sea level pressure 501 

gradients and surface winds (Wang et al. 2014). 502 

Physical disturbance through extreme wave action represents a major factor for coastal and near-503 

shore biological communities how changing storm characteristics can affect natural systems. For 504 

example, kelp forest structure can be modified by changes in severe storms and the associated 505 

wave activity (Smale and Vance 2016). The 2013-2014 storm season in the Northeast Atlantic 506 

was unusually severe, resulting in extensive flooding and exhibiting extreme wave activity 507 

(Huntingford et al. 2014; Matthews et al. 2014; Masselink et al. 2016). Smale and Vance (2016) 508 

found the warm water kelp species to be more affected by the stormy 2013-2014 conditions than 509 

the more hardy cold water kelp species. They cautioned that climate-driven shifts towards more 510 

mixed canopies in the Northeast Atlantic due to warming temperatures might erode the kelp 511 

communities’ resistance to such storm disturbances (Smale and Vance 2016). For the California 512 

coast, Byrnes et al. (2011) showed that, while moderate levels of severe storms (i.e. one storm 513 

every 3-4 years) help maintain complexity in kelp forest food webs, more frequent severe storms 514 

(i.e. at annual frequency) lead to a decrease in diversity in giant kelp forests. In the Adriatic, 515 

Perkol-Finkel and Airoldi (2010) attributed a loss of subtidal algal forests to several extreme 516 

storm events, compounded by long-term human-induced habitat instability. 517 

Sanchez-Vidal et al. (2012) highlighted that severe coastal storms do not only affect the 518 

shoreline communities, but also have the potential to affect deep-sea ecosystems. This was 519 

observed during an exceptionally strong storm along the Spanish coast in December 2008 that 520 

initiated shelf sediment movement and redistribution across the adjacent deep basin that caused 521 

abrasion and burial of the benthic communities in the Western Mediterranean (Sanchez-Vidal et 522 

al. 2012). The storm also affected the biodiversity of a coralligenous outcrop in the Northwest 523 

Mediterranean, with exposed and impacted sites experiencing major shifts in species 524 

composition immediately following the storm and loss of cover of benthic species in the range of 525 

22-58%, with fragile species impacted more (Teixido et al. 2013). 526 

Furthermore, extremes in biogeochemical properties in the marine environment can also affect 527 

ecosystem structure and functioning. Investigating episodes of high carbon dioxide (CO2) 528 

concentrations in sea water, McNeil and Sasse (2016) found that the amplitude of the annual CO2 529 

cycle is increasing with rising greenhouse gas emissions. By the second half of the 21st Century, 530 

major fisheries in the Southern Ocean, Pacific, and Atlantic may be periodically exposed to CO2 531 

concentrations that have detrimental physiological and neurological effects on marine animals 532 

(McNeil and Sasse 2016).  533 
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5. Challenges and opportunities in assessing how ECEs impact biological 534 

systems 535 

Despite advances in the field of event attribution in recent decades, challenges remain. 536 

Improvements in statistical methodology, observations, climate and weather modelling will 537 

likely allow for better understanding of ECEs and event attribution (NAS 2016). Event 538 

attribution is most skillful when combining evidence based on theory (sound physical 539 

understanding of the processes involved), observations (long-term observational records exist 540 

that allow placing the event in a historical context), and numerical model simulations (adequately 541 

simulated by models to allow replicating the event and for the right reason). In addition, event 542 

types purely meteorological in nature, i.e. not confounded by factors, such as resource 543 

management or infrastructure, allow for more reliable event attribution (NAS 2016).  544 

Irrespective of the approach, the success of detection and attribution relies on a model’s ability to 545 

represent the relevant processes and their interactions over the region and season of interest 546 

(Sarojini et al. 2016). Confidence in attributing changes in ECEs to anthropogenic forcing is 547 

most pronounced when considering event types related to regional and global temperature (Stott 548 

2016), such as extreme heat and cold events, hydrological drought and intense precipitation 549 

(NAS 2016). Improved process-representation through better model dynamics, improved model 550 

parametrisations, and higher horizontal and vertical model resolution have led to improved 551 

representation of regional-scale climate variability. However, considerable further advances are 552 

required to represent fine temporal and spatial scales, at which ECEs in precipitation are 553 

experienced at a local level (Sarojini et al. 2016, and references therein). In addition, low-554 

frequency natural variability, such as that associated with Atlantic or Pacific Decadal Variability, 555 

can affect the reliability of event attributions (NAS 2016). Given the shortness of the 556 

observational record relative to the multi-decadal nature of these modes of variability, they 557 

remain a challenging aspect also for climate model simulations of ECEs (Meehl et al. 2000). 558 

Furthermore, this is not just a challenge for model simulations of ECEs, but when considering 559 

the length of the instrumental record: as recently shown by Abram et al. (2016), industrial-era 560 

warming commenced as early as the mid-19th century and therefore instrumental records in many 561 

regions are too short to comprehensively assess anthropogenic climate change. This has to be 562 

taken into consideration when addressing detection and attribution to assess anthropogenic 563 

contributions to specific events (cf. also recent reviews by Easterling et al. 2016 and Stott et al. 564 

2016 on event attribution). 565 

On the biological side, data have traditionally been gathered at single sites (e.g., field stations) or 566 

more rarely within a region (Parmesan et al. 2000). Extended cross-regional long-term 567 

observations are limited, even though sustained monitoring is important for assessing integrated 568 

responses of ecosystems to ECEs to account for long-term effects in subsequent years (Sippel et 569 

al. 2016). For example, maintaining long time-series has been the key problem in understanding 570 

variability and change in marine biodiversity and ecosystems in response to environmental 571 

factors (Mieszkowska et al. 2014). In their review, Jentsch et al. (2007) concluded that long-term 572 
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observations and experimental studies in different ecosystem types and across a range of spatial 573 

and temporal scales is crucial for advancing the understanding how ECEs affect biological 574 

systems. The largely local and site-specific nature of existing long-term biological records, 575 

paired with still comparatively coarse climatic information from current-generation reanalysis 576 

products and climate models leads to a mismatch in the spatial and temporal scale of available 577 

data for addressing how biological systems respond to climate variability and change. This is 578 

even more exacerbated in the case of ECEs, which are rare events by definition. To sufficiently 579 

sample a distribution to allow inferences about its tails, extended time-series are required. 580 

Improved understanding of bio-physical interactions across a range of spatial and temporal scales 581 

(Prairie et al. 2012) is not only important for quantifying how ECEs affect biological systems. 582 

Parmesan (2006) considers the current lack of mechanistic understanding of the effect of 583 

ecological, behavioural, and evolutionary responses to ECEs a crucial limitation in assessing 584 

ecosystem adaptation to climate change more generally. In particular, developing process-based 585 

concepts of the biological systems’ response to ECEs is crucial for predicting the impacts of 586 

changes in the climate system on ecosystem functioning in future (Parmesan et al. 2000).  587 

Recent advances and enhanced capabilities in observing systems provide new avenues for 588 

developing a mechanistic framework to understand interactions between the physical climate 589 

system and biological processes. To advance understanding of how ECEs affect ecosystem 590 

functioning, remote sensing in particular allows for concurrent observations of physical and 591 

biological parameters at comparable spatial and temporal resolution (Prairie et al. 2012). For 592 

example, remote sensing with short return intervals at identical locations and near-global 593 

coverage facilitates monitoring of soil properties, concurrent vegetation states (e.g., biomass, leaf 594 

area index) and radiative properties like fractions of absorbed radiation (Frank et al. 2015). 595 

Concurrent impacts on plant physiology, photosynthesis, respiration, mechanical damage for 596 

trees (e.g., snow and ice breakage, wind throw) and effects on topsoil erosion can thus be 597 

documented, as well as lagged impacts like changes in plant phenology, reduced plant growth, 598 

increased mortality and changes in plant species composition (Frank et al. 2015). Vrieling et al. 599 

(2016) for example use a remotely-sensed normalised difference vegetation index to predict 600 

seasonal forage availability ahead of time to cover livestock losses by pastoralist households in 601 

East Africa during drought periods through early insurance payments to allow purchase of 602 

forage, water, or medicines to protect livestock. 603 

When investigating how ECEs impact the terrestrial carbon cycle, Frank et al. (2015) found the 604 

(sub)tropics to be largely understudied in regard to ground-based case studies as compared with 605 

those obtained via remote sensing. To be able to upscale how ECEs affect biological systems 606 

and, more specifically, the global carbon-climate feedbacks on a global scale, more extensive 607 

regional studies are required (Frank et al. 2015). Zscheischler et al. (2013) presented a 608 

methodological framework to assess how ECEs affect state and functionality of terrestrial 609 

ecosystems on a global scale by identifying spatiotemporally contiguous signals of extremes in 610 

different Earth observation products. Using the fraction of absorbed photosynthetically active 611 
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radiation to detect extremes in vegetation activity over the past 30 years, they demonstrated that 612 

the size distribution of extremes follows a distinct power law (Zscheischler et al. 2013). 613 

Furthermore, based on a hierarchy of models ranging from purely data-driven to semi-empirical 614 

and dynamic vegetation, land-surface models and remote sensing products, Zscheischler et al. 615 

(2014a) found that the total effect of negative extremes in the global primary production is of a 616 

similar magnitude as the mean terrestrial carbon sink. Furthermore, carbon cycle extremes 617 

exhibit an uneven spatial distribution with ‘hotspot’ regions in many semiarid monsoon-affected 618 

regions and are strongly associated with water scarcity (Zscheischler et al. 2014a,b Frank et al. 619 

2015). The lack of biological observations is particularly true for marine ecosystems, as changes 620 

in the ecosystem structure of many habitats (e.g., kelp forests and seagrass meadows) cannot be 621 

remotely sensed. Considering that these habitats play a key role in marine carbon cycling and are 622 

affected by ECEs, monitoring of marine ecosystems at appropriate spatial and temporal scales is 623 

even more lacking than for terrestrial ecosystems. 624 

Meta-analysis is considered a powerful method of quantitative data synthesis in ecological 625 

research (Hays et al. 2005). This could be combined with extended observational records, remote 626 

sensing capabilities and climate model output at increasingly finer resolution, both from global 627 

climate models and regional model configurations, to address interactions of the physical and 628 

biological systems across a range of temporal and spatial scales. 629 

 630 

 631 

6. Summary 632 

How ECEs affect ecosystems largely depends on the magnitude, spatial and temporal extent, as 633 

well as timing of the anomalous climatic event (Sippel et al. 2016). As such, perspectives 634 

spanning across spatial and temporal scales on how biological and physical systems interact 635 

(Figure 2) are crucial (Prairie et al. 2012) for improved process-understanding of ecosystem 636 

responses to ECEs. Limitations in our current observational network (e.g., Alexander 2016), both 637 

for physical climate system parameters and even more so for long-term ecological monitoring, 638 

have hampered progress in this regard. This is especially pronounced when considering ECEs, 639 

which by definition are rare events. The observing systems of the physical climate, and even 640 

more so for the biological system, are limited with regard to depth (time dimension) or breadth 641 

(spatial scales), or both. The mismatch of the available and required scales in observations had 642 

been compounded in (global) climate models, suffering from a discrepancy in the explicitly 643 

resolved spatial and temporal scales and those required for ecological impact research. 644 

New opportunities for assessing how ECEs modulate structure and functioning of ecosystems 645 

arise from recent technological advances in observing systems and instrumentation (e.g., through 646 

advanced remote sensing capabilities). These allow for monitoring at increased spatial and 647 

temporal resolution for both physical and biological parameters concurrently at appropriate 648 

resolution (Prairie et al. 2012). Parmesan et al. (2000) further saw potential for advances in 649 
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ecological and evolutionary theory (population dynamics, physiological energetics and 650 

community structure) leading to greater descriptive and predictive power as a result of better 651 

alignment of ECE analyses of biological and physical system parameters. They saw this as a 652 

potential outcome of improved coupling of in-depth climatological analyses and biological 653 

processes that would allow us to better characterise the complex interactions between climatic 654 

conditions and natural systems spanning the spatial and temporal spectrum across which these 655 

interactions can occur (cf. Fig. 2). Bailey and van de Pol (2016) also pointed out that multi-event 656 

studies that combine long-term field studies and experiments with modelling are crucial for a 657 

better understanding of the mechanisms and for improving the predictions of how ECEs affect 658 

natural systems. This is especially the case given the rarity of such events and the challenges 659 

with collecting ecological time series of sufficient length. Extensions of the historical 660 

observational record through climate quality reanalyses or through longer term archives from 661 

palaeo proxies (e.g., tree rings, stalagmites, and sediments) are also crucial for ensuring a record 662 

of sufficient length to reliably quantify trends and sample the characteristics of the ECEs in the 663 

physical climate system across a range of spatial and temporal scales (NAS 2016; Sippel et al. 664 

2016). Improvements in statistical methodology and in numerical modelling, including but not 665 

limited to model resolution and improved parametrisations, provide the necessary tools to 666 

advance our understanding of the physical mechanisms that lead to ECEs (Easterling et al. 2016; 667 

NAS 2016) and how their characteristics are changing in a warming world. Stott (2016) stresses 668 

the importance of developing new methods to conclusively link the changes in ECEs to their 669 

meteorological and climatic drivers. This applies similarly to addressing ECEs and their impacts 670 

on species, populations, and ecosystems as a whole. Current-to-next generation global climate 671 

models, along with higher-resolution regional models, provide new tools and opportunities for 672 

developing a mechanistic, process-based understanding of where, when, and how ECEs impact 673 

biological systems. 674 

 675 
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Figures 1107 

 1108 

Figure 1:  Schematic highlighting the effect of changes in the temperature distribution on ECE 1109 

occurrence between present and future climate conditions: (a) effects of a simple shift of the 1110 

entire distribution toward a warmer climate; (b) effects of an increase in temperature variability 1111 

with no shift in the mean; (c) effects of an altered shape of the distribution, in this example a 1112 

change in asymmetry toward the hotter part of the distribution. Reproduced from IPCC (2012b). 1113 
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 1115 

Figure 2:  Spatial and temporal scales of typical ECEs and scales of biological systems (grey). 1116 

Individuals, populations and ecosystems within these respond to environmental stressors. Red 1117 

(blue) labels indicate an increase (decrease) in the frequency or intensity of the event, with bold 1118 

font reflecting confidence in the change. For each ECE type indicated in the figure, ECEs are 1119 

likely to affect biological systems at all temporal and spatial scales located to the left and below 1120 

the specific ECE position in the figure [Modified from Leonard et al. 2014 and Sheehan 1995]. 1121 

 1122 


