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Abstract17

Density dependence plays an important role in population regulation and is known18

to generate temporal fluctuations in population density. However, the ways in which19

density dependence affects spatial population processes, such as species invasions, are20

less understood. While classical ecological theory suggests that invasions should ad-21

vance at a constant speed, empirical work is illuminating the highly variable nature of22

biological invasions, which often exhibit non-constant spreading speeds even in simple,23

controlled settings. Here, we explore endogenous density dependence as a mechanism24

for inducing variability in biological invasions with a set of population models that25

incorporate density dependence in demographic and dispersal parameters. We show26

that density dependence in demography at low population densities—i.e., an Allee27

effect—combined with spatiotemporal variability in population density behind the28

invasion front can produce fluctuations in spreading speed. The density fluctuations29

behind the front can arise from either overcompensatory population growth or from30

density-dependent dispersal, both of which are common in nature. Our results demon-31

strate that simple rules can generate complex spread dynamics, and highlight a novel32

source of variability in biological invasions that may aid in ecological forecasting.33

Introduction34

Fluctuations in population size have long fascinated ecologists and fueled a now-classic35

debate over whether populations are governed by extrinsic environmental factors or36

by intrinsic self-limitation (15). One of the most important advances of twentieth-37

century ecology was the discovery that intrinsic density feedbacks can cause popula-38

tion densities to fluctuate, even in constant environments (26; 5; 48). This discovery39

helped resolve the important role of density dependence in population regulation,40

revealing that strong regulating forces can generate dynamics superficially consistent41
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with no regulation at all. Our understanding of temporal fluctuations in population42

size stands in sharp contrast with our relatively poor understanding of fluctuations43

in the spatial dimension of population growth: spread across landscapes.44

Understanding the dynamics of population spread takes on urgency in the current45

era of human-mediated biological invasions and range shifts in response to climate46

change. The velocity of spread, or “invasion speed”, is a key summary statistic of an47

expanding population and an important tool for ecological forecasting (8). Estimates48

of invasion speed are often derived from regression methods that describe change49

in spatial extent with respect to time (30; 1; 49). Implicit in this approach is the50

assumption that the true spreading speed is constant and deviations from it represent51

“error” in the underlying process, or in human observation of the process. This52

assumption is reinforced by long-standing theoretical predictions that, under a wide53

range of conditions, a population will asymptotically spread with a constant velocity.54

Invasion at a constant speed can arise from both pulled waves (where the advancing55

wave moves forward by dispersal and rapid growth of low-density populations far56

in front of the advancing wave (56; 44; 16; 32)), as well as pushed waves (where the57

invasion is driven by reproduction and dispersal from high-density populations behind58

the invasion front (21; 55; 50)). The conventional wisdom of a long-term constant59

invasion speed is widely applied (53; 9).60

In contrast to classic approaches that emphasize a long-term constant speed, there61

is growing empirical recognition that invasion dynamics can be highly variable and62

idiosyncratic (27; 29; 34; 59; 60; 4; 54; 14). There are several theoretical explanations63

for fluctuations in invasion speed (which we define here as any persistent tempo-64

ral variability in spreading speed), including stochasticity in either demography or65

dispersal (35; 54; 17; 42; 14), and temporal or spatial environmental heterogeneity66

(43; 33; 57; 58; 3; 40). Indeed, empirical studies often attribute temporal variation67

in speed to differences in the environments encountered by the invading population68
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(e.g., (1; 37)). Predator-prey dynamics can also induce fluctuating invasion speeds69

(33; 7). Notably, Dwyer and Morris (7) showed that density feedbacks can produce70

fluctuations in spreading speed, yet we still have an incomplete understanding of the71

conditions under which fluctuations in speed arise. Surprisingly few theoretical stud-72

ies have since investigated these density feedbacks, especially with respect to their73

effect on endogenously-driven speed fluctuations, despite recent empirical work on74

invasion variability (34; 59; 53; 60).75

Here, we develop deterministic, single-species mathematical models of spatial76

spread to ask under what conditions the invasion speed of an expanding popula-77

tion can fluctuate in a spatially uniform and temporally constant environment. As78

a starting point, we took inspiration from the relatively complete understanding of79

fluctuations in population size generated by density dependence in nonspatial mod-80

els (48). We conjectured that density-dependent feedbacks might similarly generate81

fluctuating invasion speeds pursuing the suggestion first made in (7). Because spread82

dynamics are jointly governed by demography (local births and deaths) and dispersal83

(spatial redistribution), we considered several types of density feedbacks (39), in-84

cluding positive density dependence in population growth (i.e., Allee effects) at the85

low-density invasion front (47), and density-dependent movement (25; 7).86

Our analysis uncovered novel density-dependent mechanisms that can induce vari-87

ability in invasion speed, with fluctuations ranging from stable two-point cycles to88

more complicated aperiodic dynamics. By demonstrating that simple invasion mod-89

els can generate complex spread dynamics, our results reveal previously undescribed90

sources of variability in biological invasions and provide a roadmap for empirical91

studies to detect these processes in nature.92
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Models and Results93

We use integrodifference equations (16) to model population growth and spread.94

These models describe the change in population density (nt(x)) from time t to time95

t+ 1 as the result of demography and dispersal. First, individuals at location y gen-96

erate f(nt(y)) offspring and then die. Next, a fraction p of these offspring disperse.97

The probability that a dispersing individual moves from location y to location x is98

given by the dispersal kernel, k(x−y). The remaining fraction (1−p) remain at their99

natal location. Concatenating reproduction and dispersal, we have (51; 52; 22; 23):100

nt+1(x) = (1− p)f
(
nt(x)

)
+

∫ ∞
−∞

p k(x− y)f
(
nt(y)

)
dy. (1)

We will assume that f(1) = 1, so that the population has an equilibrium at the101

carrying capacity nt(x) = 1, and that the tails of the dispersal kernel k are thin102

(i.e., go to zero at least exponentially fast), so that the probability that an individual103

disperses an extremely large distance is exceedingly small.104

In general, both the dispersing fraction p and the dispersal kernel k may depend105

on the population density at the natal location, as does the reproduction function106

f . The way that the functions f , p, and k depend on population density determine107

the dynamics of Eq. 1. In the simplest case, the reproduction function f is strictly108

compensatory; that is, f is an increasing but decelerating function of density (f ′(n) >109

0 and f ′′(n) < 0). For strictly compensatory models, the population will spread at a110

constant asymptotic speed (Fig. 1a) if three conditions hold: small populations grow111

(f ′(0) > 1), all individuals disperse (p = 1), and dispersal distance is independent of112

population density. Here, the speed is determined by the growth and spread of the113

low-density populations far ahead of the main invasion front (56); the dynamics at114

high densities do not matter – the hallmark of a pulled invasion.115

Constant asymptotic invasion speeds are not, however, limited to the simple case116
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just described. In the absence of Allee effects, they can also occur if the reproduction117

function produces overcompensation—declining offspring production with increasing118

population density (so that f ′(1) < 0). As with classic non-spatial models, over-119

compensation produces oscillations in population density (26; 5; 48), which in turn120

cause dynamic changes in the shape of the wave behind the invasion front. Despite121

these complex fluctuations at high population densities, the invasion speeds of over-122

compensatory models (without Allee effects) remain constant (Fig. 1b), and are still123

determined by the dynamics at low densities (19).124

Long-standing theory suggests that invaders subject to Allee effects at low pop-125

ulation density and compensatory dynamics at larger population density, will also126

eventually spread at a constant speed if their initial population sizes are sufficiently127

large and the Allee effect is not too strong (55; 21). Allee effects cause invasion waves128

to be pushed from behind their leading edge (16; 55). When Allee effects are suffi-129

ciently strong, the invasion speed no longer depends upon the pull of populations at130

low densities in front of the wave, but rather on the strength of the push from the131

high density populations behind it. In our models, we show that when low-density132

Allee effects combine with spatiotemporal population density fluctuations (created133

through overcompensation or density-dependent dispersal), the invasion speed may134

not be constant asymptotically, as expected under classic invasion theory, but may135

rather exhibit persistent fluctuations (Fig. 1c-f).136

Allee effects and overcompensation137

First, we investigated whether combining an Allee effect with overcompensation at138

high population density could induce fluctuating invasion speeds when dispersal is139

density-independent and all offspring disperse (i.e., p = 1). This model (the ‘over-140

compensatory model’, see Materials and Methods, Fig. S1a) has two important pa-141

rameters: r, which affects both the growth rate at low density and the strength of142

density dependence at carrying capacity, and a, the Allee threshold. We assume that143
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when the population density falls below a, no offspring are produced there (a strong144

Allee effect). If the population density falls below a everywhere, the population is145

doomed to extinction.146

Simulations (described in Materials and Methods) revealed this model generates147

variable-speed invasions (Fig. 1c), but only when the low-density Allee threshold is148

of intermediate value and high-density overcompensation is strong (r > 2, Fig. 2a).149

For r > 2, the local equilibrium density nt(x) = 1 is unstable, leading to sustained150

fluctuations in local density. Our simulations suggest r > 2 is a necessary condition for151

fluctuating invasion speeds in the overcompensatory model. If the Allee threshold (a)152

is too large, the spreading population eventually falls below the threshold everywhere153

and is extirpated. If a is sufficiently small, the invasion proceeds with an apparently154

constant speed (Fig. 2a).155

These fluctuations are induced by the combination of a strong Allee effect, which156

produces a pushed wave, and strong overcompensation, which produces large spa-157

tiotemporal variation in density behind the invasion front and thus variation in the158

strength of the push (Fig. 3). When the population density at any location is smaller159

than the Allee threshold (a), as at the leading edge of the wave, the population160

vanishes before the next time step. Populations just above a become large after re-161

production, but as the population size increases beyond a, the offspring population162

size f(n(x)) declines as a result of overcompensation (Fig. S1a). Therefore, when163

reproduction occurs (transition between n(x) and f(n(x)), Fig. 3 black vs blue), pop-164

ulations with the highest density become populations of low density, and populations165

with density just above a become high density. Through time, this creates variability166

in the size of the push by varying the size of the region contributing to the wave167

front, leading to fluctuating invasion speeds (Fig. 3d, S3a-f). The speed fluctuations168

can be periodic or more complex (Fig. S2). They vary in amplitude by as much as169

100% of the mean speed, with some parameter combinations reaching amplitudes of170
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∼ 400% of the mean speed (Fig. 2a).171

This mechanism for variable-speed invasion does not depend on the discreteness172

of time. We developed a continuous-time version of the overcompensatory model,173

where we find fluctuating invasion speeds as long as density fluctuations behind the174

wave front combine with strong low-density Allee effects (SI Appendix, Fig. S4-6).175

Allee effects and density-dependent dispersal176

Overcompensation is not the only mechanism that can generate the spatiotemporal177

variability in population density that is necessary to produce fluctuating invasion178

speeds when combined with Allee effects. Density-dependent dispersal, manifest as179

either density-dependence in the propensity to disperse (p) or in the shape of the180

dispersal-kernel (k), can generate this high-density variability in the pushing force181

as well. We demonstrate this result with two models (the ’propensity model’ and182

the ’distance model’, respectively, see Materials and Methods), both built upon a183

piecewise linear growth function that is compensatory at high population density184

(Fig. S1b). We continue to include low-density Allee effects. When the population185

size falls below the threshold density a, individuals produce offspring at the constant186

per capita rate λ. Alternatively, if the population size exceeds a, the population goes187

to carrying capacity.188

In the propensity model, population density influences the propensity to disperse189

(p). In particular, we assume that the proportion of offspring that disperse is given190

by a logistic function of local population density (nt(x)) (Eq. 5) with four parameters:191

the minimum (p0) and maximum (pmax) dispersal proportion; a location parameter192

n̂, which is the density at which the dispersal propensity is halfway between p0 and193

pmax; and a shape parameter α. The sign of α determines if the proportion dispersing194

increases (α > 0) or decreases (α < 0) with density (Fig. S1c). The larger the195

magnitude of α the steeper the density response, which is centered around n̂.196

The propensity model can also generate invasions that spread at fluctuating speeds197
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(Fig. 1d, S7). We found these fluctuations persist only when Allee effects are strong198

(0 ≤ λ < 1), dispersal propensity increases with population density (α > 0), and199

the dispersal response occurs at a population density that is larger than the Allee200

threshold (n̂ > a). Fluctuations in speed are nearly always periodic (Fig. S7c, S8a-201

d) and of large amplitude, altering the invasion speed by ∼ 100%− 750% relative to202

the mean speed (Fig. 2b). These large-amplitude periodic fluctuations often include203

positive and negative speeds, meaning that invasions alternate between steps forward204

and smaller steps backward (Fig. 1d).205

As before, spreading speed fluctuations are created through variations in the dis-206

persing population that pushes the invasion forward from behind the front (Fig. 1d).207

The magnitude of the push depends on the width of the region contributing dispersing208

individuals, and the proximity of this region to the front (Fig. S3g-l). When density209

dependence in dispersal is strong and positive (large α), the population directly ad-210

jacent to the front is below the Allee effect threshold (a) and therefore decays to zero211

(Fig. S3g-h). Farther behind the front, density is above a, but below the dispersal212

midpoint (n̂), thus this region of the population reproduces but does not disperse213

(Fig. S3h-i). This action results in a large push from behind the wave front that214

moves the invasion forward at the next time step when the non-dispersing popula-215

tion eventually disperses (Fig. S3i-k). Subsequently, the region of the non-dispersing216

population is much smaller and farther from the invasion front at the next time step,217

resulting in a much smaller push (Fig. S3k).218

With the distance model we explore a second type of density-dependent dispersal,219

where density alters the dispersal distance. Here, all offspring disperse (p = 1), but220

density alters the variance (σ2) of the dispersal kernel (Eq. 6). Four parameters221

control this dependence: σ2
0 and σ2

max, which are the lower and upper bounds of the222

variance; the location parameter, n̂ which is the density at which dispersal variance223

is halfway between σ2
0 and σ2

max; and a shape parameter β. The dispersal variance224
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increases with population density when β is positive, and decreases with density when225

β is negative. The larger the absolute value of β, the sharper the response (Fig S1d).226

The distance model also produces the necessary spatiotemporal variability in227

population density behind the invasion front to induce fluctuating invasion speeds228

(Fig. 1e,f, S7). As in the propensity model, the invasion speed only fluctuates when229

Allee effects are strong (0 ≤ λ ≤ 1). However, unlike the propensity model, we find230

persistent fluctuations are possible when density-dependent dispersal is both positive231

(β > 0) and negative (β < 0) (Fig. 2c). The speed fluctuations are more frequently232

aperiodic (Fig. S8e-h) than the two-cycle fluctuations seen in the propensity model,233

with largest amplitude when dispersal distance increases with density (β > 0) (Fig. 2c,234

S7f). In general, fluctuations are larger as both Allee effects and density-dependent235

dispersal are stronger, and alter the invasion speed by ∼ 5% − 100% (β > 0), and236

∼ 1%− 9% (β < 0) relative to the mean speed (Fig. 2c, S7f).237

When the dispersal distance exhibits strong positive density dependence (Fig. S3m-238

r), populations at densities above the dispersal threshold disperse long distances, and239

those below disperse short distances. In this model, each push forward is made up240

of a combination of both short and long distance dispersers. The size of this push241

changes depending on the proportion of the push made up of each type of disperser,242

which is temporally variable, creating fluctuating invasion speeds. A similar mech-243

anism operates when β < 0 (Fig. S3s-x), however instead high density populations244

disperse short distances and vice versa.245

Discussion246

Our work provides novel insight into mechanisms behind invasion variability: fluc-247

tuations in invasion speed can occur solely due to endogenous density dependence.248

In the models we examine, both a strong low-density Allee effect (creating a pushed249

wave (9; 28)), and large variations in population density behind the invasion front250
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are necessary to create fluctuating invasion speeds. We demonstrate that the neces-251

sary spatiotemporal variability can be generated via two types of density feedbacks:252

overcompensatory density dependence, or density-dependent dispersal. When com-253

bined with Allee effects, either of these factors can cause the strength of the invasion254

push from high density populations to vary, leading to varying spreading speeds.255

The potential for deterministic, density-dependent processes to generate complex256

fluctuations in local population density is a canonical result of theoretical popula-257

tion biology (15; 26; 5; 48) and has proven influential in basic and applied empirical258

settings (36). By considering the spatial dimension of population growth, which is259

increasingly relevant in the context of global change, our new results flesh out under-260

standing of complex population dynamics arising from endogenous mechanisms. We261

conjecture that there is some generality to this mechanism as we also see fluctuating262

speeds in continuous time (SI Appendix, Fig. S4), although we recognize fluctuations263

can occur through other means (e.g. (7; 33; 14)). Our results are potentially con-264

sistent with the highly variable spreading speeds seen in empirical invasion studies265

(14; 34; 59; 54; 4; 60).266

Processes capable of generating fluctuations in population density that create the267

variable pushing force behind the invasion vanguard are common in nature. First,268

many invasive species show the combination of high intrinsic growth rates and con-269

specific interference at high density that gives rise to overcompensatory population270

fluctuations (36; 61). Second, density dependent dispersal as a distinct source of271

spatiotemporal density fluctuations can arise even with strictly compensatory den-272

sity dependence in population growth. We found fluctuating invasion speeds with273

positive density-dependent dispersal propensity, which is common in organisms with274

environmentally inducible dispersal polymorphisms, including many insects. For ex-275

ample, wingless aphids (11; 13) and planthoppers (38) can produce winged morphs276

when densities become high. When density dependence alters dispersal distance,277
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fluctuations in speed were seen under both positive and negative density dependence.278

Mobile organisms can increase their dispersal distance with increasing density by al-279

tering behavioral responses (25). Alternatively, dispersal distances can decrease with280

density when crowding decreases reproductive and dispersal ability (24; 6; 25), or in281

animals (notably small mammals) with strong group behavior (12; 2; 25).282

Allee effects, a common density-dependent process (18; 31), influence small pop-283

ulations by decreasing low-density vital rates (e.g., reproduction (51)). We find in284

all of our models that Allee effects, and the pushed invasions that they generate,285

are a necessary ingredient of fluctuating speeds. Interestingly, this result contrasts286

with Dwyer and Morris (7). Working with a two-species model, they found that fluc-287

tuating speeds can occur when predator dispersal distance depends on prey density288

(a type of density dependent movement) but without an explicit Allee effect. We289

conjecture that predator-prey dynamics in their model may in fact give rise to an290

implicit Allee effect, as is known to occur in other predator-prey models (33). Bio-291

logically, density-dependent movement can contribute to an Allee effect by reducing292

mate finding abilities at low densities, especially when the movement is sex biased293

(53; 41). In this way, the study by Dwyer and Morris (7), while superficially incon-294

sistent with ours, may nonetheless satisfy the conditions we identify as necessary for295

variable invasions.296

Thoroughly accounting for the sources of variability in the speed of biological297

invasions may improve invasion forcasting. Our work suggests that intrinsic density298

dependence can create complex invasion dynamics, consistent with the highly variable299

spreading speeds seen in empirical invasion studies (34; 59; 60; 14; 4; 54). However,300

it remains an open question whether and how often these processes affect the ecologi-301

cal dynamics of spread, given the pervasive influences of environmental heterogeneity302

(43; 33; 57; 58; 3; 40) and demographic stochasticity (35; 17; 42), and their roles in303

invasion variability. To begin to answer this question, we suggest coupling models304
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and empirical data, which has proven to be a fruitful approach to understanding the305

intrinsic mechanisms behind fluctuations in local population density (e.g., (5; 48)).306

Collecting long-term data can be difficult, but some patterns might be straightforward307

to identify from existing datasets. In particular, the strong two-cycle speed fluctu-308

ations generated when invaders experience both Allee effects and density-dependent309

dispersal propensity would likely be detectable in data. Few empirical studies have310

tested for endogenous mechanisms of fluctuating invasion speeds, including studies311

for which variability in speed was an explicit focus (53; 27; 29; 34; 59) (but see (14)).312

Thus, signatures of endogenous variability may be embedded in existing data, and313

we encourage empiricists to re-examine variable invasion data in the context of these314

density-dependent mechanisms.315

Materials and Methods316

The models we studied are each a special case of equation (1). They all use the317

Laplace dispersal kernel with variance σ2:318

k(x− y;σ2) =
1√
2σ2

exp

[
−
√

2(x− y)2

σ2

]
. (2)

Qualitative results are robust to kernel choice (i.e. Normal, Cauchy).319

Overcompensatory Model320

We combine low-density Allee effects with the possibility of overcompensation at high321

density (Fig. S1a):322

f
(
n
)

=


n exp

(
r(1− n)

)
for n > a,

0 for n ≤ a.

(3)
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Dispersal is independent of density in this model (σ2(n) = σ2, a constant) and all323

offspring disperse (p = 1).324

Propensity Model325

Here, we used a linear-constant model for growth326

f
(
n
)

=


λn for n < a

1 for n ≥ a,

(4)

where 0 ≤ a < 1 (Fig. S1b). Dispersal propensity depends upon the population327

density (nt(x)) via a logistic form similar to other models with density-dependent328

dispersal (Fig. S1c) (45):329

p(n) = p0 +

{
pmax − p0

1 + exp
[
− α

(
n− n̂

)]} . (5)

As in the overcompensatory model, the distance moved by dispersing individuals is330

independent of density (σ2(n) = σ2, a constant).331

Distance Model332

For this model, we use the reproduction function (4), but assume all offspring disperse333

(p = 1) following a dispersal distribution whose variance is a logistic function of334

parental density (nt(x)) (Fig. S1d). I.e.,335

σ2(n) = σ2
0 +

{
σ2
max − σ2

0

1 + exp
[
− β

(
n− n̂

)]} . (6)

We simulated each model for 200 iterations across a domain of length 1200 with336

216 + 1 spatial nodes. Within each simulation, we defined the location of the invasion337

front at each time step as the location where the density of the invasion wave first338

exceeded a density threshold of 0.05. We then used this location to calculate: (1)339
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the instantaneous invasion speed (i.e., the distance traveled by the front between340

consecutive time steps), (2) the mean invasion speed averaged over the last 50 time341

steps, and (3) the amplitude of invasion speed fluctuations (the difference between342

the maximum and minimum speed over the last 20 time steps). See Table S1 for a343

list of parameters and definitions. Code to run these models and recreate all figure344

will be available at Dryad upon manuscript acceptance.345
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Figure 1: Invasion dynamics under different types of density dependence and disper-
sal. With compensatory growth at high densities (a), the wave shape and invasion
speed are both constant. This is true with and without low-density Allee effects
(overcompensatory model: σ2 = 0.25, a = 0, and r = 0.9; Fig. S1a). With over-
compensatory population growth and no Allee effect (b), population density exhibits
fluctuations behind the front yet the leading edge progresses at a constant speed
(overcompensatory model: σ2 = 0.25, a = 0, and r = 2.7; Fig. S1a). However,
when overcompenstion combines with low-density Allee effects (c), the invasion speed
fluctuates (overcompensatory model: σ2 = 0.25, a = 0.4, and r = 2.7; Fig. S1a).
Variability in invasion speed can also occur when Allee effects combine with density-
dependence in the proportion of dispersing offspring (d) (propensity model: a = 0.2,
λ = 0, n̂ = 0.9, p0 = 0.05, pmax = 1, α = 50), or in dispersal distance (e,f). In
the latter model, dispersal distance decreases with population density (e) (distance
model: a = 0.2, λ = 0, n̂ = 0.9, β = −50, σ2

0 = 0.05, σ2
max = 1), or increases with

density (f) (distance model: parameters as in (e) except β = 50). Initial population
densities are either 2 (a-c) or 0.8 (d-f) times the standard normal probability density
truncated at |x| = 5.
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Supporting Information (SI)502

SI Table503

504

505

Table 1: All model parameters, definitions and corresponding models.

Variable Meaning
t time
x, y locations
nt(x) population density at location x and time t
Parameter Meaning
a Allee effect threshold
r intrinsic growth rate (overcompensatory model)
λ low-density per capita reproductive rate (propensity and distance mod-

els)
n̂ dispersal density midpoint parameter (propensity and distance models)
p fraction of offspring that disperse
p0 minimum dispersal propensity (propensity model)
pmax maximum dispersal propensity (propensity model)
α propensity shape parameter (propensity model)
σ2 variance of the dispersal kernel
σ2
0 minimum dispersal variance (distance model)
σ2
max maximum dispersal variance (distance model)
β distance shape parameter (distance model)
Function Meaning
k(x− y) dispersal kernel
f(nt(x)) growth or offspring density

SI Figures506

507

508
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Figure S4: Simulation of model (Eq. 2 from SI Appendix), with a1 = 20, a2 = 2,
a3 = 10, µ = 10, τ = 5, and D = 0.1. For these parameters the undelayed ordinary
differential equation (Eq. 2 from SI Appendix with D = 0 and τ = 0) exhibits a
strong Allee effect, evident by comparing the mortality rate (dashed blue line) to the
reproduction rate (solid red curve) in panel (b) (note the logarithmic scale). With
delays, the model without movement (Eq. 2 from SI Appendix with D = 0) exhibits
sharp generational cycles (a). The simulation of the partial functional differential
equation (Eq. 2 from SI Appendix; initialized with n = 2 for |x − 15| ≤ 0.5 and
0 ≤ t ≤ τ , and n = 0 otherwise) exhibits complex dynamics behind the invading
fronts (c). These oscillations push the wave forward with a variable speed (d,e).
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Figure S5: Simulation of model (Eq. 2 from SI Appendix), with a1 = 20, a2 = 2,
a3 = 10, µ = 0.05, τ = 1, and D = 0.1. For these parameters the undelayed ordinary
differential equation (Eq. 2 from SI Appendix with D = 0 and τ = 0) exhibits a
strong Allee effect, evident by comparing the mortality rate (dashed blue line) to the
reproduction rate (solid red curve) in panel (b) (note the logarithmic scale). With
delays, the model without movement (Eq. 2 from SI Appendix with D = 0) exhibits
decay to a stable equilibrium (a). The simulation of the partial functional differential
equation (Eq. 2 from SI Appendix; initialized with n = 2 for |x − 15| ≤ 0.5 and
0 ≤ t ≤ τ , and n = 0 otherwise) exhibits simple dynamics behind the invading fronts
(c). High population densities behind the wave front push the invasion forward with
a constant speed (d,e).
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Figure S6: Simulation of model (Eq. 2 from SI Appendix) with a1 = 0.5, a2 = 2,
a3 = 1, µ = 0.02, τ = 45, and D = 0.05. For these parameters the undelayed ordi-
nary differential equation (Eq. 2 from SI Appendix with D = 0 and τ = 0) does not
exhibit any Allee effect, evident by comparing the mortality rate (dashed blue line) to
the reproduction rate (solid red curve) in panel (b) (note the arithmetic scale). With
delays, the model without movement (Eq. 2 from SI Appendix with D = 0) produces
oscillations in population density (a). The simulation of the partial functional differ-
ential equation (Eq. 2 from SI Appendix; initialized with n = 0.5 for |x − 25| ≤ 0.5
and 0 ≤ t ≤ τ , and n = 0 otherwise) exhibits oscillatory dynamics behind the invad-
ing fronts (c); however, the wave is “pulled” by growth at low densities, so a constant
invasion speed is achieved despite the fluctuations at high densities (d,e).
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Figure S7: Bifurcation diagram indicating fluctuations in invasion speed across a
range of Allee effect strength for the propensity Model – when density dependence
alters dispersal propensity (a-c), and the distance model – when density dependence
alters dispersal distance (d-f). Here, we also show a range of dispersal thresholds (n̂)
relative to Allee effect threshold used for these models in the text (a = 0.2), including
n̂ = 0.1 < a (blue circles), n̂ = 0.7 > a (red circles), and n̂ = 0.9 >> a (gray
circles). All other parameters are the same as Fig. 2. Fluctuations in invasion speed
only occur when Allee effects are strong, when the dispersal threshold is high, and
when α > 0 (propensity model (a-c)) or across a range of positive and negative β′s
(distance model (d-f)).
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Figure S8: The periodicity of the invasion speed through time for the propensity
model (Allee effects and density-dependent dispersal propensity; a-d) and distance
model (Allee effects and density-dependent dispersal distance; e-h). In panels a-c and
e-g, the wave position is plotted at time t vs time t+ 1. In panels d and h, the range
of invasion speeds represents the amplitude of fluctuations. For each parameter value,
the invasion speed for the previous 100 time steps are plotted. When points appear
as hollow points, the same invasion speed is being plotted over itself many times.
For the propensity Model, when fluctuating, the wave speed is nearly always periodic
across values of the Allee effect threshold a. At small values of α the invasion speed
is constant (a), at small positive α the invasion speed fluctuates in a quasi-periodic
fashion (b), and most positive α values, for example α = 100 (c), the wave speed
is periodic. Here, n̂ = 0.9, λ = 0, σ2 = 0.25, p0 = 0.05, pmax = 1, and a = 0.2.
For the distance model, we demonstrate that the invasion speed appears to be more
chaotic for some negative values of the density-dependent dispersal threshold (β)
(e), is constant for some values of β (f), and has a quasi-periodic attractor for some
positive values of β (g). Here, n̂ = 0.9, λ = 0, σ2

0 = 0.05, σ2
max = 1, and a = 0.2.



SI Appendix509

510

511

Here we construct a continuous-time model that we conjecture produces variable-512

speed invasions. We begin with a modification of a delay-differential equation model513

used by Gurney et al. (1) to study the dynamics of “Nicholson’s blowflies:”514

dn

dt
= −µn+ a1n(t− τ) e−a2n(t−τ). (7)

In this model, n is the population size of mature animals, and τ is the maturation515

time. The change in the adult population size is due to constant per captia mortality516

(at rate µ) and recruitment of juveniles, born τ time units ago, into the adult class.517

The per captia birth rate at low density (a1) is reduced (exponentially at the rate a2)518

at larger population densities. This model produces large swings in adult population519

size when the maturation time is sufficiently large (1).520

We modify the model (7) to include the potential for a strong Allee effect (when521

the parameter a3 > 1) and to include the random movement of adults via diffusion:522

∂n

∂t
= −µn(x, t) + a1[n(x, t− τ)]a3 e−a2 n(x,t−τ) +D

∂2n(x, t)

∂x2
. (8)

Immature individuals are assumed to be sedentary.523

The special case of model (8) with a3 = 1 (without Allee effects) has been thor-524

oughly studied (see, e.g., Lin et al. (2) and Solar and Trofimchuk (3) and references525

therein). The dynamics of this model in this case can be quite complex behind the526

leading invasion front, but, for biologically realistic initial conditions solutions, solu-527

tions exhibit an asymptotically constant spreading speed.528

Much less is know about the dynamics of equation (8) when a3 > 1, but the529

model would seem to have the features necessary to generate variable invasion speed.530

36



Density-dependent reproduction, along with the maturation time delay, induce popu-531

lation fluctuations at high density, and the Allee effect should generate a pushed wave.532

Our numerical simulations suggest that this is indeed the case (Fig. S4). When, in533

contrast, the population dynamics converge to an equilibrium point behind the inva-534

sion front, the invasion speed is eventually constant, even in the presence of an Allee535

effect (Fig. S5). In the absence of Allee effects (a3 = 1), simulations of the model536

(8) produce constant speed invasions (Fig. S6), even if there are oscillatory dynamics537

behind the front, in agreement with prior theory.538
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