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ABSTRACT 23 

Records of the Ediacaran carbon cycle (635 to 541 million years ago) include the 24 

Shuram excursion (SE), the largest negative carbonate-carbon isotope excursion in 25 

Earth history (down to -12 ‰). The nature of this excursion remains enigmatic given the 26 

difficulties of interpreting a perceived extreme global decrease in the δ13C of seawater 27 

dissolved inorganic carbon (DIC). Here, we present carbonate and organic carbon 28 

isotope (δ13Ccarb and δ13Corg) records from the Ediacaran Doushantuo Formation along 29 

a proximal-to-distal transect across the Yangtze Platform of South China as a test of the 30 

spatial variation of the SE. Contrary to expectations, our results show that the 31 

magnitude and morphology of this excursion and its relationship with coexisting δ13Corg 32 

are highly heterogeneous across the platform. Integrated geochemical, mineralogical, 33 

petrographic, and stratigraphic evidence indicates that the SE is a primary marine 34 

signature. Data compilations demonstrate that the SE was also accompanied globally by 35 

parallel negative shifts of δ34S of carbonate-associated sulfate (CAS) and increased 36 

87Sr/86Sr ratio and coastal CAS concentration, suggesting elevated continental 37 

weathering and coastal marine sulfate concentration during the SE. In light of these 38 

observations, we propose a heterogeneous oxidation model to explain the high spatial 39 

heterogeneity of the SE and coexisting δ13Corg records of the Doushantuo, with likely 40 

relevance to the SE in other regions. In this model, we infer continued marine redox 41 

stratification through the SE but with increased availability of oxidants (e.g., O2 and 42 

sulfate) limited to marginal near-surface marine environments. Oxidation of limited 43 

spatiotemporal extent provides a mechanism to drive heterogeneous oxidation of 44 
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subsurface reduced carbon mostly in shelf areas. Regardless of the mechanism driving 45 

the SE, future models must consider the evidence for spatial heterogeneity in δ13C 46 

presented in this study.  47 

 48 

Keywords: Ediacaran carbon cycle, Doushantuo Formation, Shuram excursion, spatial 49 

heterogeneity, surface-ocean oxygenation  50 

 51 

INTRODUCTION 52 

 53 

The Ediacaran Period (635-541 million years ago or Ma) is characterized by a lack of 54 

global-scale glaciation (unlike the preceding Cryogenian Period), rising but perhaps still 55 

variable oxygen levels on the Earth’s surface, and biological innovations culminating in 56 

innovation among early animals (Och & Shields-Zhou, 2012; Pecoits et al., 2012; Lyons et al., 57 

2014; Droser & Gehling, 2015; Sahoo et al., 2016). The Ediacaran is also characterized by a 58 

series of major perturbations to the carbon cycle recorded globally in carbonate carbon 59 

isotope (δ13Ccarb) profiles (Grotzinger et al., 2011). Carbonates of the mid-Ediacaran Shuram 60 

excursion (SE) yield a decrease in δ13C values to as low as ‒12 ‰, placing it among the most 61 

negative excursions in Earth history. These values are appreciably more negative than the 62 

mantle δ13C of ca. ‒5 ‰, requiring major inputs of isotopically light carbon to the exogenic 63 

Earth system during the SE (Grotzinger et al., 2011). The SE is also characterized by a 64 

general lack of carbonate isotopic co-variation with co-occurring organic carbon (δ13Corg), 65 

which contrasts with conventional views of the carbon cycle wherein both δ13Ccarb and δ13Corg 66 
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are derived from the same seawater dissolved inorganic carbon (DIC) reservoir and co-vary 67 

accordingly (Rothman et al., 2003). The unusual operation of the global carbon cycle during 68 

the Ediacaran may hold a key to understanding the co-evolution of life and environments at 69 

that time (Grotzinger et al., 2011). 70 

Currently, two leading hypotheses have been proposed to explain the origin of the SE. 71 

The first centers on a range of secondary alteration scenarios involving either meteoric waters 72 

or burial diagenesis (e.g., Knauth and Kennedy, 2009; Derry, 2010a, b; Swart and Kennedy, 73 

2012; Schrag et al., 2013). Indeed, sea level fluctuation and subsequent periodic sub-areal 74 

carbonate platform exposures can yield widespread meteoric overprints (Swart and Kennedy, 75 

2012). However, models based on secondary alteration, which is inherently a local process, 76 

are still generally criticized as inconsistent with the global nature of the event (Grotzinger et 77 

al., 2011). The second hypothesis invokes the oxidation of a massive 13C-depleted dissolved 78 

organic carbon (DOC) reservoir in the Ediacaran oceans during the global oxygenation of a 79 

formerly anoxic deep ocean, which drove the isotopic composition of DIC (δ13CDIC) in 80 

seawater and, in turn, coeval δ13Ccarb to strongly negative values (e.g., Rothman et al., 2003; 81 

Fike et al., 2006; Jiang et al., 2007; McFadden et al., 2008). In this model, the size of the 82 

hypothesized DOC pool buffered the δ13Corg record against isotopic change. However, the 83 

DOC oxidation hypothesis has been challenged because of the extreme oxidant demand that 84 

would have been required to drive δ13CDIC of the entire ocean to ‒12 ‰ during marine 85 

ventilation (Bristow and Kennedy, 2008). More generally, the presence and nature of the 86 

hypothesized DOC pool and the possible mechanisms behind its generation and maintenance 87 

remain poorly known and highly debated.  88 
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Here, we shed important new light on interpreting the δ13C records of the SE by 89 

investigating basin-scale spatial heterogeneity of the SE as recorded in the Ediacaran 90 

Doushantuo Formation along a proximal-to-distal transect across the Yangtze Platform of 91 

South China. Our results indicate a strong heterogeneity for the SE across the Yangtze 92 

Platform, which challenges the notion that the most extreme negative carbonate δ13C values 93 

represent that of global seawater and suggests instead that the mechanism driving the 94 

excursion was spatially variable. 95 

 96 

GEOLOGICAL SETTING AND STUDY SECTIONS 97 

 98 

The Ediacaran Yangtze Platform in South China was a passive continental margin, which 99 

formed at ~820 Ma along the rifted southeastern margin of the Yangtze Block during breakup 100 

of the Rodinia supercontinent (Wang and Li, 2003). Paleogeographic reconstructions for the 101 

Ediacaran Yangtze Platform envisage shallow rimmed platform, slope, and basin 102 

environments along a northwest-southeast transect based on lateral variations in lithofacies 103 

and stratal thicknesses (Jiang et al. 2011; Fig. 1A). The Doushantuo Formation was deposited 104 

in shallow to deep waters on the Yangtze Platform (Fig. 1B) following the last 105 

Neoproterozoic global-scale glaciation—the Marinoan (or ‘Nantuo’ in South China) event 106 

(Fig. 2). Deposition of the Doushantuo Formation continued for ~84 Myr, spanning most of 107 

the Ediacaran Period, based on U-Pb ages of 635.2±0.6 Ma and 551.1±0.7 Ma derived from 108 

ash beds at its base and top (Condon et al., 2005). However, a slightly older age of ~560 Ma 109 

was recently suggested for the top of Doushnatuo Formation based on stratigraphic 110 
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correlation of the Miaohe Member of the Doushantuo Formation in the Yangtze Gorges area 111 

(An et al., 2015). The Doushantuo Formation is also known for its fossil animal embryos (Yin 112 

et al., 2007), macroscopic algae (Yuan et al., 2011), and abundant acritarchs (McFadden et al., 113 

2008), marking milestones in eukaryotic evolution and, more generally, the historical march 114 

from simple to complex life (Xiao et al., 2014, and references therein).  115 

Our samples of the Doushantuo Formation were collected at several locales: the 116 

inner-shelf Zhangcunping site (ZCP; drillcore-ZK312), the intra-shelf-basin of Jiulongwan 117 

(JLW; outcrop), and the upper-slope Siduping sections (SDP; outcrop). These sections 118 

contain abundant carbonate and represent a proximal-to-distal transect across the Yangtze 119 

Platform (Fig. 1), allowing us to investigate spatial variation of the SE. The JLW and SDP 120 

sections were previously studied for both δ13Ccarb and δ13Corg (McFadden et al., 2008; Li et al., 121 

2010; Jiang et al., 2010; Wang et al., 2016; see ‘Samples’ section), and their stratigraphic 122 

details were reported in McFadden et al (2008) and Wang et al. (2016). In light of this 123 

previous work, we focus on a description of the new ZCP section in this study and interpret 124 

those data within the broader context.  125 

The ZCP ZK312 drill site is located in Duanjiang Village, Baokang County, Hubei 126 

Province. In this core, the Ediacaran Doushantuo Formation has a total thickness of ~138 m 127 

and can be subdivided into four lithostratigraphic members (Fig. 2A). Member I is a 128 

2.91-m-thick cap carbonate that overlies Cryogenian glacial diamictites of the Nantuo 129 

Formation; it consists of light gray and thickly bedded microcrystalline dolostone with 130 

stromatactis-like cavities. Member II consists of four lithologic subunits: (1) Member IIa is a 131 

12.99-m black shale containing phosphatic layers and nodules, mainly in its upper portion; (2) 132 
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Member IIb is a 14.48-m, thick-bedded, gray, microcrystalline dolostone; (3) Member IIc is a 133 

21.28-m, thin-bedded, gray, microcrystalline dolostone containing phosphorite in its middle 134 

third; and (4) Member IId is a 26.24-m, thin-bedded, dark gray, microcrystalline dolostone 135 

containing large chert nodules. Previous studies of the Zhangcunping outcrops inferred an 136 

erosional surface between members IIb and IIc (Fig. 2A; Zhou et al., 2005; Liu et al., 2009; 137 

Zhu et al., 2007; 2013), but our field observations suggest otherwise because strata above and 138 

below this surface show similar lithologies and sedimentary structures. Member III is a 139 

46.93-m, thin-to-medium-bedded, gray, microcrystalline dolostone containing thin 140 

intercalations of black shale in its middle portion and chert layers in its upper portion. 141 

Member IV is a 12.88-m, thin-bedded, dark gray, microcrystalline dolostone that is distinct 142 

from the overlying thick-bedded, light gray dolostone of the Hamajing Member of the 143 

Dengying Formation.  144 

The microfossil assemblages from the Zhangcunping area were found mostly in chert 145 

nodules of the upper Member II (Zhang et al., 1986; Zhou et al., 2004, 2005; Liu et al., 2009). 146 

These assemblages contain cyanobacteria, multicellular algae, and acritarchs that are similar 147 

to silicified fossils from members II and III of the Doushantuo Formation in the Yangtze 148 

Gorges area (Liu et al., 2009). A zircon SHRIMP U-Pb age (614.0±7.6 Ma) was obtained 149 

from the bottom of the Member IIb at the Wanjiagou section in the Zhangcunping area (Liu et 150 

al., 2009). 151 

 152 

STRATIGRAPHIC CORRELATION 153 

 154 
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The intra-shelf-basin of JLW and the upper-slope SDP section, as well as other sections 155 

across the Yangtze Platform, can be correlated on the basis of distinctive marker beds—i.e., 156 

the basal cap carbonate of Member I and the black shale of Member IV, in combination with 157 

other stratigraphic surfaces of regional extent (Jiang et al., 2011; Zhu et al., 2013; Wang et al., 158 

2016; Fig. 2). The new inner-shelf ZCP section of the present study fits readily into this 159 

correlation framework (Fig. 2). First, the basal cap carbonate overlying the Nantuo glacial 160 

diamictites at ZCP is equivalent to cap carbonates in the JLW and SDP sections. Second, 161 

Member II of the Doushantuo Formation can be correlated regionally based on lithologic and 162 

faunal characteristics. At ZCP, Member II consists of dark-colored black shale and limestone 163 

containing acritarchs, multicellular algae-cyanobacteria fossils, and abundant chert nodules. 164 

These features correspond to those seen in the JLW section (Liu et al., 2009), although JLW 165 

contains a larger proportion of black shale (McFadden et al., 2008). The Member II/III 166 

contact is characterized by similar, abrupt lithofacies changes in both sections—i.e., from 167 

thin-bedded, dark gray, dolostone containing large chert nodules to medium-bedded, light 168 

gray dolostone without chert nodules at ZCP, and from thin-bedded dolostone with 169 

intercalated black shales to thick-bedded dolostone lacking black shale at JLW. These facies 170 

shifts reflect a rapid shoaling at the base of Member III at both sites. Third, the Member 171 

III/IV contact can be correlated between ZCP and JLW based on similar lithofacies changes 172 

from thick-bedded, light gray dolostone containing chert layers to thin-bedded, dark gray 173 

dolostone at ZCP, and from medium-bedded limestone with dolomite caps to black shales at 174 

JLW, reflecting a rapid deepening at the base of Member IV at both sites. Finally, Member IV 175 

is unconformably overlain by thick-bedded, medium gray dolostone of the Dengying 176 
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Formation at both sites. Small differences in lithology within correlative intervals of these 177 

sections most likely reflect local variation in water depths, watermass circulation, and 178 

siliciclastic inputs, but they do not obscure overall similarities in these stratigraphic 179 

successions (Jiang et al., 2011; Zhu et al., 2007, 2013). The correlation framework of the 180 

study sections offers a unique opportunity to explore the spatial variation of the SE and other 181 

Ediacaran excursions. 182 

 183 

SAMPLES AND ANALYTICAL METHODS 184 

 185 

Samples 186 

A total of 386 sedimentary rock samples were collected for this study between July 2012 187 

and December 2013 and analyzed for the isotopic composition of carbonate (δ13Ccarb and 188 

δ18Ocarb) and coexisting organic matter (δ13Corg) (see Table S1). These samples include 171 189 

(all dolomite) from the ZCP section (ZK312 drillcore), 57 (33 dolomite, 24 limestone) from 190 

the JLW section (outcrop), and 158 (all dolomite) from the SDP section avoiding the 191 

olistostrome breccias (outcrop). The 57 JLW samples were collected with the goal of 192 

providing a more complete record of the SE compared to those established in earlier studies 193 

of the same section (McFadden et al., 2008; Li et al., 2010). For the outcrop sites, large fresh 194 

blocks of rock (> 200 g) were collected, and any visibly weathered surfaces and diagenetic 195 

veins or cements were removed. Each block was then cut into small pieces (~1 cm3) in the 196 

laboratory, and only those pieces with no visible weathering or veins were selected for 197 
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powdering. Samples were crushed to finer than 200 mesh using a Retsch RS200 vibratory 198 

disc mill.  199 

 200 

Carbonate δ13C and δ18O analyses 201 

About 60 to 300 μg of sample powder were loaded into a vial after drying at 70oC for 24 202 

hours in an argon atmosphere. The samples were then reacted with 100 % phosphoric acid 203 

under a vacuum at 70oC for 220 seconds using a Kiel IV device. The resulting CO2 was 204 

subsequently introduced into a MAT 253 isotope ratio mass spectrometer (IRMS) for isotopic 205 

measurements. Delta values were calibrated relative to international reference standard 206 

NBS-19 (δ13C = +1.95 ‰; δ18O = ‒2.20 ‰) and Chinese national standard GBW04416 (δ13C 207 

= +1.61±0.03 ‰; δ18O = ‒1.59±0.11 ‰). Carbon and oxygen isotope data for carbonates are 208 

reported relative to Vienna Pee Dee Belemnite (VPDB) with a precision of better than ±0.1 ‰ 209 

based on duplicate analyses of GBW04416 and the study samples. 210 

 211 

Organic δ13C analysis 212 

An aliquot of sample powder (~5-30 g) was reacted with 6 M HCl to completion. The 213 

decarbonated residue was rinsed with deionized water to neutral pH, then centrifuged and 214 

freeze dried for 24 hours. Samples with low TOC contents were treated further with HF to 215 

remove silicates before isotopic analysis. Organic δ13C was measured online using a Flash EA 216 

2000 interfaced with a MAT 253 IRMS and calibrated with the glycine (δ13C = −33.3 ‰) and 217 

collagen (δ13C = −9.0 ‰) SIGMA standards. Results are reported relative to the VPDB 218 

standard with a precision better than ±0.2 ‰ based on duplicate analyses of study samples. 219 
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 220 

Analyses of abundance and δ34S of carbonate-associated sulfate (CAS) 221 

An aliquot of sample powder (~20 to 50 g with total inorganic carbon content > 3%; 222 

77 samples from JLW section) was washed in a 10% NaCl solution for 24 hours before 223 

removing the supernatant. This step was repeated multiple times until there was no barite 224 

(BaSO4) precipitation from the supernatant when adding saturated BaCl2 solution (~250g/L). 225 

The residual powder was then treated with 4 M HCl until the reaction completed. The filtered 226 

solution was treated with 125 mL saturated BaCl2 to precipitate the target CAS as barite, 227 

which was then filtered, dried, and weighed for calculating CAS concentration in the 228 

carbonate fraction of original sample by correcting for the amount of insoluble material 229 

(assuming that all of the dissolved material was pure carbonate). The collected barite was 230 

mixed with excess V2O5 for online combustion, and resulting SO2 was measured on a Thermo 231 

Scientific Delta V Plus isotope ratio mass spectrometer coupled with a Flash elemental 232 

analyzer for sulfur isotope composition of the CAS (δ34SCAS). Sulfur isotope compositions are 233 

expressed in standard δ-notation as permil (‰) deviation from the V-CDT international 234 

standard with an analytical error of 0.2 ‰ (1σ) calculated from replicate analyses of IAEA 235 

standards (NBS-127, IAEA-SO-5, IAEA-SO-6). 236 

 237 

Mn and Sr concentration analyses 238 

About 50 mg of dried sample powder were dissolved using a standard HNO3-HF 239 

digestion as described below. The digestion step included progressive acid treatments at 240 

190°C in a 15 ml Teflon bomb equipped with a screw cap to which HNO3-HF (1:1) and 241 
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HNO3 were added sequentially until complete digestion was achieved. Distilled HNO3 and 242 

trace metal-grade HF reagents were used for all samples. Following an evaporation procedure 243 

to remove concentrated acid, the sample was diluted with 2 % nitric acid. Elemental 244 

concentrations were measured using either an Agilent 7700x inductively coupled plasma 245 

mass spectrometer (ICP-MS) for Mn and Sr or a Thermo Fisher ICAP 7400 inductively 246 

coupled plasma optical emission spectrometry (ICP-OES) for Mn. Analytical errors are better 247 

than ±4.7 % for Mn and ±6.3 % for Sr based on duplicate analyses of four USGS standards 248 

(BCR-2, AGV-2, BHVO-2, RGM-2) and one Chinese national standard (GSR5). 249 

 250 

RESULTS AND DISCUSSION 251 

 252 

Spatial heterogeneity of δ13C record across the Yangtze Platform 253 

Our C isotope data, together with data from earlier investigations from the relevant 254 

sections (JLW: McFadden et al., 2008; Li et al., 2010; SDP: Jiang et al., 2010), are compiled 255 

in Fig. 2 and Table S1. A recently published C isotope profile for the SDP section (Wang et al., 256 

2016) shows stratigraphic trends that are quite similar to those in our dataset but with some 257 

differences in vertical scaling attributable to independent field measurements (note: we show 258 

only our dataset in Fig. 2).  259 

Our integrated data from the intra-shelf-basin JLW site and upper-slope SDP sections 260 

reveal three major negative δ13Ccarb excursions (EN1, EN2, and EN3; see below) separated by 261 

two positive intervals (IP1 and IP2) with δ13Ccarb values of ca. +4 to +5 ‰ at each location 262 

(Fig. 2; note: we define negative excursion in this study in terms of a decrease in δ13Ccarb 263 
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values from the baseline of ca. +4 to +5 ‰ observed at all our sections). EN1 is associated 264 

with the basal cap carbonate (Member I), and EN2 and EN3 are associated with abrupt facies 265 

changes at the bases of Members III and IV, respectively (Fig. 2B-C; cf. McFadden et al., 266 

2008; Li et al., 2010; Wang et al., 2016). In contrast, our new data from the inner-shelf ZCP 267 

section show four negative δ13Ccarb excursions (EN1-1, EN1-2, EN2, and EN3) separated by 268 

three positive intervals of ca. +5 ‰ (IP, IP1, and IP2; see Fig. 2A). EN1-1, EN2, and EN3 at 269 

ZCP can be correlated to the equivalent excursions at JLW and SDP based on independent 270 

stratigraphic correlations described above under ‘Stratigraphic correlation,’ but the EN1-2 271 

excursion has not been previously identified. 272 

Each of the negative C isotope excursions demonstrates strong spatial heterogeneity 273 

among the sections studied. For the cap-carbonate-associated EN1 (or EN1-1 at ZCP), the 274 

δ13Ccarb and δ13Corg profiles show a decoupling of the stratigraphic trends at ZCP and JLW but 275 

sympathetic trends at SDP (Fig. 2). At ZCP, δ13Ccarb has a mean of -0.4 ‰ (SD = ±1 ‰) in the 276 

3 m of cap carbonate and reaches +5.3 ‰ at ~20 m. The δ13Corg values generally remain less 277 

variable (-29.4 ± 0.9 ‰; mean ± SD) in EN1-1, although two basal samples have values of > 278 

-28 ‰. At JLW, δ13Ccarb values show large variability but generally increase from -4 ‰ to +5‰ 279 

in the basal 30 m. The δ13Corg values correspondingly decrease up section from -25 ‰ to -30 ‰ 280 

in the 6 m of cap carbonate and are invariant thereafter. In contrast, at SDP, δ13Ccarb values 281 

decrease up section from -2.5 ‰ to -5.4 ‰ in the 6 m of cap carbonate and gradually increase 282 

to +5 ‰ by 40 m. The δ13Corg values correspondingly decrease up section from -25 ‰ to -34 ‰ 283 

in the 6 m of cap carbonate and gradually increase to -25 ‰ by ~40 m. 284 
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The EN1-2 excursion was observed only in the ZCP section and lacks an equivalent 285 

within Member II at JLW and SDP. This excursion is marked by a coupling between the 13C 286 

profiles for carbonate and organic carbon. Specifically, between 29 and 43 m, δ13Ccarb and 287 

δ13Corg decrease up section from +5 to ‒8 ‰ and from ‒28 to ‒31 ‰, respectively, and 288 

between 43 and 55 m, they recover to +6 ‰ and ‒27 ‰, respectively (Fig. 2A).  289 

The EN2 excursion is more distinct at JLW and SDP compared to ZCP (Fig. 2). At JLW, 290 

δ13Ccarb decreases up section from +4 to ‒10 ‰ between 68 and 76 m and recovers to +4 ‰ 291 

by 85 m. At SDP, δ13Ccarb decreases up section from +4 to ‒2 ‰ between 60 and 70 m and 292 

returns to +5 ‰ by 75 m. At ZCP, only two small negative shifts from +5 to +1 ‰ are present 293 

between 72 and 92 m. No significant variations were observed in coexisting δ13Corg records of 294 

EN2 at the three study sites (Fig. 2). 295 

The youngest negative C isotope excursion, EN3 (Fig. 2), is thought to be equivalent to 296 

the SE as described in Oman (Fike et al., 2006), Australia (Swanson-Hysell et al., 2010), and 297 

the western United States (Corsetti and Kaufman, 2003), with a U-Pb age of 551 ± 0.7 Ma for 298 

the upper limb of the excursion in China (Condon et al., 2005). The EN3 event at JLW shows 299 

three distinct intervals of δ13Ccarb variation (from base to top): (i) a negative shift from +5 to ‒300 

9 ‰ over ~20 m (EN3a), (ii) a stable interval of roughly ‒9 ‰ over ~33 m (EN3b), and (iii) a 301 

recovery from ‒9 to ‒2 ‰ over > 10 m (EN3c). The δ13Corg profile is decoupled from δ13Ccarb, 302 

showing (i) an up section increase from ‒30 to ‒27 ‰ in EN3a; (ii) a general decrease to ‒39 ‰ 303 

from ‒27 ‰ in EN3b, although with large sample-to-sample variability; and (iii) a recovery 304 

to ‒34 ‰ from ‒39 ‰ in EN3c. The shallower ZCP and deeper SDP sections show different 305 

δ13Ccarb features: (i) EN3a corresponds to a negative shift up section from +5 to ‒1 ‰ over 306 
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~20 m at ZCP and from +5 to 0 ‰ over ~5 m at SDP, (ii) EN3b is not clearly expressed at 307 

ZCP but is marked by values of ca. +1.5 ‰ over ~60 m at SDP, and (iii) EN3c shows a 308 

recovery from ‒1 ‰ to +3 ‰ at ZCP and a pronounced minimum of ‒8.3 ‰ followed by a 309 

recovery to +0.1 ‰ at SDP. The δ13Corg profiles of the ZCP and SDP sections reveal complex 310 

variation that is both coupled and decoupled relative to the respective δ13Ccarb records (Fig. 311 

2).  312 

 313 

Evaluation of diagenetic influences on δ13Ccarb 314 

Primary δ13Ccarb values can be altered by diagenesis, including recrystallization, which 315 

has been suggested previously as a mechanism for local δ13Ccarb variability during the Shuram 316 

(Derry, 2010a; Swart and Kennedy, 2012; Schrag et al., 2013). To avoid potential effects of 317 

secondary alteration on δ13Ccarb, we collected microcrystalline dolostones wherever possible 318 

and removed any obvious weathered surfaces, veins, and cements prior to powdering. 319 

Furthermore, diagenetic alteration of δ13Ccarb can be evaluated through multiple geochemical 320 

approaches (Brand, 2004). Because strontium is expelled from marine carbonates, 321 

particularly aragonite, while manganese is incorporated under the influence of reducing fluids, 322 

Mn/Sr ratios can be used to evaluate the degree of alteration (Kaufman and Knoll, 1995). 323 

Previous studies suggested that Mn/Sr of < 3 is consistent with little to no alteration (Derry et 324 

al., 1992; Kaufman et al., 1992, 1993). However, diagenetic fluids generally contain much 325 

less carbon than carbonate rocks, which favors the buffering capacity of carbonate C relative 326 

to DIC derived from organic matter remineralization. Therefore, samples with Mn/Sr as high 327 

as 10 are likely to preserve primary δ13Ccarb values (Kaufman and Knoll, 1995). Most of our 328 
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samples (79 %) have Mn/Sr <3, and nearly all of them (95 %) have Mn/Sr <10, suggesting 329 

that the δ13Ccarb profiles of the study sections preserve near-primary marine carbonate signals 330 

(Fig. 3). A small number of samples (five in EN1-1 and IP at ZCP, four in EN1 at JLW, and 331 

four in EN1 and EN3c at SDP) have Mn/Sr > 10, suggesting possible diagenetic alteration of 332 

their δ13C values. 333 

Because post-depositional alteration of marine carbonate rocks commonly produces a 334 

decrease in both δ13C and δ18O values, extremely low δ18O values (commonly < ‒10 ‰) and 335 

positive co-variation between C and O isotopes have been cited as evidence for a diagenetic 336 

origin of negative isotope excursions (Knauth and Kennedy, 2009), including the SE 337 

(Grotzinger et al., 2011, Derry, 2010a). Samples with δ18O values of < ‒10 ‰ are mostly 338 

associated with EN1 at JLW and SDP, EN1-2 at ZCP, and the lower portion of EN3b at JLW 339 

(Fig. 3). Indeed, the EN1-2 at ZCP is associated with abundant phosphorite deposition, which 340 

is susceptible to diagenetic alteration of carbonates (Kaufman and Knoll, 1995). Opposite to 341 

the described effects of diagenesis on δ13Ccarb-δ
18Ocarb, however, the ZCP section shows no 342 

significant δ13Ccarb-δ
18Ocarb covariation for any excursion (Fig. 4A), including EN3 (r2 = 0.0). 343 

The SDP section exhibits minor to moderate δ13Ccarb-δ
18Ocarb covariation for each excursion, 344 

but the correlations are negative rather than positive for the EN2 and EN3 (Fig. 4C)—again, 345 

the opposite of that expected from diagenesis (Knauth and Kennedy, 2009). These correlation 346 

relationships thus do not support significant diagenetic alteration of δ13Ccarb values in these 347 

sections. In fact, the widespread lack of systematic positive covariation between δ13Ccarb and 348 

δ18Ocarb in other sections of the Yangtze Platform strongly supports a non-diagenetic origin 349 

for EN3 found across the Yangtze Platform (Lu et al., 2013). 350 
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The JLW section exhibits minor to moderate δ13Ccarb-δ
18Ocarb positive covariation for each 351 

excursion (Fig. 4B), including EN3 (r2 = 0.22). It is possible that these positive covariation 352 

patterns reflect some degree of diagenetic overprinting of original δ13Ccarb values during 353 

dolomitization and early burial more generally as suggested by some samples with elevated 354 

Mn/Sr and low δ18Ocarb values (Fig. 3B). However, a few lines of evidence suggest that 355 

diagenetic alteration for the EN3 of JLW is insignificant. First, the stratigraphic consistency 356 

of EN3 at JLW to other age-equivalent δ13Ccarb profiles across the Yangtze Platform (Lu et al., 357 

2013) and its global correlations to other Ediacaran δ13Ccarb profiles in India (Kaufman et al., 358 

2006), Oman (Fike et al., 2006; Osburn et al., 2015), Australia (Calver, 2000; 359 

Swanson-Hysell et al., 2010), the southwestern USA (Corsetti and Kaufman, 2003), and 360 

northern Mexico (Loyd et al., 2013) suggest that primary secular patterns have been 361 

preserved—although local overprints on the global signal are to be expected (as discussed 362 

below). Second, petrographic observations reveal that most carbonates from the EN3 in the 363 

JLW section are fine grained and uniformly microcrystalline (Lu et al., 2013; McFadden et 364 

al., 2008)—inconsistent with a diagenetic origin. Third, the EN3 excursion at JLW is 365 

characterized by smooth δ13C variation that is independent of lithofacies changes 366 

(dolostone-limestone-black shales) (Lu et al., 2013), which is also consistent with a primary 367 

origin of the EN3 signal. Fourth, compared with calcite precipitation, dolomite formation can 368 

result in significantly greater oxygen isotope fractionation (up to 5 ‰) (e.g., Vasconcelos et 369 

al., 2005). We note that largely invariant δ18O values are found throughout EN3 in 370 

exclusively dolomitic successions (ZCP and SDP sections), but a significant decrease in δ18O 371 

values is found in the JLW section within the transition from dolomite beds (< 120 m) to 372 
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overlying limestone beds (120-140 m) without a corresponding change in δ13Ccarb (Fig. 4D, 373 

and Table S1). This relationship is consistent with mineralogical control of carbonate δ18O 374 

and a non-diagenetic origin of δ13Ccarb variation in the EN3 interval of the sections studied. 375 

Similar patterns of δ18O-δ13Ccarb for the transition from dolomite to limestone are observed in 376 

other sections from the Yangtze Platform (Lu et al., 2013), suggesting that the EN3 signal 377 

basin wide is of primary origin. 378 

Recent studies provide additional evidence that the SE trends recorded in sections on 379 

other continents also represent a primary seawater signal. For example, in Australia, Mg- and 380 

Ca-isotope data—along with [Mg], [Mn], and [Sr] data from carbonates of the 381 

Ediacaran-aged Wonoka Formation—indicate that the most pristine samples carry strongly 382 

negative δ13Ccarb signals (‒7 to ‒8 ‰) (Husson et al., 2015), consistent with a primary origin. 383 

Furthermore, the carbon isotope compositions of extractable long-chain (> C20) n-alkanes 384 

and mid-chain monomethyl alkanes from the SE strata in Oman were found to be as low as ‒385 

40 ‰ (Lee et al., 2015), which is rare for marine rocks of any age and provides evidence for a 386 

major carbon cycle perturbation in conjunction with the SE in Oman. Additionally, our CAS 387 

concentration data from the Doushantuo and those previously published from global 388 

distributed sections—Oman, Mexico, and Death Valley—provide evidence against meteoric 389 

diagenesis being responsible for the SE (Fig. 6). Specifically, work evaluating CAS 390 

concentrations during aragonite-to-calcite neomorphism of Pleistocene coral heads in the 391 

presence of meteoric fluids found that CAS concentrations decrease dramatically (Gill et al., 392 

2008), often by orders of magnitude, because sulfate concentrations in meteoric fluids are 393 

significantly lower than those of seawater. This relationship allows for rock-buffered δ34SCAS 394 
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during meteoric alterations but with large decreases in CAS concentration (Gill et al., 2008). 395 

Opposite to this, the CAS concentrations in the Doushantuo Formation of South China, the 396 

Khufai and Shuram formations of Oman (Fike et al., 2006; Osburn et al., 2015), the Johnnie 397 

Formation of Death Valley (Kaufman et al., 2007), and the Clemente Formation of Mexico 398 

(Loyd et al., 2012) all increase during the SE (Fig. 6).  399 

Taken together, our integrated geochemical, mineralogical, petrographic, and stratigraphic 400 

evidence from this study and previous investigations (Lu et al., 2013; Tahata et al., 2013; 401 

Husson et al., 2015; Lee et al., 2015; Osburn et al., 2015) indicates that the EN2 and EN3 (SE) 402 

on the Yangtze Platform represent primary seawater signals and that the EN3 is most likely a 403 

global signal. Given the possibility of significant post-depositional alteration for the EN1 of 404 

our sections (EN1-1 and EN1-2 at ZCP) and the significance of the SE, we limit our 405 

discussion below mainly to EN3. 406 

 407 

Elevated continental weathering and coastal marine sulfate concentration during the SE 408 

To provide a context for interpreting the mechanisms driving the observed spatial 409 

heterogeneity in the SE, we evaluated proxies for weathering rates (Sr isotopes) and marine 410 

sulfate availability (CAS concentrations and isotope composition). First, we examined 411 

87Sr/86Sr ratio—a proxy for continental weathering (Richter et al., 1992). In South China, the 412 

Doushantuo negative C isotope excursions were accompanied by elevated 87Sr/86Sr ratios, 413 

with the highest 87Sr/86Sr ratios during the SE (up to 0.708958; Fig. 5). Relatively elevated 414 

87Sr/86Sr ratios provide evidence for enhanced continental weathering during these isotopic 415 

events (Sawaki et al., 2008, 2010; Cui et al., 2015). A compilation of data from various 416 
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continents shows that the SE was globally tied to the highest 87Sr/86Sr ratios for the Ediacaran 417 

(Fig. 5), consistent with the strongest continental weathering during the SE. An increase in 418 

weathering rate might be related to an increase in global tectonic activity associated with 419 

global microcontinent collisions that stitched Gondwana during the middle Ediacaran (see 420 

reviews in Halverson et al., 2010, and Och and Shields-Zhou, 2012); however, details of the 421 

mechanisms behind possible increases in weathering rates remain uncertain. 422 

Second, we compared paired CAS concentration and δ34SCAS data with δ13Ccarb results 423 

from the JLW section, which is characterized by the most prominent negative δ13Ccarb 424 

excursion during the SE among the sections we studied. Furthermore, we compiled the paired 425 

C-S data available from other SE successions in Mexico (Loyd et al., 2012), southwest USA 426 

(Kaufman et al., 2007), and Oman (Fike et al., 2006; Osburn et al., 2015) (Fig. 6). The results 427 

from JLW demonstrate that the SE was accompanied by a parallel negative shift in δ34SCAS 428 

(up section from > +40 ‰ to < +10 ‰), as well as elevated CAS concentration (from < 100 429 

ppm to > 1000 ppm) (Fig. 6A). These coupled trends suggest that marine sulfate 430 

concentrations were elevated during the SE relative to before. Importantly, generally similar 431 

coupling between the C-S data are observed for all the compiled successions (Fig. 6B-D), 432 

despite their global distribution, suggesting that the elevated marine sulfate concentration and 433 

depleted isotopic composition during the SE were a global phenomenon. Indeed, an increase 434 

in seawater sulfate concentration has been inferred for the SE at all previously investigated 435 

localities (Fike et al., 2006; McFadden et al., 2008; Li et al., 2010; Kaufman et al., 2007; 436 

Loyd et al., 2013; Osburn et al., 2015). The increase in CAS concentration and negative 437 

excursion in δ34SCAS in association with the SE have been previously interpreted to reflect an 438 
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increase in the global marine sulfate reservoir in response to atmospheric and marine 439 

oxygenation during this period (Fike et al., 2006; Loyd et al., 2013; Kaufman et al., 2007; 440 

Osburn et al., 2015).  441 

Interestingly, however, different patterns for this C-S coupling are observed among the 442 

different continental sites. For example, the magnitudes of the negative shift in δ34SCAS and 443 

increasing CAS concentration in Oman are generally < 15 ‰ and up to > 10,000 ppm (Fig. 444 

6D), respectively, which are substantially different from those observed in South China and 445 

other places (Fig. 6A-C). Furthermore, detailed analyses indicate that the negative shift of 446 

δ34SCAS and the elevation of CAS concentration in Oman are associated mainly with shallow 447 

waters (Huqf area) rather than deep waters (Moutain area) (Osburn et al., 2015; Fig. 6D). 448 

These observations together indicate that the general increase in marine sulfate concentration 449 

during the SE was a global phenomenon specific to shallow waters and that local 450 

heterogeneities in the magnitude and distribution occurred. 451 

 452 

Interpreting the spatial heterogeneity of the Shuram Excursion 453 

Previous interpretations of the Shuram δ13Ccarb excursion have linked the increase in 454 

marine sulfate concentrations to oxidation of a formerly anoxic deep ocean with a large pool 455 

of DOC (e.g., Fike et al., 2006). However, recent redox proxy studies have provided evidence 456 

against pervasive ventilation of the deep ocean during the SE (e.g., Li et al., 2010; Dahl et al., 457 

2010; Johnston et al., 2013; Sperling et al., 2015; Sahoo et al., 2016). Furthermore, oxidant 458 

mass balance models for ocean ventilation and DOC oxidation driving the excursion 459 

highlight that such a scenario is unlikely, as both marine oxygen and sulfate would be 460 
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inadequate (Bristow and Kennedy, 2008). Together, these modelling and redox proxy studies 461 

suggest that if the SE records an oxidation event, it must have been limited in its areal extent. 462 

 Our δ13Ccarb dataset provides additional new constraints in this regard. A distinct feature 463 

of our proximal-to-distal transect from the Doushanto Formation is that the magnitude, 464 

timing, and δ13Ccarb-δ
13Corg relationship of the negative δ13Ccarb excursions differ among the 465 

sites. The high spatial heterogeneity of these primary excursions suggests that the δ13Ccarb 466 

data for the SE at least partially reflect local controls on DIC in shelf settings. Our claim of 467 

local heterogeneity in the δ13CDIC during the SE is supported by examples from outside of the 468 

Doushantuo Formation. For example, the δ13Ccarb record for Shuram-aged carbonates from 469 

northwest Canada ranges from -2 to -8.5 ‰, similarly pointing to local controls (MacDonald 470 

et al., 2013), and the most pristine carbonates from the SE captured in the Wonoka Formation 471 

have δ13Ccarb of -7 to -8 ‰ (Husson et al., 2015). Additional constraints from the δ13C of 472 

compound-specific biomarkers in Oman suggest that the primary excursion of the SE may 473 

have actually been as small 5-7 ‰ at that locality (Lee et al., 2015). Together, this evidence 474 

implies that the global shift in δ13CDIC during the SE may not have been as extreme as the 475 

-17 ‰ of δ13C excursion observed in the carbonate record at some localities and that models 476 

should consider local processes driving heterogeneity in the local δ13CDIC.  477 

Here, in light of the observations of spatial heterogeneity in δ13C and inferred oxidation, 478 

we propose an updated conceptual model for the mechanism behind the negative δ13Ccarb of 479 

the SE (Fig. 7). As shown by previous work, the Ediacaran oceans were redox stratified with 480 

anoxic deep waters (Canfield et al., 2008; Li et al., 2010, 2015; Sahoo et al., 2016) and low in 481 

sulfate (< 2 mM; Loyd et al., 2012; Osburn et al., 2015). Within this framework, we propose 482 
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that the strong continental weathering during the SE, as suggested by the highest 87Sr/86Sr 483 

ratios (see Fig. 5 and previous section), may have greatly elevated continental nutrient fluxes 484 

into coastal oceans, resulting in unusually high coastal productivity. Recent biogeochemical 485 

modelling shows that at low atmospheric pO2 levels (e.g., < 2.5% present atmospheric level 486 

or PAL), the distribution of O2 in the surface ocean is controlled principally by marine 487 

productivity (i.e., O2 release), with the highest dissolved O2 levels restricted primarily to 488 

areas of high productivity (Reinhard et al., 2016). Thus, any elevation of coastal productivity 489 

might have resulted in coastal surface-ocean oxygenation if the atmospheric pO2 levels prior 490 

to and during the SE were low enough. Indeed, recent reviews noted that Ediacaran pO2 491 

levels might have been only a few per cent of PAL, although a large range has been suggested 492 

(see reviews by Lyons et al., 2014, and Sperling et al., 2015). Coastal surface ocean 493 

oxygenation could in theory have resulted in less oceanic pyrite burial and in turn more 494 

negative δ34SCAS and higher sulfate concentration in the local surface waters (i.e., higher 495 

[CAS]). Another possibility is that increased continental weathering may have elevated the 496 

riverine sulfate flux into coastal oceans. Ultimately, increased marine oxidant availability led 497 

to oxidation in formerly anoxic, relatively shallow settings while maintaining redox 498 

stratification (i.e., persistently anoxic deep waters) across the event—resulting in both 499 

vertical and lateral gradients in oxidant distribution.  500 

Given an increase in shallow marine oxidant availability (O2 and sulfate), we assume that 501 

the source of the isotopically light δ13CDIC was more widespread oxidation (likely with higher 502 

rates and greater depth penetration of those oxidants) in shallow waters adjacent to 503 

persistently anoxic subsurface waters containing high concentrations of reduced carbon. We 504 
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note that elevated reduced carbon concentrations in the Ediacaran ocean have been assumed 505 

in previous work, but have yet to be proven, and that this study provides no additional 506 

constraints on the possible source of that carbon. Previous studies favored DOC (Rothman et 507 

al., 2003; Fike et al., 2006; McFadden et al., 2008; Wang et al., 2015; 2016) or other forms of 508 

organic carbon such as fresh or aged organic matter (Lee et al., 2015). Within this framework, 509 

the δ13C of local carbonate sediments was determined by mixing of global marine 510 

background DIC (DICbg) and isotopically light DIC derived from oxidation of reduced carbon 511 

(DICrc) on a large scale—along with DICrc generated locally through intense oxidation 512 

coupled to heterogeneous supplies of O2 and perhaps sulfate (see lower-left insert in Fig. 7). 513 

As such, both spatial variations in δ13CDIC and the extremely negative δ13Ccarb values 514 

observed through the SE are mostly a product of local variation in rates of reduced-carbon 515 

oxidation in shelf settings rather than shifts in global seawater δ13CDIC. Thus, our proposed 516 

local, mostly shelf oxidation of subsurface reduced carbon—as opposed to a large shift in 517 

global marine δ13CDIC and comprehensive ocean ventilation—minimizes the likelihood of the 518 

inadequate oxidant supplies imagined in previous studies, which assumed whole-ocean 519 

oxygenation and corresponding shifts in 13C on the same scale (Bristow and Kennedy, 520 

2008).  521 

 Our model can account for the general patterns of spatial heterogeneity of the SE (i.e., 522 

EN3) observed in this study. Specifically, relatively low initial reduced carbon availability in 523 

nearshore areas (represented here by ZCP) and low oxidant availability to distal areas 524 

(represented here by SDP) would have resulted in maximum local DIC production in 525 

mid-shelf areas (represented here by JLW) during the EN3a-EN3b (Fig. 7). This region would 526 
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have marked the interface between deeper anoxic waters rich in reduced carbon and shallow 527 

regions relatively richer in O2 and with proximal riverine sulfate inputs that rose due to 528 

enhanced, tectonically induced weathering. The influence of local DICrc production is seen in 529 

the δ13Ccarb profiles of mid-shelf sections, including JLW (this study) and nearby sections (e.g., 530 

Tianjiayuanzi; Lu et al., 2013), which exhibit exceptionally large EN3 excursions (Fig. 2B). 531 

In contrast, nearshore sections, including ZCP (this study) and nearby Hushan-Dayukou (Zhu 532 

et al., 2013) as well as those sections, such as Zhongling (Li et al., 2010), that were located 533 

on shallow shelf margin rims with low reduced carbon availability (Fig. 7), exhibit 534 

significantly smaller EN3 excursions (Fig. 2A). During the late-stage of the SE, reduced local 535 

DICrc availability via persistent consumption of reduced carbon at the nearshore ZCP and 536 

mid-shelf JLW locales are consistent with the observed recovery of δ13Ccarb to more positive 537 

values in EN3c (Fig. 2A-B).  538 

Our conceptual model still requires recognition of additional details of the SE 539 

heterogeneity (e.g., the large negative δ13Ccarb excursion observed in EN3c at the distal SDP 540 

in this study), analogous heterogeneous δ13Ccarb at other, globally distributed SE settings, as 541 

well as proxy evidence for increased nutrient availability and the source of the isotopically 542 

light DIC. However, in principle, our heterogeneous oxidation model can be used to explain 543 

existing δ13Ccarb records of the SE from the Yangtze Platform as well as those seen in other 544 

regions simply by changing the mixing ratio of locally produced DIC and the open seawater. 545 

Our model defines a general spatial framework based on the availability of oxidants and 546 

reduced carbon in the ocean, which predicts that the SE was recorded most prominently in 547 

shelf settings where both oxidants and reduced carbon were in ample supply (e.g., the JLW 548 
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section of this study). Indeed, the most prominent expressions of the SE worldwide are found 549 

in shallow-marine carbonate successions (reviewed by Grotzinger et al., 2011). In South 550 

China, the SE is particularly well-developed in mid-shelf to upper-slope settings and in 551 

intra-shelf basins (Lu et al., 2013; Tahata et al., 2013; Wang et al., 2016), which reflects the 552 

optimal balance of local surface-ocean oxidant availability and anoxic, subsurface 553 

distributions of reduced carbon. 554 

  555 

Interpreting the δ13Corg records of the SE in terms of elevated continental weathering 556 

The global record of the SE, including the EN3 in South China, is also notable for the 557 

lack of coupling of δ13Ccarb and δ13Corg (Fig. 2) (Grotzinger et al., 2011; Lee et al., 2013). This 558 

feature has been explained by varying inputs of detrital, relatively 13C-enriched organic 559 

matter (OMdet) and 13C-depleted marine OM (OMmar) (i.e., OM in sediment = OMdet + OMmar; 560 

see details in Johnston et al., 2012, and Jiang et al., 2012). The OMdet may have been 561 

relatively 13C-enriched, even if originally marine, because it experienced significant thermal 562 

maturation during burial prior to uplift and reworking. Thermal processing would have 563 

preferentially expelled isotopically light hydrocarbons, thus increasing the 13C of the 564 

remaining organic matter (Des Marais et al., 1992). High rates of continental weathering are 565 

suggested by our compiled Sr isotope records (Fig. 5). Greatly enhanced continental 566 

weathering may have generated large nutrient fluxes while simultaneously stimulating 567 

delivery of significant amounts of OMdet into the coastal oceans. The collective result of these 568 

processes would have been an increase in δ13Corg as observed during the early to middle stage 569 

of the SE at all of our locations (EN3a and lower portion of EN3b in Fig. 2). Hand in hand 570 
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with the decline of continental weathering as suggested by decreasing 87Sr/86Sr ratios (Fig. 5) 571 

and anticipated decrease of OMdet input during the later stage of the SE, the relative 572 

contribution of OMdet versus OMmar to sedimentary organic matter gradually decreased. As a 573 

result, a decrease in δ13Corg occurred, as observed in the upper portion of the EN3b and the 574 

entire EN3c at all of our study sites (Fig. 2). Minimum δ13Corg values of < ‒38 ‰ ultimately 575 

developed in the more distal JLW and SDP sections, suggesting significant contributions of 576 

chemotrophic and/or methanotrophic biomass to OMmar under anoxic bottom waters (Jiang et 577 

al., 2012; Wang et al., 2016). Therefore, the δ13Corg records of the SE also support our model 578 

in which greatly elevated weathering of the continents served as a trigger for these negative 579 

δ13Ccarb excursions. 580 

 581 

CONCLUSIONS 582 

 583 

Integrated δ13Ccarb-δ
13Corg data from the inner-shelf section of Zhangcunping and the 584 

intra-shelf-basin and upper-slope sections of Jiulongwan and Siduping, respectively, reveal 585 

large spatial heterogeneity in Ediacaran carbon isotope records, particular for the globally 586 

distributed Shuram Excursion (SE). Combined geochemical, mineralogical, petrographic, and 587 

stratigraphic data indicate a primary marine signature for at least the SE in South China. 588 

Globally elevated 87Sr/86Sr ratios during the SE suggest that the SE was tied to elevated 589 

continental weathering during the mid-Ediacaran. Paired concentration and δ34S data for 590 

carbonate-associated sulfate from South China, Mexico, southwest USA, and Oman indicate 591 

an increase in marine sulfate during the SE, but with different magnitudes and patterns among 592 
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the globally distributed sites. In light of these observations, we propose a heterogeneous 593 

oxidation model involving greater oxygenation of the surface ocean in coastal regions to 594 

explain the SE and the high spatial heterogeneity among the observed records for δ13Ccarb and 595 

coexisting δ13Corg. Specifically, we argue that elevated continental weathering brought high 596 

nutrient fluxes into coastal oceans, which resulted in elevation of coastal primary productivity, 597 

greater surface-ocean oxygenation as a consequence, and local elevation of marine sulfate 598 

concentration. The latter would reflect the combined effects of greater riverine sulfate inputs 599 

and reduced pyrite burial beneath the more widely oxic surface waters along the continental 600 

margins. Thus, the spatial δ13Ccarb patterns of the SE were controlled primarily by spatially 601 

varying extents of oxidation of reduced carbon by oxidants (mainly O2 and sulfate) in surface 602 

waters mostly in shelf areas. The reduced carbon was plentiful in the persistently 603 

oxygen-deficient deeper waters of the stratified water column and could be supplied to the 604 

shallower waters. The elevated local oxidation of subsurface reduced carbon mainly in shelf 605 

settings proposed in our model minimizes the likelihood of the inadequate supply of oxidant 606 

suggested in previous research of the SE, which assumed whole-ocean oxygenation. 607 

Independent of the mechanistic specifics presented here, however, the evidence for spatial 608 

heterogeneity in δ13C presented in this study must be accounted for in future models of the 609 

SE. 610 
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 816 

Figure captions: 817 

 818 

Figure 1. Geological framework of the Ediacaran Doushantuo Formation in South China. (A) 819 

Palaeogeographic reconstruction of the Ediacaran Yangtze Platform (modified from Jiang et al., 2011) 820 

showing locations of the three study sections (Zhangcunping, Jiulongwan, Siduping). (B) 821 

Proximal-to-distal transect across the Yangtze Platform, showing relative paleodepths of the study sections 822 

(after Zhu et al., 2013). Legend: 1, thick-bedded grainstone; 2, micritic dolostone; 3, muddy or silty 823 

laminated dolostone; 4, limestone; 5, phosphorite; 6, glaciogenic diamictite; 7, black shale; 8, cherty bands 824 

and nodules in the carbonate; 9, carbonate interbeds or lenticular beds; 10, cherty nodules in shale; 11, 825 

carbonate concretions; 12, sequence boundary; 13, dark or dark-gray silty shale or mudstone. 826 

 827 

Figure 2. C-isotope chemostratigraphy of the Ediacaran Doushantuo Formation at study sections. Data 828 

sources include this study (yellow-filled symbols), Li et al. (2010) (red-filled symbols), and McFadden et 829 



39 
 

al. (2008) (Jiulongwan) and Jiang et al. (2010) (Siduping; both blue-field symbols). Green curves represent 830 

five-point running averages for high-resolution intervals (note: raw data used for low-resolution intervals). 831 

Gray-shaded areas represent negative excursions of δ13Ccarb. Three age constraints are from Condon et al. 832 

(2005) and Liu et al. (2009). See text for more details on stratigraphic correlations and the “IP” and “EN” 833 

event designations for study sections. Abbreviations: NT = Nantuo Formation; DY = Dengying Formation; 834 

LCP = Liuchapo Formation.  835 

 836 

Figure 3. Mn/Sr and δ18Ocarb data of the Ediacaran Doushantuo Formation at study sections. The 837 

corresponding δ13Ccarb data are given for comparison. Stratigraphic details and abbreviations are identical 838 

to those in Figure 2. 839 

 840 

Figure 4. Crossplots of δ13Ccarb versus δ18Ocarb for the negative C-isotope excursion intervals in study 841 

sections. (A-C) Data from EN1, EN1-1, EN1-2, EN2 and EN3a-c at Zhangcunping, Jiulongwan, and 842 

Siduping sections, respectively. The correlation coefficient (r2) and t-test p value (where needed) for each 843 

C-isotope excursion are shown in the legend. (D) Separation of EN3 data from the three study sections into 844 

dolomitic and calcitic samples. 845 

 846 

Figure 5. A compilation of Ediacaran Sr isotope data reported from different global sites. Corresponding 847 

δ13Ccarb records are given for comparison. Sr-isotope data sources: South China, Sawaki et al. (2010); 848 

Canada, Narbonne et al. (1994); Oman, Burns and Matter (1993); Australia, Foden et al. (2001). C-isotopic 849 

data sources: South China, this study, Tahata et al. (2013), Li et al. (2010), McFadden et al. (2008); 850 



40 
 

Australia, Calver (2000); Oman: Fike et al. (2006), Siberia, Pokrovskii et al. (2006); Canada, Macdonald et 851 

al. (2013). Three age constraints are from Condon et al. (2005). 852 

 853 

Figure 6. C-S chemostratigraphy of successions capturing typical Shuram Excursion in South China (A), 854 

Mexico (B), southwest USA (C) and Oman (D) where paired carbonate-associated sulfate (CAS) and 855 

C-isotope data were reported. Note: all chemostratigraphic data capturing the early onset of the SE (<120 856 

m) in (D) were normalized to a thickness of 120 m based on the base and top surfaces of the Khufai 857 

Formation (Osburn et al., 2014) while the > 120-m data capturing the rest of the Shuram Excursion were 858 

normalized to a thickness of 240 m in order to match the normalized thickness of <120 m for the Khufai 859 

Formation. Data sources: South China, this study and Li et al. (2010); Mexico, Loyd et al. (2012); 860 

southwest USA, Kaufman et al. (2007); Oman, Fike et al. (2006) and Osburn et al. (2015).  861 

  862 

Figure 7. Schematic presentation of the proposed heterogeneous oxidation model involving greatly 863 

enhanced weathering nutrient and sulfate fluxes and coastal surface-ocean oxygenation for interpreting the 864 

high spatial heterogeneity of the Shuram Excursion (i.e., the largest negative δ13Ccarb excursion of the 865 

Ediacaran) as recorded in the upper Doushantuo Formation (EN3) across the Yangtze Platform. See text for 866 

more details. Abbreviations: DICrc= dissolved inorganic carbon derived from local oxidation of subsurface 867 

reduced carbon; DICbg= global marine background of dissolved inorganic carbon. 868 

 869 
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Table S1. A summary of geochemical data of the study sections. 8 

Sample Depth Mn/Sr TOC TIC δ
13

Ccarb δ
13

Corg △13
C δ

18
O δ

34
SCAS [CAS] 

 

(m 

above  
(wt %) (wt %) 

(‰ 

VPDB) 

(‰ 

VPDB) 

(‰ 

VPDB) 

(‰ 

VPDB) 

(‰ 

VPDB) 
(ppm) 

Nantuo 

Fm.) 
  

 
  1. Zhangcunping Section (Inner shelf facies) 

 
  ZK312-265 157.7 1.94 0.03 12.1 3.5 

  
-3.5 

  ZK312-266 154.76 1.82 0.02 12.1 
    

  ZK312-267 152.76 1.96 0.01 13.1 2.5 
  

-1.5 

  ZK312-268 150.76 2.47 0.01 12.3 3.3 
  

-2.9 

  ZK312-269 148.76 1.33 0.03 12.3 2.6 
  

-1.8 

  ZK312-270 146.76 1.09 0.03 12.2 2.8 -26.7 29.5 -1.3 

  ZK312-271 144.76 
 

0.01 13.2 2.3 
  

-2.4 

  ZK312-272 142.76 2.2 0.48 12.3 2.9 -27 29.8 -1.4 

  ZK312-273 140.76 
 

0.02 12 2.8 
  

-0.7 

  ZK312-274 138.76 0.83 0.45 11.6 2.6 -29.4 32 -2.1 

  ZK312-275 137.29 0.79 0.36 11.7 2.4 -29.4 31.8 -0.8 

  ZK312-276 136.33 
 

0.93 10.9 2.8 -29.6 32.4 -2.2 

  ZK312-277 135.38 0.45 1.07 10.6 2.8 -29.7 32.5 -2 

  ZK312-278 134.62 
   

2.2 -29.6 31.7 -0.9 

  ZK312-279 133.76 0.45 0.28 12.8 0.2 -29.3 29.6 -0.9 

  ZK312-280 133.1 
   

-0.9 -29.8 28.9 -2.9 

  ZK312-281 132.24 0.33 0.2 8.3 1.5 -29.4 30.9 -1.9 

  ZK312-282 131.49 0.72 
  

-0.3 -29.3 29 -1.8 

  ZK312-283 130.73 0.81 0.84 11.6 -0.3 -30.2 29.9 -2.9 

  ZK312-284 129.97 
   

1 -29.1 30.1 -3 
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ZK312-285 129.01 0.97 0.5 11.8 0 -29.8 29.8 -1.9 

  ZK312-286 128.06 0.59 0.37 12.3 4.8 -29.7 34.5 -2.3 

  ZK312-287 127.1 1.22 
  

0.8 -29.9 30.7 -2.3 

  ZK312-288 126.14 0.67 0.55 11.9 0.3 -30.1 30.4 -3 

  ZK312-289 125.38 
   

0.7 -28.4 29.1 -2.3 

  ZK312-290 124.62 0.9 0.02 12.2 0.8 
  

-2.8 

  ZK312-291 123.67 
   

2.2 
  

-3.8 

  ZK312-292 122.71 
   

1.9 
  

-2.1 

  ZK312-293 122.05 1.36 0.04 12.6 2.4 -26.3 28.7 -3 

  ZK312-294 121.05 0.98 0.04 12.7 2.6 
  

-4.5 

  ZK312-295 120.25 0.97 0.09 12.4 2.7 -28.1 30.8 -3 

  ZK312-296 119.55 0.79 
  

1.7 -28 29.8 -5.9 

  ZK312-297 118.65 
   

2.5 -26.3 28.8 -1.6 

  ZK312-298 117.85 0.31 0.05 12.8 0.3 -27.5 27.8 -4.7 

  ZK312-299-1 116.85 0.68 0.13 11.9 2.3 -28.7 31 -3.5 

  ZK312-299-2 116.85 0.53 
 

9.4 
 

-29.7 
  

  ZK312-300 115.95 0.71 0.11 10.8 3.6 -28.1 31.7 -3.6 

  ZK312-301 115.15 
   

3.6 -28.3 31.9 -2.8 

  ZK312-302 114.45 1.73 0.01 12.6 1.6 
  

-0.2 

  ZK312-303 113.55 
       

  ZK312-304 112.95 0.5 1.02 11 4 -29.6 33.6 -1.7 

  ZK312-305 112.15 
   

3.7 -29.5 33.2 -3.1 

  ZK312-306 111.55 
   

0.4 -29.4 29.8 -3.3 

  ZK312-307 110.85 0.25 0.69 10.9 5.6 -29.6 35.2 -2.5 

  ZK312-308 110.05 
   

4.7 
  

-2.5 

  ZK312-309 109.25 
   

4.2 
  

-3 

  ZK312-310 108.25 0.25 
  

4.5 -28.6 33.1 -1.6 

  ZK312-311 105.15 0.69 
  

5.4 -27 32.4 -4.1 

  ZK312-312 104.45 
   

5.2 
  

-2.5 

  ZK312-313 103.95 0.88 0.11 12.5 4.3 -27.2 31.5 -3.6 

  ZK312-314 103.15 
   

3.3 
  

-4.7 

  ZK312-315 102.35 1.67 0.06 12.7 4.5 
  

-4 

  ZK312-316 101.65 
   

4.2 
  

-4.1 

  ZK312-317 100.75 1.82 0.02 12.6 4 
  

-7.1 

  ZK312-318 100.15 
   

4.7 
  

-3.6 

  ZK312-319 99.45 1.75 0.02 12 4.8 
  

-3.2 

  ZK312-320 99.05 
   

4.8 
  

-3.5 

  ZK312-321 98.55 1.86 0.03 12.3 5 
  

-2.1 

  ZK312-322 97.75 
   

5.1 
  

-1.8 

  ZK312-323 96.85 1.6 0.04 11.8 5.2 
  

-2.1 

  ZK312-324 96.55 
   

5.1 
  

-1.9 

  ZK312-325 95.9 
   

4.6 
  

-2.4 

  ZK312-326 95.05 
   

4.9 
  

-2 

  ZK312-327 94.25 2.02 0.02 12.1 5 
  

-2.1 

  ZK312-328 93.55 
   

4.7 
  

-2.1 
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ZK312-329 92.75 1.63 0.05 10.9 5 -26.9 31.9 -1.5 

  ZK312-330 92.25 
   

4.9 
  

-1.9 

  ZK312-331 91.19 0.23 0.13 7 3.3 -27.8 31.1 -2.2 

  ZK312-332 90.49 
   

1.6 
  

-6 

  ZK312-333 89.79 0.48 1.03 6.8 0.8 -29.4 30.2 -2.6 

  ZK312-334 89.15 
   

1.8 
  

-3.5 

  ZK312-335 88.45 0.94 0.25 9.6 3.2 -27.6 30.8 -2 

  ZK312-336 87.95 
   

4 
  

-4.3 

  ZK312-337 87.45 
 

0.07 11.7 4.9 
  

-4.3 

  ZK312-338 86.95 
   

5.3 
  

-3.5 

  ZK312-339 86.45 1.78 0.23 11.7 4.5 -29 33.6 -4.6 

  ZK312-340 85.95 
   

5.1 
  

-2.7 

  ZK312-341 85.45 
 

0.04 9.4 4.3 
  

-3.3 

  ZK312-342 84.95 
   

4.5 
  

-1.5 

  ZK312-344 83.95 0.23 0.34 3.8 0.9 -28.5 29.3 -7.3 

  ZK312-345 83.45 0.5 0.12 6.3 2.6 
  

-2 

  ZK312-346 82.95 1.78 
  

2.6 -27 29.6 -2.9 

  ZK312-347 82.45 1.02 0.06 8.8 3.1 
  

-3.1 

  ZK312-348 81.85 
   

2.3 
  

-3.4 

  ZK312-349 81.35 
 

0.05 12.1 2.1 -27.7 29.8 -5.3 

  ZK312-350 80.75 
   

2.3 
  

-3 

  ZK312-351 80.25 0.67 0.1 10.1 1.2 -28 29.2 -2.6 

  ZK312-356 76.57 0.23 1.38 4.9 3.8 -28.7 32.5 -3.8 

  ZK312-357 75.97 
   

2.9 
  

-3.6 

  ZK312-358 75.17 0.22 1.31 5.2 4.2 -28.5 32.7 -4.4 

  ZK312-359 74.57 
   

4.3 
  

-2.8 

  ZK312-360 73.97 0.14 0.91 5.9 5.3 -28.3 33.5 -3 

  ZK312-361 73.27 0.21 0.9 6.1 2.9 
  

-2.7 

  ZK312-362 72.67 
 

1.22 4.4 4.6 -28.5 33.1 -2.3 

  ZK312-363 72.07 
 

1.38 5.6 4.2 
  

-2.5 

  ZK312-364 71.57 0.21 1.32 4.9 3.1 -28.4 31.4 -3.4 

  ZK312-365 70.34 0.21 1.33 5.4 5 
  

-3.3 

  ZK312-366 69.74 
 

0.2 0.6 2.9 
  

-3.1 

  ZK312-368 67.94 0.24 0.34 10 1.6 -28.9 30.5 -4 

  ZK312-370 67.44 
 

0.66 8.2 5 -29.2 34.2 -2.1 

  ZK312-371 66.84 0.17 0.94 5.5 5.3 
  

-2.5 

  ZK312-372 66.24 0.19 0.55 8.9 4.3 -28.8 33 -3.8 

  ZK312-373 65.45 0.15 1.07 4.7 5.5 
  

-2.5 

  ZK312-374 65.05 
   

6 -27.9 33.9 -2.1 

  ZK312-375 64.55 
   

5.2 
  

-3.8 

  ZK312-376 63.95 0.23 0.3 8.6 3.6 -28.1 31.7 -3.9 

  ZK312-377 63.35 
   

1.8 
  

-3.8 

  ZK312-378 62.85 0.17 0.47 6.5 4.2 -28.7 32.9 -4.8 

  ZK312-379 61.85 
   

5.1 
  

-4 

  ZK312-380 61.25 0.22 1.4 6.3 4.6 -28.7 33.3 -3.5 
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ZK312-381 60.65 
   

4.7 
  

-4.3 

  ZK312-382 60.05 0.22 
  

4 -28.9 32.9 -5.2 

  ZK312-383 59.45 
   

4.6 
  

-4.7 

  ZK312-384 58.95 0.42 1.7 9 3.5 -29.3 32.8 -4.7 

  ZK312-385 58.35 
   

4.4 
  

-6 

  ZK312-386 57.75 0.27 1.33 6.9 4.6 -29.2 33.7 -4.8 

  ZK312-387 57.05 
   

1.7 
  

-4.8 

  P312-1 56.48 
 

0.83 7.8 3.7 -29.1 32.8 -3.4 

  ZK312-388 56.45 0.32 1.21 7.5 4.9 -28.9 33.8 -4.9 

  ZK312-389 55.85 
   

5.9 
  

-4.2 

  ZK312-390 55.29 
   

5.5 -28.9 34.4 -4.1 

  ZK312-391 54.79 
   

4 
  

-4.2 

  P312-5 54.48 0.42 0.95 2.8 
    

  ZK312-392 54.19 
 

0.68 7.4 3.5 -29.2 32.7 -5 

  P312-6 53.98 
   

0.6 
  

-2.6 

  ZK312-393 53.49 
   

0.7 
  

-2.9 

  P312-8 52.98 4.57 0.13 6.3 0.6 -27.4 28 -3.1 

  ZK312-394 52.79 
 

0.1 8.4 1 
  

-3.7 

  P312-9 52.48 0.28 0.09 4 
    

  ZK312-395 52.19 
   

1.4 
  

-3.8 

  P312-10 51.98 
   

1 
  

-2.5 

  ZK312-396 51.59 
 

0.1 7.4 -0.1 -28 27.9 -3.5 

  P312-12 50.98 
   

0.3 
  

-4.5 

  ZK312-397 50.89 
   

-4.2 
  

-13.3 

  P312-13 50.48 
 

0.07 1.4 
    

  P312-14 49.98 0.58 
  

0.9 -29.9 30.8 -2.8 

  P312-15 49.48 0.04 
      

  P312-16 48.98 
   

1.6 
  

-2.3 

  P312-17 48.48 
 

0.02 1.1 
    

  P312-18 47.98 0.11 
  

0.6 -28.8 29.5 -2.6 

  P312-20 46.98 0.63 0.02 7.4 
    

  P312-22 45.98 
   

-6 -30.5 24.5 -10.6 

  P312-24 44.98 0.09 0.47 0.7 
 

-30.7 
  

  P312-26 43.98 0.62 
  

-4.7 -30.5 25.7 -4.1 

  P312-28 42.98 
   

-7.9 -31.2 23.3 -2.1 

  P312-30 40.96 
   

-6.4 
  

-2 

  P312-32 39.96 4.23 0.12 9.3 -0.5 -30.8 30.3 -4.4 

  P312-34 38.96 0.09 0.16 0.6 -3.8 -30.3 26.5 -12.7 

  P312-36 37.96 
 

0.01 11.6 0.9 
  

-5.3 

  P312-38 36.96 
   

1.3 
  

-5.2 

  P312-40 35.96 
 

0.09 0.3 -4 
  

-13 

  P312-42 34.96 
   

-2.9 
  

-13.2 

  P312-44 33.96 0.46 0.06 2.2 3 -28.5 31.5 -4.2 

  P312-46 32.05 3.21 
  

4.3 -27.9 32.2 -3.3 

  P312-48 31.05 4.51 0.02 9 4.5 -27.8 32.3 -5.1 
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P312-50 30.05 
   

4.4 
  

-5.4 

  P312-52 29.03 15.03 0.01 11.9 4.8 
  

-5.4 

  P312-54 28.03 
   

4.8 
  

-4.9 

  P312-56 27.03 19.83 0.01 12.2 
    

  P312-58 26.03 
   

4.4 
  

-5.8 

  P312-60 25.03 17.07 0.01 11.9 4.8 
  

-5.3 

  P312-64 23.03 6.51 0.02 11.3 1.6 
  

7.2 

  P312-66 22.03 
   

4.9 
  

-5.8 

  P312-68 21.03 5.18 0.02 11.4 5.3 
  

-6.3 

  P312-70 20.03 6.58 
   

-29.2 29.2 
 

  P312-72 19.03 0.4 0.05 0.3 
    

  P312-74 18.03 0.17 0.05 0.4 -0.9 -28.3 27.4 4.7 

  P312-76 17.03 
 

0.05 0.4 
    

  P312-78 16.03 0.13 0.67 0.3 -0.6 -29.9 29.2 4.9 

  P312-80 15.03 
 

0.83 0.1 -0.8 -30.5 29.7 4.9 

  P312-82 13.8 0.39 0.94 0 
 

-29.8 29.8 
 

  P312-84 12.8 
 

0.95 0.1 
 

-29.8 29.8 
 

  P312-86 11.8 1.95 0.98 0 
 

-29.9 29.9 
 

  P312-88 10.78 
 

1.14 0 
 

-29.8 29.8 
 

  P312-90 9.78 1.7 0.88 0.1 
 

-29.5 29.5 
 

  P312-92 8.78 
 

1.22 0.1 
 

-30 30 
 

  P312-94 7.78 0.21 0.69 0.2 
 

-29.8 29.8 
 

  ZK312-398 7.2 
 

0.13 1.2 -2.3 
  

-6.8 

  P312-96 6.78 
 

0.89 0.1 
 

-29.8 
  

  ZK312-399 6.7 
   

1.5 
  

-5.1 

  ZK312-400 6.2 22.88 
  

-0.8 -27.2 26.4 -6.5 

  P312-98 5.78 
 

0.83 0.1 
 

-29.8 
  

  ZK312-401 5.6 
   

-0.7 
  

-6.5 

  P312-101 4.24 1.72 0.91 0 -0.9 -29.6 28.7 -7.8 

  P312-103 2.8 
   

-0.6 
  

-6.3 

  P312-105 2.1 25.44 0.02 11.9 1.2 
  

-3.5 

  P312-106 1.9 
   

-0.8 
  

-3.8 

  P312-107 1.7 
   

-2.1 -27.8 25.7 -6 

  P312-108 1.5 
   

1.1 
  

-5.5 

  P312-109 1.3 
 

0.02 11.4 -0.5 
  

-6.2 

  P312-111 0.9 
   

-1.6 
  

-6.3 

  P312-112 0.7 
   

-0.7 
  

-6.3 

  P312-113 0.5 
   

0.3 
  

-6.3 

  P312-114 0.3 
 

0.02 11.8 -0.3 
  

-6 

  

 

                    

2. Jiulongwan Section (Intra-shelf-basin facies) 

                      

HN-23 154 3.53 15.1 1.1 -5.3 -34 28.7 -6.4 
  

HN-21 152 1.1 5.2 3.7 -4.4 -37.4 33 -3.1 14.2 694.1 
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HN-20 151 
  

1 -5.6 -38.2 32.6 -7.7 17.4 1399.2 

HN-19 150 
  

1.4 -6.6 -37.5 31 -7.2 16.7 789.4 

HN-18 149 1.49 6.4 1.6 -6.4 -38.2 31.7 -5 15.5 813.8 

HN-17 148 
  

1.3 -7.2 -38.3 31.2 -6.8 19.2 375.7 

HN-16 147 
  

0.5 -7.4 -38.5 31.2 -8.5 1.1 5064 

HN-15 146 3.89 5 1.8 -7.9 -38.2 30.3 -5.9 16.2 1025.3 

HN-13 144 2.9 4.8 1.1 -7.8 -38.4 30.6 -5.2 
 

 HN-09 144 3.22 4.6 0.9 -8.3 -38.6 30.4 -5.2 
 

 HN-12 143 4.03 5.1 0.8 -7.8 -38.6 30.8 -6.4 
 

 HN-11 142.2 1.47 2 0.6 -6.4 -37.4 31 -1.8 
 

 JLW-01 142 8.56 1 10.4 -7.8 -37.9 30.1 -0.2 7.5 423.5 

HN-08 141.5 
 

0.2 11 -8.6 -37.3 28.7 -7.4 34.3 3263.9 

JLW-02 141.3 
 

0.4 10.5 -7.7 -37 29.3 -3.2 

  HN-10 140.9 1.17 0.3 10.8 -8.7 -36.5 27.8 -7.8 
 

12.4 

JLW-03 140.6 1.36 0.4 10.6 -7.7 -37 29.2 -3.6 25.2 587 

JLW-04 140.3 0.94 0.4 11.9 -7.5 -36.9 29.4 -3 25.7 942.5 

HN-06 140 
 

0.2 10.6 -7.8 -37.6 29.9 -4.2 29.7 118.4 

JLW-05 139.9 1.76 0.5 9.5 -7.9 -36.4 28.6 -4.2 

  JLW-06 139 1.05 0.2 10.5 -8 -35.8 27.8 -5.2 19.7 1146.1 

HN-07 138.5 
 

0.1 10.8 -8.2 -36.9 28.8 -5.8 26.9 36.1 

JLW-07 138.2 1.01 0.1 11.2 -8.5 -33.5 25 -7.3 
 

 JLW-08 137.1 0.33 0.1 10.4 -8.4 -33.7 25.3 -7.3 13.9 735.5 

JLW-09 136 0.31 0 11.4 -8.3 -31.4 23.1 -7 
 

 JLW-10 135 0.34 
  

-8.4 -32.5 24.1 -7.4 13.5 

 JLW-11 134.2 0.67 0.1 10.5 -8.4 -29.4 21 -7.7 
 

 JLW-12 133.6 0.45 0.3 10.1 -8.4 -34.9 26.5 -7.9 
 

283.7 

JLW-13 132.7 0.33 0.1 11.1 -8.5 -31.8 23.3 -8.3 
 

 JLW-14 132 0.27 -0.7 11.4 -8.5 -32.9 24.4 -8.4 15.8 263.7 

JLW-15 131 0.29 0 11.1 -8.5 -32.3 23.8 -8.4 
 

 JLW-16 130 0.3 0.4 10.1 -8.6 -32.1 23.5 -8.6 18.5 883 

JLW-17 129 0.31 0 10.6 -8.7 -28.4 19.6 -8.9 
 

 JLW-18 128.3 0.31 -1.1 11.3 -8.8 -31.2 22.5 -9 18.4 843 

JLW-19 127 0.45 0.1 12.2 -8.8 -35.5 26.7 -8.9 
 

 JLW-20 126.2 0.35 1.4 10.8 -8.9 -35 26.2 -9.1 
 

 JLW-21 125.2 0.54 0.1 10.1 -8.9 -35.5 26.6 -9 18.4 818.6 

JLW-22 124.2 0.6 1.1 10.3 -8.7 -35.4 26.7 -9.7 
 

 JLW-23 123.2 0.44 0 10.5 -9 -32.5 23.6 -9.8 15.5 323.3 

JLW-24 122 0.51 1.5 9.6 -9 -26.9 17.9 -9.7 
 

 JLW-25 121.2 0.45 0 10.5 -9 
  

-9.8 20.2 409.1 

JLW-26 120 0.56 0 10.2 -9.1 
  

-10 
 

703.2 

JLW-27 119.4 0.82 0 11.7 -9.1 
  

-9.9 
 

 JLW-28 118.6 0.95 0.9 10 -9.1 -34.7 25.6 -9.9 
 

 JLW-29 118 0.62 0 10.4 -9 -28.1 19.1 -10.5 14.6 606.2 

JLW-30 117 8.04 0.5 10.5 -8.9 -34.8 25.9 -7.1 
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JLW-31 116 4.56 0 11.1 -9.1 -27.8 18.7 -6.8 
 

 JLW-32 115 7.98 2.7 8.5 -8.7 -27.5 18.8 -6.4 21.3 965.9 

JLW-33 114 3.65 0 10.1 -7.8 -27.8 19.9 -5.7 28.3 921.7 

HN-05 113.3 
 

0.2 10.3 -9.1 -23.2 14.1 -10.2 20.8 173.8 

JLW-34 113 4.5 1.6 10.3 -6.3 -27.9 21.6 -2.6 
 

 JLW-35 112 3.93 0 11.6 -5.4 -26.3 20.9 -4 17.2 303.6 

JLW-36 111 
 

2.5 8.9 -6.4 -27.4 21 -4.2 
 

 JLW-37 110.7 8.69 0 9.8 -6.1 -27.1 21 -4.3 
 

 JLW-38 109.6 3.5 2.5 12.2 -5.1 
  

-5.1 26.3 

 JLW-39 108.6 
 

0.1 3.5 -2 -28.9 26.9 -7.3 
 

 JLW-40 107.7 3.57 0 14.2 -2.7 -28 25.2 -5.1 19.9 448.7 

JLW-41 106.6 4.02 1.1 11.7 -1.8 -27.5 25.7 -3.7 
 

 JLW-42 105.6 3.83 0.1 11.6 -1.3 
  

-3.6 18.6 480.7 

HN-04 105 3.86 0 9.6 -8.1 -26.6 18.4 -6 28.6 127.6 

JLW-43 104.6 4.67 3.6 10.2 -0.8 -27.2 26.4 -4.1 
 

 JLW-44 103.7 3.66 0 11.2 -0.2 -26.2 26 -2.7 
 

 JLW-45 102.7 4.47 1.7 12 -0.1 
  

-4.3 
 

 JLW-46 101.7 4.17 0.1 10.4 2.7 -27.6 30.3 -4.8 
 

612.9 

JLW-47 100.8 3.93 2.7 10.4 2.9 -27.1 30.1 -6.1 
 

 JLW-48 99.8 3.62 0.1 12 2.9 -28.1 31 -6.4 29.9 

 JLW-49 98.8 1.25 2.3 8.9 3.5 -27 30.5 -3.6 
 

 HN-02 98 4 0 12.3 -2.7 -28.8 26.2 -5.2 
 

 JLW-50 97.8 1.21 0.1 11.2 2.6 -27 29.6 -7.8 33.3 530.5 

JLW-51 96.8 1.14 0.1 11.8 3.2 -27.3 30.5 -6.7 
 

 JLW-52 95.8 1 0.1 11.1 4 -26.4 30.4 -4.4 
 

 JLW-53 94.8 0.64 
  

4.3 -27.2 31.5 -6.5 
 

 JLW-54 93.8 4.05 0.1 9.2 4.5 
  

-9.1 36.4 422.7 

JLW-55 92.8 0.51 1.4 10.8 4.8 -27.6 32.4 -9 
 

 HN-01 92 0.42 0 11.8 0.3 -25.7 26 -4.7 
 

 JLW-56 91.6 0.86 0.4 10.7 4.4 -29.6 34 -4.3 29.7 73.9 

JLW-57 91 
 

2.1 10.6 4.5 -29.5 34 -3.5 
 

 JS-69 80 
  

6 -0.1 -29.5 29.4 -2.2 
 

0 

JS-68O 79 
 

0.7 6.4 -1.1 
  

-3.7 
 

 JS-68I 79 
 

0.8 6.2 -1.2 -29.5 28.3 -3.9 39 123.9 

JS-67 78 
  

5.9 1.4 -29.3 30.6 -1.2 34.9 141.8 

JS-66 77 
  

4.2 1.2 -29.6 30.9 -1.2 35.6 266.3 

JS-65 76 
  

7.1 -1.1 -29.5 28.3 -0.4 35.1 56.3 

JS-64 75 0.45 1.6 6.2 3.1 -30.1 33.2 -4.3 43 348.2 

JS-63 74 
  

5 4.5 -30 34.5 -1.8 38.4 216.2 

JS-62 72.8 
  

6.9 4.9 -30 34.9 -0.8 36.8 229.7 

JS-60 70 0.44 1.6 5.3 3.5 -30.1 33.6 -4.4 41.5 922.6 

JS-59 69 
  

7.6 5 -30.1 35.1 -1.7 40.6 259.7 

JS-57 65 
  

5.7 4.9 -30.1 35 -1 38.6 555.4 

JS-56 64 0.72 0.6 6 -0.6 -29.7 29.1 -3 35.4 361 
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JS-55 63 
  

5.5 3.4 -29.4 32.9 -1.4 35.2 535.4 

JS-54 62 
  

5.8 -0.8 -29.9 29.1 -0.8 47.7 510 

JS-52 60 
  

6.5 4.4 -29.9 34.3 -2.3 48.2 891.9 

JS-51 59 
 

0.6 7.6 2.6 -29.5 32.1 -4 
 

0 

JS-48 56 1.24 1 7.1 2.6 -29.6 32.2 -4.4 33.8 192.3 

JS-47 55 
  

5.6 4 -29.6 33.6 -1.4 40.3 595.5 

JS-45 52 0.31 0.7 7.9 3 -29.7 32.6 -4.4 38 111.2 

JS-44 51 
  

7.7 4 -30.3 34.3 -3.3 48.3 138.1 

JS-42 49 0.49 0.9 6.4 3.4 -30.1 33.5 -4.8 32.6 357 

JS-40 41 
 

1.1 5.9 4.8 -30 34.8 -2.4 36.2 448.1 

JS-39 40 
  

6.7 5.7 -29.8 35.5 -1.7 31.5 93.7 

JS-37 38 
 

0.8 5.8 5.2 -29.5 34.6 -4.6 44 193.7 

JS-35 35.6 
  

8 6.2 -30.1 36.3 -1.5 41.2 114 

JS-34 35 
 

0.9 5.8 5 -29.9 34.8 -5.6 
 

0 

JS-32 33 
  

5.7 5.2 -30.1 35.3 -2.3 35.5 167.8 

JS-31 32 
  

5.9 5.7 -30.2 35.9 -1.8 34.3 247.7 

JS-29 30 
 

1.2 5.8 4.5 -30 34.5 -4.4 33.2 50.5 

JS-28 29 
  

5.9 5.2 -30.2 35.4 -2.1 30.5 159.3 

JS-26 25 0.32 0.7 7.4 5 -30 35.1 -2.7 
 

0 

JS-24 19.7 0.85 2.9 4.2 3.6 -30.4 34 -6.4 34 1554.3 

JS-22 17.5 
  

7.5 1.2 -30 31.2 -2.5 34.6 206.2 

JS-21 16 
 

1.8 5.5 2.7 -29.7 32.4 -5.7 33.7 538.7 

JS-18 8 5.01 1.2 6.5 -1.4 -30.1 28.7 -4.1 34.7 483.1 

JS-17 6 5.34 0.5 7.1 -2.4 -30.1 27.8 -2.5 34.1 316.9 

JS-15 5.3 
 

0.1 7.4 1.2 -29.1 30.3 -3 41.2 230.8 

JS-16 4 
 

0 9.7 -11.6 -30.3 18.7 -9.5 45.1 73.7 

HJ-02 1.6 18.15 0.2 11.6 -3.6 -30.1 26.5 -9.1 41.1 64.4 

HJ-03 1.3 16.53 0 12 -3.3 -30.4 27.1 -7.5 29 37.7 

JS-12 1.25 
 

0 10.1 -3.4 
  

-7.6 28.4 

 JS-13 0.75 
 

0.2 11.8 -3.2 -29 25.8 -9.5 30.5 

 HJ-01 0.7 27.32 0 11.7 -3.4 -29.5 26.1 -12.6 41.2 

 JS-14 0.1 16.46 0.5 9.5 -3.9 -27.7 23.8 -12.9 40.1 

 
         

  
 

3. Siduping Section (Upper slope facies) 

                      

SDP-154 166.1 
    

-29.9 
  

  SDP-155 165.9 0.28 
   

-30.2 
  

  SDP-156 165.5 
    

-30.3 
  

  SDP-159 164.9 
    

-37 
  

  SDP-160 164.4 0.15 
   

-37.9 
  

  SDP-161 163.7 
    

-38 
  

  SDP-162 163.3 0.32 
   

-38.1 
  

  SDP-163 162.9 
    

-38.4 
  

  SDP-165 162 
    

-36.9 
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SDP-166 161.7 
    

-36.5 
  

  SDP-167 161.4 
    

-34.8 
  

  SDP-168 161.1 4.93 
   

-27.9 
  

  SDP-169 161 
 

0.1 13.2 -8 -34.6 26.5 -4.9 

  SDP-170 160.7 1.21 
  

-8.3 -32 23.7 -1.1 

  SDP-171 160.4 5.61 0.2 12.3 -2.2 -32.9 30.8 -4.8 

  SDP-172 160.1 4.45 0.1 10.7 -1.7 -30 28.3 -4 

  SDP-173 159.9 4.15 0 11.3 -2 -28.8 26.8 -4.3 

  SDP-174 159.6 
 

0.1 7.3 -1.4 -31.5 30 -3.9 

  SDP-175 159.4 4.5 0 10.3 -2.6 -34.6 32 -3.7 

  SDP-176 159.2 4.53 
   

-29.8 
  

  SDP-177 159 4.19 0.1 4 0.1 -29.9 30.1 -3.8 

  SDP-178 158.6 
 

0.1 11.2 -2.4 -31.5 29 -3.6 

  SDP-179 158.3 16.24 0.3 12.1 -2.9 -33 30.1 -1.5 

  SDP-180 157.9 9.93 0.2 10.3 -4.9 -34.2 29.3 -3.1 

  SDP-181 157.4 
 

0.3 12.2 -2.4 -33.1 30.6 -2.7 

  SDP-182 157.2 
 

0.1 13.3 -5.3 -31.9 26.6 -0.9 

  SDP-183 156.6 3.64 0.1 11.4 -5.7 -30.2 24.5 -3.3 

  SDP-184 156.2 6.62 0.4 9.9 -5.7 -27.3 21.5 -3 

  SDP-185 156 
    

-30.5 
  

  SDP-186 155.8 2.74 
   

-30.2 
  

  SDP-187 155.7 
    

-30.2 
  

  SDP-188 155.6 
    

-30.2 
  

  SDP-189 155.5 
    

-30.4 
  

  SDP-190 155.4 2.15 
   

-30.6 
  

  SDP-191 155.2 
    

-31.8 
  

  SDP-192 155 3.15 0.4 12.5 -6.2 -33.9 27.7 -2.6 

  SDP-193 154.5 
 

1.2 1.7 -5.2 -33.5 28.3 -9.7 

  
SDP-194-2 154.1 

 
1.5 11.1 

 
-34.3 

  

  SDP-194 153.7 
 

1.5 11.1 -5.5 -34.3 28.8 -3.8 

  SDP-195 152.8 1.29 0.1 11.5 -7.3 -28.1 20.8 -2.4 

  SDP-196 151.6 1.07 
   

-34 
  

  SDP-197 150.7 1.6 0.2 11.3 -5.4 -28.5 23 -5.8 

  SDP-198 150.2 
 

2.8 10.1 -4.7 -31.3 26.6 -5.4 

  SDP-199 149.4 0.51 0.1 11.6 -3.1 -28.8 25.7 -5.9 

  SDP-200 148.4 1.24 0.3 11.6 -3.2 -29.3 26.1 -7.1 

  SDP-201 148 0.34 0.1 4 -3.9 -36.6 32.7 -6.1 

  SDP-202 146 0.77 0.1 7.7 -3.6 -29 25.5 -6.7 

  SDP-215 145 0.69 0.1 11.5 1 
  

-5.9 

  SDP-214 144 0.86 0.1 9.9 1.9 -26.9 28.8 -5.9 

  SDP-213 143 0.93 0.2 9.3 2.4 -27.2 29.6 -5 

  SDP-212 142 0.8 0.1 9.2 2.2 -27 29.2 -4.3 

  SDP-211 139.5 0.34 0.1 10 1.9 -27.2 29.1 -2.9 

  SDP-210 136.7 1.11 0.1 12.6 1 -28.3 29.3 -6.3 
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SDP-209 134.2 0.38 0.1 9.2 1.7 -27 28.7 -2.9 

  SDP-208 132.8 0.51 0.2 10.1 1.8 -27.7 29.6 -4.3 

  SDP-207 130 2.43 0 11.3 
 

-31.3 
  

  SDP-206 128 2.34 0.1 12.3 -2.1 -22.5 20.4 -7.4 

  SDP-205 124 0.84 
   

-22.1 
  

  SDP-204 123.5 1.01 
   

-27.6 
  

  SDP-203 122.7 0.72 
  

1.2 -26.6 27.8 -4.7 

  SDP-143 114.7 0.31 0.1 8.6 1.6 -27.1 28.7 -3.8 

  SDP-142 114.1 
 

0.1 8 1.7 -27.1 28.9 -4.1 

  SDP-140 113.2 0.86 0.3 7.6 2.1 -28 30.2 -5.2 

  SDP-138 111.7 1.61 0.1 8.2 2.3 -27 29.3 -6.7 

  SDP-135 110.5 2.07 0.3 9.6 2.6 -27.7 30.3 -6.6 

  SDP-134 109.8 0.94 0.1 6.9 0.9 -26.6 27.5 -5 

  SDP-132 108.6 0.7 0.2 7.2 1.7 -25.4 27.1 -4.3 

  SDP-131 108.4 
 

0.1 8.2 1.4 -27 28.3 -4.4 

  SDP-130 108 0.76 0.2 8 0.5 -26.9 27.4 -3.8 

  SDP-129 107.4 0.84 0.2 7.8 1.7 -26.2 28 -4.8 

  SDP-128 106.7 0.89 0.2 7.1 1.9 -26.8 28.7 -4.8 

  SDP-126 106 1.1 0.1 8.2 2.1 -25.4 27.5 -4.7 

  SDP-125 105.1 1.48 0.1 6.9 2 -25.9 27.9 -5.6 

  SDP-124 104.7 
 

0.1 7.4 2.5 -25.9 28.4 -4.4 

  SDP-123 104.2 1.48 0.2 7.4 2.3 -25.4 27.7 -5.2 

  SDP-122 103.2 
 

0.2 8.9 2.6 -26.3 28.9 -4.6 

  SDP-121 103 1.17 0.1 8.2 2.9 -26 28.9 -5.2 

  SDP-120 102.2 
 

0.3 6.7 1.9 -27.6 29.5 -4.4 

  SDP-119 101.3 0.71 0.2 7.5 1.5 -26.9 28.4 -4.4 

  SDP-118 100.5 
 

0.2 8.3 2.3 -26.5 28.7 -4.6 

  SDP-117 99.5 0.4 0.2 9.7 0.9 -27.1 27.9 -6.2 

  SDP-116 98.8 
 

0.2 9.5 1.6 -26.8 28.4 -4.8 

  SDP-114 97.7 0.93 0.1 9.4 1.8 -26.7 28.5 -4.4 

  SDP-111 96.4 
 

0.1 7.6 1.7 -26.6 28.3 -5.2 

  SDP-110 96.1 1.39 0.2 8.6 2.1 -26.6 28.6 -4.9 

  SDP-108 93.3 
 

0.1 10.5 1.8 -27.1 28.9 -5.6 

  SDP-106 92.1 0.16 0.1 9.6 1.5 -27.4 28.9 -6.5 

  SDP-103 90.7 0.16 0.1 8.7 2.1 -26.2 28.3 -7.3 

  SDP-101 89.7 0.17 0.1 9.2 2.1 -26.8 28.9 -7.3 

  SDP-99 89 
 

0.1 8.7 2.2 -26.6 28.8 -6.7 

  SDP-97 87.7 0.22 0.1 7.7 1.2 -26.2 27.5 -8.1 

  SDP-96 87 
 

0.1 7 1.2 -26.4 27.7 -5.7 

  SDP-95 86.2 0.18 0.2 7.7 1.8 -26.2 28 -5.7 

  SDP-94 85.4 
 

0.1 10.8 0.1 -27.5 27.5 -4.7 

  SDP-92 84.5 0.45 0.4 8.4 1.4 -28.2 29.6 -6.5 

  SDP-91 84 
 

0.1 10.8 1.2 -27.8 29 -7.8 

  SDP-89 82.7 0.48 0.2 9.7 2.7 -27.7 30.4 -7.3 

  SDP-88 81.9 
 

0.2 10.4 4 -26.9 30.9 -7.3 
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SDP-86 80.7 0.3 0.2 8.9 4.3 -27 31.3 -7.4 

  SDP-84 79.2 
 

0.2 9.6 4.5 -26.8 31.3 -8.3 

  SDP-83 78.6 0.32 0.3 6.9 4.3 -27.1 31.4 -9 

  SDP-82 77.6 
 

0.3 8.7 4.4 -26.8 31.2 -7.9 

  SDP-81 76.8 0.54 0.1 11.4 4.5 -32.2 36.7 -8 

  SDP-80 75.4 
 

0.2 8.5 4.7 -26.7 31.4 -7.1 

  SDP-78 74.2 0.58 0.3 8.6 4.6 -27 31.6 -7.7 

  SDP-76 73.5 
 

0.1 11.7 4.6 -27.5 32.2 -7.7 

  SDP-74 72.3 1.2 0.2 11.4 3.7 -26.9 30.7 -7.8 

  SDP-72 70.5 
 

0 10.4 -1.4 -26.6 25.2 -6.9 

  SDP-69 70.1 
 

0.1 10.1 -1.8 -28.4 26.6 -7 

  SDP-67 69.4 2.21 0.2 9.5 0.6 -28.2 28.8 -7.7 

  SDP-71 68.7 
 

0 11.9 1.1 -27.4 28.5 -7.5 

  SDP-70 67.8 0.72 0.1 11.3 
 

-27.1 
  

  SDP-66 66.9 
 

0.1 11.2 3.7 -28.7 32.3 -8 

  SDP-64 66.2 2.21 0.1 10.7 3.4 -27.9 31.4 -8.4 

  SDP-62 65.3 
 

0.1 11 3.3 -27.9 31.2 -8.1 

  SDP-61 64.7 1.81 0.3 11 3.2 -28.9 32.1 -7.8 

  SDP-60 63.4 
 

0.3 11.7 3.6 -26.8 30.3 -8.1 

  SDP-59 62.7 0.71 1.2 0.6 1.4 -30 31.4 
 

  SDP-58 62.2 
 

0.4 1.7 2.7 -29 31.7 -8.7 

  SDP-57 61.6 
   

3.3 
  

-7.6 

  SDP-56 60.6 
   

3.6 
  

-7.6 

  SDP-55 59.1 
   

4.1 -27 31.1 -8 

  SDP-54 58.6 
   

3.8 
  

-8.4 

  SDP-53 58.2 1.89 0.2 11.9 3.5 -28.8 32.3 -8.6 

  SDP-53 58.2 
   

3.5 -28.8 32.3 -8.5 

  SDP-51 55.2 
   

3.8 -27.2 31 -6.5 

  SDP-50 51.7 
   

3.6 -27.7 31.4 -7.4 

  SDP-49 50.2 
   

3.6 
  

-7.2 

  SDP-48 47.5 
   

3.7 -28.4 32 -7.8 

  SDP-47 45.2 
   

3.9 
  

-7.7 

  SDP-46 43.2 
   

3.6 -28.3 31.9 -7.9 

  SDP-45 41.4 
   

4.1 -28.8 32.9 -8.1 

  SDP-44 41 
 

0.3 10.2 3.9 -27.9 31.8 -8.9 

  SDP-43 40.2 1.93 
  

5.1 
  

-8.4 

  SDP-42 39.2 1.63 0.2 7.8 5.5 -25.7 31.2 -8.1 

  SDP-41 35.2 
 

0.1 12.3 2.8 -25.8 28.6 -7.2 

  SDP-40 34.4 2.57 0.2 11.6 2.8 -27.6 30.4 -8.3 

  SDP-39 33.5 
 

0.2 11.1 3.2 -27.8 30.9 -8.2 

  SDP-38 32.4 5.63 0.1 12.1 2.1 -28.3 30.4 -8.1 

  SDP-37 31.6 
 

0.3 9.9 1.5 -28.5 30 -8.9 

  SDP-36 31.1 6.08 0.1 10.7 2.3 -27.5 29.8 -8.8 

  SDP-35 23.7 
 

0.4 7.5 2.5 -28.4 30.9 -5 

  SDP-34 23.1 
 

0.6 7.3 2.8 -28.6 31.3 -5.3 
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SDP-33 20.9 1.23 0.6 6.7 2.8 -28.5 31.3 -4.7 

  SDP-32 19.9 
 

1.2 6.1 2.6 -29.1 31.7 -3.5 

  SDP-31 15.9 13.64 0.5 7.2 -0.4 -28.9 28.5 -4.1 

  SDP-30 14.9 
 

0.1 7.4 0.3 -27.4 27.7 -6.1 

  SDP-29 13.9 22.14 0.2 8 0.1 -28.9 29 -6.5 

  SDP-28 13.1 
 

0.3 6.2 0.6 -31.8 32.4 -6 

  SDP-27 12.1 14.61 0.2 6.9 -0.3 -29.2 28.9 -7.1 

  SDP-8 12 
 

0.6 
 

1.4 -28.1 29.5 -5.8 

  S-11.7 11.7 
 

0.1 
  

-27.6 
  

  SDP-26 11.6 
 

0.1 0.4 -3.5 -28.4 24.9 
 

  S-11.6 11.6 
 

0.2 
  

-28.8 
  

  SDP-7 11.5 
 

1.5 
 

1.5 -29.5 31 -1.8 

  SD-40 11.3 
 

0.5 
 

1.5 -28.7 30.2 -3 

  SDP-6 11.3 
 

0.9 
 

1.6 -29.1 30.7 -2.6 

  SD-39 11 
 

0.5 
 

1.2 -29.2 30.5 -4.4 

  SDP-25 10.8 4.55 0.1 0.2 -7.3 -28 20.7 
 

  S-10.8 10.8 
 

0.3 
 

1 -26.1 27.1 -2.4 

  SD-38(O) 10.8 
 

0.2 
  

-27.3 
  

  S-10.7 10.7 
 

0.3 
 

1.1 -27.5 28.6 -11.5 

  SD-38 10.5 
 

0.3 
 

0.2 -28.5 28.7 -3.4 

  S-10.4 10.4 
 

0.2 
 

-0.3 -26.8 26.5 -11 

  SD-37 10.3 
 

0.3 
 

0.6 -27.4 28 -4.9 

  S-10.2 10.2 
 

0.3 
  

-29.7 
  

  SD-36 10 
 

0.3 
 

1.5 -28 29.5 -5.6 

  S-9.9 9.9 
 

0.2 
  

-29.8 
  

  SD-35 9.8 
 

0.2 
 

0.7 -28.6 29.3 -4.7 

  SD-34 9.5 
 

0.2 
 

-0.1 -29.9 29.7 -7.8 

  SD-32 9.4 
 

0.2 
 

0.8 -28.1 28.9 -5.3 

  S-9.2 9.2 
 

0.9 
  

-28.5 
  

  SD-31 9.1 
 

1.5 
 

-2 -29.4 27.4 -10.9 

  S-9.0 9 
 

3.2 
  

-33.5 
  

  SD-30 8.9 
 

2.6 
 

-2.3 -33.2 30.9 -6.5 

  S-8.8 8.8 
 

3.3 
  

-33 
  

  SDP-5 8.7 
 

5 
  

-33.3 
  

  S-8.6 8.6 
 

4.1 
  

-33 
  

  SDP-4 8.5 
 

3.1 
  

-33.7 
  

  S-8.4 8.4 
 

4.3 
  

-33.1 
  

  SDP-23 8.2 
 

0.3 0.5 -1 -30.1 29.2 
 

  S-8.2 8.2 
 

3.6 
  

-33.4 
  

  SDP-3 8.2 
 

2.4 
  

-33.6 
  

  S-8.0 8 
 

3.5 
  

-33.8 
  

  S-7.8 7.8 
 

4.5 
  

-33.9 
  

  S-7.6 7.6 
 

3.4 
  

-33.9 
  

  SDP-22 7.5 
 

3.7 0.1 
 

-33 
  

  S-7.4 7.4 
 

3.3 
  

-34 
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S-7.2 7.2 
 

2.6 
  

-33.7 
  

  S-7.03 7 
 

3.8 
  

-34.2 
  

  S-7.0 7 
 

2.7 
  

-34 
  

  S-6.8 6.8 
 

2 
 

-3.8 -33.8 30 -8.5 

  S-6.6 6.6 
 

1.3 
  

-33.7 
  

  S-6.4 6.4 
 

0.2 
 

-4.6 -33.6 29.1 -8.7 

  SDP-21 6.3 
 

2 0.1 
 

-33.5 
  

  SDP-2 6.3 
 

1.1 
  

-33.3 
  

  S-6.2 6.2 
 

1.9 
  

-34 
  

  S-6.1 6.1 
 

2.2 
  

-34.2 
  

  S-5.9 5.9 
 

1.5 
 

-3.5 -34.1 30.6 -8.6 

  SDP-1 5.9 
 

1.6 
  

-34.4 
  

  S-5.8 5.8 
 

2.3 
 

-5.4 -34.2 28.8 -12.2 

  S-5.7 5.7 
 

1 
 

-3.8 -33.8 30 -8.5 

  S-5.5 5.5 
 

0.8 
  

-33.2 
  

  S-5.4 5.4 
 

0.1 
 

-4 -31.3 27.3 -8.6 

  S-5.3 5.3 
 

0.2 
 

-3.9 -31.8 27.8 -8.7 

  S-5.25 5.3 
 

1.3 
 

-4.1 -34 29.8 -8 

  S-5.15 5.2 
 

1 
 

-4.7 -33.5 28.8 -8.3 

  S-5.05 5.1 
 

0.1 
 

-4.2 -29.4 25.1 -4.4 

  S-5.0 5 
 

0.2 
 

-4.2 -31.1 26.9 -8.4 

  SDP-20 4.8 
 

0.1 10.8 -3.9 -32.6 28.6 -8.3 

  S-4.8 4.8 
 

0.1 
 

-3.3 -27.1 23.8 -9.5 

  SDP-19 4.6 3.08 1.2 0 
 

-33.7 
  

  S-4.5 4.5 
   

-3.9 
  

-8.3 

  SD-19 4.5 
 

0.1 
 

-3.9 -27.2 23.3 -8.1 

  SDP-18 4.5 
 

0.1 9.1 -4.1 -30.9 26.8 -8.4 

  S-4.4 4.4 
 

0.1 
 

-4.1 -26 22 -8.3 

  SD-18 4.4 
 

0.1 
 

-3.7 -27.5 23.7 -8 

  S-4.3 4.3 
 

0.1 
 

-4.1 -25.9 21.9 -8.5 

  S-4.2 4.2 
 

0.1 
 

-4 -27.4 23.4 -8.4 

  SD-17 4.2 
 

0.1 
 

-3.9 -28 24.1 -7.9 

  S-4.1 4.1 
 

0.1 
 

-3.3 -25.8 22.5 -7.5 

  SD-16 4.1 
 

0.1 
 

-3.8 -25.3 21.5 -7.8 

  S-4.0 4 
 

0.1 
 

-3.2 -26 22.8 -7.9 

  SD-15 3.9 
 

0.1 
 

-3.4 -25.4 22 -7.5 

  S-3.7 3.7 
 

0.1 
 

-3.2 -26.6 23.3 -7.9 

  SD-14 3.7 
   

-3.2 
  

-6.8 

  SD-13 3.5 
   

-2.9 
  

-7.3 

  S-3.4 3.4 
   

-3.2 
  

-9.1 

  S-3.25 3.3 
 

0.1 
 

-3.1 -25.7 22.6 -7.5 

  SD-12 3.2 
   

-3 
  

-7.5 

  S-3.0 3 
 

0.1 
 

-3.3 -25.8 22.5 -8.1 

  SD-11 2.9 
   

-2.7 
  

-8.3 

  S-2.8 2.8 
   

-3.1 
  

-8.4 
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S-2.7 2.7 
 

0.1 
  

-26.3 
  

  SD-10 2.7 
 

0.2 
 

-2.7 -27.3 24.6 -7.6 

  S-2.6 2.6 
 

0.1 
 

-2.9 -26.1 23.2 -8.5 

  S-2.4 2.4 
 

0.1 
 

-3 -26.6 23.6 -8.4 

  SD-9 2.4 
 

0.3 
 

-2.8 -26.4 23.5 -7.8 

  S-2.2 2.2 
 

0.1 
 

-2.7 -27 24.4 -8.1 

  SD-8 2.1 
 

0.1 
 

-2.9 -26.5 23.6 -7.5 

  S-2.0 2 
 

0.1 
 

-3.1 -26.5 23.3 -7.6 

  S-1.9 1.9 
   

-2.7 
  

-7.9 

  SD-7 1.9 
 

0.1 
 

-3 -26.1 23.1 -7.7 

  S-1.8 1.8 
 

0.1 
 

-3 -25.4 22.4 -8.7 

  S-1.6 1.6 
 

0.1 
 

-2.5 -26.2 23.7 -7.3 

  SD-6 1.5 
 

0.1 
 

-2.5 -25.2 22.7 -7 

  S-1.4 1.4 
 

0.1 
 

-3 -27.6 24.5 -7.9 

  SD-5 1.3 
   

-2.3 
  

-8.3 

  SD-4 1.2 
   

-2.5 
  

-7.6 

  S-1.1 1.1 
 

0.1 
 

-2.6 -26.3 23.7 -7.8 

  S-1.02 1 
 

0.1 
 

-2.9 -27.6 24.7 -7.1 

  S-1.0 1 
 

0.1 
 

-2.8 -28.1 25.3 -7.6 

  SD-3 0.8 
   

-2.3 
  

-12.4 

  S-0.5 0.5 
   

-2.4 -26.1 23.8 -9.3 

  SD-2 0.5 
   

-2.2 
  

-7.8 

  SD-1 0.2 
 

0.1 
 

-2.2 -25.2 23 -7.6 

  S-0.1 0.1   0.1   -3 -25.8 22.8 -6.4     

Note: (1) Zhangcunping section: all data are from this study; (2) Jiulongwan section: data of 9 

samples labeled with "JLW" are from this study while the rest data are from Li et al. (2010); data 10 

in McFadden et al. (2008) were not included because of their slightly different depth-scaling 11 

system from ours. (3) Siduping section: isotope data for 0-12m except samples "SDP-18 to 27" 12 

were extracted from Jiang et al. (2010) while the rest data are from this study. The C-isotope data 13 

of the Siduping section in Wang et al. (2016) were not compiled into this dataset because this 14 

dataset shows similar stratigraphic variation to ours but have different stratigraphic depth 15 

framework from ours which makes it difficult to combine them together. 16 

 17 

 18 
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