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Abstract The TEX86 andU
Kˈ
37 molecular biomarker proxies have been broadly applied in downcore marine

sediments to reconstruct past sea surface temperature (SST). Although both TEX86 and UKˈ
37 have been

interpreted as proxies for mean annual SST throughout the global ocean, regional studies of glycerol
dibiphytanyl glycerol tetraethers (GDGTs) and alkenones in sinking particles are required to understand the
influence of seasonality, depth distribution, and diagenesis on downcore variability. We measure GDGT and
alkenone flux, as well as the TEX86 and UKˈ

37 indices in a 4 year sediment trap time series (2010–2014) in the
northern Gulf of Mexico (nGoM), and compare these data with core-top sediments at the same location.
GDGT and alkenone fluxes do not show a consistent seasonal cycle; however, the largest flux peaks for both
occurs in winter. UKˈ

37 covaries with SST over the 4 year sampling interval, but the UKˈ
37-SST relationship in this

data set implies a smaller slope or nonlinearity at high temperatures when compared with existing
calibrations. Furthermore, the flux-weightedUKˈ

37 value from sinking particles is significantly lower than that of
underlying core-top sediments, suggesting preferential diagenetic loss of the tri-unsaturated alkenone in
sediments. TEX86 does not covary with SST, suggesting production in the subsurface upper water column.
The flux-weighted mean TEX86 matches that of core-top sediments, confirming that TEX86 in the nGoM
reflects local planktonic production rather than allochthonous or in situ sedimentary production. We explore
potential sources of uncertainty in both proxies in the nGoM but demonstrate that they show nearly identical
trends in twentieth century SST, despite these factors.

1. Introduction

Lipid biomarker sea surface temperature (SST) proxies such as the TEX86 andUKˈ
37 have some advantages over

foraminiferal geochemistry in that they can be applied in regions of the ocean where carbonate is not well
preserved or where planktic foraminifera are not abundant. More importantly, they augment the suite of
SST proxies that are available for multiproxy paleoceanographic reconstruction. Each of the geochemical
SST proxies is subject to varying degrees of nontemperature overprints (e.g., salinity, pH, and redox condi-
tions), diagenetic alteration, and ecological biases that may limit its efficacy in accurately reflecting past tem-
perature variability. The relative influences of these factors can vary regionally, rendering local water column
and core-top studies valuable for interpreting SST proxy records and understanding discrepancies between
different types of contemporaneous proxy records.

Long-chain alkenones are membrane lipids produced by haptophyte algae and are ubiquitous in global mar-

ine sediments. TheUKˈ
37 index is based on the observation that haptophytes produce more di-unsaturated C37

alkenone (C37:2) relative to tri-unsaturated (C37:3) with increasing growth temperature [Brassell et al., 1986]. A

linear relationship between the UKˈ
37 index and water temperature was experimentally determined in culture

studies of Emiliania huxleyi [Prahl et al., 1988] and in global core-top calibrations [Müller et al., 1998; Conte
et al., 2006]. Despite the widespread validation of this relationship, some studies have found discrepancies
between coeval alkenone and other SST proxy data [Huguet et al., 2006; Liu et al., 2009; Castañeda et al.,
2010; Rommerskirchen et al., 2011; Seki et al., 2012]. These offsets may arise from location-specific seasonal
biases in alkenone production [Rosell-Melé and Prahl, 2013], diagenetic alteration of the alkenone signal
[Conte et al., 2006], or lateral transport of alkenones from distal locations in the fine sediment fraction
[Mollenhauer et al., 2008]. A number of experiments have also documented nonthermal influences on the

UKˈ
37 of alkenones grown under isothermal conditions such as light and nutrient limitation [Epstein et al.,

1998, 2001; Prahl et al., 2003; Yamamoto et al., 2000].
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The TEX86 index is based on the cyclopentane ring distribution of isoprenoid glycerol dibiphytanyl glycerol
tetraethers (isoGDGTs). In most marine environments, isoGDGTs are primarily produced by a group of marine
ammonia oxidizing archaea called Thaumarchaeota [Damsté et al., 2002], although there may also be
contributions from planktonic Euryarchaeota [Lincoln et al., 2014] and benthic methanotrophic archaea
[Zhang et al., 2011]. The TEX86 index is strongly correlated with upper ocean water temperatures in global
core-top calibration studies [Kim et al., 2010; Tierney and Tingley, 2014, 2015], and in the water column
[Wuchter et al., 2006; Schouten et al., 2012] despite the fact that GDGTs are produced by a broad range of mar-
ine archaea living throughout the water column [Zhu et al., 2016], and in subsurface sediments [Lipp et al.,
2008]. Recent culture studies, while confirming that increased temperatures lead to an increase in the
TEX86 index, have found evidence that low oxygen [Qin et al., 2015] and/or low nitrification rates [Hurley
et al., 2016] are also associated with increased cyclization and therefore may influence the TEX86 index. A
better understanding of the mechanisms controlling the distribution of GDGTs is needed to interpret

discrepancies between coeval TEX86 and Mg/Ca [Richey et al., 2011] or TEX86 and UKˈ
37-based SST reconstruc-

tions [Huguet et al., 2006; Liu et al., 2009; Castañeda et al., 2010; Rommerskirchen et al., 2011; Seki et al., 2012;
Tierney et al., 2016].

We evaluate controls on the TEX86 and UKˈ
37 paleothermometers in the northern Gulf of Mexico (nGoM)

by quantifying the seasonal flux of alkenones and GDGTs in a weekly-to-monthly resolution 4 year

(2010–2014) sediment trap time series. We then compare the TEX86 and UKˈ
37 of sinking particles to that of

underlying sediments from a series of multicores collected from the sediment trap site.

2. Hydrographic Setting

The Gulf of Mexico is part of the Atlantic Warm Pool, an annual feature defined by the ≥ 28.5°C isotherm
encompassing the western tropical Atlantic, Caribbean Sea, and Gulf of Mexico [Wang et al., 2008]. The loop
current brings warm salty Caribbean surface water into the nGoM through the Yucatan Channel and out
through the Florida Straits, where it forms the Gulf Stream, transporting heat and salt poleward in the
North Atlantic. The loop current penetrates farther north and west into the nGoM during the summer and
can propagate warm salty water to the northwestern most nGoM via the sporadic separation of “warm core”
anticyclonic eddies every 6–17months [Vukovich, 1995]. Cold core or cyclonic eddies form on the eastern and
northern periphery of the loop current and can be responsible for transporting relatively cool and fresh
coastal waters offshore [Walker et al., 2011].

The sediment trap is located in the oligotrophic outer continental slope, 120 nautical miles southwest of the
Mississippi River Delta. The climatological surface salinity varies between 35.5 and 36.5, with highest salinity
in winter and lowest in summer [Balmaseda et al., 2012]. Anomalous low salinity lenses were observed in the
upper 0–10m of the water column during conductivity-temperature-depth (CTD) casts at the site in July 2008
(31.2 practical salinity unit (psu)) and September 2010 (34.4 psu). July of 2008 followed extreme spring
flooding in the Mississippi drainage basin with river discharge rates more than double the climatological rates
[Kourafalou and Androulidakis, 2013], and an exceptionally large Mississippi plume was observed through July
[Shi and Wang, 2009]. Satellite altimetry indicates the presence of a “cold core” or cyclonic eddy over the
sediment trap site in September 2010. These mesoscale circulation features can entrain cooler, fresher, and
more nutrient-rich shelf waters and move them offshore [Walker et al., 2011; Huang et al., 2013], influencing
local productivity.

The annual cycle in climatic meanmonthly SST varies between 19°C and 31°C (fromHadley Centre sea ice and
sea surface temperature (HadISST)) [Rayner et al., 2003]. The mixed layer depth (MLD) at the study site, as
measured by CTD casts during sediment trap deployments/recoveries, varies between 25m in the summer
and 120m in winter [Reynolds and Richey, 2016]. Primary productivity in the offshore nGoM is highest in
winter, when wind-driven mixing of the upper water column is greatest. Muller-Karger et al. [2015] found a
significant positive correlation between MLD and chlorophyll α concentration in the nGoM over the past
two decades. Organic carbon and mass flux rates in the sediment trap reflect this seasonal cycle in primary
productivity, with maximum flux rates usually occurring in winter (December–February (DJF)), and minima
in summer (June–August (JJA)) [Richey et al., 2014]. There is an exceptionally high flux in late August of
2012, directly following Hurricane Isaac, which passed over the sediment trap site on 27 August 2012.
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Another factor that may contribute to anomalies in local primary productivity is the close proximity of the
sediment trap to the Green Canyon reservoir, where episodic oil seeps can cause local upwelling of nutrient
rich deep water [Dˈsouza et al., 2016]. Note that the Deepwater Horizon oil spill occurred during our sampling
period in April of 2010, 222 km northeast of the sediment trap site.

3. Methods
3.1. Sediment Trap

TheMcLane PARFLUXMark 78 automated sediment trap is moored at 700mwater depth in the northern Gulf
of Mexico (27.5°N and 90.3°W) in 1150mwater depth (Figure 1). The trap is equipped with 21 collection cups,
all mounted on a rotating plate programmed to rotate every 7 to 14 days. Sample cups were prefilled with a
buffered formalin solution made with filtered seawater, formalin (3.7%), and sodium borate. The trap was
recovered and redeployed every 6–9months, and a sampling gap occurred between early February 2012
and late March 2012. Sediment-trap samples were wet split into four aliquots using a precision rotary splitter
at the University of South Carolina, stored in buffered, deionized water, and then refrigerated. Methods and
data for bulk sediment analysis of sediment trap samples (i.e., mass flux and total organic carbon flux) are
described in Richey et al. [2014].

3.2. Sediment Cores

Multicores were collected in 2013 at the sediment trap site, in 1150m water depth. Cores each had an intact
sediment-water interface and were extruded and subsampled onboard at 5mm intervals directly following
collection. A 210Pb chronology was developed for one of the subcores (GMT14-MC3J) and indicates a
sedimentation rate of 58 cm/kyr (see the supplementary information for details). The resulting age-depth
model was applied to the three additional subcores analyzed in tandem for downcore biomarker work
(GMT14-MC3K, GMT14-MC4R, and GMT14-MC4S). Sediment samples were freeze-dried, homogenized, then
underwent the same extraction and column chromatography procedure as sediment trap filters.

Figure 1. Location of the sediment trap and Gulf of Mexico coring locations referenced in the discussion (Pigmy Basin-red, Orca Basin-blue, and DeSoto Canyon-
green). A cartoon of the loop current position, as well as a warm-core eddy (red), and a cold-core eddy (blue) are drawn. Vertical temperature profiles of the upper
700m of the water column for CTD casts at the sediment trap site 2008–2013. Winter (DJF), spring (March–May), summer (JJA), and fall (September–November)
profiles are shown in separate panels.
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3.3. Biomarker Analysis

Sediment trap samples were filtered onto 0.7μm precombusted glass fiber filters (GF/F), freeze-dried,
then extracted using a Dionex Accelerated Solvent Extractor (ASE 200) in 9:1 methylene chloride (DCM)
to methanol (MeOH). The total lipid extract was separated into acid and neutral fractions using aminopro-
pyl gel columns, with neutrals eluting in 3:1 DCM:isopropanol and acids eluting in 4% acetic acid in DCM.
The neutral fraction was then separated into hydrocarbon, ketone, and polar fractions via silica gel col-
umn chromatography using the elution scheme: hexane (hydrocarbons), DCM (alkenones), and MeOH
(GDGTs). Note that this procedure only isolates core GDGT lipids; intact polar GDGTs were not
analyzed in this study.

The polar fraction, containing the GDGTs, was dissolved in a 99:1 (vol:vol) mixture of hexane:isopropanol,
then filtered through 0.45μm polytetrafluoroethylene filters. Analyses of GDGTs for TEX86 and
branched-to-isoprenoid tetraether (BIT) index determination were performed by high-performance liquid
chromatography-mass spectrometry (HPLC-MS) at Woods Hole Oceanographic Institution. Samples were
analyzed on an Agilent 1260 HPLC coupled to an Agilent 6120 MSD according to the method of
Schouten et al. [2007]. Briefly, A Prevail Cyano column (150 × 2.1mm, 3μm) was used with 100% hexane
(A) and 90:10 hexane:isopropanol (v:v) (B) as eluents. Samples were injected then eluted isocratically for
the first 5min with A, after which the eluent increased by a linear gradient up to 18% B over the next
35min at a flow rate of 0.2mL/min. Detection was performed in single ion monitoring mode. Synthetic
C46 GDGT obtained from Purdue University was used as an internal quantification standard. All GDGT
samples were analyzed in duplicate. Long-term analyses of an external laboratory standard yield a precision
of 0.004 TEX86 units.

Alkenone fractions were analyzed via gas chromatography with a flame ionization detector (GC-FID) at the
U.S. Geological Survey St. Petersburg Coastal and Marine Science Center. GC-FID conditions were
split/splitless injection (inlet temperature: 300°C), DB-1 capillary column (60m, 0.32mm i.d., 0.10μm film
thickness), 1.5mL/min He carrier gas, with 1μl sample injection volume, and the following oven temperature
program: 60°C to 270°C at 30°C/min, 270°C to 310°C at 1.2°C/min, and 310°C to 325°C at 10°C/min.
Identification of alkenones was verified using GC-MS (Agilent 7890B gas chromatograph coupled to an
Agilent 5977A mass spectrometer with the same column and method) and based on comparison with a
purified alkenone standard from cultured Emiliania huxleyi. Both hexatriacontane and heptatriacontane were
added to samples as internal quantification standards for alkenones. All new data presented in this study can
be accessed in the USGS Data Release [Richey and Tierney, 2016].

3.4. Statistical Assessment

Relationships between sediment trap variables were assessed by calculating Pearson product-moment
correlation coefficients. Significance of these correlations was determined using a nonparametric method
that accounts for reduced degrees of freedom due to serial correlation [Ebisuzaki, 1997].

4. Results and Discussion
4.1. Alkenone Flux

Annual alkenone flux is slightly weighted toward winter production, but there is no consistent seasonal cycle
(Figure 2d). Overall, alkenone flux is closely tied to total mass flux and total organic carbon (TOC) flux in the
2010–2014 sediment trap time series (Figure 3a). The mean flux of C37 alkenone is 1.4μgm

�2 d�1, with peak
fluxes of 4–9μgm�2 d�1 (Figure 2). Individual flux peaks can account for up to 25% of the annual flux during
a 2week period (e.g., January 2010 and September 2012). Although alkenones are continuously exported to
the sediments throughout the year, the highest flux occurs in winter, with January accounting for more than
20% of the annual flux each year. This is consistent with maximum organic carbon flux in the winter [Richey
et al., 2014] and an observed winter peak in primary productivity in the offshore oligotrophic Gulf of Mexico
[Muller-Karger et al., 2015]. This is in contrast to the assumption that alkenone production is spring-summer
weighted at other sites in the global ocean [Brassell et al., 1986; Conte et al., 1992; Brassell, 1993; Sikes et al.,
2002; Martínez-Garcia et al., 2009; Leduc et al., 2010; Schneider et al., 2010] and underscores the importance
of regional sediment trap studies in interpreting proxy seasonality.
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4.2. GDGT Flux

The mean flux of isoprenoid GDGTs (isoGDGTs) is 0.26μgm�2 d�1, with peak fluxes of 0.5–2.2μgm�2 d�1

(Figure 2). Although some isoGDGT flux peaks co-occur with peaks in mass flux, isoGDGT flux does not vary
in proportion to mass flux or TOC flux (Figures 3d and 3e). Similar to alkenones, GDGT flux is winter weighted,
with DJF flux accounting for 40–60% of the annual flux. During three of the four sampling years, 25% of the
annual flux of isoGDGTs occurred in January (2012 had a large spring isoGDGT flux event). The mean concen-
tration of isoGDGTs in sinking particles is 4μg g�1 sediment and varies between 0.4 and 21μg g�1 sediment.
The percentage of terrigenous material in sinking particles varies between 2% and 40% [Richey et al., 2014].
The flux of branched GDGTs (brGDGTs) measured in the sediment trap samples is low, varying between 0 and
18.7 ngm�2 d�1, with an average flux of 1.6 ngm�2 d�1 over the 4 year sampling interval. Unlike isoGDGT
flux, brGDGT flux varies weakly in proportion to mass flux (Figure 3f). The branched-to-isoprenoid tetraether
(BIT) index, a metric for inferring the relative contribution of terrestrially derived branched GDGTs [Hopmans
et al., 2004], varies minimally between 0 and 0.02 in sediment trap samples, with the exception of a single
peak of 0.07 in August of 2012 (not shown).

4.3. UKˈ
37 SST Estimates

TheUKˈ
37 values of sinking particles display a seasonal cycle that closely follows SST, varying between 0.75 and

0.99 during the 2010–2014 sampling interval (Figure 2b). Summer maxima are consistently near saturation at
0.98–0.99, while the winter minima display considerable interannual variability between 0.74 and 0.85. This is
reflective of instrumental observations in the northern Gulf of Mexico. Both the HadISST and nearby buoy
data record consistent summer maxima of 30.4°C (�0.4°C), with large interannual variability in winter minima

Figure 2. Time series of (a) TEX86 and (b) UKˈ
37 in sinking particles, and flux of (c) GDGTs and (d) alkenones at 700m water depth in the northern Gulf of Mexico. SST

from HadISST (grey dashed line), local buoy data (black dashed line), and CTD casts during sediment trap recovery/deployment cruises is shown in Figures 2a and 2b.
Total flux of isoprenoid GDGTs (Σ GDGT 0, I, II, III, V and V0) (Figure 2c) and C37 alkenone (ΣC37:3, C37:2) (Figure 2d) are plotted with the total mass flux [Richey et al., 2014]
from January 2010 to December 2013.

Paleoceanography 10.1002/2016PA003032

RICHEY AND TIERNEY GDGT AND ALKENONE FLUX IN GULF OF MEXICO 1551



(Figure 2). For example, the monthly minimum for the winter of 2009–2010 is 19.2°C and the monthly

minimum for 2011–2012 is 21.7°C. This unusually cold winter of 2009–2010 is reflected in the lowest UKˈ
37

values in the 4 year time series and is a documented cold event throughout the North Atlantic Basin
[Bryden et al., 2014].

The UKˈ
37 time series has a maximum correlation (r=0.82, p< 0.0001) with overlying SST at a lag of 28 days,

implying a ~34md�1 sinking rate (0–700m), which is within the range observed for other sites in the
Atlantic [Müller and Fischer, 2001; Fischer and Karakas, 2009; Mollenhauer et al., 2015]. The covariance of the

UKˈ
37 in sinking particles with overlying SST indicates a rapid response of coccolithophorids to the seasonal suc-

cession in SST, and continuous export of that signal to the sediments, regardless of productivity or overall

flux. The flux-weighted mean UKˈ
37 value over the 4 year sampling interval is 0.88, equivalent to an SST of

24.8°C using the Prahl et al. [1988] equation and 24.6°C using the Sonzogni et al. [1997] equation. This is
slightly cooler than the mean annual instrumental SST over that same interval (25.4°C) and reflects the higher
winter/spring flux in the northern Gulf of Mexico.

The most widely used UKˈ
37-SST calibration equation [UKˈ

37 = 0.034 T(°C) + 0.039] is based on E. huxleyi cultured
between 8°C and 25°C [Prahl et al., 1988] and has been validated to reflect mean annual SST in global core-
top calibration studies [Müller et al., 1998; Conte et al., 2006]. When this equation is applied to the sediment

trap time series ofUKˈ
37 data in our study, theUKˈ

37-SST seasonal amplitude is muted relative to the observed SST

range (Figure 4b). UKˈ
37-SST winter minima are ~2°C warmer than observed SSTs, and summer maxima in UKˈ

37-
SST underestimate observed maxima by ~3°C.

Although our study site covers a narrow temperature (19–30°C) range relative to the global ocean, we calcu-

late the UKˈ
37-SST relationship in the nGoM sediment trap time series. A second-order polynomial (r2 = 0.72) is

the best fit between the UKˈ
37 and 28 day lagged HadISST data, and a reduced major axis (RMA) linear

Figure 3. In the Gulf of Mexico sediment trap. (a) The flux of C37:2 alkenones versus total organic carbon (TOC) flux, (b) flux of C37:2 alkenones versus mass flux, and
(c) TOC flux versus mass flux. (d) Total isoprenoid GDGT flux versus TOC, (e) total isoprenoid GDGT flux versus mass flux, and (f) total branched GDGT flux versus
mass flux.
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regression (r2 = 0.66) between theUKˈ
37 and 28 day lagged HadISST data indicates that the slope (0.017� 0.001)

of the UKˈ
37-SST relationship for this data set is much smaller than that of the global equation (0.034) [Müller

et al., 1998]. Sonzogni et al. [1997] also found the slope of theUKˈ
37-SST relationship to be smaller at SSTs above

24°C in an Indian Ocean core-top study. In a study of globally distributed surface ocean (0–30m) UKˈ
37, Conte

et al. [2006] found that theUKˈ
37-SST relationship became nonlinear at SSTs above 26°C. Conte et al. [1998] also

demonstrated nonlinearity in the UKˈ
37 -SST relationship at higher temperatures in a culture study using

multiple strains of E. huxleyi and G. oceanica.

When the Sonzogni equation [UKˈ
37 = 0.023 (°C) + 0.316] is applied to the nGoM data, the residuals between the

UKˈ
37-SST and the observed SST are smallest, with the UKˈ

37-SST accurately reflecting winter minima and under-

estimating summer SST maxima by 1–2°C. The fact that UKˈ
37 -SST underestimates the summer SST maxima

using all equations may indicate that either UKˈ
37 represents deeper alkenone production than the surface

mixed layer in summer or that coccolithophores are nutrient stressed, which has been shown to lower UKˈ
37

in culture experiments [Prahl et al., 2003]. We consider the former possibility to the most likely explanation,

Figure 4. Comparison of different calibration equations for UKˈ
37 -SST and TEX86-SST. (a) A crossplot of and UKˈ

37 from the
sediment trap with 28 day lagged HadISST. Published linear UKˈ

37-SST calibration lines are shown in red [Sonzogni et al.,
1997] and teal [Prahl et al., 1988]. Dashed line shows a polynomial fit, and dash-dotted line shows a reduced major axis
(RMA) linear regression for theUKˈ

37 of sinking particles and 28 day lagged HadISST. (b) Sediment trap time series ofUKˈ
37-SST

calibrated using the different UKˈ
37-SST relationships. The 28 day lagged HadISST is plotted with dashed grey line. (c) A

crossplot of TEX86 from the sediment trap with HadISST. Published linear TEX86-SST calibration lines are shown in red [Kim
et al., 2012], pink [Schouten et al., 2013], and teal [Kim et al., 2010]. (d) Sediment trap time series of TEX86-SST calibrated
using the different TEX86-SST relationships from Figure 4c and also the BAYSPAR and BAYSPAR sub-T from Tierney and
Tingley [2015]. HadISST is plotted with dashed grey line, and the climatic mean annual integrated 0–200m temperature
(22.1°C) is indicated by the dashed horizontal line.
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as it has been observed in the Atlantic that deep production of alkenones below themixed layer peaks during
summer stratification [Kinkel et al., 2000]. A coccolithophorid assemblage study in the southwestern Gulf of
Mexico likewise indicates that coccolithophorid abundance peaks between 50 and 100m water depth with
E. huxleyi dominating the assemblage down to 100m [Baumann and Boeckel, 2013]. The upper water column
in the nGoM is highly stratified in the summer, with an integrated temperature of 28–29°C for the upper 75m
of the water column (based on August 2011 and 2012 CTD casts at the site). If we use the Sonzogni equation,

it gives us summer maximumUKˈ
37-temperatures of 29.0 (�0.1)°C, consistent with the alkenones representing

an integrated 0–75m signal.

While the Sonzogni equation yields the best match between UKˈ
37 in sinking particles and local SST, it may

overestimate SST variability when applied to downcore UKˈ
37 records spanning intervals where mean annual

SST transitioned between <24°C and >24°C in the Gulf of Mexico (e.g., the Last Glacial Maximum (LGM) to

late Holocene). For example, Jasper and Gagosian [1989] published a UKˈ
37 time series from the Pigmy Basin

(Deep Sea Drilling Project site 619, 27° 11.610N, 91° 24.540W) with an LGM-to-Holocene UKˈ
37 range of

0.68–0.86. Applying the Prahl et al. [1988] equation to these data yields a 5°C LGM-Holocene warming
(19–24°C), while the Sonzogni et al. [1997] equation yields a >7°C LGM-Holocene warming (16–23.5°C).
Foraminiferal paired Mg/Ca and oxygen isotopes (δ18Oc) from the Orca Basin [Williams et al., 2010] and
DeSoto Canyon [Nürnberg et al., 2008] estimate a 5–6°C LGM-Holocene warming in the nGoM
(Mg/Ca-δ18Oc records were recalibrated to SST accounting for the influence of salinity on Mg/Ca, see support-
ing information). We suggest that the Prahl et al. [1988] equation is appropriate for assessing glacial-

interglacial UKˈ
37 -SST variability in the nGoM but would likely underestimate SST variability during the

Holocene, when mean annual SST in the nGoM varied between 23°C and 27°C.

5. TEX86-SST Estimates

The TEX86 of sinking particles (0–700m) ranges from 0.594 to 0.731 over the 4 year time series, with a flux-
weighted mean value of 0.676. TEX86 does not covary in a systematic way with overlying SST (Figure 2a).
January isoGDGT flux maxima in 2010, 2011, and 2012 are characterized by lowest monthly TEX86 values in
the time series, but relative lows in TEX86 also occur in midsummer of 2010 and 2012. When TEX86 is
regressed against local HadISST, there is no correlation between a 0 and 28 days lag. The absence of a
seasonal cycle and no correlation with contemporaneous surface temperatures suggests that the TEX86
signal is likely composed of a mixture of surface and deeper sources of GDGT production. A snapshot of
Thaumarchaeota populations in the northern Gulf of Mexico found that they were present throughout the
water column with peak abundance was near the base of the oxycline, 100–200m water depth [Tolar
et al., 2013]. Although there are studies in which TEX86 in the water column reflects the seasonal cycle in
SST [e.g., Wuchter et al., 2006; Basse et al., 2014], our result is consistent with sediment trap time series in
the Pacific [Huguet et al., 2007; Yamamoto et al., 2012; Chen et al., 2016], Indian Ocean [Fallet et al., 2011],
and Atlantic [Turich et al., 2013; Mollenhauer et al., 2015], where TEX86 of sinking particles does not covary
with the annual cycle in SST.

Despite the apparent lack of correlation with monthly SST, the TEX86 time series does reflect colder condi-
tions in the winter of 2009–2010 and 2010–2011, relative to the latter two winters. This suggests that
interannual variability is recorded in TEX86, either due to changes in the relative contribution of surface versus
subsurface (0–200m) GDGT production, or perhaps more likely due to cocorrelation between surface and

subsurface temperature variability. Both the TEX86 and UKˈ
37 time series indicate that the winter of

2009–2010 was the coldest in the 4 year sampling interval, coinciding with anomalously cold SST minima
recorded in the CTD and HadISST data from the nGoM. The winter of 2009–2010 has the lowest ocean heat
content observed in the North Atlantic Ocean during the past decade [Bryden et al., 2014] and coincided with
a reduction in Atlantic Meridional Overturning Circulation, a negative North Atlantic Oscillation, and a
moderately strong El Niño.

There are a number of published TEX86-SST calibration equations, including global core-top calibration data
sets that relate TEX86 to surface or integrated shallow subsurface (50–200m) temperature [Kim et al., 2010,
2012; Tierney and Tingley, 2014, 2015], and suspended particulate matter-based calibrations [Wuchter et al.,
2004; Hurley et al., 2016]. Applying the BAYSPAR (Bayesian, spatially varying) SST calibration [Tierney and
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Tingley, 2015] results in a flux-weighted mean of 25.3°C for the 4 year time series, equivalent to the climatic
mean annual SST for the northern Gulf of Mexico [Locarnini et al., 2010]. The BAYSPAR sub-T calibration results
in a flux-weighted mean of 22.0°C, which is nearly equivalent to the integrated 0–200m mean annual
temperature (22.1°C) in the nGoM [Locarnini et al., 2010] . The Kim et al. [2012] equation (which calibrated

TEXH86 to the 0–200m water temperature in a global core-top data set) applied to this time series results in
a flux-weighted mean temperature of 21.4°C, slightly cooler than the 0–200m integrated temperature, and
the Hurley et al. [2016] equation generated from sinking particles in the upper 100m of the water column
returns a flux-weighted mean of 22.7°C, which is a reasonable estimate of the integrated 0–100m mean
annual temperature in the nGoM (23.8°C) [from Locarnini et al., 2010] . This strongly suggests that GDGTs
in the nGoM derive from the integrated subsurface (0–200m), which is also consistent with an apparent lack
of seasonality.

Using the Kim et al. [2010] global core-top calibration of TEXH
86 to SST results in a flux-weighted mean SST of

26.9°C for this sediment trap data set. This is 1.5°C warmer than the mean annual SST in the nGoM. Since the
flux of isoGDGTs is weighted toward the winter and likely integrates a subsurface signal at this location, the
Kim et al. [2010] equation yields unrealistically high SST estimates in the northern Gulf of Mexico. A downcore
TEX86 record from the Pigmy Basin in the nGoMwas calibrated to SST using the Kim et al. [2010] equation and
indicated that TEX86-SST was 3°C warmer than foraminiferal Mg/Ca-SST estimates over the past millennium
[Richey et al., 2011]. Based on that study, the conclusion was drawn that GDGT flux was summer weighted
or confined to the surface mixed layer. The sediment trap data do not support that conclusion but rather
suggest that TEX86 represents mean annual shallow subsurface temperatures. However, when the downcore
Pigmy Basin TEX86 record is recalibrated using the BAYSPAR SST calibration, it shows a consistent range and
pattern of SST variability consistent with the Mg/Ca-SST record [Richey et al., 2007] This suggests that in spite
of subsurface production, the TEX86 can still be used to infer SSTs reliably on decadal and longer timescales
(see supporting information Figure S3).

Indices such as Methane Index (MI) and the Ring Index (RI) have been developed to make additional
inferences from the degree of cyclization in isoGDGTs 0-V. Zhang et al. [2011] found that MI values above
0.3 may indicate the contribution of GDGTs from methanotrophic archaea, which could overprint on the
thermally derived TEX86 signal. The mean MI values of 0.24 (�0.02) in nGoM sinking particles and 0.22
(�0.01) in nGoM sediments are within the range of typical values for pelagic marine sediments, so significant
influence of methanogenesis on TEX86 at our study site is unlikely. It has been observed in cultures of
thaumarchaeota [Qin et al., 2015] and in thermophilic archaea [Pearson et al., 2004] that RI varies more
systematically as a function of temperature than TEX86 does. In the global core-top data set, both TEX86
and RI increase with increasing SST, and Zhang et al. [2015] suggest that deviations from the global
TEX86-RI relationship may be used to indicate nontemperature influences on the TEX86 proxy.

We find no correlation between SST and TEX86 (r= 0.20, p= 0.40) or SST and RI (r=�0.14, p=0.72) in sinking
particles. However, the positive correlation (r=0.5; p< 0.02) between TEX86 and RI at our sediment trap site
(Figure 5a) suggests a common thermal control on both. With the exception of two samples, the difference
between measured and predicted RI (|ΔRI|) is always<0.3 and thus within the 95% confidence interval of the
global regression. One interesting observation in the sediment trap time series is that the RI of sinking parti-
cles in the nGoM is always slightly higher than the RITEX predicted by the global TEX86-RI relationship (i.e.,
ΔRI< 0) in Zhang et al. [2015]. This result was also observed by Zhang et al. [2015] in a Mediterranean
core-top data set of shallow water (<1000m) sites [Kim et al., 2015]. Additionally, the ΔRI becomes increas-
ingly negative with decreasing TEX86 (Figure 5c) and increasing TOC flux (Figure 5d) in sinking particles.
One potential explanation for this relationship may be a change in the relative abundance of heterotrophic
versus autotrophic archaea in response to changing availability of OC (via particulate organic carbon (POC)
flux) for heterotrophic consumption. If heterotrophic archaea produce GDGTs with a larger RI value than their
autotrophic counterparts, then it is possible that relative increases in their production would lead to the
observed pattern. Likewise, oceanographic environments with relatively high fluxes of POC, such as shallow
sites near the continental margins, may display a ΔRI that is similarly offset from the global mean. A survey of
water column community structure in the nGoM showed that the abundance of heterotrophic Euryarchaeota
relative to Thaumarchaeota was much larger in near-surface (upper 100m) water column for sites impacted
by the Mississippi plume. Thaumarchaeota dominated at all depths >100m [Tolar et al., 2013].

Paleoceanography 10.1002/2016PA003032

RICHEY AND TIERNEY GDGT AND ALKENONE FLUX IN GULF OF MEXICO 1555



6. Comparison of Sinking Particles to Underlying Sediments
6.1. Alkenones

We compared the UKˈ
37-SST of sediments from three multicores recovered at the sediment trap site (1150m

water depth) to that of sinking particles from the overlying water column. UKˈ
37 analyses of 10 samples from

the upper 5 cm of 3 independent multicores (~60 years of sedimentation) were conducted. The mean UKˈ
37

for the upper 5 cm of sediment is 0.92 (�0.01), which is significantly higher than the flux-weighted mean

UKˈ
37 of 0.88 (�0.01) from sinking particles in the overlying water column. This results in a warm bias of

1.3–2.4°C in sedimentary UKˈ
37-SST, depending on the calibration equation used (Table 1). This warm bias in

sediments relative to sinking particles is not typical for the global distribution of water column-sediment
comparisons [Rosell-Melé and Prahl, 2013], but has been observed in other studies [Hoefs et al., 1998; Gong
and Hollander, 1999], and may indicate preferential diagenetic loss of C37:3 in nGoM sediments. Culture
studies have demonstrated that selective degradation C37:3 alkenone by certain strains of aerobic heterotro-

pic bacteria lead to increases in the UKˈ
37 equivalent to 1–3°C [Rontani et al., 2008; Zabeti et al., 2010].

Autoxidation of alkenones throughout the water column and in aerobic sediments can also cause selectively

degrade C37:3 alkenone, effectively leading to anomalously warm UKˈ
37 -SST estimates [Rontani et al., 2006].

Prahl et al. [2003] observed that E. huxleyi cells selectively catabolized C37:3 alkenone under extreme light lim-

itation, which could also lead toUKˈ
37-SST estimates that are up to 3°C warmer than expected. This is not likely

to be the cause for the warm bias in sedimentary alkenones versus sinking particles in this study, as we do not
see a warm bias in sinking particles collected at 700m depth. Since alkenone flux is winter weighted in the

Figure 5. Ring Index (RI) in sinking particles (open circles) and core-top (solid circles) samples in the northern Gulf of
Mexico. (a) RI plotted as a function of TEX86. Black dashed curve shows the relationship between TEX86 and RI for the
global core-top data set determined by Zhang et al. [2015], while the grey dashed line is the relationship in this data set.
(b) Plot of RI versus SST in sinking particles. (c) ΔRI versus TEX86, where ΔRI is the difference between the measured RI and
the RI predicted by TEX86 using the equation of Zhang et al. [2015]. (d) ΔRI versus corresponding total organic carbon (TOC)
flux in sinking particles.
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nGoM, and summer alkenone production may include a subsurface signal, diagenetic loss of C37:3 is the most

likely explanation for warmer than predictedUKˈ
37 values in sediments. It is possible that this phenomenon var-

ies within the nGoM as a function water depth, sediment accumulation rate, and redox conditions at the
sediment-water interface.

6.2. GDGTs

The mean TEX86 value for the upper 5 cm of sediment from three multicores is 0.670 (�0.006). This is not sig-
nificantly different from the flux-weighted mean TEX86 value of 0.676 (�0.001) for sinking particles in the
4 year sediment trap time series, suggesting that TEX86 in sediments represents a local, unaltered representa-
tion of planktonic GDGT production in the water column. The BIT index is an order of magnitude higher in
sediments (mean BIT = 0.13� 0.04) than in sinking particles, indicating that the majority of terrestrially

derived brGDGTs are being delivered
via lateral transport from the shelf to
the slope but also that terrestrially
derived GDGTs are not influencing the
TEX86 signal.

7. Proxy Comparison

A comparison of UKˈ
37-SST and TEX86-SST

in co-occurring sediments from the past
century shows offsets in the absolute
SST estimates of the two proxies, but
both show nearly identical trends in
surface ocean warming over the past
three decades (Figure 6). The downcore

UKˈ
37 and TEX86 data were calibrated

to SST using the Sonzogni et al. [1997]
and BAYSPAR SST [Tierney and Tingley,
2015] equations, respectively. High sedi-
ment accumulation rates (58 cm/kyr) in
the northern Gulf of Mexico allow us to
resolve the SST signal for the past

century—the TEX86 andU
Kˈ
37 in the upper

5 cm of the sediments both indicate
a warming trend of 0.02°C yr�1, or 0.8
(�0.2)°C of warming since 1975
Common Era (C.E.). HadISST data from
nearest to the core site do not show
consistent warming across the twenti-
eth century but do show a warming of

Table 1. Comparison of the Flux-WeightedMean (From Sinking Particles) and Core-Top TEX86-SST andU
Kˈ
37-SST, Calibrated Using the Various Calibration Equations

a

Calibration Flux-Weighted Mean TEX86 Flux-Weighted Mean UKˈ
37 Mean Core Top (0–5 cm) TEX86 Mean Core Top (0–5 cm) UKˈ

37

0.676 (�0.001) 0.88 (�0.01) 0.670 (�0.006) 0.92 (�0.01)
BAYSPAR 25.3°C — 24.9 (�0.4)°C —
BAYSPAR sub-T 22.0°C — 21.7 (�0.3)°C —
Kim et al. [2010] 27.0°C — 26.7 (�0.3)°C —
Kim et al. [2012] 21.4°C — 21.2 (�0.2)°C —
Hurley et al. [2016] 22.7°C — 21.6 (�0.2)°C —
Prahl et al. [1988] — 24.8°C — 26.1 (�0.3)°C
Sonzogni et al. [1997] — 24.6°C — 25.8 (�0.4)°C

aErrors presented for the mean core-top TEX86-SST and UKˈ
37-SST represent the standard deviation of all measurements in the upper 5 cm of sediment from all

three subcores.

Figure 6. Downcore TEX86-SST and UKˈ
37-SST data from the upper 5 cm of

northern Gulf of Mexico multicores. Each data point represents the mean
of three samples from the same depth horizon in three different multi-
cores collected from the sediment trap site (1150m water depth), and
error bars indicate the standard deviation among those three multicores.
The age model is based on a 210Pb chronology developed from a fourth
multicore. UKˈ

37 is converted to SST using the Sonzogni et al. [1997] equa-
tion, and TEX86 is calibrated to SST using BAYSPAR [Tierney and Tingley,
2015]. The black dashed time series is the mean annual HadISST (3 year
running mean) for the nGoM. The purple and teal dashed lines represent
the flux-weighted mean annual UKˈ

37 and TEX86-SSTs, respectively, based
on the 4 year sediment trap time series in this study.
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0.5°C since 1975 that is in general agreement with the magnitude recorded by the proxies (Figure 6). Despite
spatial and temporal uncertainties inherent to comparing three separate subcores, the warming trend is pre-
sent in the individual time series of both proxies from all three cores. It should be noted as well that bioturba-
tion is expected to smear the signal in the multicores; thus, we do not expect to recover subdecadal features
in the biomarker data. Nonetheless, the multicore data demonstrate that both proxies are capable of record-
ing surface temperature conditions. In the case of TEX86, this indicates that surface temperature inference is
possible because on interannual and longer timescales, subsurface and surface temperatures covary.

8. Conclusions

A 4 year time series of the TEX86 andU
Kˈ
37 variations in sinking particles from a nGoM sediment trap reveals that

both biomarker proxies export a signal to marine sediments reflects upper oceanmean annual temperatures.

UKˈ
37 covaries with the seasonal cycle in SST and the UKˈ

37-SST at the nGoM sediment trap site reveals a smaller

slope than the global UKˈ
37-SST relationship, indicating nonlinearity in the high SST range (24–30°C). TEX86 in

sinking particles displays no systematic relationship to SST on a subannual timescale but does reflect
interannual variability in mean annual SST. We conclude that this can be attributed to cocorrelation between
surface temperatures and subsurface (0–200m) temperatures on the interannual timescale. Downcore TEX86
measurements in the nGoM confirm that TEX86 can be used to reconstruct SSTs in spite of integrating subsur-
face temperatures and thus that TEX86 can be used to infer either subsurface or surface temperatures in the
nGoM reliably.

Core-top TEX86 is within analytical uncertainty of the flux-weighted mean estimate from sinking particles in
the overlying water column, indicating that local autochthonous GDGT production is the primary source of
isoprenoid GDGTs in the nGoM sediments and that the TEX86 of sedimentary GDGTs is not altered by

diagenesis. The flux-weighted mean UKˈ
37 of sinking particles is significantly lower than that of underlying

sediments, suggesting preferential diagenetic loss of C37:3 alkenone at the sediment-water interface. This
leads to a 1–2°C warm bias in sedimentary alkenone-based SST estimates at this site.

In summary, UKˈ
37 signal exported to the sediment reflects near-surface, mean annual temperature in the

northern Gulf of Mexico. Care should be taken when choosing aUKˈ
37-SST calibration, due to the observed non-

linearity in the relationship at the high end of the SST range in the nGoM. We recommend the Sonzogni et al.
[1997] equation for recent (modern-to-late Holocene) records. TEX86, on the other hand, reflects an inte-
grated mean annual subsurface (0–200m) temperature in the northern Gulf of Mexico, indicating that the
BAYSPAR sub-T calibration is the most suitable for converting TEX86 to temperature. However, when TEX86
is converted to temperature using the BAYSPAR SST calibration, it shows a similar pattern and magnitude

of temperature change over the past century as UKˈ
37 , with nearly identical rates of surface ocean warming

in the nGoM since 1975 C.E. This, combined with evidence from the 1000 year Pigmy Basin TEX86 record
(Richey et al. [2011] and see supporting information), suggests that TEX86 can be used to infer SSTs in the
nGoM in spite of subsurface production, most likely because SSTs and subsurface temperatures covary over
these timescales.
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