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ABSTRACT  
 

Every genome tells a story. This dissertation contains four such stories, focused on shared themes 
of marine population dynamics and rapid change, with an emphasis on invasive marine species. 
Biological invasions are often characterized by a range expansion, during which strong genetic 
drift is hypothesized to result in decreased genetic diversity with increased distance from the center 
of the historic range, or the point of invasion. In this dissertation, population genetic and genomic 
tools are used to approach complex and previously intractable fundamental questions pertaining 
to the non-equilibrium dynamics of species invasions and rapid range expansions in two invasive 
marine species: the lionfish, Pterois volitans; and the shrimp, Palaemon macrodactylus. Using 
thousands of loci sequenced with restriction enzyme associated DNA sequencing in these two 
systems, this research tests theoretical predictions of the genomic signatures of range expansions. 
Additionally, the first chapter elucidates patterns of population genetic connectivity for deep-sea 
invertebrates in the New Zealand region demonstrating intimate relationships between genetics, 
oceanographic currents, and life history traits. Invasive shrimp results extend our understanding of 
marine population connectivity to suggest that human-mediated dispersal may be as important—
if not more important—than oceanographic and life history considerations in determining genetic 
connectivity during specific phases of marine invasions. In invasive populations of lionfish, 
measures of genomic diversity, including a difference between observed and expected 
heterozygosity, were found to correlate with distance from the point of introduction, even in the 
absence of spatial metapopulation genetic structure. These results indicate a signal of rapid range 
expansion. The final study in this dissertation uses an innovative temporal approach to explore 
observed genomic patterns in the lionfish. In all, this dissertation provides a broad perspective 
through the study of multiple species undergoing superficially parallel processes that, under more 
intense scrutiny, are found to be mechanistically unique. It is only through comparative approaches 
that predictable patterns of population dynamics will emerge.  
 
 
 
Thesis Supervisor: Dr. Timothy M. Shank 
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I. PREAMBLE  

This dissertation is a synthesis of concepts from population genetics, evolutionary 

biology, invasive species biology, oceanography, genomics, global change science, and 

conservation biology. While the technical substance of the research presented here is built on 

scaffolding of theoretical evolutionary biology and population genetics—specifically on models 

of gene flow, spatial dynamics, and evolutionary change—always in the background is the 

cognizance of a changing planet and of the life affected by that change. In the modern world, 

humans are part of every ecosystem. Now, at the outset of 2017 more than ever, scientific 

inquiry that probes the ways in which ecosystems respond to anthropogenic influence is essential 

to our understanding of the world around us. The necessity of this understanding does not lie 

solely in the perfect joy of discovery, but rather arises from an urgent need to manage resources 

better so we can feed a growing human population, to adapt our behaviors in order to ensure 

continued ecosystem integrity and function for human use, and to preserve critical marine and 

terrestrial habitats in order to sustain a clean, healthy environment for centuries to come. 

The empirical results presented in the following four chapters lead to specific conclusions 

about specific systems, but they also contribute to a larger puzzle about the way marine species 

disperse in the world’s oceans and how those processes affect evolution. In this introductory 

chapter, brief descriptions of the major topics of the dissertation are presented in “Background 

and Motivation,” followed by a short summary of the contents of each chapter in the 

“Dissertation Overview.”    

 

II. BACKGROUND AND MOTIVATION  

Genetic connectivity 

Connectivity is a word that has numerous connotations across different sub-disciplines of 

biology. It means something slightly different on land than it does in the sea, and within the 

marine realm it can be used by biophysical modelers to imply different processes than those 

evoked by population geneticists. In these pages, the phrases genetic connectivity, and 

population genetic connectivity are defined as “the dispersal, survival, and reproduction of 

migrants, so that they contribute to the local gene pool” (Hedgecock & Barber 2007). Genetic 

connectivity encompasses temporal and spatial aspects of population genetics in order to infer 

the degree of genetic exchange among populations. It is, almost by definition, an averaged 
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genetic signature of population processes through time and often describes patterns of population 

genetics within a specific region and the factors that could give rise to observed patterns.  

Current anthropogenic pressures on the marine environment, including the deep sea, are 

unprecedented (Miles 2009; Barange et al. 2010; Ramirez-Llodra et al. 2011; Van Dover et al. 

2012). To counteract anthropogenic impacts, many national and international regulations have 

been enacted to protect portions of the terrestrial and marine environment through limiting 

resource extraction and closing certain areas to human use (e.g., New Zealand Biodiversity 

Strategy, 2000). However, the creation of such areas is often a political, social, and scientific 

challenge (Gaines et al. 2010a) because of competing priorities of different stakeholders. The 

goal of many area closures is to protect biodiversity at the genetic, species, and ecosystem levels. 

With such a broad goal, defining success and measuring the efficacy of closed area design is 

difficult. The development of genetic tools for evaluation of closed areas is an important step 

toward improving the design of closed areas as well as increasing their utility for biodiversity 

management and conservation. Genetic connectivity is considered important to marine protected 

area (MPA) design and evaluation (Palumbi 2003; Miller & Ayre 2008; Shank 2010; Gaines et 

al. 2010b) because it illuminates where the sources and sinks of marine populations are in order 

to effectively protect the diversity maintained by source-sink dynamics (Gaines et al. 2010b).  

Physical oceanographic forces and life history traits work in concert to shape patterns of 

genetic connectivity. Oceanic currents are major drivers of larval dispersal in the oceans, 

sometimes determining population genetic structure patterns (White et al. 2010). Environments 

with high levels of oceanographic mixing and species with long distance larval dispersal—even 

if only stochastic—lead to lower levels of population structure and, notably, to genetic patterns 

that do not correlate with Euclidian distance (Cowen et al. 2007; White et al. 2010). However, 

local retention, high larval mortality, and other drivers of recruitment dynamics can result in 

unexpected or counterintuitive connectivity patterns. This phenomenon has been particularly 

well studied in reef systems where self-recruitment has been shown to be high in some cases 

(Jones et al. 2005). Indeed, reproductive strategies, dispersal capabilities, and other life history 

traits also play a crucial role in determining population genetic connectivity and geographic 

spread in many marine species (Selkoe et al. 2016).  

Despite the inherent stochasticity of marine connectivity and the variability of 

anthropogenic disturbances, biologists often make equilibrium assumptions that impose stability 



	 14 

on systems, behaviors, or dynamic processes, frequently resulting in the averaging of data across 

many generations. Population genetics and evolutionary biology of marine species, for example, 

often rely on inferring historical events from observed patterns, which entails describing the 

spatial distribution of genetic diversity at a fixed point in time and reconstructing a probable 

history of dynamic processes that could lead to the observed patterns. Doing so can result in the 

loss of temporal signals that could be highly variable. Sometimes this simplification is necessary 

for theoretical work; however, these assumptions (e.g., those of Hardy Weinberg Equilibrium, 

including static population size, random mating, etc.) rarely apply in natural systems. As 

technologies and methods develop, biologists are able to abandon assumptions of equilibrium 

and push the theoretical envelope. One example of a process that violates equilibrium 

assumptions is rapid range expansion of species or populations.  

 

Range expansions and distributional shifts  

Populations of marine species are dynamic. They expand, contract, and fluctuate in density 

and distribution over many temporal and spatial scales; and they exist within a larger biological 

community and physical environment. Global change is affecting species distributions in both 

terrestrial (Parmesan & Yohe 2003; Thomas et al. 2004; Parmesan 2006; Sunday et al. 2012) and 

marine systems (Parmesan & Yohe 2003; Perry 2005; Sabatés et al. 2006; Sorte et al. 2010; 

Booth et al. 2011; Jones & Southward 2012; Sunday et al. 2012; Poloczanska et al. 2013). The 

resulting shifts in range boundaries are hypothesized to alter the population genomics of affected 

species in ways that will change adaptive potential and shape biodiversity (Excoffier et al. 2009). 

In fact, range expansion has been linked to a decreased response to selection in some systems 

(Pujol & Pannell 2008).  

Characterizing how range expansions will affect the genetic diversity of populations will 

greatly improve our ability to predict the future resilience of species of ecological and economic 

importance. Theoretical literature addressing range expansion genetics has become more 

prominent in the last decade, but there remains little empirical research describing the genomic 

legacies of rapid range expansions in natural populations, especially within the marine realm. 

Without empirical studies like those in this dissertation, the applicability of hypotheses generated 

by theoretical models and simulations to natural systems cannot be evaluated. The potential for 

new tools, developed in the field of non-model population genomics and used throughout this 
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dissertation, to address range expansion questions has been widely acknowledged (Kirk et al. 

2013; Barrett 2014; Bock et al. 2014).  

Range expansions are known to result in specific genetic consequences (Excoffier et al. 

2009). The process that dominates much of the literature is known as “allele surfing” 

(alternatively called “gene surfing” or “mutation surfing”), in which a rare allele or new mutation 

rises to high frequency near a range margin because of repeated founder effects (e.g., a random 

subsampling of the larger population that results in a decrease in genetic diversity) through space 

and through time (Edmonds et al. 2004; Klopfstein 2005; Hallatschek & Nelson 2008; Peischl et 

al. 2013). Depending on the demographic variables of the invasion—carrying capacity, growth 

rate, density, and dispersal—the strength of allele surfing may vary (Klopfstein 2005). In cases 

of strong allele surfing, the mutation or allele in question may become fixed at the range edge, 

even when the allele is disadvantageous (Travis et al. 2007; Peischl et al. 2013; Peischl & 

Excoffier 2015). Laboratory experiments have shown how allele surfing can result in sectored 

microbial growth patterns, which is a result of the fixation of an allele on any given expansion 

axis (Hallatschek et al. 2007). Furthermore, the shape and nature of the habitat (fragmented, 

containing obstacles) has been shown to change the way the process unfolds in more complex 

systems (Möbius et al. 2015).  

A major limitation when trying to apply predictions from existing range expansion genetic 

theory and laboratory work to a natural system—especially to marine systems—is that models 

and simulations for expansion assume limited dispersal capabilities and adult migration (e.g., 

assuming constant, small-distance dispersal (Edmonds et al. 2004)). Marine species, however, 

exhibit diverse life history strategies and dispersal capabilities that are shaped by their interaction 

with the dynamic ocean environment (see the genetic connectivity review above). Therefore, 

there is tremendous value in collecting and analyzing empirical data to test the predictions of 

range expansion theory. This dissertation generates some of the first data to achieve this goal. 

Chapters 3, 4, and 5 use invasive marine species to address the question: Do range-expanding 

metapopulations of marine species retain a signature of range expansion (e.g., clines in genetic 

diversity)?  
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Species invasions from an ecological and evolutionary perspective  

Biological invasions threaten biodiversity in terrestrial, aquatic, and marine ecosystems 

(Bax et al. 2003; Lowry et al. 2013; Thomaz et al. 2014). Invasive species frequently impede the 

conservation of global biodiversity by (1) driving other species locally or globally extinct 

through either competition or predation, (2) driving shifts in distributions of native species, or (3) 

degrading and altering habitats (Mainka & Howard 2010). For these ecological impacts, they 

have been called “homogenizers of biodiversity” (Cristescu 2015). Invasive species have 

featured prominently in four of the past seven horizon scans of global conservation issues 

published annually in the journal Trends in Ecology and Evolution, indicating that invasive 

species are presently a key element of conservation science (Sutherland et al. 2009; 2013; 2014; 

2015; 2016). Just as they are ecologically damaging, species invasions are also economically 

harmful. In the US alone, invasive species have been estimated to cost $120 billion dollars 

annually in damages and control measures (Pimentel et al. 2005). 

In addition to presenting a serious threat to biodiversity and economies, invasions 

represent dynamic ecological and evolutionary processes that break expectations of population 

equilibrium and can lend insight into the nature of spatial population processes (Geller et al. 

2010; Bock et al. 2015; Brandvain & Wright 2016). Many invasions present an evolutionary 

paradox because the invading species is ecologically successful despite a high probability of 

experiencing reduced genetic diversity due to an initial founder event during introduction, often 

thought to decrease fitness and adaptive potential (e.g., Tsutsui et al. 2000). The initial 

introduction of a species is one of four steps characterizing biological invasions: (1) transport, 

(2) introduction, (3) establishment, and (4) spread (Blackburn et al. 2011). Post-establishment 

spread is often characterized by range expansion, further highlighting the utility of using invasive 

species to study range expansion dynamics.  

 

The lionfish, Pterois volitans  

The invasion of the Indo-Pacific lionfish, Pterois volitans, into waters off the US Atlantic 

Coast, Gulf of Mexico, and Caribbean Sea is occurring at an unprecedented rate with 

unparalleled collateral ecological damage. The rate and extent of the invasion make it an ideal 

model for research focused on the genomic signatures of rapid range expansion and the drivers 

of marine invasions. In their native range, lionfish populations appear to be well controlled by 
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predators and competitors (Kulbicki et al. 2012), but in their invaded range, lionfish are prolific 

breeders, insatiable predators, and habitat generalists (Morris & Akins 2009). First reported off 

Dania, Florida in 1985, the lionfish invasion is thought to have originated from a single 

introduction followed by a long incubation period and an immense post-establishment expansion 

(Betancur-R et al. 2011). In the late 1990s and early 2000s, lionfish began their northward 

expansion, and by 2004 sightings of juveniles were reported as far north as Cape Cod, although 

no known breeding populations have been established north of North Carolina to date. In 2004, 

lionfish spread to the Bahamas, and in the years since have been reported south through the 

Caribbean Sea to Brazil, southeast to the coast of South America, north through Panama, Belize, 

Mexico, and ultimately back into the Gulf of Mexico (Schofield 2010).  

Traditionally viewed as a tropical reef fish, lionfish have been observed at surprising depths 

over 300 meters (Morris 2009). Lionfish have also been reported in estuarine river habitats 

(salinity 5.8 to 38.6 ‰) up to 5.5 km from the ocean in the Loxahatchee River in Florida (Jud et 

al. 2011), pointing to an immense capacity for either rapid evolutionary change or highly plastic 

physiological tolerance. Rapid evolutionary change on this time scale was until recently thought 

impossible; however, recent research using genomic methods like those used in this dissertation 

indicate a potential capacity for rapid evolutionary shifts over decadal time scales, seen 

specifically in freshwater evolution of the Stickleback fish on Middleton Island, Alaska (Lescak 

et al. 2015). Despite the remarkable nature of the lionfish invasion and the broad-reaching 

implications of rapid genetic change during a range expansion, there are notably few published 

population genetic studies on lionfish (reviewed in Chapter 4).  

 

The Asian shrimp, Palaemon macrodactylus 

Crustaceans are among the most common and successful marine invaders. The shrimp 

Palaemon macrodactylus Rathbun 1902, is native to Japan, Korea and China, and has invaded a 

wide range of biogeographic provinces worldwide (Ashelby et al. 2013). In the Northeastern 

United States, P. macrodactylus invaded the Bronx River in 2001, and as of 2014 has spread 

north to New Hampshire and likely south to the Chesapeake Bay (Fofonoff et al. 2003, accessed 

2016). The exact expansion pathway was previously unknown, however, leaving open questions 

about the dynamics of the apparent post-establishment spread—questions that are addressed in 

Chapter 3.  
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From genetics to genomics and the development of new analytical tools 

 Since the advent of Next Generation Sequencing in the 1990s and now Third Generation 

Sequencing, fields reliant on DNA sequence data, like molecular evolution and population 

genetics, have undergone a revolution (for a review, see Heather & Chain (2016). The 

sequencing of millions of nucleotide bases in a single run is now possible (Heather & Chain 

2016). Coincident with the advent of these sequencing technologies has been a computing 

revolution, including increased reliance on cloud computing (Stein 2010). Storing and processing 

terabytes of data is possible now at a significantly lower cost than it was even five years ago.     

  The existence and accessibility of sequencing and computing tools has spurred 

innovation in the methods used to generate genomic information and has led to new 

developments like restriction enzyme associated DNA sequencing (RAD-seq) which is used 

throughout this dissertation (Miller et al. 2007; Baird et al. 2008). The use of next generation 

sequencing and other emerging genomic tools to address long-standing questions in invasion 

biology is widely recognized as the frontier in invasion genetics research—promising a synergy 

between previously intractable questions and burgeoning technologies (Chown et al. 2014; Rius 

et al. 2015). While new analyses are now possible—as seen in Chapters 3, 4, and 5—that are 

facilitated by these new technologies, there is still great utility in Sanger sequencing, particularly 

of mitochondrial genes, as evidenced by the use of mitochondrial data for barcoding, broad-scale 

connectivity patterns, and tracking multiple introductions of invasive species in Chapters 2, 3, 

and 4.   

 

III. DISSERTATION OVERVIEW  

The overall goal of this dissertation was to use genetic and genomic techniques to better 

understand the processes of invasion, range expansion, and connectivity in marine populations. 

To that end, the dissertation includes four chapters focused on three distinct ecological systems 

in three regions of the world: the New Zealand deep sea, the coastal estuaries of the US Atlantic 

coast, and the coral reefs of the Caribbean Sea and western Atlantic. Focused on broad questions 

rather than specific species, the research uses polychaete worms, galatheid crabs, glass shrimp, 

and venomous predatory reef fish to address fundamental questions regarding the dynamics of 

marine populations and the evolution of marine species.  
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Chapter 2. Patterns of Deep-Sea Genetic Connectivity in the New Zealand Region: Implications 

for Management of Benthic Ecosystems 

In Chapter 2, I describe the patterns of genetic connectivity among populations of benthic 

invertebrates found at three different deep-sea regions in New Zealand’s exclusive economic 

zone—a prominent rise, an adjacent slope margin, and a nearby plateau—in order to evaluate the 

placement of benthic protection areas. The work focuses on two species—the squat lobster 

Munida gracilis (Henderson, 1885) and the onuphid, or “quill,” worm Hyalinoecia 

longibranchiata (McIntosh, 1885). Both species are abundant and widely distributed in the New 

Zealand region, existing throughout the study area (Read & Clark 1999), but have markedly 

different life history characteristics, including reproduction and dispersal behaviors. 

I address the following questions regarding population genetic connectivity in the New 

Zealand region with a broader perspective of benthic connectivity in general: (1) Is there regional 

genetic structure across the study area and if so, can this structure be explained by factors known 

to affect genetic connectivity (e.g., currents, geographic distribution, topography, habitat 

availability)? (2) Is there significant genetic structure within the three regions? For example, 

populations that are located in different habitats but are geographically close together could be 

genetically different. Is there significant genetic structure between populations on the north and 

south flanks of the Chatham Rise, potentially influenced by the presence of the Subtropical 

Front? (3) Do the inferred life history strategies correlate with the observed patterns of genetic 

connectivity? (4) What implications do the patterns of genetic population connectivity between 

species and among sample sites, habitats, and regions have for MPA design and the efficacy of 

the current Benthic Protection Areas? These questions are addressed through population genetic 

analyses of mitochondrial sequence data. Chapter 2 represents a step towards understanding the 

spatial structure of benthic communities in New Zealand waters, and informing the future design 

of deep-water MPAs in the region.  

 

Chapter 3. Multiple, Spatially Distinct Introductions and Not Range Expansion May Explain 

Colonization History in an Invasive Marine Species  

 Chapter 3 leaves the deep sea and turns to the coastal estuaries of New England. I present 

a combination of mitochondrial gene population genetics and new non-model species genomics 
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for the invasive shrimp, Palaemon macrodactylus. I use sequence data from mitochondrial 

cytochrome oxidase I (COI) and data from 1,598 single nucleotide polymorphisms (SNPs) 

generated from restriction-enzyme-associated DNA sequencing (RAD-seq) to investigate 

population genetic patterns in the invaded region. Comparing mitochondrial DNA sequence data 

from recently collected samples to sequences generated from shrimp collected for previously 

published work lends unprecedented insight into this invasion. 

Chapter 3 highlights the utility of population genetics for revealing invasion pathways 

and uncovering unexpected patterns of expansion. In the absence of systematic surveys of 

palaemonid shrimp along the U.S. Atlantic coast around the time of the first reported observation 

of the species in 2001, the precise location and timing of introduction in North America is not 

known. At least two colonization scenarios are possible. The first scenario is a progressive range 

expansion up the US Atlantic coast. The second scenario involves multiple introductions driving 

an increase in the species range. In Chapter 3, I examine which of these two scenarios best 

explains the nature of the establishment and distribution of P. macrodactylus. In testing these 

two possible scenarios, RAD-sequencing is used to describe the distribution of genetic diversity 

in the invaded area between New York and New Hampshire in the context of range expansion 

expectations.  

 

Chapter 4. Non-Equilibrium Population Genomics of the Rapidly Invading Lionfish, Pterois 

volitans, Reveals Expansion Signals Without Spatial Metapopulation Structure   

In Chapter 4, I again shift geographic focus, this time to the reefs of the Caribbean, where 

lionfish have invaded with tremendous speed and are causing unprecedented ecological and 

economic damage (Hixon et al. 2016). Chapter 4 contains the first genome-wide single 

nucleotide polymorphism (SNP) data for the invasive lionfish throughout the Caribbean Sea 

using 12,759 loci across nine populations. These SNP data are analyzed from a range expansion 

perspective, identifying changes in genetic diversity with distance from the point of invasion.  

Chapter 4 builds on the analyses from previous chapters of the dissertation and contains the 

most comprehensive analysis of RAD-seq data in this dissertation. The chapter includes genomic 

outlier analyses coupled with BLAST analysis to identify putative gene regions in the lionfish 

genome that may be experiencing selection or strong genetic drift during the invasion. Analyses 

in Chapter 4 are executed through the use of custom scripts to sort RAD loci in order to identify 



	 21 

loci that could be exhibiting unique patterns relative to the rest of the genome that might indicate 

range-expansion-related signatures in the genome.   

 

Chapter 5. Temporal Population Genomic Patterns Illuminate Ongoing Processes of Range 

Expansion in the Invasive Lionfish, Pterois volitans 

In Chapter 5, I begin to illuminate a central component of range expansion biology: temporal 

changes to the genomic signatures of expansion. Building on the RAD-sequencing results 

presented in Chapter 5, I analyze data from 1,054 SNPs throughout the lionfish genome and 

describe differences in the genetic diversity patterns at two different time points in the invasion 

(2007-2009 and 2013-2014). The hypotheses tested stipulate differences in the invasion along 

the east coast of the United States and the invasion into the Caribbean as well as predict 

reductions in range expansion signals over time in the Caribbean.  
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ABSTRACT  

Patterns of genetic connectivity are increasingly considered in the design of marine protected areas 

(MPAs) in both shallow and deep water. In the New Zealand Exclusive Economic Zone (EEZ), 

deep-sea communities at upper bathyal depths (<2000 m) are vulnerable to anthropogenic 

disturbance from fishing and potential mining operations. Currently, patterns of genetic 

connectivity among deep-sea populations throughout New Zealand’s EEZ are not well understood.  

Using the mitochondrial Cytochrome Oxidase I and 16S rRNA genes as genetic markers, this study 

aimed to elucidate patterns of genetic connectivity among populations of two common benthic 

invertebrates with contrasting life history strategies. Populations of the squat lobster Munida 

gracilis and the polychaete Hyalinoecia longibranchiata were sampled from continental slope, 

seamount, and offshore rise habitats on the Chatham Rise, Hikurangi Margin, and Challenger 

Plateau. For the polychaete, significant population structure was detected among distinct 

populations on the Chatham Rise, the Hikurangi Margin, and the Challenger Plateau.  Significant 

genetic differences existed between slope and seamount populations on the Hikurangi Margin, as 

did evidence of population differentiation between the northeast and southwest parts of the 

Chatham Rise. In contrast, no significant population structure was detected across the study area 

for the squat lobster.  Patterns of genetic connectivity in Hyalinoecia longibranchiata are likely 

influenced by a number of factors including current regimes that operate on varying spatial and 

temporal scales to produce potential barriers to dispersal. The striking difference in population 

structure between species can be attributed to differences in life history strategies. The results of 

this study are discussed in the context of existing conservation areas that are intended to manage 

anthropogenic threats to deep-sea benthic communities in the New Zealand region. 
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INTRODUCTION 

Current anthropogenic pressures on the marine environment, including the deep sea, are 

unprecedented (Miles 2009; Barange et al. 2010; Ramirez-Llodra et al. 2011; Van Dover et al. 

2012). As the human footprint in the oceans increases, international agreements like the UN 

Convention on Biodiversity have spurred the creation of several national biodiversity task forces 

that acknowledge the importance of marine protected areas (MPAs) — i.e., any area of the 

marine environment that has been reserved by laws or regulations to provide lasting protection to 

part or all of the natural or cultural resources therein (e.g., New Zealand Biodiversity Strategy, 

2000; Department for Environment, Food, and Rural Affairs, 2011). However, the creation of 

such areas is often a political, social, and scientific challenge (Gaines et al. 2010a).  

Genetic connectivity has recently come to the fore as a major scientific component of 

sound MPA design in both shallow and deep-sea environments (Palumbi 2003; Miller & Ayre 

2008; Shank 2010; Gaines et al. 2010b). Genetic connectivity, or “the dispersal, survival, and 

reproduction of migrants, so that they contribute to the local gene pool” (Hedgecock & Barber 

2007), examines temporal and spatial aspects of population genetics in order to infer the degree 

of genetic exchange among populations. The theoretical optimization of MPA design arises from 

understanding the sources and sinks of marine populations so that MPAs can protect sites that 

will export individuals to other areas, thus increasing the net benefit of the MPA (Gaines et al. 

2010b). Genetic connectivity research generally focuses on patterns of population structure 

within a geographic area and the factors that could cause such population structure to arise.  

Ranking as the sixth largest globally, the New Zealand Exclusive Economic Zone (EEZ) 

is one of the most topographically diverse seafloor environments in the world (Ramillien & 

Wright 2000). Benthic habitats are provided by a continental slope with canyons and cold seeps, 

while further off shore there are numerous plateau, rises, troughs, ridges, basins, seamounts 

(many with hydrothermal vents), as well as two ocean trenches (Thompson, 1991). The New 

Zealand EEZ supports rich biodiversity (Gordon et al. 2010), economically important and well-

established fisheries (Gibbs, 2008), and provides for other extractive industries, including 

hydrocarbon and mineral mining (Crown Minerals, 2010; Glasby and Wright, 1990). Of the 

many species commercially targeted by New Zealand’s fisheries, just ten deep-water species 

comprise 70% of the total catch volume (New Zealand Ministry of Fisheries, 2010), and bottom 

trawling occurs at depths down to 1500 m throughout the EEZ (e.g., Baird et al., 2011). The 
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physical disturbance from trawl gear can have profound effects on deep-sea benthic 

communities, particularly on seamounts (Clark & Rowden 2009), where communities are 

thought to be more susceptible to disturbance from trawling because the fauna are less adapted to 

frequent natural disturbances and have life history traits that make them particularly vulnerable 

to fishing (Probert 1999; Clark et al. 2010). Bottom trawling on non-seamount habitat is 

extensive in the New Zealand EEZ, with areas of the seabed on the Chatham Rise having been 

subjected to tens of thousands of trawls between 1989-2005 (e.g., fishing statistical area, Figure 

17 from Baird et al., 2011). While the impact of fishing on benthic communities at non-seamount 

habitats is generally unknown in the New Zealand EEZ, invertebrate by-catch studies have 

indicated a likely disturbance to soft sediment communities on the continental margin slope and 

certain areas of the Chatham Rise (Probert et al. 1997; Cryer et al. 2002). In addition to fishing 

operations, interest in mining has increased.  Seafloor areas of the Chatham Rise contain 

significant deposits of phosphorite nodules (Glasby and Wright, 1990) and several companies 

have been granted exploratory permits (New Zealand Petroleum and Minerals, 2012).  

Currently, there is no legislation that allows for the creation of marine reserves (defined 

by current New Zealand law as MPAs in which only scientific uses are allowed) in the New 

Zealand EEZ (i.e., outside of the 12 nautical mile territorial seas), limiting the tools available for 

management of human activities in New Zealand’s deep sea. There are areas closed to bottom 

trawling that include specific seamounts (Brodie and Clark, 2003) and fishing industry-created 

Benthic Protection Areas (BPAs) (Helson et al. 2010). But, activities such as mid-water trawling 

and mining are allowed at closed seamounts and in BPAs, a fact which has raised the concern 

that this specific type of closure does not fulfill biodiversity goals for New Zealand’s EEZ. To 

date, only one published study has addressed the placement of the BPAs (Leathwick et al. 2008), 

despite their imminent 2013 review. 

Most population genetic studies in the New Zealand region have been carried out in 

coastal waters (Miller 1997; Apte & Gardner 2002; Perrin et al. 2004; Ross et al. 2011), with 

relatively few studies of deep-water species. Smith et al. (2004) examined connectivity of 

hydrothermal vent mussels between two seamounts in the Kermadec Arc, north of New Zealand. 

Allozyme loci revealed unexpected levels of heterogeneity between the seamount populations 

despite only 50 km of separation. The authors attribute the finding to localized current regimes 

promoting isolation of these populations. Using mitochondrial Cytochrome Oxidase I (COI) data, 
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Kojima et al. (2006) demonstrated that the population of Lamellibrachia juni tubeworms at 

Brothers seamount in the Kermadec Volcanic Arc contains two distinct genetic groups, one of 

which was phylogenetically related to samples from the TOTO caldera in the Mariana Volcanic 

Arc. These studies show how complex patterns can exist over various spatial scales.  Similarly, 

genetic investigation of the Internal Transcribed Spacer regions 1 and 2, COI and 16S rRNA 

genes in populations of the coral Desmophyllum dianthus from Chile, New Zealand, and 

Australia revealed greater variation between populations at different depths within a region than 

between populations at the same depth in two different regions (Miller et al. 2011). Corals in the 

New Zealand mid-depth stratum were more similar to corals in a mid-depth stratum in Australia 

than to corals in shallower water in New Zealand, and geographic genetic structure was not 

observed within the New Zealand region by this study (Miller et al. 2011). A study of 

Keratoisidinae bamboo corals in the Western Pacific using the INDEL#2 region of 16S rRNA 

and a non-coding mitochondrial marker also found no genetic structure in the New Zealand 

region—which may present an accurate evolutionary pattern or may be the result of using 

evolutionarily conserved genetic markers that can be slow to change over time (Smith et al. 

2004).    

The present study aims to elucidate patterns of genetic connectivity among populations of 

benthic invertebrates found at three different deep-sea regions—a prominent rise, an adjacent 

slope margin, and a nearby plateau—and to consider the implications of the observed patterns for 

management decisions. The three study regions were the Chatham Rise, the Hikurangi Margin, 

and the Challenger Plateau (Figure 1). The Chatham Rise is a submerged feature that extends 

about 800 kilometers to the east of the South Island of New Zealand. There are numerous 

seamounts on the Rise, including the Graveyard Seamount cluster on the northern flank and the 

Andes Seamount cluster on the southeastern edge of the rise (Mackay et al., 2005). The 

Subtropical Front (STF), a convergence zone between the subtropical and subantarctic water 

masses, extends west to east along the rise at the confluence of the East Cape Current and the 

Southland Current (Heath 1985). To the northwest of the Chatham Rise is Cook Strait, which 

separates the North and South Islands of New Zealand. The Hikurangi Margin is at the eastern 

opening of Cook Strait.  Small seamounts are found across the slope of the Margin, which is also 

incised with numerous canyons. The Challenger Plateau extends off the continental margin to the 

west side of the Cook Strait.  
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We focus on two benthic invertebrates—the squat lobster Munida gracilis (Henderson, 

1885) and the onuphid, or “quill,” worm Hyalinoecia longibranchiata (McIntosh, 1885). Both 

species are abundant and widely distributed in the New Zealand region, existing throughout our 

study area (Read & Clark 1999). These species have strongly contrasting inferred modes of 

reproduction and dispersal. There is likely a long pelagic larval duration via planktonic dispersal 

in M. gracilis, as is typical for many Munida species (Baba et al., 2011). Development is non-

planktotrophic in onuphids (Paxton, 1986), with some Hyalinoecia species having incubated 

embryos (Carrasco, 1983; Orensanz, 1990). These species are used here to represent commonly 

occurring benthic organisms with contrasting life history strategies. 

Our study of the population genetics of these two species aimed to address fundamental 

questions regarding connectivity of the deep benthos among some of the prominent geomorphic 

features in the New Zealand EEZ: (1) Is there regional genetic structure across the study area and 

if so, can this structure be explained by factors known to affect genetic connectivity (e.g., 

currents, geographic distribution, topography, habitat availability)?; (2) Is there significant 

genetic structure within the three regions?  For example, is there a difference among populations 

that are found in different habitats but are geographically close together?  Is there significant 

genetic structure between populations on the north and south flanks of the Chatham Rise, 

potentially influenced by the presence of the Subtropical Front?; (3) Do the inferred life history 

strategies correlate with the observed patterns of genetic connectivity?; and (4) What 

implications do the patterns of genetic population connectivity between species and among 

sample sites, habitats, and regions have for Marine Protected Area design and the efficacy of the 

current Benthic Protection Areas? 
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Figure 1. The location of the study area, including the North and South Islands of New Zealand 
(landmasses are in green), the Challenger Plateau, Hikurangi Margin, and Chatham Rise.  Red circles 
mark sites from which Munida gracilis were collected; blue triangles mark sites from which Hyalinoecia 
longibranchiata were collected.  Sites are labeled with their original site names.  Samples were selected 
within a depth band of 400-800m with Munida gracilis between 421m and 634m, and Hyalinoecia 
longibranchiata between 478m to 746m. The depth of each site is listed in Table 1. 
 

 
METHODS 

Sample Collection and Study Sites 

Populations of Hyalinoecia longibranchiata and Munida gracilis were collected during 

four research cruises onboard the R/V Tangaroa: TAN0705 (Chatham Rise, March 31st to April 

29th 2007), TAN0707 (Challenger Plateau, May 28th to June 8th 2007), TAN0905 (Andes and 

Graveyard Seamounts, June 12th to June 30th 2009), and TAN1004 (Hikurangi Margin including 

the slope and seamounts near the eastern side of the Cook Strait, April 14th to April 29th 2010). 

All necessary permits were obtained for the described field studies. The specimens used in this 

study were taken from samples collected or obtained by New Zealand’s National Institute of 

Water and Atmospheric Research (NIWA) under a “Special Permit (421)” issued by the New 
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Zealand Ministry of Fisheries for the taking of fish, aquatic life, and seaweed for the purposes of 

education and investigative research. Samples were collected using NIWA’s epibenthic 

“seamount sled” (overall size 150 cm long, 50 cm high, and 100 cm wide; macro-invertebrates 

retained in a 30 mm stretched mesh size net that was covered in an anti-chaffing net of 100 mm 

stretched mesh size), a hyperbenthic “Brenke” sled, and a beam trawl. Upon collection, M. 

gracilis and H. longibranchiata specimens were preserved in ethanol, except for 29 H. 

longibranchiata individuals that were frozen upon collection. All specimens are stored in the 

NIWA Invertebrate Collection (NIC). 

Due to limitations in the number of sampled individuals and resources available to this 

study, not all sample sites for which there were specimens in the NIC could be used in this study. 

In order to avoid confounding geographic site comparisons with depth variability, populations 

(the combined individual samples) from sites were selected from a restricted depth range (400 - 

800 m). Sites did not straddle a previously identified depth disjunction in population structure 

between populations at <600 and >1000 m (Miller et al. 2011). Individuals of H. longibranchiata 

were sampled from 478m to 746m and M. gracilis from 421m to 634m depth. To explore the 

role of geomorphological habitat types as a factor for structuring connectivity, we identified sites 

that spanned habitat types in the three regions (e.g., seamount and slope). When possible, sites 

with samples for both species were used.  

The study sites (i.e., sampled populations) are presented in Table 1 and Figure 1. One 

population for each species was identified on the Challenger Plateau: “C102” for H. 

longibranchiata and “C100” for M. gracilis.  Two sites from the Hikurangi Margin were used for 

H. longibranchiata: “14a,” a slope habitat site and “3B,” a seamount site. On the Chatham Rise, 

five sites were used for H. longibranchiata: “7A07,” “9D28,” and “1B15” on the southwest part 

of the rise, and “6C63” and “3CX2” on the northeast part of the rise. Six sites on the Chatham 

Rise were identified for M. gracilis: “7A07” in the southwest, “6A06” centrally located on the 

northern flank of the rise, “9D11” and “9D09” located in the south-central region of the rise, and 

“Iceberg Seamount” and “Diamondhead Seamount” of the Andes Seamount cluster at the eastern 

end of the rise.  
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Table 1.  Sites and collected samples included in this study.  

Site Name  Cruise Location Latitude Longitude Date Depth Species  
9D11 TAN0705 Chatham Rise 43.6287 S 178.3664 W 18-Apr-07 421 MG 
9D09 TAN0705 Chatham Rise 44.0682 S 178.3295 W 18-Apr-07 450 MG 
9D28 TAN0705 Chatham Rise 43.7257 S 174.458 E 27-Apr-07 550 HL 
6A06 TAN0705 Chatham Rise 42.9935 S 178.9992 E 24-Apr-07 530 MG 
7A07 TAN0705 Chatham Rise 44.1358 S 174.8438 E 4-Apr-07 518 HL, MG 
3CX2 TAN0705 Chatham Rise 42.9988 S 176.3483 W 16-Apr-07 658 HL 
1B15 TAN0705 Chatham Rise 43.8085 S 178.1173 E 7-Apr-07 497 HL 
6C63 TAN0705 Chatham Rise 43.1575 S 178.3097 W 17-Apr-07 478 HL 

C102 TAN0707 Challenger 
Plateau 38.3872 S 168.7397 E 29-May-07 482 HL 

C100 TAN0707 Challenger 
Plateau 39.5437 S 169.7145 E 4-Jun-07 634 MG 

Iceberg 
Seamount  TAN0905 Andes Seamounts 44.1582 S 174.555 W 28-Jun-09 551  MG 

Diamondhead 
Seamount TAN0905 Andes Seamounts 44.1473 S 174.6900 W 26-Jun-09 520  MG 

14a (slope) TAN1004 Hikurangi 
Margin 41.5195 S 175.8068 E 19-Apr-10 746 HL 

3B (seamount) TAN1004 Hikurangi 
Margin 41.3368 S 176.182 E 21-Apr-10 730 HL 

 

DNA extraction, Polymerase Chain Reaction, and Sequencing  

Mid-section muscular tissue from H. longibranchiata and leg tissue from M. gracilis 

were sub-sampled for genomic DNA (gDNA) extraction. To increase gDNA yield, many 

ethanol-preserved samples (n=61) were soaked for 24 hours in a buffer containing 500mM Tris-

HCL (pH8), 20mM EDTA, and 10mM NaCl before extraction (Nielsen, 2005). Genomic DNA 

was extracted using the QIAGEN DNeasy Blood and Tissue extraction kit following the 

manufacturer’s instructions (Qiagen GmbH, Germany) with a final elution into 25 to 200 µl of 

RNAase/DNAse free H2O (Invitrogen Ltd, New Zealand), depending on the condition of the 

original tissue sample. For samples with poor tissue quality due to disintegration in ethanol, 

elution occurred in smaller volumes of water in order to achieve a higher concentration of 

gDNA. Genomic DNA was quantified using Quant-IT PicoGreen DNA quantification kit 

according to the manufacturer’s instructions (Invitrogren Ltd, New Zealand), and working stocks 

of DNA (approximately 10 ng/µl) were stored at 4°C for up to six months prior to use.  

 For both target species, a fragment of the mitochondrial COI gene was amplified using 

universal primers (Folmer et al. 1994). The COI gene was amplified using iProof High-Fidelity 

DNA Polymerase Master Mix (Bio-Rad Ltd, Australia), using 1-5 µl of gDNA and primer 

concentrations of 0.2 mM each. A subset of reactions was trialed with HOT FIREPol Master Mix 
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with 1.5mM MgCl2 (Solis BioDyne) in an unsuccessful attempt to increase PCR yield. A “touch-

up” PCR profile was used to eliminate non-specific binding. The profile used for COI consisted 

of denaturing at 98°C for 2 minutes followed by 10 cycles of denaturing at 98°C for 10 seconds, 

annealing at 49°C incrementally raising to 54°C for 30 seconds, and extension at 72°C for 30 

seconds; followed by twenty cycles of denaturing at 98°C for 10 seconds, annealing at 54°C for 

30 seconds, and extension at 72°C for 30 seconds; with a final extension step of 72°C for 7 

minutes in a 2700 Applied Biosystems PCR machine. For some samples with low gDNA 

concentrations, an extra ten cycles (for a total of 30 cycles) were added in the final PCR profile.  

 Primers used for H. longibranchiata 16S gene amplification were from Zanol et al. 

(2010). The 16S gene was amplified using a “touch-down” method as described in Zanol et al. 

(2010). iProof High-Fidelity DNA Polymerase Master Mix (Bio-Rad Ltd, Australia) was used 

with 1-5 µl of gDNA and primer concentrations of 0.2 mM each. A portion of 16S was 

sequenced for a small subset of M. gracilis samples (n=7); however, the portion of the genetic 

marker that we were able to sequence exhibited no variation among the sequenced individuals. 

The same was true for a small set of Internal Transcribed Spacer Region sequences (n = 12) 

generated for H. longibranchiata.  

PCR amplification was assessed using gel electrophoresis and Quant-iT PicoGreen DNA 

quantification kit according to the manufacturer’s instructions (Invitrogren Ltd, New Zealand). 

PCR products of the correct size were purified using either a Zymogenetics PCR purification kit 

(Zymogentics D4013) or a Qiagen PCR purification kit (Qiagen GmbH, Germany) and eluted in 

DNA/RNAase-free water.  Purified PCR reactions of approximately 10 ng were shipped to 

Macrogen, Inc. for sequencing.  

 

Genetic Analysis  

DNA sequences were edited and aligned (using CLUSTAL-W) in Geneious Pro 5.3.4 

[50].  Bi-directional sequences were used with the exception of one H. longibranchiata 

individual from 7A07 for which only one direction was usable for the16S sequence. Final 

datasets consisted of 680 basepairs of 16S for H. longibranchiata, 524 basepairs of COI for H. 

longibranchiata, and 526 basepairs of COI for M. gracilis. DNA sequences have been deposited 

in GenBank (JX219896 - JX219956, H. longibranchiata 16S; JX219786 - JX219843, H. 

longibranchiata COI; and JX219844 - JX219895, M. gracilis COI). Sequences (and subsequent 
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species identity) were compared to the Genbank database (http://www.ncbi.nlm.nih.gov/) and 

alignments of COI were translated into amino acid sequences and checked for stop codons to 

assess whether or not the amplified fragments could be considered pseudo-genes. The genetic 

distances among individuals in each dataset were compared to genetic distances among species 

within the same families and/or genera to correlate genetic divergence and morphological species 

boundaries (i.e., to assess the possibility of cryptic species). Genetic distances were calculated 

(using Kimura 2 Parameter model in PAUP) among the COI sequences from seven Munida 

species: Munida spilota, Munida stia, Munida notata, Munida tyche, Munida zebra, Munida 

taenia, and Munida thoe (Machordom & Macpherson 2004). Genetic distances were calculated 

(using Kimura 2 Parameter model in PAUP) among the COI sequences from seven species of 

onuphid worms: Diopatra cf. ornate, Diopatra dentate, Diopatra dentate, Hyalinoecia sp., 

Onuphis elegans, Onuphis cf. iridescens, and Paradiopatra quadricuspis (Zanol et al. 2010). 

Genetic diversity indices (the number of polymorphic sites in the sequence, the number 

of haplotypes represented at each site, the haplotype diversity, and the nucleotide diversity) for 

each population and gene were calculated in DnaSP, version 5.10.01 (Librado & Rozas 2009). In 

order to test for the significance of population genetic divergences, a measure of population 

pairwise divergence, or FST, was calculated with 110 replicates in Arlequin, version 3.11 

(Excoffier & Laval 2005). In addition to geographically mapping the distribution of haplotypes, 

we constructed haplotype networks in TCS 1.21 using default program settings (Clement et al. 

2000) to identify potential biogeographic patterns among populations and habitats.  

In order to assess population genetic structure among and within populations, Analysis of 

Molecular Variance (AMOVA) was conducted in Arlequin version 3.11 by grouping sites into 

the three regions: Chatham Rise, Hikurangi Margin, and Challenger Plateau and running a 

standard AMOVA with default program settings. To address the question of spatial variation 

along the Chatham Rise, an AMOVA was conducted to separate the sites into two groups: a 

northeast subset that consisted of 6C63 and 3CX2 and a southwest subset that consisted of 7A07, 

9D28 and 1B15. AMOVA tests were run only on H. longibranchiata given that initial 

assessments indicated there was no genetic structure for M. gracilis.   
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RESULTS 

Genetic Diversity Indices 

Prior to any population genetic analyses, the assessment and confirmation of 

phylogenetic species was conducted across all sequences for each of the target taxa. The genetic 

distances among COI sequences for various Munida species (listed in the Methods section) 

ranged from 8.2% to 15.4%, while the genetic distances of our COI dataset for Munida gracilis 

ranged from 0% to 1.9%.  The genetic distances among COI sequences for various onuphid 

worms ranged from 4.6% to 28.5%. Genetic divergences in the COI dataset for Hyalinoecia 

longibranchiata ranged from 0% to 2.9%. These results indicate that the individuals we used 

from each respective morphospecies are within the genetic divergence diagnostic of their 

respective species, implying that there are no cryptic species in our samples. 

 A total of 58 COI and 61 16S partial sequences from H. longibranchiata were obtained. 

There were eight H. longibranchiata specimens for which we did not obtain COI sequences, but 

did obtain 16S sequences. There were four H. longibranchiata specimens for which we did not 

obtain 16S sequences but we did obtain COI sequences. A total of 52 COI sequences from M. 

gracilis were obtained. All sequence reads were unambiguous except for one gene sequence for 

H. longibranchiata, which had a single undetermined base. The lack of complete overlap 

between sequenced individuals for each gene prevented joint analysis of the two genetic datasets. 

The per-site number of sequences and genetic diversity indices for each gene in both species is 

presented in Table 2, Table 3, and Table 4.  

Table 2. Intra-population mtCOI diversity statistics for the squat lobster, Munida gracilis.   
Regions are designated as CP for Challenger Plateau and CR for Chatham Rise. n is the total 
number of individuals sampled for a site, S is the number of polymorphic nucleotide sites in the 
sequence, h is the number of haplotypes represented at the site, Hd is haplotype diversity, and pi 
is nucleotide diversity. 
	

Site (region) n S h Hd π 
C100 (CP) 6 6 4 0.8 0.00418 
7A07 (CR) 4 11 4 1.00000 0.01109 
6A06 (CR) 8 12 7 0.96429 0.00808 
9D11 (CR) 8 13 8 1.00000 0.00727 
9D09 (CR) 8 12 8 1.00000 0.00693 
Iceberg Seamount (CR) 10 19 9 0.97778 0.00837 
Diamondhead Seamount (CR) 8 6 7 0.96429 0.00395 
Total 52 47 36 0.96003 0.00691 
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Table 3. Intra-population 16S diversity statistics for the quill worm, Hyalinoecia longibranchiata. 
Regions are designated as CP for Challenger Plateau and CR for Chatham Rise. n is the total number of 
individuals sampled for a site, S is the number of polymorphic nucleotide sites in the sequence, h is the 
number of haplotypes represented at the site, Hd is haplotype diversity, and pi is nucleotide diversity. 
	

Site (region) n S h Hd π 
C102 (CP) 12 6 7 0.90909 0.00294 
3B (HM) 6 3 2 0.53333 0.00235 
14a (HM) 10 4 3 0.51111 0.00187 
9D28 (CR) 8 3 4 0.64286 0.00110 
7A07 (CR) 8 5 5 0.85714 0.00210 
1B15 (CR) 6 1 2 0.33333 0.00049 
6C63 (CR 5 2 3 0.80000 0.00147 
3XC2(CR) 6 1 2 0.33333 0.00049 
Total  61 19 19 0.86011 0.00433 

 

Table 4. Intra-population mtCOI diversity statistics for the quill worm, Hyalinoecia 
longibranchiata. The regions are designated as CP for Challenger Plateau and CR for Chatham 
Rise.n is the total number of individuals sampled for a site, S is the number of polymorphic 
nucleotide sites in the sequence, h is the number of haplotypes represented at the site, Hd is 
haplotype diversity, and pi is the is nucleotide diversity. 
	

 Site (region) n S h Hd π 
C102 (CP) 9 6 3 0.55556 0.00413 
3B (HM) 7 5 2 0.47619 0.00454 
14a (HM) 8 12 4 0.78571 0.00988 
9D28 (CR) 7 5 5 0.85714 0.00309 
7A07 (CR) 8 5 5 0.85714 0.00354 
1B15 (CR) 7 5 3 0.66667 0.00309 
6C63 (CR) 6 4 3 0.73333 0.00331 
3XC2 (CR) 6 2 3 0.73333 0.00178 
Total  58 30 20 0.92801 0.01381 

 

Geographic Distribution of Haplotypes  

The squat lobster, M. gracilis (n=52), had high haplotype diversity for the COI gene 

(Table 2). Of the 36 haplotypes, only three were shared and the remaining 33 were unique. Two 

of the three shared haplotypes were found across the Challenger Plateau and the Chatham Rise 

and the third was absent on the Challenger Plateau but present on the Chatham Rise (Figure 2).  

The COI sequence dataset for H. longibranchiata (n=58) consisted of 10 haplotypes 

shared by more than one individual and 10 unique haplotypes for a total of 20 haplotypes (Figure 
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3). The 16S sequence dataset for H. longibranchiata (n=61) consisted of nine haplotypes shared 

by more than one individual and 10 unique haplotypes, for a total of 19 haplotypes (Figure 4). 

All the haplotypes found at the Challenger Plateau site were unique to that population. There 

were two haplotypes only found at the Hikurangi Margin sites. Three shared haplotypes were 

only found on the Chatham Rise, spanning the length of the Rise. 

 
 
 
 
Figure 2.  Distribution of COI haplotypes across the study area for Munida gracilis.  The map shows the 
location of the study sites with pie charts indicating the haplotype composition of the population from that 
site.  Each color represents a haplotype with Red, Blue, and Yellow representing the three shared 
haplotypes that are found across the study area.  Shades of grey and other muted colors represent unique 
haplotypes. Sample size for each site is indicated.  
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Figure 3.  Distribution of 16S haplotypes across the study area for Hyalinoecia longibranchiata.  The 
map shows the location of the study sites with pie charts indicating the haplotype composition of the 
populations from that site.  Each color represents a shared haplotype. White, black, and shades of grey 
represent unique haplotypes. Sample size for each site is indicated. 
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Figure 4. Distribution of COI haplotypes across the study area for Hyalinoecia longibranchiata. The 
location of the study sites with pie charts indicate the haplotype composition of the population from that 
site.  Each color represents a shared haplotype. White, black, and shades of grey represent unique 
haplotypes. Sample sizes for each site are indicated.  
 

 
Haplotype Networks  

 The COI haplotype network for M. gracilis reflects the large number of haplotypes, many 

of which are separated by one or a few nucleotide changes (Figure 5). There is no clear ancestral 

haplotype, and no significant geographic pattern to the network. This is consistent with the high 

level of sequence diversity of the COI gene of M. gracilis.  

 The COI and 16S haplotype networks (Figure 6) for H. longibranchiata are consistent 

with the geographic structure indicated by the haplotype maps. There appears to be a central, 

ancestral 16S haplotype that is present across the Chatham Rise sites, radiating out to the 

Hikurangi Margin and on to the Challenger Plateau. The COI haplotype sequences were more 

diverse than the 16S sequences, consistent with common rates of mutation in these genes (e.g., 

Munasinghe et al., 2003). 
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Figure 5. TCS haplotype network for Munida gracilis, COI sequences. Each circle represents an 
observed haplotype and the circles are proportional to the number of individuals sampled with that 
haplotype. Each color indicates a sampling site and when a haplotype was present at multiple sites, a pie 
chart indicates the proportions with absolute numbers appearing in text in the pie chart. Each line 
connecting colored circles represents a single nucleotide sequence change. Dotted lines indicate 
haplotypes that could also be connected to alternative nodes. Lines with small black circles indicate 
interior haplotypes not found in the dataset (multiple nucleotide changes between sampled haplotypes).  
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Figure 6. TCS haplotype networks for Hyalinoecia longibranchiata. Part (A) shows results for COI 
sequences and part (B) shows results for 16S sequences. Each circle represents an observed haplotype and 
the circles are proportional to the number of individuals sampled with that haplotype. Each color indicates 
a sampling site and when a haplotype was present at multiple sites, a pie chart indicates the proportions 
with absolute numbers appearing in text in the pie chart. Each line connecting colored circles represents a 
single nucleotide sequence change. Lines with small black circles indicate interior haplotypes not found 
in the dataset (multiple nucleotide changes between sampled haplotypes).  
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Population Structure  

FST data indicated no genetic structure in the sampled M. gracilis populations.  Pairwise 

population FST values were all below 0.1 and none of the p values showed significant difference 

among the populations (Table 5). In the sampled H. longibranchiata populations, pairwise 

population FST values for 16S indicated that the population at the Challenger Plateau site was 

significantly different (p<0.05) than all other populations (FST >0.564), as were both populations 

from the Hikurangi Margin sites (FST >0.484), which were also different from one another (FST = 

0.47989). Differences between populations within the Chatham Rise were small (<0.17647) and 

only the difference between the two northeast populations at 6C63 and 3CX2 was statistically 

significant (Table 6).  

 

Table 5. Pairwise FST values between populations of the squat lobster, Munida gracilis, using a fragment 
of the COI gene.  Above the diagonal indicates ranges of p-values.  The “-” denotes a p>0.05.  The “*” 
denotes a p < 0.05.  The “**” denotes a p < 0.01.  The “***” denotes a p< 0.001. 

  C100 7A07 6A06 9D11 9D09 
Diamondhead 
Seamount 

Iceberg 
Seamount 

C100   - - - - - - 
7A07 0.04135   - - - - - 
6A06 0.02383 0.03294   - - - - 
9D11 0.03655 0.04033 0.04692   - - - 
9D09 -0.02666 0.02273 -0.0309 0.01299   - - 
Diamondhead 
Seamount -0.04481 0.0536 -0.0064 -0.00304 -0.03896   - 
Iceberg 
Seamount -0.05198 -0.00004 -0.03325 -0.00142 -0.05346 -0.05184  

 

Table 6. Pairwise FST Values between populations of the quill worm, Hyalinoecia longibranchiata, using 
a fragment of the 16S gene. Above the diagonal indicates ranges of p-values.  The “-“ denotes a p>0.05.  
The “*” denotes a p < 0.05.  The “**” denotes a p < 0.01.  The “***” denotes a p< 0.001. 

 C102 3B 14a 9D28 7A07 1B15 6C63 3CX2 

C102  *** *** *** *** *** *** *** 
3B 0.57829  ** *** *** *** *** *** 
14a 0.564 0.47989  ** *** *** * *** 

9D28 0.73021 0.7446 0.53759  - - - - 
7A07 0.69463 0.68352 0.484 0.00408  - - - 
1B15 0.73454 0.768 0.56923 -0.01659 0.01118  - - 
6C63 0.70138 0.71154 0.50162 0.01202 0.01408 0.15141  * 
3CX2 0.74672 0.78462 0.58732 -0.0084 -0.05466 0.00201 0.17647  
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The COI results for H. longibranchiata revealed similar trends to the 16S data, however, 

there were significant differences between some Chatham Rise populations (FST >0.31089) 

(Table 7). Specifically, populations in the northeast were significantly different from those in the 

southwest and south central part of the Rise.  

 

 
Table 7. Pairwise FST values between populations of the quill worm, Hyalinoecia longibranchiata, using 
a fragment of the COI gene.  Above the diagonal indicates ranges of p-values.  The “-“ denotes a p>0.05.  
The “*” denotes a p < 0.05.  The “**” denotes a p < 0.01.  The “***” denotes a p< 0.001.   

 C102 3B 14a 9D28 7A07 1B15 6C63 3XC2 

C102  *** *** *** *** *** *** *** 
3B 0.76723  ** *** *** *** *** *** 
14a 0.66914 0.38421  *** ** *** *** *** 

9D28 0.84878 0.81818 0.58117  - - ** *** 
7A07 0.83886 0.80383 0.56703 -0.00474  - - ** 
1B15 0.85298 0.82278 0.59817 -0.0303 0.06264  *** ** 
6C63 0.84071 0.80985 0.54635 0.31089 0.10061 0.38353  - 
3XC2 0.86515 0.84923 0.62322 0.53833 0.33767 0.5605 0.11111  

 

 

Analysis of Molecular Variance   

Hyalinoecia longibranchiata AMOVA results (Table 8 and Table 9) were consistent with 

our other analyses. The AMOVA for the three regions revealed that there was higher variation 

between regions than within regions, indicating that there is significant genetic structure across 

the study area. The Hikurangi Margin sites were shown to be statistically different from the 

Chatham Rise sites. The AMOVA tests for differences between groups of sites on the southwest 

and northeast of the Chatham Rise revealed a greater diversity in population structure within 

groups than between groups, indicating that this test does not show significant structure based on 

the northeast-southwest divide.   
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Table 8. 16S AMOVA results for Hyalinoecia longibranchiata.  

Test Source of variation df SS Var. comp. % V P value 

 

Three Regions among regional groups 2 49.641 1.24887 Va 63.54 0.00782 ± 0.00280 

 among populations within regional groups 5 7.231 0.12367 Vb 6.29 0.00000 ± 0.00000 

 within populations 54 32.015 0.59288 Vc 30.17 0.00000 ± 0.00000 

 

Margin v. Rise among regional groups 1 18.894 0.79467 Va 55.88 0.04399 ± 0.00714 

 among populations within regional groups 5 7.231 0.13876 Vb 9.76 0.00293 ± 0.00164 

 within populations 43 21.015 0.48873 Vc 34.37 0.00000 ± 0.00000 

 

NE v. SW CR among regional groups 1 0.195 -0.02046 Va -5.27 1.00000 ± 0.00000 

 among populations within regional groups 3 1.548 0.01853 Vb 4.77 0.10459 ± 0.00793 

 within populations 29 11.315 0.39019 Vc 100.5 0.24829 ± 0.01653 

 

Table 9.  COI AMOVA results for Hyalinoecia longibranchiata.  

Test Source of variation df SS Var. comp. % V P value 

 

Three regions among regional groups 2 127.433 3.58675 Va 69.07 0.00978 ± 0.00294 

 among populations within regional groups 5 21.941 0.47015 Vb 9.05 0.00000 ± 0.00000 

 within populations  50 56.815 1.13631 Vc 21.88 0.00000 ± 0.00000 

 

Margin v. Rise among regional groups  1 64.726 2.88919 Va 64.14 0.04106 ± 0.00536 

 among populations within regional groups 5 21.941 0.46869 Vb 10.41 0.00000 ± 0.00000 

 within populations 42 48.149 1.14640 Vc 25.45 0.00000 ± 0.00000 

 

NE v. SW CR among regional groups  1 7.899 0.44418 Va 35.09 0.07722 ± 0.01012 

 among populations within regional groups 3 3.043 0.03277 Vb 2.59 0.21799 ± 0.01260 

 within populations 29 22.881 0.78900 Vc 62.32 0.00000 ± 0.00000 
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DISCUSSION 

Our study is one of few that have examined genetic connectivity of deep-sea invertebrate 

populations in the New Zealand EEZ. Using mitochondrial COI and 16S genes as genetic 

markers, we tested for genetic structure among populations of the squat lobster Munida gracilis 

and the quill worm Hyalinoecia longibranchiata at sites across three deep-sea regions near New 

Zealand: the Chatham Rise, Hikurangi Margin, and Challenger Plateau. The study aimed to 

address a number of questions related to the factors that determine genetic connectivity in the 

deep sea as well as inform the design and evaluation of MPAs in the deep sea. Our results are 

discussed below in relation to each of these study questions (paraphrased below).  

 

Is there regional genetic structure across the study area?  

The population structure on a regional scale for H. longibranchiata provides evidence of 

little to no historic gene flow between the Challenger Plateau, the Hikurangi Margin, and the 

Chatham Rise. In contrast, the sampled M. gracilis population data demonstrated high haplotype 

diversity for COI and no population structure at the geographic scale examined in this study. A 

number of factors are known to affect genetic connectivity including large and small-scale 

current regimes, topography, settlement habitat, depth, dispersal strategies, adult mobility and 

reproductive success, etc. (Cowen & Sponaugle 2009). While it was not our goal to isolate a 

single factor as the cause of an observed population genetic structure, we can examine the 

consistency and potential interplay of each factor in relation to the results. 

The observed large-scale genetic differences in H. longibranchiata populations between the 

three regions can be explained partly by geographic distribution and partly by currents. Large 

geographic distance between sites can limit connectivity, especially for species with low 

dispersal capability. The Hikurangi Eddy, located to the East of Cook Strait could create an 

isolated water mass around the study sites at the southern end of the Hikurangi Margin (Chiswell 

& Booth 1999), and limit dispersal. There is one shared haplotype between the Rise and one of 

the sites on the margin, suggesting that historically there has been some ability of individuals to 

disperse between the two regions. Variation in the spatial extent of the Hikurangi Eddy could 

transport larvae or adults between the Margin and the Rise. The lack of any shared haplotypes 

between the Chatham Rise/Hikurangi Margin and the Challenger Plateau is consistent with the 

Cook Strait functioning as a barrier to dispersal, rather than a conduit for transporting larvae or 
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adults between the western and eastern side of New Zealand. Barnes (1985) found that, despite 

large tidal flow, a front exists in Cook Strait with up to a 2°C gradient that causes negligible net 

flow—at least near the sea surface—through the Strait.  

In contrast to the quill worm, we found unstructured yet genetically diverse populations of 

the squat lobster M. gracilis throughout the study area. Based on the large proportion of unique 

haplotypes, we conclude that the genetic diversity of COI in the M. gracilis population has not 

been fully ascertained. Considering the high levels of diversity in the mitochondrial genes we 

sampled, it is difficult to draw conclusions about the M. gracilis population except to say that the 

presence of certain haplotypes across the study area indicates that there is likely a single 

population with high levels of mixing not impeded by geographic distance or current patterns.  

As with all population genetic studies, the numbers of individuals, loci, and sites have to be 

considered in the interpretation of the data. The available sample sizes at various sites in the 

study area (which we have termed populations) are not considered large, nor are they consistent 

across sites. However, this is not atypical for deep-sea population genetic studies in which 

collecting large sample sizes yielding highly robust estimates of genetic diversity is considerably 

difficult given the inaccessibility and expense of obtaining these populations. Comparing 

haplotype diversity between sites with highly variable sample sizes could lead to inappropriate 

assumptions about spatial patterns of haplotype diversity, including the performance of unbiased 

estimators and rarefaction methods (Pruett & Winker 2008), with lower sample sizes likely 

underestimating levels of diversity. We calculated FST from haplotype-frequencies and pairwise 

DNA sequence diversity. Haplotype frequency-based statistics are more sensitive for small 

sample sizes, while the sequence-based statistic can be considered a more sensitive method for 

detecting population structure in highly polymorphic loci. Our goal was not to examine the effect 

of small or variable sample sizes on genetic estimates in genetically diverse datasets (Pruett & 

Winker 2008), and we caution the over-interpretation of our results.  Given the high COI 

haplotype diversity of in M. gracilis, it is likely that more individuals would provide more 

informative results. Despite the limited H. longibranchiata data set, the data provide insight into 

the population structure of this species, and the results are supported by both genetic markers 

(16S and COI). From our initial genetic survey and for future studies of these species, the COI 

gene can be considered a useful marker for resolving genetic structure in H. longibranchiata, and 

somewhat less in M. gracilis. 



	 50 

Is there genetic structure within the three regions? 

In addition to the larger scale patterns discussed above, population structure for H. 

longibranchiata was observed between the seamount and slope sites on the Hikurangi Margin 

and potential differentiation was detected between populations on the northeast and southwest 

sites on the Chatham Rise.  No genetic structure between sites of varying habitat types—

specifically between seamount and slope—was observed for M. gracilis in any region. 

Addressing questions of genetic connectivity is especially complex in the deep sea given that 

suitable habitats can be patchy over large spatial scales (hundreds to thousands of km).  For 

example, several thousand kilometers may separate hydrothermal vent fields or seamounts and 

yet gene flow may occur between the geographically distant sites of the same habitat type 

(Craddock et al. 1995; Plouviez et al. 2010; Vrijenhoek 2010; Cho & Shank 2010). The opposite 

can also be true where small distances between patches of the same habitat do not necessarily 

translate into genetic connectivity among populations if there are physical or biological barriers 

to dispersal (Cho & Shank 2010). 

An added layer of complexity to deep-sea connectivity is the potential for inter-habitat 

connectivity when different habitats may be found in a small geographic area. For example, in 

the Norfolk Ridge seamount system, populations on the seamounts have been shown to be 

genetically connected to populations on the island slope (Samadi et al. 2006). Conversely, 

populations at different habitats may not be well connected when the physical or biological 

attributes of one habitat serve to isolate it from other suitable habitats (e.g., the presence of local 

isolating hydrographic features as seen in some seamount systems as in Lavelle and Mohn, 

2010).  

Because of the constrained sample availability, the sites from which we were able to obtain 

samples and the sample sizes did not provide a robust enough dataset to fully understand the 

extent of inter-habitat genetic connectivity. Nevertheless, our data provide some interesting 

indications about inter-habitat connectivity. While populations of H. longibrachiata at the 

Hikurangi Margin sites were significantly different from the Challenger Plateau sites and the 

Chatham Rise sites, they were also significantly different from each other. These sites—one a 

seamount, the other a slope—are only ~38 km apart, but are separated by a small canyon.  It is 

possible that there is a local current regime on this margin that limits the connectivity of these 

two populations or perhaps some habitat preference that results in the observed difference in 
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genetic structure. The seamount in question may likely be considered too small for localized 

isolating hydrographic features. So, alternatively, it could be the predominance of down slope 

currents associated with canyons rather than along slope currents on this margin that are 

responsible for the limited connectivity between the populations of quill worms at the seamount 

and slope sites. For M. gracilis, the two seamount sites in the Andes Seamount cluster—

Diamondhead Seamount and Iceberg Seamount—shared haplotypes with populations at sites 

elsewhere on the Chatham Rise, indicating that for this species in the New Zealand region, 

habitat type may not play a strong role in genetic connectivity.  

Results suggest that there is variation in the level of connectivity across the Rise.  Other 

studies have found marked differences in benthic community structure between the northern and 

southern flanks of the rise, which have been attributed to the different environmental and 

biological conditions imposed by the location of the Subtropical Front (Probert & McKnight 

1993; McKnight & Probert 1997; Nodder et al. 2003; Berkenbusch et al. 2011). It is possible 

that the currents that maintain the STF present a significant barrier to dispersal of individuals 

among populations of the same species between northern and southern sites. While the location 

of our study sites for H. longibranchiata did not allow us to separate strict north-south effects 

from possible east-west effects, we were able to test for northeast to southwest variation in the 

genetic make-up of populations. COI, but not 16S, data provide some support for this hypothesis 

for H. longibrachiata because populations at sites on the northeast of the rise were sufficiently 

different from those on the southwest of the rise. 

Depth has been shown to play a major role in connectivity within and between deep-sea 

ocean basins and slopes (McClain et al. 2010) and seamounts (Cho & Shank 2010). It is worth 

remembering here that our samples were explicitly chosen to fall within a small range of depths, 

a method of sample selection that could have resulted in a reduced ability to detect whether there 

was an effect of the STF on population structure on the rise. Nodder et al. (2003) found that the 

most notable differences in benthic communities between northern and southern sites were 

evident at greater depths (e.g., sites at 2300 meters). It is possible that populations located deeper 

than our study sites (below 746 m) could be less well connected across the rise than our results 

suggest. It is also possible that shallower populations on the crest of the rise (approximately 200 

m) may be well connected with one another within the core of the STF, yet be poorly connected 

to populations at greater depths. 
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Do the inferred life history strategies correlate with the observed patterns of genetic 

connectivity? 

The results of our study indicate that the genetic connectivity patterns of the two study 

species are different. Differences in life history strategy and inferred pelagic larval duration 

likely explain the difference between observed patterns in the two species. Larval dispersal and 

adult mobility contribute to making the squat lobster a better potential disperser than the quill 

worm and correlate directly with the differences in inferred patterns of connectivity. The 

relationship between life history and population structure across seamounts is well documented 

in Samadi et al. (2006), in which the authors found that species with broad dispersal potential 

had limited to no population structure while the other species with limited dispersal potential had 

clear population structure.  

 

What implications do the patterns of genetic population connectivity have for MPA design and 

the efficacy of the current BPAs? 

In 2007, a fishing industry-driven initiative resulted in the creation of seventeen areas 

within the New Zealand EEZ that were designated Benthic Protection Areas (BPAs). These areas 

comprise roughly 30% of the EEZ and are closed to bottom trawling, but not to other uses such 

as mining.  Still, they are considered by some (Helson et al. 2010) to fulfill New Zealand’s 

dedication to protecting at least 10% of its marine environment (New Zealand Biodiversity 

Strategy, 2000). The selection criteria for the BPAs included size, low fishing levels, 

geometrically simple boundaries, and representativeness of the Marine Environment 

Classification (Helson et al. 2010). The population connectivity of benthic organisms was not 

directly considered in the design of the BPAs.   

A deep-water MPA process is scheduled to commence in 2013 (Ministry of Fisheries and 

Department of Conservation, 2008), coinciding with a review of the BPAs (Helson et al. 2010). 

To facilitate an effective review of BPAs, the closed seamounts, and the future deep-water 

protected area design process, the “best available” scientific information concerning the habitats 

and faunal communities need to be considered, as well as input from “offshore experts.” To date, 

only a single study has challenged the efficacy of BPA design by demonstrating that BPAs 

located at alternate sites could be more effective at protecting biodiversity and less costly to the 
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fishing industry (Leathwick et al. 2008). The results of our study provide additional information 

that can be used to evaluate the placement of BPAs and future deep-water MPAs.  

 The difference in genetic population structure between the squat lobster and the quill 

worm confirms that, in terms of connectivity, MPA design should consider the implications of 

protecting assemblages of species with different life history strategies (Airamé et al. 2003). The 

findings of our study for common species with high levels of dispersal (like M. gracilis), indicate 

that populations in different closed areas have historically been well connected, and one can 

reasonably presume are currently connected. However, for common species with limited 

dispersal capabilities (like H. longibranchiata), our study findings provide a framework with 

which one can analyze the efficacy of future MPA design. At the broadest level, our main 

finding is that a species with direct development has pronounced population structure across the 

Challenger Plateau, Hikurangi Margin, and the Chatham Rise (Figure 7). If the maintenance of 

genetically distinct populations is considered integral to the goal of protecting biodiversity, then 

large protected areas that possess isolated populations will help to further that goal. Presently, 

there are BPAs on both the Chatham Rise and the Challenger Plateau but there are no closed 

areas on the Hikurangi Margin. Other large areas in the study region may also possess 

populations similarly genetically isolated by current regimes such as large eddy systems, that 

could also be considered in the future design of deep-water MPAs.  

Our results suggest that on smaller spatial scales within regions, local topography and 

current regimes may have a profound impact on gene flow, leading to the differentiation of 

populations at different habitats. Populations at slope and seamount habitat in close proximity on 

the Hikurangi Margin were shown to host genetically different populations. There are some 

protected areas in the study area that have been specifically closed to trawling in order to protect 

the communities on seamounts, in part because of the then perceived isolated nature of seamount 

fauna (Bordie, 2003). The current BPAs, because of the large size design criterion (Helson et al. 

2010), protect multiple habitats including seamounts and hydrothermal vents that are perceived 

to represent vulnerable marine ecosystems (FAO, 2007 and 2008). As such, any large protected 

area should afford some protection to any genetically distinct populations found at different 

habitats within a region. 
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Figure 7. Map of the study area showing genetically distinct populations (colored circles) of the worm H. 
longibranchiata relative to the position of Benthic Protection Areas (blue) and seamount closures (light 
blue), and local currents. Populations on the Challenger Plateau, Hikurangi Margin and Chatham Rise are 
green, orange, and red, respectively, with different shades of the latter two colors representing within 
region differences in genetic population structure. Blue rectangles represent Benthic Protection Areas and 
Seamount Closures (in light blue). The star marks two Seamount Closures too small to be visible on the 
map. The approximate position of the Southland Front (SF), the Sub-Tropical Front (STF), the Hikurangi 
Eddy (HE), and Wairarapa Eddy (WE) are shown with grey bands and arrows. The location of the STF is 
based on Figure 1 of (Hayward et al. 2008). 
 

 
 

The results of the within region comparison suggest that the location of BPAs on the 

Chatham Rise may require revision. The central BPA on the Chatham Rise is located in the 

middle of the crest of the rise at depths of 300–450 m and the BPA at the eastern end of the rise 

extends over a depth range of 300–900 m. We do not have any population data from these 

specific locations but we have shown the potential for genetic variation across the Rise. Given 

this finding and our understanding about differences in benthic communities on the north and 

south flank of the Rise (Nodder et al. 2003), and the likelihood that populations are genetically 
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structured by depth (Cho & Shank 2010; Miller et al. 2011), the two BPAs arranged along the 

axis of the Rise at shallow depths may not be sufficient to protect the genetic variation of 

populations on the Chatham Rise. The Chatham Rise is one of the largest geomorphic features of 

the New Zealand EEZ with a complex and productive ecosystem (Nodder et al., 2012), yet large 

areas of its seafloor are subjected to disturbance from bottom trawling, and in the future 

disturbance from mining for phosphorite nodules is likely. Our results suggest that further 

protected areas, or a re-positioning of the current BPAs, could be considered to afford greater 

protection to the benthic biodiversity associated with the Chatham Rise through genetic 

connectivity. 

 

Future Directions 

Our assessment of the genetic connectivity of two abundant benthic invertebrates found 

throughout a range of deep-sea habitats in the New Zealand EEZ represents a step towards 

understanding the spatial structure of benthic communities in the New Zealand region, and 

informing the future design of deep-water MPAs in the region. However, the study has raised a 

number of questions about the populations of H. longibranchiata. For example, what is the true 

geographic extent of populations found in the three regions—Challenger Plateau, Hikurangi 

Margin, and Chatham Rise? Are the Hikurangi Margin haplotypes found along the margin to the 

south or north? Similarly, are quill worm populations on the central north part of the Chatham 

Rise unique to these sites or will they resemble populations at the northeastern sites? What about 

populations at other sites to the west of New Zealand? Is the population of quill worms at the 

Challenger Plateau site different from the sites at the other study regions simply because it is on 

the western side of New Zealand or is the plateau in some way isolated? Such questions apply to 

other invertebrate species with potentially limited dispersal capabilities. Future genetic studies of 

population connectivity should include a greater range of study species in order to generate 

information useful for the design of protected areas in the deep sea. 
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Multiple Spatially Distinct Introductions and not Range Expansion 

May Explain Colonization History in an Invasive Marine Species 
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ABSTRACT 

Biological invasions are often characterized by a phase of post-establishment expansion in which 

the invading species increases its range through colonization of new geographic area. Expansions 

are predicted to result in specific genetic signatures, most notably decreased genetic diversity 

with distance from the origin of the expansion, which is often the point of introduction for 

invasive species. The caridean shrimp, Palaemon macrodactylus, is an invasive species in many 

regions of the globe. P. macrodactylus has most recently invaded the US Atlantic coast, with the 

first report of the species in New York in 2001. This study uses both mitochondrial cytochrome 

oxidase I (COI) sequence data as well as data for 1,598 single nucleotide polymorphisms (SNPs) 

generated through restriction enzyme associated DNA sequencing (RAD-seq) to test two 

potential scenarios describing the expansion of P. macrodactylus north of New York: the first 

focuses on range expansion facilitated by ocean currents, physical environment, and life history; 

the second involves multiple introductions of the shrimp in different estuarine ports. In testing 

these two scenarios, patterns of population genomic diversity as well as population structure are 

described. Results do not support a range expansion scenario in which diversity decreases with 

distance from the point of invasion. Rather, the data suggest a scenario of multiple introductions 

with diversity increasing with distance from New York, and peaks of mitochondrial diversity in 

populations collected from New York and the Boston-Plymouth coastline. These results indicate 

that human-mediated dispersal may be as important—if not more important—than 

oceanographic and life history considerations during the colonization phases of a marine 

invasion.  
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INTRODUCTION 

 Biological invasions threaten biodiversity in terrestrial, aquatic, and marine ecosystems 

(Bax et al. 2003; Lowry et al. 2013; Thomaz et al. 2014), often negatively affecting ecosystem 

services and damaging economies (Funk et al. 2014; Walsh et al. 2016). In addition to being a 

serious concern for the conservation of biodiversity, invasions are excellent models for the study 

of dynamic evolutionary processes (Lee 2002; Rius et al. 2014; Barrett 2015). Many invasions 

present an evolutionary paradox because the invading species is ecologically successful despite a 

high probability of experiencing reduced genetic diversity due to an initial founder event during 

introduction, often thought to decrease fitness and adaptive potential (e.g., Tsutsui et al. 2000). 

The initial introduction of a species is only one of four steps characterizing biological invasions: 

(1) transport, (2) introduction, (3) establishment, and (4) spread (Blackburn et al. 2011).  

Post-establishment spread is often characterized by range expansion—a process that is 

expected to lead to further decreases in genetic diversity with increasing distance from the point 

of invasion due to strong genetic drift caused by repeated founder events through space and time 

(Excoffier et al. 2009). Genetic drift during range expansions can be strong enough to fix 

otherwise rare alleles near the leading edge of the expansion in a process known as allele surfing 

(Edmonds et al. 2004; Travis et al. 2007; Hallatschek & Nelson 2008). However, the genetics of 

range expansion during invasion can be complicated by a variety of demographic phenomena 

including multiple introductions, persistent human-mediated transport within the invaded range, 

or both. Marine examples of this include the invasions of the European green crab Carcinus 

maenas along the US Atlantic coast (Darling et al. 2008; 2014), the Asian violet tunicate 

Botrylloides violaceus along the US Pacific coast (Bock et al. 2010), and the Pacific bryozoan 

Tricellaria inopinata along the US Atlantic coast (Johnson & Woollacott 2015). These 

complications imposed on an otherwise seemingly clear narrative of post-establishment spread 

often limit our ability to discern and predict the population genetic patterns of an invasive 

species or the course of an invasion. 

 A recent invader along the US northern Atlantic coast is the caridean shrimp Palaemon 

macrodactylus (Rathbun, 1902), native to China, Japan, and Korea (Ashelby et al. 2013). The 

species has invaded regions across the globe since the mid-twentieth century, including San 

Francisco Bay (1957) and other parts of the US Pacific coast, Western Europe (1992), Argentina 

(2000), and most recently the US Atlantic coast (Ashelby et al. 2013). P. macrodactylus, also 
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known as the Asian prawn or Asian shrimp, was first discovered on the US Atlantic coast in 

2001 in the Bronx River near New York City, incidental to ichthyofaunal surveys (Warkentine & 

Rachlin 2010). P. macrodactylus is one of at least five palaemonid shrimp—both native and 

invasive—in the northeast region of the United States. It was not until 2010, when the discovery 

of P. macrodactylus was announced, that researchers began looking for this specific species 

elsewhere along the US coastline, by which time (2010) P. macrodactylus was found throughout 

southern New England in Long Island Sound and Narragansett Bay, as well as north of Cape 

Cod as far as Boston in 2012 (JTC, unpublished data). Palaemon macrodactylus was discovered 

in 2007 in Chesapeake Bay (Fofonoff et al., 2016). New England and adjacent coastal surveys 

specifically designed to assess the distribution of palaemonid shrimp in the summer of 2014 then 

documented populations of P. macrodactylus from central New Jersey north to Newington, New 

Hampshire, the northernmost documented location to date (Carlton and Weigle, 2015).  

Since the discovery of the extent of P. macrodactylus invasion in the United States in 2010, 

only one population genetic study of the species has been undertaken (Lejeusne et al. 2014). This 

global survey of invasive P. macrodactylus populations used mitochondrial COI data and 

concluded that the invader had high genetic diversity in all invaded regions globally, indicating 

limited or no founder events during each invasion. However, their study includes individuals 

from only one of the many invaded estuaries on the US Atlantic coast, leaving unanswered 

questions regarding population structuring in the invaded regions of the United States. Other 

Palaemon species have shown sometimes surprising population genetic structure within specific 

regions (e.g., Palaemon elegans in Europe: Reuschel et al. 2010), while others follow 

expectations set by oceanographic current patterns (e.g., Palaemon floridanus in the Caribbean 

Sea: Baeza & Fuentes 2013). 

 In the absence of systematic surveys of palaemonid shrimp along the U.S. Atlantic coast 

in the decades surrounding the appearance of P. macrodactylus in Europe in 1992 (and thus its 

ready availability to be potentially transported by ships to North America) and its discovery in 

2001 in New York, the precise location and timing of introduction in North America is not 

known. At least two colonization scenarios are possible. The first, an expansion scenario posits 

that P. macrodactylus was introduced to New York City (2001), spread south to Chesapeake Bay 

(2007) and north to eastern Long Island Sound (2010), and then to Boston (2012) and New 

Hampshire (2014), a scenario based on the dates of observations. This expansion scenario 
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generates explicit genetic expectations, as noted above, for the invaded region based on the 

assumption that this spread represents repeated founder events through space and time leading to 

decreased diversity along the expansion axis. A second scenario involves multiple introductions, 

meaning that P. macrodactylus owes its appearance in ports and bays such as Boston, New York, 

and Chesapeake Bay to multiple separate introductions, a phenomenon that generates a different 

set of genetic expectations, including potentially distinctive, localized genetic structuring and 

peaks of genetic diversity.  

 This study seeks to examine which of the above two scenarios may best explain the 

nature of the establishment and distribution of Palaemon macrodactylus on the Atlantic coast of 

North America, focusing on northern populations. In testing these two possible scenarios, we 

describe the distribution of genetic diversity in the invaded area between New York and New 

Hampshire in the context of range expansion expectations. We highlight population genomic 

structure to examine potential patterns of local isolation and connectivity in the invaded range. 

We use both mitochondrial cytochrome oxidase I sequence data and data from 1,598 single 

nucleotide polymorphisms (SNPs) generated from restriction-enzyme-associated DNA 

sequencing (RAD-seq). This is the first use of genome-wide SNP markers in an invasive 

Palaemon species. 

 

METHODS 

Sample collection  

Palaemon macrodactylus samples were collected from marina dock fouling communities 

throughout New England (Figure 1) with a hand-held fishing net (45.7 cm diameter ring, 1.0 cm 

mesh). Sites to the south of Cape Cod included Evers Marina in the Bronx River, New York, 

NY; Mystic Seaport in Mystic, CT; and Moby Dick Marina in Fairhaven, MA. Sites to the north 

of Cape Cod included Brewer Marina in Plymouth, MA; University of Massachusetts Boston, in 

Boston, MA; and Great Harbor Marine in Newington, NH (Table 1). Sites with more established 

fouling community habitats were often the locations with the greatest abundance of shrimp and 

were, therefore, targeted for collection. Shrimp distributions in marinas were found to be patchy, 

leading collection teams involved in the 2014 ShrimpEX surveys (Carlton and Weigle, 2015) to 

sample large areas of dock surfaces to acquire the required sample numbers. Shrimp were sorted 

by gross morphology and color at the sampling locations and those likely to be P. macrodactylus 



	 68 

were preserved in 100% ethanol at the sampling site and kept cool until they were drained of 

ethanol and stored in a -20°C freezer. 

 

Figure 1. Map of the study area with study sites indicated by white circles.   

 
 
Table 1. Sample site details, latitude and longitude, and through-water distance in kilometers from the 
New York sampling location.  
 
Location  Marina Name   Latitude (N) Longitude (W) km from NYC 
New York, NY Evers Marina 40.8442 -73.8131 0 
Mystic, CT Mystic Seaport 41.3638 -71.9644 215.74 
Fairhaven, MA Moby Dick Marina 41.6536 -70.9141 340.09 
Plymouth, MA Brewer Plymouth Marina 41.9565 -70.6596 556.59 
Boston, MA U. Massachusetts, Boston 42.3115 -71.0401 599.19 
Newington, NH Great Bay Marine 43.1160 -70.8357 652.55 
 

P. macrodactylus were identified morphologically under a dissecting microscope using 

the defining characteristics of a double row of setae on the ventral side of the rostrum and 

typically three rostral teeth behind the posterior margin of the orbital socket (González-Ortegón 

& Cuesta 2006). Length and reproductive status (i.e., gravid, not-gravid) were recorded for each 

specimen. Size distributions of all shrimp collected and of those included in population genetic 

analysis are presented in Appendix I.  
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DNA extraction and polymerase chain reaction  

Genomic DNA (gDNA) was extracted from a section of abdominal muscle tissue from 

each shrimp individual using the Omega Insect Extraction Kit (Omega Biotek, Norcross, GA, 

USA), with a standard protocol including the suggested liquid nitrogen homogenization step. 

gDNA samples were stored in the kit’s elution buffer at 4°C or -20°C until PCR reactions and 

RAD sequencing. Polymerase chain reactions (PCRs) to amplify cytochrome oxidase I (COI) 

were carried out using primers CrustCOIF (5’-TCAACAAATCAYAAAGAYATTGG-3’) and 

DecapCOIR (5’-AATTAAAATRTAWACTTCTGG-3’) (Lejeusne et al. 2014). The 

thermocycler temperature profile consisted of 95° denaturing step for 3 minutes, then 30 cycles 

of 95° for 45 seconds, 48° for 60 seconds, 72° for 60 seconds, followed by a final extension step 

at 72° for 5 minutes. PCR reactions were purified using a QIAGEN PCR Purification Kit 

(Qiagen GmbH, Germany) and were sequenced at Eurofins Operon Genomics (Eurofins MWG 

Operon LLC, Louisville, KY, USA).  

During initial optimization of gDNA extraction and amplification protocols, sequencing 

efforts sometimes produced double peaks (two equally strong sequencing results at one 

nucleotide position) in the chromatograms for mitochondrial COI. These double peaks were 

replicated across individual samples in both directions of sequencing reads, and occurred reliably 

at specific nucleotide locations. In nuclear genes, such results would indicate heterozygosities, 

but for mitochondrial genes, these results are unexpected because only one copy of each 

mitochondrial gene is expected to be present, except in rare cases of bi-parental inheritance. We 

concluded that the consistent double peak results were evidence of a second copy of the gene, or 

a pseudogene (Williams & Knowlton 2001). In response to this result, we developed the protocol 

described above, which includes a different type of extraction technique (i.e., different from both 

the original phenol-chloroform extraction attempts and the Chelex extraction used in previous 

studies) and a reduced number of amplification cycles during PCR. This protocol eliminated the 

double peaks. Details of the original methods are reported in Appendix II.   

 

Mitochondrial sequencing analysis  

Mitochondrial DNA sequences were edited and assembled using Geneious 8.1.5 (Kearse 

et al. 2012). Consensus sequences were then aligned using the Geneious MAFT alignment plug-

in with default settings. The 85 haplotype sequences for P. macrodactylus published in Lejeusne 
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et al. (2014) were downloaded from the NCBI nucleotide database (GenBank Accession 

Numbers HG792276.1 through HG792360.1, and G792313.1) and aligned to the sequences 

generated for this study. All sequences were trimmed to 501 basepairs in order to allow for the 

inclusion of more individuals (final sequence length was shorter than in Lejeusne et al. (2014), in 

which 598 basepairs were used). Sequence trimming did not lead to the exclusion of any 

haplotypes present in individuals sequenced for this study (a conclusion based on the location of 

the polymorphisms). However, because the sequences were trimmed, haplotypes Pm55, Pm56, 

Pm57, Pm58, Pm59, Pm83, and Pm84 had variable basepairs trimmed from the dataset. Every 

defining polymorphism of the sequences in this study fell within the trimmed region of the 

sequencing reads. Additionally, to test for potential effects of possible pseudogene sequencing 

(mentioned above) and accurately compare to previously published COI data (from Lejeusne et 

al, 2014), tests were run excluding nucleotides from analyses that were potentially problematic 

based on this study’s initial methods analysis. While removal of possibly problematic bases 

where double peaks occurred resulted in a reduction in the number of haplotypes, from 85 

haplotypes to 22, any alterations in haplotype calling did not substantially change the 

conclusions of the present study and all nucleotides are included in the following analyses 

(please see Appendix II for a summary of these tests and the results).  

Summary statistics including nucleotide diversity and pairwise differences for the 

mitochondrial data, as well as pairwise FST values were calculated using Arlequin v3.5.2.2. A 

haplotype network was constructed using these results combined with previously published data.  

 

Restriction Enzyme Associated DNA (RAD) sequencing  

Genomic DNA samples were normalized to a concentration of 20 ng/µl as measured on a 

QUBIT 2.0 Fluorometer (Thermo Fisher Scientific, Waltham, MA, USA). Restriction enzyme 

associated DNA sequencing library preparation using the SbfI restriction enzyme (restriction site: 

5’-CCTGCAGG-3’) was carried out on concentration-normalized gDNA by Floragenex Inc. 

(Eugene, OR, USA) in identical fashion to several other recent RAD-seq studies (e.g., Reitzel et 

al. 2013; Herrera et al. 2015). For library preparation, gDNA was digested with the SbfI 

restriction enzyme, yielding fragments of various lengths. Barcode tags, 10 basepairs in length 

and specific to individual, as well as an Illumina adaptor, were ligated onto the sticky end of the 

cut site. Samples were then pooled, sheared, and size selected for optimal Illumina sequencing. 
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Libraries were then enriched through PCR and sequenced by 96-multiplex in a single lane of an 

Illumina Hi-Seq 2000 sequencer. 

 

RAD data filtering, SNP calling, and population genomic analyses 

Using the process_radtags program in Stacks v1.35 (Catchen et al. 2013), raw Illumina 

reads were filtered for quality with a minimum phred score of 10 in a sliding window of 15% 

read length (default settings) and sorted by individual barcode. Reads were truncated to 90 

basepairs (bp) to remove barcodes and adaptors but leaving the six basepair restriction site intact. 

Putative loci were generated using the denovo_map.pl pipeline in Stacks. We used a stack-depth 

parameter (-m) of 3, meaning that three reads were required to generate a stack (i.e., a locus); a 

within-individual distance parameter (-M) of 3, allowing for three SNP differences in a read; and 

a between-individual distance parameter (-n) of 3. The final size of the locus catalog varied as 

expected with different values for the denovo_map.pl parameters (for a complete evaluation of 

the sensitivity to different parameters, please see Appendix III).  

Population summary statistics including allele frequencies, observed and expected 

heterozygosities (Hobs and Hexp), p, and FIS, were calculated by the populations program in 

Stacks, using loci found in five of the six populations and in at least 60% of individuals per 

population using flags -p 5, -r 0.6. Due to the nature of the sequencing quality and coverage (see 

Results), the populations program was also run for all populations excluding New York, NY, 

with loci found in all five of the remaining populations, and 60% of individuals (argument flags  

-p 5, -r 0.6). These data were used in the principal component analysis (see below). Information 

on the effects of changing the -p and -r flags is available in Appendix III. For each RAD-tag, 

only one SNP was used from the 90 bp sequence using the flag –write_single_snp (specifying 

that if there were two or more SNPs in the sequence, Stacks would only use the first). Observed 

and expected heterozygosity (Hobs and Hexp) values were also calculated in the R Package 

PopGenKit (https://cran.r-project.org/web/packages/PopGenKit/index.html) to provide 

secondary validations of reported values. Additionally, allelic richness (Arich) was calculated 

using PopGenKit. Genetic diversity summary statistics (Hobs, Hexp, and Arich) were regressed 

against distance from the New York collection site using the stats package from Scipy 

(https://scipy.org). The least cost distance dispersal trajectories used in these regressions were 
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calculated using the ‘gdistance’ package in R with a bathymetric constraint from ETOPO1 (van 

Etten, 2015; R Core Team, 2016). 

Three methods were used to describe the genetic structure of P. macrodactylus 

populations. First, the smartpca program within EIGENSOFT (Price et al. 2006) was used to 

perform a principal component analysis (PCA) of genetic diversity. Custom scripts archived as 

iPython notebooks were used to convert Stacks PLINK output files into EIGENSOFT input files, 

and to visualize the PCA results (https://github.com/ekbors/thesis_scripts). The smartpca 

program within EIGENSOFT was run with one iteration of outlier removal (‘numoutlieriter’ = 1) 

with otherwise default parameters. To evaluate the impact of missing data on population 

clustering in EIGENSOFT, the ‘missingmode’ argument was used in certain parameter runs. 

Missing data appeared to have a significant effect on the population clustering patterns 

(Appendix IV). Therefore, the results from the missing test runs led us to use the populations 

output excluding New York and analyze loci in all of the remaining five populations. The 

decision to exclude New York was based on the fact that the fewest loci were retained for that 

site, and therefore removing it resulted in less of a reduction in loci used when the new constraint 

that loci must be in all populations was introduced (the -p flag in Stacks populations). Second, 

fastSTRUCTURE (Pritchard et al. 2000; Hubisz et al. 2009; Raj et al. 2013) was run with the 

number of genetic lineages (the value of k) set to values between one and ten to assess genetic 

structure through a hierarchical analysis, and the program chooseK.py was run to select the value 

of k most consistent with the program’s Bayesian structure model. Third, FST values were 

calculated by the populations program in Stacks using a p-value cutoff of 0.05 with a Bonferroni 

correction implemented by the program (using the --fst_correction ‘bonferroni_gen’ argument).  

In addition to the described approaches of regressing genetic diversity measurements 

with distance from New York in order to capture potential range expansion signals in diversity 

summary statistics, a range-expansion specific analysis was also implemented based on 

asymmetries in allele frequency data which may indicate the directionality of expansion (Peter & 

Slatkin 2013). Using an R package developed by Peter & Slatkin (2013), we calculated psi, or 

the “directionality index” in order to quantify the relationships between allele frequencies and 

potential direction and strength of expansion.   
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RESULTS 

Geographic distribution of mitochondrial haplotypes 

 A 501 basepair region of cytochrome oxidase I (COI) was sequenced for a total of 106 

individual P. macrodactylus (19 from New York, NY; 22 from Mystic, CT; 10 from Fairhaven, 

MA; 15 from Plymouth, MA; 19 from Boston, MA; 21 from Newington, NH) (Table 2). In the 

six populations of P. macrodactylus sampled in this study, six haplotypes were identified. For 

ease of comparison and consistency, the haplotype names used in previously published results 

are used in this study (Lejeusne et al. 2014).  

Five of the six haplotypes were previously reported in Lejeusne et al. (2014) and one 

haplotype, here named PmU86, was new and unique to New York, NY (n = 1). This is in 

contrast to previous reports of 11 haplotypes in Mystic, CT, alone, seven of which were reported 

to be unique (Lejeusne et al. 2014). Results of the tests run to investigate what the impact of 

pseudogene sequencing would have been these results as well as on previously published work, 

is presented in Appendix II. In short, tests to remove basepairs at locations where double peaks 

were observed reduced the number of haplotypes previously published from 85 to 22 and the 

number of loci in this study from 6 to 5.  

In the present study, certain haplotypes were only present in one or two populations while 

others were present in all (Figure 2). The most common haplotypes were Pm18 (n = 70) and Pm3 

(n = 22). Pm18 and Pm3 are also the most common haplotypes globally (Lejeusne et al. 2014). 

Pm27, a haplotype previously only reported in Yamaguchi, Japan, in the native range, was 

located in Boston and Plymouth, MA. Pm1 was also only previously reported in the native range, 

but in this study, it was found in Fairhaven and Boston, MA. Pm67, a haplotype previously 

described only in the invaded population in the US Northeast, was observed in New York, NY, 

but not in Mystic, CT, as previously reported (a possible result of sampling effort or an 

unobserved fluctuation in population size and genetic composition). Individuals sampled from 

Fairhaven, MA, and Newington, NH, were all one of two main haplotypes, Pm18 and Pm3. The 

two major haplotypes had only one nucleotide difference between them, and all other haplotypes 

only differed by one nucleotide from either of the major haplotypes (Figure 3). The one newly 

reported haplotype sequence in this study was uploaded to GenBank, and is referred to as 

PmU86 throughout the rest of this study. As noted above, all other sequenced haplotypes from 

this dataset were present in data previously reported by Lejeusne et al. (2014). Haplotype 
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diversity peaked in New York and Boston while nucleotide diversity and pairwise differences 

were highest in Plymouth (Table 2).  

There were two samples from Mystic, CT, for which ambiguous bases were present 

across different sequencing attempts of amplified PCR products. The genomic location of this 

disagreement in the COI sequences was one for which there was no variability reported in 

previous studies or in other samples in this study. Therefore, for these two samples, we 

considered the most parsimonious result to be that the sequences that were consistent with all 

other samples were correct and that the sequences that would indicate a new polymorphism 

were, in fact, errors. However, the ambiguity is noteworthy, especially in light of the sequencing 

variation mentioned in the Methods (above) and described further in Appendix II.  

 

Figure 2. Map of study locations with proportion of sampled individuals with each haplotype.  

 
 
Table 2. mtCOI diversity statistics for Palaemon macrodactylus at the study sites (n = number of 
individuals, h= haplotype diversity). 
 
Location  n h Nucleotide  

diversity 
Number pairwise  
differences 

New York, NY 19 4 0.0015 0.7370 
Mystic, CT 21 2 0.0008 0.3810 
Fairhaven, MA 10 3 0.0013 0.6667 
Plymouth, MA 15 3 0.0017 0.8381 
Boston, MA 19 4 0.0015 0.7368 
Newington, NH 21 2 0.0007 0.3680 
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Figure 3. Haplotype network for cytochrome oxidase I sequenced for Palaemon macrodactylus. The area 
of each circle reflects the relative proportion of individuals with each haplotype, with PmU86 and Pm67 
representing one shrimp each.  

 
RAD-seq efficacy and identification of loci   

 Illumina sequencing of RAD libraries yielded 122,722,404 raw reads. After processing 

raw reads with the Stacks program process_radtags, 13.43% of reads were removed due to a 

missing or ambiguous barcode, 7.16% of reads were filtered due to an ambiguous restriction site 

and 15.32 % of reads were filtered out due to low sequencing quality, leaving 64.10% of reads 

retained for further processing. The percent removed due to low sequencing quality can be 

considered high (especially when compared to Chapters 4 and 5), and was driven mostly by poor 

quality in a number of sequencing tiles in the middle of the sequencing reads. The number of 

reads discarded due to poor quality or ambiguous data varied slightly by individual sample 

(Appendix III).  

 The final catalog used in this study contained 1,598 loci. The average depth of 

sequencing coverage per locus across all individuals was 21.43 with an average standard 

deviation of sequencing depth of 224.21, which is higher than in some other RAD-seq studies 

(Chapter 4). For the populations run including five of the six populations and 60% of individuals 

per population, the number of loci included per population varied greatly (from 969 for New 

York to1,598 in Newington, NH), with New York having the fewest loci (Table 3 and Appendix 

III). For the populations run in which New York was excluded and loci were required to be in all 
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five of the remaining populations (which was required to mitigate the effect of missing data in 

the New York population), 1,092 loci were retained.  

 

Population genomic diversity patterns throughout the invaded range 

 Genetic diversity statistics either remained consistent or increased with distance from 

New York (Figure 4). Hobs increased with distance from New York (Figure 4A). Hexp and Arich 

had consistent values throughout the sampled region with the exception of small increases in 

Arich in Boston and Plymouth, MA (Figure 4B, C).  

 
Figure 4. (A) Observed Heterozygosity, (B) Expected Heterozygosity, and (C) Allelic Richness plotted 
against distance between population locations. For (A) Observed Heterozygosity, R2 = 0.822 and the p-
value = 0.013. The regressions for other summary statistics were not significant.  
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Table 3. Average Stacks summary statistics, all shrimp populations. For populations run of -p 5, -r 0.6 
including all populations in the initial filter. “N (total)” is the number of individuals sequenced while “n 
(avg)” is the average number of individuals used by Stacks for the loci included in the analysis. 
 

Location  N (total) n (avg) # loci  P Hobs Hexp Pi FIS 

New York, NY 17 12.1682 969 0.9451 0.0331 0.0851 0.0888 0.2181 
Mystic, CT 17 12.6765 1459 0.9472 0.036 0.083 0.0865 0.2103 
Fairhaven, MA 13 9.3401 1479 0.9448 0.0389 0.0838 0.0887 0.1656 
Plymouth, MA 16 11.5302 1422 0.9416 0.0381 0.0904 0.0947 0.2066 
Boston, MA 14 10.8371 1541 0.9443 0.0441 0.0866 0.091 0.1775 
Newington, NH 17 13.1729 1544 0.9461 0.0436 0.0833 0.0866 0.1685 

 

 In the PCA for which NYC was omitted and loci were required to be in all populations 

(in order to reduce the effects caused by missing data, of which the New York samples were 

significant contributors), sampling locations demonstrated some clustering (Figure 5) with 11.6% 

of the variation described by the first eigenvector,  11% described by the second, and 10.4% the 

third (10 eigenvectors were calculated by EIGENSOFT indicating that the diversity was almost 

spread evenly across all 10). In addition to structuring highlighted by PCA, the Bayesian 

probability program fastSTRUCTURE also indicated some regional population genomic 

structuring. The chooseK.py program in fastSTRUCTURE identified a k value of 5 (indicating the 

existence of 5 genetic lineages) as being both the value that maximizes likelihood in the model 

and explains the structure, and the populations were clearly differentiated by genetic lineage 

(Appendix V). This initial fastSTRUCTURE analysis was run on all of the populations using the 

populations output in which loci were required to be in 5 of the 6 populations and 60% of 

individuals. Population genetic structure analyses were also run in fastSTRUCTURE using the 

other datasets generated from other runs of populations in Stacks. When requiring loci to be in 

all populations (-p 6), chooseK.py identified a k value of 2 to maximize likelihood and a value of 

5 to explain structure. That analysis did not yield geographic patterns in the data. This could be 

because missing data are excluded, and also due to a loss of power in the dataset by using too 

few loci. In the analysis excluding New York and requiring loci to be in all other individuals, the 

value of k identified that maximizes model likelihood is 2 and the value that explained structure 

was 6. Again, no geographic structure was evident in the visualized data. Due to the variation in 

structure analysis results across different populations runs, it is not possible to draw a definitive 

conclusion from the fastSTRUCTURE results (Appendix V).   
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Figure 5. Omitting New York, PCA of select sites made with EIGENSOFT for loci included in the 
remaining five populations and 60% of the individuals in each (MYS = Mystic, FAI = Fairhaven, BOS = 
Boston, NEW = Newington, PLY = Plymouth). 

 
 
 Despite the apparent population structuring detected by EIGENSOFT and 

fastSTRUCTURE, the FST values—when using a Bonferroni correction—were almost all 

statistically no different from zero. This could indicate that structuring is based more on regional 

variation in the distribution of diversity, rather than driven by isolation and inbreeding, as FST 

often measures. The only values of FST that were different for zero were the following pairwise 

values: Fairfield-to-Mystic, 7.7x10-4; Newington-to-Mystic, 4.6x10-4; Newington-to-Plymouth, 

1.4x10-3; Newington-to-Boston, 4.8x10-4.  

The values of psi, or the directionality index ranged from -0.0518 to 0.0375 on one axis. 

The directionality index revealed that two locations were almost equally likely to be near the 

“origin” of expansion: New York and Boston (Figure 6). This indicates that both could be origins 

of expansion and that other locations may be receiving individuals from those areas. Also 

notable is the fact that Boston and Newington have psi values with the opposite signs to the 

others, indicating that they are perhaps in an opposite direction of expansion than the other 

populations.  
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Figure 6. A heatmap of psi values for all 6 populations of P. macrodactylus. These values indicate the 
“directionality index,” a statistic meant to capture asymmetries in allele frequencies indicating directional 
expansion. As is seen in the heatmap, both Boston and New York have values at or very near zero, with 
Boston’s value slightly positive when others are negative. Note that the values are symmetrical above and 
below the diagonal axis, except for sign.  
 
 

 
 

DISCUSSION 

Potential support for multiple introductions rather than a spatial expansion  

Results in this study do not support a range expansion scenario in which invading 

populations of Palaemon macrodactylus expanded northward along the coast from New York 

City, the first-reported location for the species in the United States in 2001. Instead, results 

suggest evidence for an alternative scenario in which multiple introductions account for the 

spatial spread of P. macrodactylus in the estuarine waters of the northern US Atlantic coast, with 

a second introduction possible in the Boston area. This conclusion is based on the existence of 

two haplotypes previously only described in the native range of Asia (Lejeusne et al. 2014) in 

Boston, Plymouth, and Fairhaven, MA. The peaks in nucleotide diversity in the COI data in 

Boston-Plymouth, and New York also add to the evidence suggesting multiple introductions in 

those two areas.  

Further support for the scenario in which there is at least one additional introduction in 

the north comes from the documented increase in observed heterozygosity across the 1,598 loci 

with increasing distance from New York. This trend is contrary to the expectation during a range 
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expansion, in which diversity would be expected to decrease with increasing distance from the 

point of introduction. These results may demonstrate how the expectations of range expansion 

can be overwhelmed by the specific context of the invasion—in this case, what may appear to be 

spatial range expansion may have actually been driven by multiple introductions, changing the 

distribution of genetic diversity in invasive populations. Additionally, the calculations of the 

directionality index, or psi, identified Boston/Newington and New York as potential locations of 

the origin of expansion, pointing to the existence of two locations of distinct introductions before 

spread.  

Analysis of 1,092 loci generated with RAD-seq and used for PCA (excluding the samples 

from New York), revealed slight population genetic structuring by location in the invaded range. 

FST values for the RAD-seq dataset, however, were extremely low and/or statistically 

indistinguishable from zero. F statistics are used to quantify the level of inbreeding that results 

from isolation of subpopulations in a structured metapopulation (Hartl & Clark 2007). From 

these measurements, population structuring is inferred. In cases of range expansion—a clear 

violation of Hardy-Weinberg equilibrium—one must consider that this framework for evaluating 

structure may not be appropriate. While the population structure detected using PCA and 

fastSTRUCTURE may be driven by isolation of the individual estuaries in which shrimp were 

collected, it could also be driven by differential introduction patterns across the invaded range. 

Specifically, shrimp of different genetic identity might exist in Boston and Plymouth than those 

in Newington and Mystic because invaders of that genotype may have been introduced more 

recently in some places and not yet introduced into others. This may not necessarily mean that 

Newington and Mystic are isolated populations. Rather, it may indicate that the population 

genetic structure is driven by the unfolding of the invasions in a non-linear manner. Similarly, 

Mystic and Newington may not be genetically connected oceanographically, but instead, may be 

experiencing similar impacts of post introduction expansion patterns. Perhaps the two sites were 

both colonized by the first introduction and underwent bottlenecks or perhaps Newington was 

colonized from Boston’s invasion and Mystic was colonized from New York’s, and thus they 

both have decreased diversity and therefore apparently cluster together in measures of structure. 

With time, population homogenization may actually weaken the structure signal, or isolation 

may strengthen it.  
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Population genetic structure could also be driven by intracoastal human-mediated 

dispersal after introduction. Recreational boats, commercial fishing vessels, ferries, cargo ships, 

and touring yachts could all participate in the reshuffling of shrimp around New England. Many 

such vessels could transport shrimp in ballast water along the coast, or, for example, in water of 

tires or other structures used as hull bumpers (Lejeusne et al. 2014). This could explain, for 

example, why some of the mitochondrial haplotypes in Boston were found in Fairhaven and not 

Plymouth while others were found in Plymouth and not Fairhaven. In many invasions, multiple 

vectors are responsible for dispersal (Richardson et al. 2016). Intracoastal dispersal by humans 

has been shown to be important in other marine invasions, including that of the tunicate Styela 

clava in the northeastern Pacific Ocean (Darling et al. 2012). Patterns of haplotype distribution 

could also be due to insufficient sampling of diversity driven by sampling numbers, or sampling 

of segments of the population that are distributed in patches. For example, if shrimp were only 

collected from one patch within a marina or estuary from one sampling location but those from 

another sampling location were collected from five different patches within a marina or river 

basin, then the second set of shrimp might be expected to be more diverse depending on the 

nature of the patchiness.  

 

Oceanographic and life history contexts of the Palaemon macrodactylus invasion  

Oceanographic currents are major drivers of larval dispersal in the oceans, with 

oceanographic patterns sometimes dictating population genetic structure patterns (White et al. 

2010). For example, the coastal worm Clymenella torquata, has a discontinuity in population 

genetic structure just to the south of Cape Cod—a location hypothesized to be a phylogeographic 

boundary—that was attributed to converging water masses and not by the physical barrier of the 

Cape itself (Jennings et al. 2008). However, physical oceanographic studies have revealed that 

the coastal morphology and current flow patterns in the region are such that the estuaries of Long 

Island Sound, Boston Harbor, and Cape Cod Bay are all largely tidally forced, with wind, river 

inputs, and tides driving patterns in Long Island Sound (Whitney et al. 2016), and some more 

persistent but still variable conditions prevailing in Massachusetts waters north of Cape Cod 

(Jiang et al. 2007). In Cape Cod Bay, seasonal variation has been shown to change the retention 

patterns of planktonic crustaceans, such as the copepod Calanus finmarchicus (Jiang et al. 2007). 

Considering these daily and seasonal fluctuations in oceanographic patterns, we expect that 
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instead of persistent oceanographic currents, tidal forcing may play a more important role in the 

dispersal of larval shrimp in and out of estuaries, making predicting the patterns difficult because 

of the stochasticity of such processes.  

Reproductive strategies, dispersal capabilities, and other life history traits play a crucial 

role in determining population genetic connectivity and geographic spread in many marine 

species (Selkoe et al. 2016). In its native range, P. macrodactylus reproduces seasonally from 

April to October, with two cohorts produced per season throughout their two year lifespan 

(Omori & Chida 1988). The shrimp are often found in brackish water in coastal estuaries but 

there is some evidence that developing larvae and gravid females may migrate to higher salinity 

waters (Vázquez et al. 2015). In the invaded region of France, for example, evidence suggests 

that different life stages are spatially segregated within estuaries suggesting that migration occurs 

(Béguer et al. 2011). Further evidence of offshore mixing of larvae has been reported in the 

western Mediterranean Sea (Torres et al. 2012). These processes could lead to high levels of 

mixing in P. macrodactylus.  

Environments with high levels of oceanographic mixing and species with longer-distance 

larval dispersal often drive populations towards lower levels of population structure and, notably, 

towards genetic patterns that do not correlate with Euclidian distance (Cowen et al. 2007; White 

et al. 2010). However, the P. macrodactylus populations exhibit slight genetic structure, so 

despite the potential combination of human-mediated dispersal and oceanographic mixing, we 

acknowledge other processes may be responsible for observed patterns, or that simply not 

enough time has passed for mixing to diminish the signals of multiple introductions. 

 

Consistency with other invasions on the US Atlantic coast 

Multiple introductions are common in marine invasions (Rius et al. 2014). One of the most 

well-known crustacean along the US Atlantic coast, the European green crab Carcinus maenas, 

has been introduced multiple times (Roman 2006; Darling et al. 2008; 2014). Green crabs were 

discovered on the Atlantic coast of the United States in 1817, likely through transport in ship 

fouling assemblages or in solid ballast of cargo or transport vessels (Carlton & Cohen 2003; 

Roman 2006). The expansion of C. maenas to the Gulf of Maine took about half a century, 

eventually stalling near the Canadian border. Then, in the 1980s, C. maenas was recorded in 

northern Nova Scotia. The invaders in the northern part of Nova Scotia were not, however, 
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individuals expanding their invasive range from further south (as might be suspected due to 

climate change) but proved to be new arrivals from Europe (Roman 2006; Darling et al. 2008). 

Without genetic data, this second introduction of more diverse European green crabs would not 

have been distinguishable from a northward expansion—similar to what is reported in this study. 

Following this secondary invasion, northern crabs began spreading southward (as evidenced by 

haplotype data), contrary to the previous direction of invasion but following coastal currents. 

Over the course of just five years—between 2002 and 2007—microsatellite genetic markers  

revealed southward movement and genetic mixing of the new invasive lineages (Darling et al. 

2014).    

In recent years, the Asian shore crab, Hemigrapsus sanguineus, another invasive crustacean, 

surpassed C. maenas as the most abundant intertidal crab in the US Atlantic coast (Lord & 

Williams 2016). Introduced in ballast water, H. sanguineus was first collected in 1988 in Cape 

May County, Delaware, and now occupies a range from South Carolina to Maine (Epifanio 

2013). Two genetic studies of H. sanguineus exist: one in the native range (Yoon et al. 2011) and 

one in the invaded region of the US Atlantic coast (Lord & Williams 2016). Both studies use the 

mitochondrial COI gene. Lord and Williams (2016) documented an increase in H. sanguineus 

density of up to a factor of almost 70 times between 2005 and 2015, showing population growth 

as well as expansion. Northern populations, however, did not increase in density as substantially 

as those closer to the center of the invaded range. Contrary to the expectations for an 

introduction followed by a range expansion, COI data for H. sanguineus did not show any 

specific clines or discontinuity in the population genetics of the invaded range. Although there 

were other haplotypes present, the populations along the Northeast were, like those of P. 

macrodactylus, dominated by one haplotype. 

Another invader undergoing range expansion along the northern US Atlantic coast is the 

Asian violet tunicate, Botrylloides violaceus. The violet tunicate is invasive on both coasts of the 

US, having first invaded the US Pacific Coast in the mid 20th century and the US Atlantic Coast 

after that, likely in the late 1970s (Bock et al. 2010). The spread of the tunicate reportedly 

differed on each coast. On the west coast, genetic data point towards punctuated, spatially 

discontinuous dispersal, likely human-mediated, or to potentially multiple introductions. On the 

east coast, however, the tunicate followed an isolation-by-distance invasion pattern with a 

gradient of genetic diversity in microsatellite data from south to north (Bock et al. 2010). This 
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juxtaposition of the same species invading two different coasts with two apparently different 

expansion patterns—one driven by human-mediated dispersal and one driven by oceanography 

and life history—highlights how each invasion can be different depending on dispersal vectors 

and context. The US Atlantic coast introduction and genetic patterns match the expectations of 

range expansion.  

 

Amending the paradigm for genetic structure in invasive species using a temporal perspective 

When a species is newly introduced—like the shrimp Palaemon macrodactylus—the ways in 

which introduction patterns distribute genetic diversity could be most important for genetic 

structuring. The prevalence of multiple introductions and their potential ability to alter the 

evolutionary trajectory of an invasive species by dramatically changing the nature and 

distribution of genetic diversity highlights the need to amend the conception of classical marine 

population genetics as being driven primarily by physical oceanographic drivers and life history 

traits. A new framework should include the dispersal by humans as a driver of population 

structure, the more so since anthropogenic dispersal of marine species has been in play for 

centuries if not millennia (Carlton, 2009). This is obvious in the case of a secondary invasion but 

can also occur within a species range. For example, inside what is considered to be the native 

range of Palaemon elegans—including the Mediterranean, Black, and Baltic Seas—population 

structure and a recent apparent expansion may be driven by human-mediated dispersal and not 

oceanographic or biological factors (Reuschel et al. 2010). Additionally, at different times in the 

history of a metapopulation, different processes are likely to be more important to the shaping of 

genetic diversity than others.  

In the case of Carcinus maenas as well as Palaemon macrodactylus, comparing molecular 

data from multiple time points is crucial for detecting multiple invasions. In order to test the 

hypotheses generated by our understanding of dynamic population processes, repeated genetic 

assessment of invasive populations (along with knowledge of the quality of baseline survey data) 

improves our understanding of how an observed pattern that might appear, at a coarse-grained 

level, to be standard range expansion, may actually be a second introduction (as was observed in 

P. macrodactylus). The previously published data used in comparison to results of this study are 

based on samples collected at just one site, making definite inferences of temporal processes 

difficult. Broader coverage of invaded areas may facilitate more concrete conclusions. In the 
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case of P. macrodactylus, artifacts of reporting and searching for otherwise largely unstudied 

crustaceans inadvertently led to an assumption of sequential spread along the coastline. For these 

reasons, genetic monitoring, or at least periodic genetic studies throughout an invasion will prove 

highly valuable. While the data presented here suggest that a second introduction is possible, and 

the previous information regarding haplotype distributions corroborates this explanation of the 

data, it is still not possible to say exactly when this introduction took place. It is also not possible 

to determine how long the current population structure will persist as the invasion progresses or 

if P. macrodactylus will appear to expand northward and southward, or be subjected to yet more 

new introductions from overseas in the future.  

 

Conclusions 

Similar to other invasive species, Palaemon macrodactylus has likely been introduced 

multiple times in the invaded range along the US northern Atlantic coast, as is reflected in 

patterns of genetic diversity. This study represents the first use of genome-wide population 

genomic markers generated by RAD-sequencing in an invasive Palaemon shrimp. Data 

presented here indicate that invasion context is crucial to making predictions about genetic 

diversity. In addition to oceanographic dispersal mechanisms and life histories, human-mediated 

dispersal may play an important role in shaping the diversity of marine species. Furthermore, the 

age of invasive metapopulations may partially determine which force plays the most important 

role in driving population structure. At the current time, our understanding of the population 

dynamics of invasion are not generalizable across species. It is only through more intense study, 

continued research through time, and comparisons among multiple invasive species, that our 

understanding of marine invasions will improve.  
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CHAPTER 3 APPENDICES  
Appendix I: Sample size distributions of Palaemon macrodactylus individuals  

More shrimp were collected from each site included in this study than were used in the 

genetic analysis. Additionally, shrimp were collected from sites not included in this study as part 

of the ShrimpEX2014 sampling effort (these sites were Shefield, CT, New Bedford, MA, and 

Salem, MA). The length distributions of all the shrimp collected are reported here (Figure AI.1) 

in order to capture the overall distribution of sizes in the invaded range. The length distributions 

of shrimp used in the genetic analysis are also reported for comparison to overall size 

distribution from each site (Figure AI.2).  

Figure I.1. Length (cm) (from the end of the telson to the base of the rostrum) distributions for all 
samples collected. The X-axis is length and the Y-axis is the number of shrimp with a specific length. 
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Figure I.2. Length (cm) distributions (from the end of the telson to the base of the rostrum) for samples 
included in genetic analyses. The X-axis is length and the Y-axis is the number of shrimp with a specific 
length. 

 
Table I.1. Average length of shrimp (end of telson to base of rostrum) in total sample and in RAD sample 
(NYC = New York, SHE = Shefield CT, MYS = Mystic CT, FAI = Fairhaven MA, POP = New Bedford 
MA, PLY = 2.94, BOS = Boston MA, SAL = Salem MA, NEW = Newington, NH). 
 

Location Average length  
Overall (cm) 

Average length for  
RAD samples (cm) 

NYC 2.74 2.96 
SHE 4.35 -- 
MYS 2.80 2.85 
FAI 2.20 2.46 
POP 2.63 -- 
PLY 2.94 2.94 
BOS 3.50 3.93 
SAL 3.37 -- 
NEW 2.90 4.19 

 

 

 



	 95 

Appendix II: Preliminary protocols used for mitochondrial sequencing and 

subsequent results   

II.A. Original extraction protocol and double-peak Sanger sequencing issues 

Initial extractions were executed using Phenol-Chloroform extraction technique as 

described in (Herrera et al. 2015). In the first rounds of sequencing effort, our PCR program 

included 40 replication cycles of the thermocycler profile (reported in the Methods) in order to 

generate enough amplified gene product to visualize on a gel with the primers. With the 

knowledge that some extraction methods result in differential extraction of nuclear DNA and 

mitochondrial DNA (Guo et al. 2009), we attempted to extract the DNA using different methods 

and reduce the number of PCR cycles to 30. Ultimately, the extraction method reported in the 

Methods section proved to eliminate our problems with double-banding. This reliably eliminated 

the double peak phenomenon observed in the raw sequences. The double peaks in our sequences 

align directly with polymorphic sites published in previous population genetic studies on this 

species (Lejeusne et al. 2014). It is difficult to affirm whether they were true polymorphisms or 

the results of sequencing a duplicated gene. 

 

Figure IIA.1. Chromatogram data from mtCOI sequences for each four pairs of sequences, representing 
three individual Palaemon samples (the first four lines of the alignment are two different sampling runs of 
the same individual). As can be seen for each of the four polymorphic sites in the sequences, there are 
ambiguous peaks—often in both sequencing directions—that make certain basepair calling impossible.  
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II.B. Tests for possible effects of mtDNA pseudo-gene sequences on analysis results 

 In order to assess the possible implications of unintentional pseudogene sequencing, we 

executed preliminary tests excluding nucleotide sites where the double-peaks described above 

existed (i.e., where it was impossible to call a base and instead an “N” was used in the sequence). 

The initial sequencing run with the protocol described above (Phenol-Chloroform extraction) 

included 66 individuals from New York, Fairhaven, and Newington. Out of the 66 individuals in 

the initial studies, we set a threshold for 6 occurrences of an “N” at a specific basepair positions 

to consider it potentially at risk of being a pseudogene. This resulted in 12 basepair positions 

flagged as potentially polymorphic due to the sequencing of pseudogene. An alignment of the 

initial COI data, the COI data included in the study (using the Biotek Extraction kit) and the 

published haplotypes from genbank was made and the 12 basepair positions were removed.  

 Removal of the polymorphic nucleotide positions potentially based on pseudogene 

sequencing resulted in a significant reduction of haplotypes from the original study (Lejeusne et 

al. 2014): 85 haplotypes were reduced (merged) to 22 haplotypes. Some haplotypes stayed 

unmerged while others underwent significant merging. For example, Haplotype Pm18, the most 

common haplotype, absorbed 21 other haplotypes. Thirteen haplotypes did not change due to the 

omission of certain basepairs. Of these 13 haplotypes, 7 were found only in the native range. In 

many cases, the reduction of haplotypes through merging would have led to different results for 

the previously published global population genetic study. For example, Mystic CT—a site 

included here—would have only 4 haplotypes, one of which was unique to the site instead of 22 

haplotypes, with 11 unique. For the data included in this study, the only difference if excluding 

certain basepairs would be the merging of haplotypes Pm1 and Pm3.  

 It is impossible to know exactly what factors were responsible for the reported 

polymorphisms in previously published studies, but it is clear that the first round of our 

extractions and sequencing resulted in unusable sequences that had uncallable bases at 12 sites in 

otherwise unambiguous sequences. These 12 sites were major drivers of diversity reported in 

previous studies. Changes in the levels of diversity in Mystic observed in this study as compared 

to previous data could be driven by biological factors and not due to differences in sequencing 

results. However, it is not possible to definitively determine the source of the differences at this 

time.  
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Appendix III: Quality and quantity of RAD-sequencing throughout the Stacks 

pipeline 

III.A. Process_radtags detailed information  

Figure III.A.1. Percent reads retained by process_radtags, and percent filtered out for low quality, 
ambiguous rad-tags, or ambiguous barcodes.  

 
III.B. Detailed results of multiple runs of denovomap.pl 

 The program Stacks allows for sorting and alignment of sequence reads into “stacks,” or 

loci, based on the number of polymorphisms allowed in each “stack” of sequences. Determining 

the appropriate parameters for this sorting in the absence of information regarding the genomic 

sequence of a species almost certainly involves splitting some sequenced loci that should be 

considered one locus into multiple loci and, conversely, combining multiple loci into one locus 

when in fact multiple loci exist (described in Rodríguez-Ezpeleta et al. 2016). The two main 

parameters that determine how loci are constructed are the –n parameter, or the within-individual 

distance parameter which determines how many polymorphisms are allowed at one locus within 

an individual, and –M, or the between-individual distance parameter which determines how 

many polymorphisms are allowed between individual when building a catalog of loci. Altering 

these values affects the catalog size. Denovomap.pl was run 16 times with different permutations 

of the –M and –n parameters and the resulting catalog sizes ranged from about 3,820,000 to 

380,000 (Figure III.B.1). For this study, the –M and –n flags were set to three, which represented 

a catalog size close to the middle of all possible catalog sizes.  

The sequencing depth of each stack (locus) averaged across all loci for each individual 

ranged from 16.03 to 27.72. The mean depth of sequencing increased with an increase in the 

number of reads, meaning that as more reads were used per individual, coverage increased and 
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not the number of loci being sequenced (Figure III.B.2). The standard deviation of the depth of 

coverage was relatively high and also increased with the total number of utilized reads. Finally, 

the number of repetitive reads discarded increased with the total number of utilized reads (Figure 

III.B.2.  

 

 

Figure III.B.1. Effect of changing the values of the -n and -M arguments while running denovomap.pl.  
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Figure III.B.2. The mean depth of coverage averaged across all loci for each individual (upper left 
panel), the standard deviation of the depth of coverage across all loci for each individual (upper right 
panel), and the number of repetitive reads removed vs. the total number of utilized reads (lower left 
panel). Color key indicates sampling population of each individual.  
 

 

 
 

III.C. Stacks populations program parameter results 

 As population parameters are relaxed (i.e., made less stringent in terms of how many 

populations and individuals a locus is present in to be considered). One might expect the number 

of loci used to converge on a value close to the “true” number of loci, or SbfI cut sites in the 

genome. However, in these data, as requirements are relaxed, and more individuals with unique 

SNPs are added to analysis, the number of loci does not converge, but rather grows (Figure 

III.C.1). This is an indication that most of the loci sequenced are not in most of the individuals. In 

other words, loci were not sequenced evenly across all individuals. This could be the result of a 

poor digest or some problem in the library preparation perhaps related to enzyme efficiency.   
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Figure III.C.1. Number of polymorphic sites generated with different flags run in the populations 
program in Stacks for a different denovomap run. These analyses were executed with slightly different 
parameters for the denovomap run included in the chapter but are reflective of the final dataset.  

 
Table AIII.1. Number of loci used in popluations analysis with specific argument combinations. These 
values are for downstream analysis of denovomap parameters –n = 3 and –M = 3.  Note that these are 
different from the data in Figure AIII.2 (above). The patterns, however, were the same although the 
absolute values varied.  
 

Population parameters New York Mystic Fairfield Plymouth Boston Newington All 

-p 6 -r 0.6 - - - - - - 498 

-p 5 -r 0.6  969 1459 1479 1422 1541 1544 1598 

-p 5 -r 0.6, no NYC - - - - - - 1092 

-p 4 -r 0.6, no NYC NA 2732 2827 2516 3091 3111 3329 
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APPENDIX IV: Evaluation of the effects of missing data on principal 

component analysis 

The smartpca program within EIGENSOFT, which was used to complete the principal 

component analysis (PCA) for this study has a built-in option to assess the PCA results based 

solely on missing data denoted by a ‘-missingmode’ flag in the parameters file. In the three case 

studies below, it is evident that in any case when loci are being included in the analysis that are 

not in all populations (i.e., a –p flag that is smaller than the total number of populations) that 

there is some clustering due to missing data. The smartpca program in EIGENSOFT replaces 

missing data with the average value across all populations, therefore pulling the individual or 

population with the missing data towards the center of the parameter space. This is likely what is 

occurring with the NYC population in the Case 1 below.  

 
CASE 1:  Requiring loci to be in 5 out of 6 populations (using all experimental populations):  
 

 
CASE2: Requiring loci to be in 5 out of 5 populations, excluding NYC (the population with fewest loci)  
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CASE3: Requiring loci to be in 4 out of 5 populations, excluding NYC (the population with fewest loci)  
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Appendix V. fastSTRUCTURE results for multiple populations outputs  
Two examples of fastSTRUCTURE plots below highlight the variability in outcome 

depending on which Stacks populations output is used. The first contains some missing data for 

each population, possibly driving the structure pattern (Figure AV.1). The second does not have 

missing data sorted by population but may lose power due to fewer loci (Figure AV.2). 

 
 
Figure V.1. FastSTRUCTURE plot for k=5, the value of genetic lineages that both maximized model 
likelihood and explained genetic structure for the populations run of Stacks in which all populations were 
used but loci were required to be in only 5 and 6 populations and 60% of individuals within a population.  

 
 
Figure AV.2. FastSTRUCTURE plot for k=5 for the populations run of Stacks in which loci were 
required to be in all 6 populations and 60% of individuals within a population.  
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CHAPTER 4 

 

 

 
Non-Equilibrium Population Genomics of the Rapidly Invading 

Lionfish, Pterois volitans, Reveals Expansion Signals Without  

Spatial Metapopulation Structure   
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ABSTRACT 

Describing the genomic legacies of range expansions is a critical step towards predicting the 

evolutionary and ecological outcomes of shifting species distributions due to global climate 

change and species invasions. The invasion of the Indo-Pacific lionfish, Pterois volitans, into 

waters off the US East Coast, Gulf of Mexico, and Caribbean Sea provides a natural model to 

study rapid range expansion in an invasive tropical marine fish with high dispersal capabilities. 

During range expansions, strong genetic drift characterized by repeated founder events can result 

in decreased genetic diversity with increased distance from the center of the historic range, or the 

point of invasion. We report results from 12,759 loci sequenced by restriction enzyme associated 

DNA sequencing (RAD-seq) as well as mitochondrial control region D-loop data for nine P. 

volitans populations throughout the invaded range (with one additional site for the mitochondrial 

analyses). While genome-level analyses are consistent with previous findings of low to no 

spatially explicit metapopulation genetic structure in the Caribbean Sea, genetic diversity of the 

lionfish throughout the invaded range is not homogeneous. In fact, patterns of genomic diversity 

correlate with the expansion pathway. Observed heterozygosity decreases with distance from 

Florida while expected heterozygosity stays mostly constant, indicating population genetic 

disequilibrium correlated with distance from the point of invasion. Using an FST outlier analysis 

(LOSITAN) and a Bayesian environmental correlation analysis (BayEnv 2.0), we identified 256 

and 616 loci, respectively, that are putatively experiencing selection or strong genetic drift. Of 

these, 24 loci were shared between the two outlier methods, three of which may be involved in 

movement, growth, and reproduction pathways, potentially indicating adaptation in the invaded 

range.  
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INTRODUCTION 

The distributions of species are perpetually changing over multiple temporal and spatial 

scales. For example, re-colonization of high latitudes following glacial retreat has been reported 

in both terrestrial (Hewitt 1999; 2000) and marine species (Silva et al. 2014; Shum et al. 2015). 

The genetic signature of poleward expansions is often described as decreasing genetic diversity 

with increasing latitude, with occasional examples of habitat refugia altering expansion pathways 

(Maggs et al. 2008). More recently, species distributions have been shifting due to anthropogenic 

climate change (Parmesan & Yohe 2003; Perry 2005; Harley et al. 2006; Pinsky et al. 2013) and 

other sources of environmental change, such as habitat alteration (Bradshaw et al. 2014), and 

non-native species introductions (Lowry et al. 2013). Range shifts can be dramatic and rapid, as 

in the case of a disease epidemic (Lessler et al. 2016); or slow and steady, as in the case of some 

land animals (Gracia et al. 2013).  

Invasive species are frequently utilized in evolutionary biology as “natural experiments” or 

models to investigate adaptation to new environments (Barrett 2015). Being able to predict the 

evolutionary dynamics of invasion is not only important for managing invasions themselves, but 

is also essential for anticipating impacts of climate-driven range shifts, and for conserving 

species undergoing distributional shifts due to other anthropogenic disturbances. Despite the 

importance of these processes to management and conservation, fundamental questions about the 

genetic impacts of invasion and range expansion remain. Gaps persist in our understanding of the 

accumulation of mutations during expansion, the drivers of invasion success, and the ways in 

which genetic diversity changes during invasion following a strong initial bottleneck (Bock et al. 

2015). Here, we use the invasion of the Indo-Pacific lionfish, Pterois volitans [Linnaeus, 1758] 

as a model for rapid range expansion on a decadal time scale in a marine species with high 

dispersal capabilities. The use of next generation sequencing and other emerging genomic tools 

to address these issues is widely recognized as the frontier in invasion genetics research—

promising a synergy between previously intractable questions and burgeoning technologies 

(Chown et al. 2014; Rius et al. 2015). 

The invasion of Pterois volitans and Pterois miles [Bennett, 1828] in the Western Atlantic 

and Caribbean Sea is unprecedented in both rate of geographic spread and ecological damage 

(Hixon et al. 2016). P. volitans is the most common species in the invasion, with P. miles less 

common and mostly restricted to the northern part of the invaded range (Freshwater et al. 



	 108 

2009a). For this reason, the present study focuses only on P. volitans. In their native range in the 

western Pacific and Indian Oceans, lionfish populations appear to be well controlled by predators 

and competitors (Kulbicki et al. 2012), but in their invaded range, lionfish are prolific breeders, 

insatiable predators, and habitat generalists (Morris & Akins 2009; Morris 2009), resulting in a 

stark contrast between the ecological role of the fish in its native and invaded range. First 

reported off Dania, Florida in 1985, the lionfish invasion in the western Atlantic likely originated 

from an introduction (or several introductions) in southern Florida followed by a long incubation 

period and an immense post-establishment expansion (Betancur-R et al. 2011). In the late 1990s 

and early 2000s, lionfish began their northward expansion, and by 2004 sightings of juveniles 

were reported as far north as Cape Cod, although no known breeding populations have been 

established north of North Carolina. In 2004, lionfish spread to the Bahamas, and in the years 

since have been reported throughout the Caribbean Sea to Brazil, southeast to the coast of South 

America, in Panama, Belize, Mexico, and in the Gulf of Mexico (Schofield 2010). Lionfish have 

most recently been reported south of the Amazon River (Ferreira et al. 2015). The timing of the 

invasion is well characterized by observational data (Schofield 2009) (summarized in Figure 1).  

Lionfish present a significant ecological threat to Caribbean reef biodiversity (Hixon et al. 

2016). In Bahamian reefs, for example, invasive lionfish caused decreases in density, biomass, 

and species richness of native reef fish communities by approximately 46%, 31%, and 21% 

respectively (Albins 2015). In many areas, lionfish prey on other reef fish and are known as 

generalist feeders and opportunistic predators. However, geographic variation has been observed 

in specific fish diets (Eddy et al. 2016). The broad diet of lionfish, their rapid proliferation, and 

the vulnerability of Caribbean reefs has led some to predict a “worst case scenario” in which the 

Caribbean will experience “depauperate reef-fish communities and degraded coral reefs” as a 

direct outcome of the lionfish invasion (Albins & Hixon 2011).  

Range expansions, similar to that of the lionfish, are known to result in specific genetic 

consequences, which have been presented in a body of simulation and theoretical research that 

has grown dramatically since the early 2000s. The process that dominates much of the literature 

is known as “allele surfing” (alternatively called “gene surfing” or “mutation surfing”), in which 

an otherwise rare allele or new mutation rises to high frequency near a range margin because of 

repeated founder events through space and time (Edmonds et al. 2004; Klopfstein 2005; 

Hallatschek & Nelson 2008; Peischl et al. 2013). Allele surfing can vary in strength, leaving 
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either strong or subtle gradients in allele frequencies. In cases of strong allele surfing, the 

mutation or allele in question may become fixed at the range edge, even when the allele is 

disadvantageous to the population (Travis et al. 2007; Peischl et al. 2013; Peischl & Excoffier 

2015). These processes could act during an invasion to decrease genetic diversity with increasing 

distance from the point of introduction (Excoffier et al. 2009), as has been observed in humans 

with distance from Africa (Ramachandran et al. 2005). If extreme, such decreases in diversity 

could lead to a reduction in adaptive potential (Volis et al. 2014). The pattern of allele surfing 

can resemble that of strong selection along the expansion axis.  

The potential for population genomics to provide insight into the evolutionary impacts of 

range expansions and invasion dynamics in non-model systems has been widely acknowledged 

(Kirk et al. 2013; Barrett 2015; Bock et al. 2015). Still, while many authors have used genetic 

techniques to approach range expansion questions in, for example, volcano barnacles (Dawson et 

al. 2010) and green crabs (See & Feist 2009; Darling et al. 2014), only a handful of studies to 

date have explicitly attempted to harness the potential power of next generation sequencing 

(NGS) for use in range expansion analyses focused on drift and selection (White et al. 2013; 

Tepolt & Palumbi 2015). White et al. (2013) found both genetic drift and natural selection in 

populations of an invasive bank vole in Ireland, including patterns of decreased expected and 

observed heterozygosity, and allelic richness. While these patterns indicate that the forces 

described in theory and simulations are likely realized in some invasive species, any 

generalizations must be based on multiple systems spanning the spectrum of demographic 

contexts.  

For lionfish in the invaded range, recent genetic studies have focused on mitochondrial 

sequencing to describe population genetic connectivity and population structure. To date, studies 

have identified just nine haplotypes of the mitochondrial D-loop gene in the invaded range but 

have not traced these directly back to a specific source in the native range, where genetic 

diversity is much greater (Freshwater et al. 2009a; Betancur-R et al. 2011; Butterfield et al. 

2015). While north-to-south (i.e., Western Atlantic to Caribbean) population differentiation 

exists in the invaded range, overall, a lack of metapopulation genetic structure has been reported 

within oceanic basins (Freshwater et al. 2009b; Betancur-R et al. 2011; Toledo-Hernández et al. 

2014; Butterfield et al. 2015), with some local population structure reported in Puerto Rico 

(Toledo-Hernández et al. 2014). Only four of the nine total haplotypes have been reported in the 
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Caribbean (Betancur-R et al. 2011; Toledo-Hernández et al. 2014; Butterfield et al. 2015; 

Johnson et al. 2016). Most recently, the expansion into the Gulf of Mexico has resulted in a 

bottleneck between Caribbean populations and the Gulf of Mexico populations, evidenced by the 

existence of only three of the four haplotypes found in the Caribbean region (Johnson et al. 

2016). These course-scale patterns are congruent with large-scale barriers to dispersal between 

oceanic basins and with the timing of the expansion.  

The present study contains the first genome-wide single nucleotide polymorphism (SNP) 

data for the invasive lionfish throughout the Caribbean Sea using 12,759 loci across nine 

populations. SNP data are analyzed from a range expansion perspective, identifying changes in 

genetic diversity with distance from the point of invasion. Our initial prediction was that range 

expansion would lead to decreased genetic diversity (allele frequency, allelic richness, and 

heterozygosity) with increased distance from Southeastern Florida. We predicted that signals of 

allele surfing would be detectable in the SNP data, in line with the theoretical predictions 

outlined above. Counter to these predictions, patterns of decreased diversity in the form of 

decreased average allele frequency or allelic richness were not observed in the data. However, 

decreases in average observed heterozygosity was observed, indicating higher levels of 

disequilibrium near the range edge, with more central populations tending towards an 

equilibrium state, as populations become more established and the front moves farther away. 

Specific loci were identified as outliers in both Bayesian and FST analyses. These loci could be 

under selection or experiencing strong genetic drift.  

 

METHODS 

Sample collection 

Pterois volitans individuals were collected from nine Caribbean sites for genomic 

analysis (Figure 1). Additional individuals were collected from Trinidad and included in the 

mitochondrial analysis but not in the RAD-seq analysis. P. volitans from Biscayne Bay, Florida, 

were collected by SCUBA divers from the U.S. National Park Service in August and September 

of 2013 as part of ongoing collection programs. Fin clips were subsampled from each fish and 

stored in ethanol in a -20°C freezer. Similarly, samples from the US Virgin Islands were 

collected from Buck Island by divers from the University of the Virgin Islands between May of 

2013 and February of 2014 and fin clips were subsampled. Samples from The Bahamas, the 
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Dominican Republic, Jamaica, the Cayman Islands, Cozumel Mexico, Belize, Honduras, and 

Trinidad (for mitochondrial analysis only) were collected by divers throughout 2013 and tissue 

subsamples were archived in the U.S. National Oceanic and Atmospheric Administration 

(NOAA) Beaufort Laboratory, Beaufort, North Carolina. Sections of muscle tissue from archived 

filets were subsampled at NOAA.  Fish were identified to species when possible through 

meristics (i.e., morphological traits) at the collection site and later confirmed through molecular 

barcoding. If provided by collectors, latitude and longitude, depth, date of collection, sex, and 

standard or total length for each sample can be found in Appendix I. The latitude and longitude 

of the most common collection site per country was used in subsequent spatial analyses 

(Appendix I). Tissue samples were shipped to the Woods Hole Oceanographic Institution in 

ethanol or frozen and then were stored at -80°C until genomic DNA extraction.   

 
Figure 1. Map of the study region showing the nine sampling locations used for RAD-sequencing 
(samples from Trinidad, not shown here, were used in the mitochondrial analyses). Colored contours on 
the map show the extent of the invasion in the years from 2004-2009, by which point all of the nine sites 
had been invaded (see legend for dates).  
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To estimate the age of each sampled individual, and therefore the likely time of 

recruitment of the individuals used in this study, we calculated age from total length using a von 

Bertalanffy growth curve (Barbour et al. 2011). For samples that lacked a standard length 

measurement but had a total length measurement, we utilized a conversion function to estimate 

standard length (Fogg et al. 2013). Distributions of estimated fish age and recruitment year are 

presented in Appendix I.  

 

DNA extraction and mitochondrial DNA PCR, sequencing, and analysis 

Genomic DNA (gDNA) was extracted from muscle or fin clip tissue using a CTAB and 

proteinase K digest, a phenol-chloroform purification, and an ethanol precipitation as described 

in (Herrera et al. 2015b). gDNA was stored in AE buffer from a QIAGEN DNeasy Blood and 

Tissue Extraction Kit (Qiagen GmbH, Germany) at 4° C or -20° C until gene amplification and 

sequencing.  

Polymerase chain reactions (PCRs) were performed targeting the mitochondrial control 

region D-loop with primers LionfishA-H (5’-CCATCTTAACATCTTCAG TG-3’) and 

LionfishB-L (5’-CATATCAATATGATCTCAGTAC-3’) (Freshwater et al. 2009b). The 

thermocycler temperature profile consisted of 95° denaturing step for 3.5 minutes, then 30 cycles 

of 95° for 30 seconds, 51° for 45 seconds, 72° for 45 seconds, followed by a final extension step 

at 72° for 5 minutes. PCR reactions were purified using a QIAGEN PCR Purification Kit 

(Qiagen GmbH, Germany) and were sequenced using Sanger sequencing at Eurofins Operon 

Genomics (Eurofins MWG Operon LLC, Louiseville, KY, USA). Sequences were edited and 

aligned using Geneious 8.1.5 (http://www.geneious.com, Kearse et al. 2012) and were compared 

to the previously published haplotypes. Mitochondrial sequence data were generated for a total 

of 217 individual P. volitans samples (23 from Florida, 17 from The Bahamas, 16 from the 

Dominican Republic, 25 from Jamaica, 15 from the Cayman Islands, 24 from Mexico, 18 from 

Belize, 24 from Honduras, 23 from the US Virgin Islands, and 32 from Trinidad). Genome-wide 

single nucleotide polymorphism (SNP) data were generated for a subset of 120 of those samples.  

Restriction enzyme associated DNA Sequencing 

Restriction enzyme associated DNA sequencing (RAD-seq) library preparation using the 

SbfI restriction enzyme (restriction site: 5’-CCTGCAGG-3’) was carried out on concentration-

normalized gDNA by Floragenex Inc. (Eugene, OR, USA) in identical fashion to several other 
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recent RAD-seq studies (Reitzel et al. 2013; Herrera et al. 2015b). A subset of samples were 

prepared for paired-end Illumina sequencing following the library prep protocol described in 

Baird et al. (2008), in order to generate longer sequencing assemblies for future analyses as well 

as provide possible comparisons of methods.  

In brief, gDNA was digested with the SbfI restriction enzyme, yielding fragments of 

many different lengths. Barcode tags 10 basepairs in length that were specific to each individual, 

and an Illumina adaptor, were ligated onto the sticky end of the cut site. Samples were then 

pooled, sheared, and size selected for optimal Illumina sequencing. For the paired-end sample 

library prep, a second adaptor was ligated to the second end of the read. Libraries were then 

enriched through PCR and sequenced by 96-multiplex in a single lane of an Illumina Hi-Seq 

2000 sequencer (one lane for the single end sequencing, one for the paired end). For the samples 

sequenced in a paired-end Illumina run, each sample was loaded twice to achieve a standard 

coverage (i.e., for one individual, two libraries were generated from two aliquots of gDNA with 

two barcodes).  

  

RAD-seq data processing and population genomic analyses 

Using the process_radtags program in Stacks v1.19, raw Illumina, reads were filtered for 

quality with a minimum phred score of 10 in a sliding window of 15% read length (default 

settings) and sorted by individual-specific barcode. Reads were truncated to 90 basepairs (bp), 

including the 6 basepair restriction site. For the data generated with paired-end sequencing, only 

the first read was used. Putative loci were generated using the denovo_map.pl pipeline in Stacks 

v1.35 (references to Stacks from this point forward will all be to this version). We used a stack-

depth parameter (-m) of 3, such that 3 reads were required to generate a stack (i.e., a locus); a 

within-individual distance parameter (-M) of 3, allowing for three SNP differences in a read; and 

a between-individual distance parameter (-n) of 3, allowing for three fixed differences between 

individuals to build a locus in the catalog. In initial exploratory analyses, altering the values of 

the within-individual and between-individual parameters did not significantly impact the number 

or identity of downstream loci called by Stacks (not reported). 

Population summary statistics (allele frequencies, observed and expected 

heterozygosities, p, and FIS) were calculated by the populations program in Stacks, using loci 

found in eight of the nine populations and in at least 80% of individuals per population 
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(command flags -p 8, -r 0.8). Information on the effect of changing the -p and -r flags is 

available in Appendix II. For each RAD-tag, only one SNP was used from 90 bp sequence using 

the program flag –write_random_snp (if there were two or more SNPs in the sequence, Stacks 

would randomly choose one to analyze). Heterozygosity (observed and expected) values were 

also calculated in the R Package PopGenKit (https://cran.r-project.org/web/packages/ 

PopGenKit/index.html) to provide secondary validations of reported values. Allelic richness was 

calculated using PopGenKit.  

Three methods were used to describe the genetic structure of lionfish populations in the 

study area: principal component analysis (PCA), a Structure analysis, and FST calculations. The 

smartpca program in EIGENSOFT (Price et al. 2006) was used to perform a PCA of genetic 

diversity. Custom iPython notebooks used to convert Stacks PLINK output files into 

EIGENSOFT input files, and for the visualization of the PCA are available at the author’s 

GitHub (https://github.com/ekbors/thesis_scripts). Smartpca was run with four iterations of 

outlier removal (‘numoutlieriter’ = 4) with otherwise default parameters. In addition to the PCA 

analysis, fastSTRUCTURE (Pritchard et al. 2000; Hubisz et al. 2009; Raj et al. 2013) was run 

with the number of genetic lineages (the value of k) set to values between one and ten to assess 

genetic structure through a hierarchical analysis, and the program chooseK.py was run to select 

the value of k most consistent with the program’s spatial structure model. FST values were 

calculated by the populations program in Stacks using a p-value cutoff of 0.05 and a Bonferroni 

correction (using the ‘bonferroni_gen’ flag in the populations program). In addition to these 

analyses, frequency spectra of the major alleles and of FIS reported by Stacks were plotted in 

iPython. FIS is calculated as !"# = %&'%(
%&

 where HS is the heterozygosity in the subpopulation and 

HI is the heterozygosity of the individual. The output from Stacks reports FIS values of zero when 

the HS is equal to zero (p = 1), but in these cases, the numerical value of FIS is actually 

undefined. In order to remove these values, only FIS values that were calculated when HEXP > 0 

were used.  

Genetic diversity summary statistics were regressed against distance from the southern 

Florida collection site of Biscayne Bay using the stats package from Scipy (https://scipy.org). 

The least cost distance dispersal trajectories used in these regressions were calculated using the 

‘gdistance’ package in R with a bathymetric constraint from ETOPO1 (van Etten, 2015; R Core 

Team, 2016) with an additional requirement that pathways to sites to the west of Cuba first went 
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around the east side of Cuba, a reasonable alteration considering the direction and strength of the 

Florida Current, as well as existing literature about the difficulty of dispersal of lionfish across 

that current (Johnston & Purkis 2015). Other methods of measuring distance were explored, 

including Euclidian distance and a non-modified least-cost ocean distances (that did not require 

pathways to go around Cuba) that result in slightly different regressions but ultimately the same 

conclusions (Appendix III). 

In addition to the described approaches of regressing genetic diversity measurements 

with distance from Florida, we also implemented range-expansion specific analyses (Peter & 

Slatkin 2013). Using an R package developed by Peter and Slatkin (2013), we calculated psi, or 

the “directionality index,” which measures asymmetries in allele frequency data to evaluate the 

likely direction of expansion in a set of populations and the relative distance of a site to the 

center of the range.  

 

Genome size estimation  

 To predict the size of the Pterois volitans genome based on the observed number of 

restriction sites (i.e., half the number of observed RAD loci), we used the linear model and 

parameter estimates for the SbfI enzyme described by Herrera et al. (2015a) as implemented in 

the program PredRAD (Herrera et al., 2015a). To generate a range for the number of restriction 

cut sites for SbfI, we ran the Stacks pipeline and populations program with several different 

permutations of parameters (Appendix II) and then used a range of the number of total RAD loci 

generated by the different program runs.  

 

Blast2GO and locus identification  

To annotate the RAD loci and infer possible links to gene function, we aligned the 

sequences to the non-redundant sequence database (restricted to teleost bony fishes) of NCBI 

using the BLASTx (Basic Local Alignment Search Tool) program as implemented in Blast2GO 

v2.5.1 (Conesa et al. 2005). We used an e-value threshold of 1x10-3, a word size of three and a 

HSP length cutoff of 33. BLAST results were used to map Gene Ontology (GO) and annotate 

RAD loci.  
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 Locus-specific diversity analyses  

Custom scripts were developed to identify groups of loci in the data with unique diversity 

patterns (https://github.com/ekbors/thesis_scripts). Loci were identified for which (1) the major 

allele switched to the minor allele in at least one of the nine populations (i.e., “p” drops below 

0.5), or (2) the difference between the maximum and minimum value of the overall major allele 

among the populations exceeded a defined value (measured at values of 0.5, 0.6, 0.7. 0.8, and 

0.9). Loci identified by these filtering techniques were used in analyses of site frequency spectra 

and FIS to determine if specific loci were driving and/or breaking patterns in the dataset, meaning 

that the forces driving those loci might be dominating the overall population data.  

 

LOSITAN and BayEnv outlier analyses 

To detect genomic outliers potentially under selection or strong genetic drift driven by 

expansion (which will yield similar diversity patterns), we used two analysis programs.  

LOSITAN (Antao et al. 2008) utilized data-wide FST values to identify loci that were outliers in 

their FST values. We ran 1,000,000 simulations in LOSITAN for all nine populations with the 

options for “Forced mean FST” and “Neutral FST” selected. The false detection rate was set to 

0.01 and a correction was implemented by the program.  

The second program used for outlier analysis was BayEnv 2.0 (Coop et al. 2010; Günther 

& Coop 2013), a program based on a Bayesian analysis that first develops a covariant matrix as a 

null model and then generates a linear model of relationship between diversity and an 

environmental factor. We used the calculated ocean distance from Florida as an environmental 

gradient against which to test patterns of diversity in the data. The method implemented by 

BayEnv is intended to control for underlying population structure by generating a Bayes Factor 

for each locus indicating its relative goodness-of-fit to the linear model related to the 

environmental gradient. To interpret these Bayes Factors, loci were binned in decimal intervals 

(randomly choosing p or q for each locus). Within each bin, each locus was ranked by its Bayes 

Factor and that rank was divided by the number of loci in the bin. This creates the empirical 

distribution from which loci in the top 5% and 1% of Bayes Factor values were identified, as 

described in Coop et al. (2010) and (Hancock et al. 2010).  

Traditionally, these analyses are used to identify regions of the genome under selection, 

however, as described in the introduction, signals of allele surfing and strong genetic drift in the 
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case of a range expansion could lead to allele frequency patterns correlating with distance or 

with expansion in ways that resemble the patterns of selection, meaning that in some cases, the 

loci showing correlation to the gradient of distance may just as likely be the result of drift as 

selection (White et al. 2013).  

 

RESULTS  

Mitochondrial control region population analysis 

Mitochondrial haplotypes consisting of 679 basepairs of the mitochondrial control D-loop 

region were sequenced for 217 samples. Only 5 of the 9 known haplotypes previously described 

were identified in these samples (Freshwater et al. 2009b; Betancur-R et al. 2011; Butterfield et 

al. 2015). These haplotypes correspond to previously-named haplotypes H01, H02, H03, H04, 

and H06. Mitochondrial data do not indicate any new introductions of genetic material since the 

first publication of mitochondrial population genetic data in 2009. Also in line with previous 

studies, distributional patterns and haplotype relationships largely corresponded to those 

described in Butterfield et al., 2015. For most locations, only 2 or 3 haplotypes were present in 

the tested sample, but all 5 haplotypes were found in the Bahamas samples. For a complete 

summary of the mitochondrial results, see Appendix IV.  

 

RAD-seq and single nucleotide polymorphism calling 

Processing of raw Illumina data by the program process_radtags in Stacks resulted in the 

removal of less than 1% of the data due to poor sequencing quality (a low phred score), about 

20% of the data due to ambiguity in the restriction site, and between 9% and 16% of reads due to 

ambiguous barcodes (inability to attribute a sequencing read to an individual). The number of 

reads removed varied slightly by sequencing type (single end vs. paired end) and by population 

(Appendix II). The mean depth of reads for each individual, averaged over loci, was 24.5 reads 

and the average of the standard deviations for each individual was 28.3. More in-depth 

information on the depth of coverage is provided in the supplemental information (Appendix II). 

Cstacks generated a catalog of 1,376,469 putative loci, 12,759 of which were used by the 

populations program and in all subsequent analyses. The overall patterns of genetic diversity and 

genetic structure were not altered significantly in different parameter runs of Stacks. When more 

loci were included in analyses, heterozygosity increased overall—trends held the same shape but 
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shifted upwards. This filtering-diversity relationship is consistent with what is generally known 

about RAD-sequencing approaches specifically under-reporting diversity (Arnold et al. 2013) 

and being more conservative in the populations filtering for loci.  

  

Genome size estimation  

The number of RAD loci identified in multiple populations ranged from 9,502 to 48,079 

with the majority of values between 30,000 and 50,000 (data are estimates from one catalog of 

loci generated by denovomap.pl, reviewed in Appendix II). Given that there are two RAD “loci” 

at each cut site (sequencing in both directions away from the site), we generated estimates for 

genome size for 15,000, 20,000, and 25,000 cut sites, representing the majority of putative values 

for cut sites (Table 1). Estimates ranged from 370,725,631 basepairs to 680,784.288 basepairs. 

Considering these results, the 12,759 loci used in this study represent between 0.17% and 0.31% 

of the total lionfish genome.  

 

Table 1. Cut site and genome size estimates as generated by PredRAD. 

No. of Cut Sites Lower estimate of genome size Upper estimate of genome size 
15,000 370,725,631 477,646,515 
20,000 452,612,181 583,149,943 
25,000 528,391,137 680,784,288 
 

Spatial population genomic analyses  

Observed heterozygosity decreased linearly with distance from Florida (Figure 2A; Table 

2) even though both allelic richness (average number of alleles per locus) and expected 

heterozygosity (calculated by Stacks as 2pq from the Hardy Weinberg equation) remained almost 

the same throughout the sampled range (Figure 2B, 2C). The difference between the expected 

and observed heterozygosity—a measure of deviation from Hardy Weinberg equilibrium—

increased with distance from Florida (Figure 3). All measures of distance explored here resulted 

in similar regressions for observed heterozygosity (Appendix III). In general, site frequency 

spectra (SFS) followed expectations for the shape of the distribution and distributions for each 

population were similar to each other (Figure 4). However, the SFS for The Bahamas 

demonstrated a lower peak to the left of the curve (lower proportion of alleles with major allele 

frequency at 1) with a thicker tail, which could indicate a shift from having many rare alleles—

common in a rapidly growing population—to a more stable distribution. Mexico also has a 
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slightly thicker tail than other populations (Figure 4). FIS distributions in Florida and The 

Bahamas were closer to an equilibrium expectation of zero than FIS distributions from 

populations closer to the moving range edge, which showed a thicker tail in the distribution 

skewing towards 1 (e.g., the Cayman Islands, and Mexico) (Figure 5). These range-expansion 

patterns were observed despite a notable lack of spatial metapopulation genetic structure. 
 
Figure 2. Summary statistics plotted against the “modifiied” ocean distance, measured from Florida. (A) 
Observed heterozygosity (R2 = 0.744, p-value = 0.003), (B) Expected heterozygosity (no significant 
regression), and (B) Allelic richness (no significant regression).  
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Figure 3. The difference of Hobs from Hexp vs. distance from Florida (R2 = 0.69, p-value = 0.005).  

 
Table 2. Population genetic summary statistics averaged over all loci and by population, as generated by 
the Stacks populations program. 
 
Pop ID N N (Stacks) Private P Obs Het Exp Het Pi Fis 

FLO 11 10.4786 421 0.9053 0.1177 0.1334 0.1402 0.0643 
BAH 9 8.6021 620 0.9024 0.0997 0.139 0.1476 0.1304 
CAY 11 10.0495 478 0.909 0.0718 0.1283 0.1351 0.1786 
JAM 14 13.0478 746 0.9077 0.0873 0.1316 0.1369 0.1498 
DOM 16 14.6043 656 0.907 0.0802 0.1325 0.1373 0.1779 
MEX 7 6.5103 381 0.9096 0.0772 0.1261 0.1367 0.1474 
BEL 20 17.7624 839 0.9057 0.0678 0.1338 0.1377 0.2272 
HON 15 14.6673 781 0.9056 0.0882 0.1348 0.1397 0.1564 
USV 16 13.7671 857 0.9069 0.0788 0.1329 0.1379 0.1828 

 

 

There was no obvious spatial metapopulation genetic structuring among the nine 

populations in the study region. Principal component analysis in which outliers were removed by 

the smartpca program in EIGENSOFT (Figure 6) revealed no clustering of defined populations 

with the first, second, and third components (e.g., eigenvectors) accounting for 11.03%, 10.44%, 

and 10.30% respectively of the variation in the dataset. The three outliers removed by the 

program were from The Bahamas. When included in the analysis, the first, second, and third 

components accounted for 12.7%, 11.29%, and 10.49% respectively, only slightly higher than 

when they are removed. 
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Figure 4. Site frequency spectra for each population showing the proportion of loci in each frequency bin 
(number of bins = 20) for the major allele (p as calculated by Stacks).   
 

 
 

 

 

 

 

 

 

 

 

 

 

 
 
 



	 122 

Figure 5. FIS distributions showing the proportion of loci with FIS values within each bin (number of bins 
= 10) for values between -1 and 1. Values of 0 reported by Stacks for loci for which the expected 
heterozygosity was 0 were removed from the data as described in the Methods.   
 

 
 

 

Figure 6. PCA generated by smartpca in EIGENSOFT here shown for the run with outliers removed. 
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 In order to determine the most likely number of genetic lineages (the value of k), or 

subpopulations, the chooseK.py program from fastSTRUCTURE was run for values of k between 

1 and 10. The value of k that maximized marginal likelihood and that best explained the structure 

in the data (two different program metrics for assessing the appropriate value of k) was 1, 

indicating that the fastSTRUCTURE analysis fit the data best with just one genetic lineage. After 

a Bonferroni correction, many pairwise FST values calculated by Stacks were not statistically 

different from zero. For those that were, FST values showed very slight genetic differentiation 

among populations with significant values only for 5 pairings: Bahamas-Belize = 6.91 x 10 -5; 

Caymans-Mexico = 1.1 x 10 -4; Jamaica-Dominican Republic = 6.10 x 10 -5; Jamaica-Honduras 

= 1.2 x 10 -4; Dominican Republic-Honduras = 1.1 x 10 -4. These results indicate that 

populations closer to the edge of the invaded range are not genetically distinct from those at the 

center of the range. 

 

Figure 7. Directionality index heatmap. The directionality index, psi, measures asymmetries in allele 
frequencies. Here, values of psi have been arranged from lowest to highest—intended to parallel the 
ordering of sites from closest to the origin of expansion to furthest.  

 
The directionality index indicates another possible concept of distance from the point of 

invasion based on asymmetries of allele frequencies (Figure 7). The ordering of the index from 

lowest to highest (for both signs) indicates the “distance” in terms of the expansion from the 

center of the range. These data are ranked in the following order: Florida, Honduras, the Cayman 

Islands, US Virgin Islands, Jamaica, The Bahamas, Mexico, Belize, and the Dominican 
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Republic. This “order” of distance, or invasion directionality is different from an expectation 

based solely on geographic proximity. Specifically, the results indicate that the Dominican 

Republic is more isolated from the center of the invasion than all other sites, and that Honduras 

is much more connected to the core of the range even though it is geographically distant.  

 

Blast2GO and Locus Identification  

Blast2GO queries against all existing fish genome databases resulted in matches for 

2,766 of the 12,759 loci (21.7%). In most cases, two RAD-tag sequences matched to a BLAST 

result, which is consistent with having two “loci” sequenced in each direction away from the 

restriction site. These results could be used in concert with future draft and scaffold assemblies 

of the lionfish genome to confirm identity and location or RAD loci.  

 

Locus-specific patterns of diversity  

There were 1,207 loci for which the value of p, or the major allele, defined as the allele 

most frequent across all the 120 samples, dropped below 0.5 in at least one population, meaning 

that for those loci, the major allele overall became the minor allele locally (these are referred to 

in figures as “flip-flop loci”). There were 290 loci with a difference in the minimum and 

maximum allele frequency of at least 0.5, 55 with a difference of at least 0.6, 3 with a difference 

of at least 0.7, and 1 with a difference of at least 0.8.  There were no loci with a minimum-

maximum difference of 0.9 or greater. Of the loci that switched from major allele overall to 

minor allele in at least one population, 243 were also present in the 0.5 difference list. Therefore, 

964 of the loci that switched between being a major and minor allele never had a maximum 

difference that exceeded 0.5.  These loci are likely oscillating around a frequency of 0.5, not 

demonstrating dramatic changes throughout the invaded range. Such loci are sometimes 

attributed to balancing selection. The 243 loci with larger differences between their minimum 

and maximum values, however, could be driven by specific forces such as drift and directional 

selection. 

Pairwise comparisons of allele frequencies in center and edge populations were used to 

detect specific loci for which frequencies were greater in the core of the invaded range than 

closer to the edge. From the list of loci that had a difference of 0.5 or more between maximum 

and minimum allele frequency, 115 had greater allele frequencies in Florida than in the USVI, 
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127 had greater allele frequencies in Florida than in Honduras, 106 had greater allele frequencies 

in the Bahamas than in the USVI and 122 had a greater allele frequency in the Bahamas than in 

Honduras. Additional pairwise comparison results showing counts of loci that overlap with 

different filtering requirements, including the outlier analyses described below are presented in 

Table 3. Site frequency spectra (Figure 8) and FIS plots (Figure 9) of the alleles that changed 

from major to minor allele showed strikingly different patterns than other remaining alleles. 

These alleles dramatically break the expectation of neutral distribution.   

 

Outlier analyses using LOSITAN and BayEnv 

 Different loci were identified as outliers using different methods. LOSITAN analyses 

identified 256 loci as possible targets of directional selection (having an FST outside the upper 

bound of the 95% confidence interval, with a correction for multiple tests). BayEnv 2.0 generated 

Bayes factors for the 12,759 analyzed loci. The binning of loci according to Coop et al. (2010) 

did not evenly distribute loci across bins. Instead, there were significantly more loci in bins 1 and 

10, likely because the majority of loci had allele frequencies very close to one (Appendix V). 

Taking the top 1% of loci from each bin captured 120 loci considered to have high enough Bayes 

Factors to be considered correlated to the linear regression model generated by the program 

BayEnv; taking the top 5% captured 616 loci. The top 5% of loci identified by BayEnv were then 

compared to the list of FST outliers generated by LOSITAN and were also compared to lists 

generated by the locus-specific diversity analyses described above, including the loci with a 

change from major to minor allele, and those with large differences between their maximum and 

minimum frequencies (Table 3). 

 

Table 3. Comparisons of the loci identified as outliers by the two outlier analyses and loci 
identified through different filtering methods through custom analysis presented in this paper.  
 
Overlap of BayEnv top 5% with other filtering methods (total #loci = 616) 
 Lositan  Flip-flop 0.5 diff 0.6 diff 0.7 diff 
Number shared 24 58 23 5 0 
Overlap of Lositan Loci with other filtering methods (total #loci = 256) 
 BayEnv 1% Flip-flop 0.5 diff 0.6 diff 0.7 diff 
Number shared 5 100 118 43 3 
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Only five loci were present in both the top 1% of BayEnv Bayes factors and in the 

LOSITAN directional selection results. Of these, four were located in regions without a BLAST 

hit, and one was putatively identified as the “KN motif and ankyrin repeat domain-containing 4-

like” with no GO terms associated with it. Of the 615 loci in the top 5% of BayEnv analysis, 

however, 24 were also identified as outliers by LOSITAN analysis. Of these 24 loci, 7 were 

putatively identified by Blast2GO. Several of these loci were identified by GO terms as being 

membrane proteins or involved in membranes (Table 4).  

Of the loci identified as outliers in both BayEnv and LOSITAN (Table 4), four were more 

closely scrutinized. In a BLAST-n query of the National Center for Biotechnology Information 

(NCBI) nucleotide database, the identity of locus 48803, a putative glutamate receptor, was 

highly supported with no gaps in the alignment and between 93% and 95% identity matches with 

glutamate receptor sequences for the Asian sea bass, Lates calcarifer; the bicolor damselfish, 

Stegastes partitus; and the turquoise killifish, nethobranchius furzeri. The conserved domain 

analysis resulted in the identification of this gene region as being a periplasmic binding protein, 

type I, which is consistent with glutamate receptor proteins. For locus 11751, putatively 

identified by Blast2GO as a progestin receptor, the BLAST-n alignment yielded a maximum 

identity of 90% for a progestin receptor sequence from the Asian sea bass, Lates calcarifer. 

BLAST-nr results were the same for both loci. There was no conserved domain identified for 

locus 11751. Locus 54375, a potential antigen-like protein, was identified as part of the CLECT 

conserved domain, which includes c-type lectin-like protein domains found across a broad range 

of proteins, including those found in human dendritic cells and some antigen-like proteins. This 

locus was not able to be more specifically identified. Finally, there was high support for locus 

15012 as a tyrosine kinase with a max identify score of 96%.  

 The site frequency spectra and FIS results for outlier loci that were identified by LOSITAN 

and those identified by BayEnv 2.0 were markedly different (Figures 8, 9), indicating that these 

sites in the genome are likely exhibiting different locus-specific patterns of genetic diversity 

from each other. Therefore, we also consider the loci that were not overlapping in the two 

datasets to be of interest (those that were in just the BayEnv results and those that were in just the 

LOSITAN results), and have flagged further investigation of those loci as an important next step 

in this research.  
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Figure 8. Site frequency spectra for different loci filtering methods showing the proportion of loci in 
each frequency bin (number of bins = 20) for the major allele (p as calculated by Stacks).  
   

 
 
Figure 9. FIS distributions showing the proportion of loci with FIS values for different filtering methods. 
Values were corrected as described in the Methods section.   
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Table 4. Blast2GO results for those loci that overlapped between the BayEnv top 5% and the Lositan 
outlier results.  
 
Locus BLAST ID  GO terms  

48803 “glutamate receptor NMDA 
2B” 

C:postsynaptic membrane; P:ion transmembrane transport; 
C:integral component of membrane; C:cell junction; 
P:ionotropic glutamate receptor signaling pathway; 
F:ionotropic glutamate receptor activity; F:extracellular-
glutamate-gated ion channel activity 

15012 
 

“proto-oncogene tyrosine- 
kinase Src isoform X1” 

F:ATP binding; P:peptidyl-tyrosine phosphorylation; F:non-
membrane spanning protein tyrosine kinase activity; 
P:response to yeast 

80176 
 

“coiled-coil domain-
containing KIAA1407 
homolog” 

No GO Terms 

20821 “KN motif and ankyrin repeat 
domain-containing 4-like” No GO Terms 

11751 “membrane progestin 
receptor beta-like” 

C:integral component of membrane 
 

54375 “CD209 antigen E isoform 
X2” 

C:membrane 
 

75133 
 

“PREDICTED: 
uncharacterized protein 
LOC103354480” 

No GO Terms 

 

 

DISCUSSION 

Genetic disequilibrium detected closer to the moving range boundary 

This study contains the first population genomic data generated using RAD-seq for the 

invasive lionfish, Pterois volitans. Using 12,759 loci, we observed geographic patterns 

correlating diversity with distance from the point of invasion despite a lack of spatial 

metapopluation genetic structure. The most important of these patterns is the decrease of 

observed heterozygosity with distance from the point of invasion, despite almost constant values 

of expected heterozygosity, indicating a relationship between distance from the point of invasion 

and increased levels of disequilibrium. No geographic metapopulation genetic structure was 

observed in either a principal component analysis or fastSTRUCTURE analysis and only minor 

differences in FST values were observed across nine populations in the Caribbean Sea. Slight 

differences in FST between some sites could indicate population structuring with more 

differentiation in The Bahamas and Mexico than other sites; however, the increased FST at these 

sites may be more a function of limited sample numbers than of genetic isolation. Mitochondrial 
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data as well as RAD-seq genetic structure analyses were consistent with previous lionfish genetic 

results in which a strong initial bottleneck was followed by mixing in Caribbean currents has 

likely led to low levels of population differentiation (Butterfield et al. 2015).  

Elevated FIS values in populations further from Florida could indicate cryptic structure in 

the sampled populations (e.g., the Wahlund Effect, Hartl and Clark, 1997). Population densities 

closer to the edge of the invasion could be lower than those in populations closer to the center of 

the invaded range, which could lead to signals of cryptic structure. While FIS values are not 

specifically elevated at sites where fish were sampled from multiple reefs, it is also possible that 

reef patchiness in different locations, or other sources of habitat heterogeneity could contribute to 

differences in FIS. In three spined stickleback, elevated patterns of FIS have been linked to cryptic 

structure in newly colonized freshwater populations (Catchen et al. 2013).  

Invasion pathways are often either based on field observations or inferred from genetic 

data. For the locations included in this study, observational data indicate that lionfish invaded 

first in Florida (1985), then The Bahamas (2004), and then sequentially in the Cayman Islands 

(February 2008), Jamaica (March, 2008), the Dominican Republic (May 2008), the US Virgin 

Islands (June 2008 or November 2008), Belize (December 2008), Mexico (January 2009), and 

Honduras (May 2009) (Schofield 2009; 2010). Observational data, however, can be heavily 

biased by density of observations being taken, or even by the dissemination of knowledge about 

an invasion. For example, in the case of lionfish, the observations could be skewed based on the 

number of recreational and scientific divers in an area, or prior knowledge of the invasion. From 

the patterns in observed heterozygosity and the directionality index, contrasting hypotheses of 

invasion pathways can be generated. When ranked by decreasing observed heterozygosity, the 

invasion pathway would be hypothesized to follow the order: Florida, The Bahamas, Honduras, 

Jamaica, Dominican Republic, US Virgin Islands, Mexico, Cayman Islands, then Belize. When 

ranked by the value of the directionality index which is meant to indicate genetic distance in an 

invasion, the invasion pathway is hypothesized to be: Florida, Honduras, Cayman Islands, US 

Virgin Islands, Jamaica, Bahamas, Mexico, Belize, and Dominican Republic. In this case, the 

order deviates strongly from geography of the invaded range and from the observational data, 

with Honduras being possibly “closer” to the invasion center than, for example, The Bahamas. It 

is possible that the sightings database could still be the most accurate, with deviations to the 

ordering with heterozygosity or directionality index arising from other genetic processes. 
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Differences in these invasion hypotheses, like the possible oceanographic connection indicated 

by the directionality index between Honduras and Florida and the higher ranking of Honduras in 

the heterozygosity values, could be the result of oceanographic current patterns or of biological 

and environmental peculiarities of the lionfish or the sites being colonized.  

 

Outlier analyses identify loci primarily without BLAST IDs  

Using over ten thousand loci, we identified sites in the genome that break with 

equilibrium expectations. Identifying the types of loci that are outliers can give an indication of 

the proportion of the genome experiencing selection vs. expansion-driven drift. We identified 24 

loci that are likely undergoing selection or strong genetic drift during expansion, including seven 

with BLAST hits, several of which were identified as membrane proteins by Blast2GO analysis. 

The majority of the identified outliers did not have BLAST hits, possibly meaning that these 

outliers are signals of strong genetic drift acting on neutral portions of the genome. However, 

there are several other explanations for this ratio of putative genic to non-coding SNPs acting as 

outliers. First, the SNPs could reside in neutral DNA, which could indicate that these are signals 

of strong genetic drift and not selection. However, they could also be in regions of DNA that are 

linked to genes under selection, they could be in genes lacking annotation within the genomes 

queried, or they could be within genes that are more divergent in lionfish, preventing detection 

using BLASTx. Because the knowledge of gene identity of our RAD-tags is only cursory, we are 

unable to specifically disentangle signals for beneficial or deleterious mutations or alleles; 

however, we are able to infer that signals of surfing are not strong enough to effect average allele 

frequencies throughout the range. Further analysis of assembled paired-end RAD-seq data could 

aid in better identifying the location of these loci in fish genomes because longer sequences 

could improve genome query results (Bourgeois et al. 2013). 

In analyzing selection outlier results, it is common practice to identify loci that are shared 

among multiple outlier identification software programs and consider them to be stronger 

candidates for selection than those found only by one program. This is often done because it is 

widely acknowledged that each method has its own limitations and biases that may skew the data 

when only one program is used (Lotterhos & Whitlock 2014). Outliers identified by these 

programs represent estimates, or hypotheses, based on specific models of selection. The loci 

identified in this study by LOSITAN and BayEnv have markedly different genetic patterns (FIS 
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and site frequency spectra, Figures 8 and 9), which indicate that they may be experiencing 

different evolutionary forces. BayEnv and LOSITAN use different metrics to find loci of interest, 

therefore it is not surprising that their identified loci exhibit different patterns of site frequency 

and other metrics (e.g., FIS) than each other.  

Of the loci that were identified as outliers by both BayEnv and LOSITAN and further 

confirmed through more extensive BLAST analysis, three in particular stand out as being 

potentially important for lionfish success in the invaded range because of the functional roles of 

these proteins. The first is the glutamate receptor, locus 48803. Glutamate receptors, especially 

the NMDA receptor regions, play a role in learning and memory (Riedel et al. 2003). In marine 

fish, the receptor has been identified as important for spatial working memory (Partridge et al. 

2016), and exploration-related behaviors that could be important to finding food or habitat 

(Pujolar et al. 2014a). Glutamate receptors have been shown to be under selection in other teleost 

fish species, including the European eel and small yellow croaker (Pujolar et al. 2014b; Liu et al. 

2016). There is some evidence that behavioral movement patterns are changing as the lionfish 

invasion progresses (Benkwitt 2016), which could be related to changes in the pathways 

involving spatial memory and exploring behaviors. The second locus of interest is locus 11751, 

which is potentially a membrane progestin receptor. Progestin receptors have been shown to play 

a role in gamete maturation in Atlantic croaker (Tubbs et al. 2010), oocyte maturation in spotted 

seatrout (Zhu et al. 2013), as well as sperm hypermotility in southern flounder (Tan et al. 2014). 

Selection in progestin receptors could be related to the extremely high fecundity observed in the 

invaded range. The final locus of interest is the proto-oncogene tyrosine kinase, locus 15012. 

Tyrosine kinases play a role in cell division and growth and as such have garnered attention as 

oncogenes in cancer research (Vivanco & Sawyers 2002). However, they have also been shown 

to be related to growth in fish, including rainbow trout (Newsted & Giesy 2000). As such, the 

detection of this locus as an outlier could indicate adaptive change in growth pathways in the 

invasive lionfish.  

 

Oceanographic considerations of range expansion  

In marine environments, the concept of distance is complicated by a dynamic circulation 

patterns in which currents are responsible for the movement of marine larvae across large 

distances. Of the three measures of distance used in this work, the fit of the linear regression of 
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observed heterozygosity was the best for the modified ocean distance measurements—the ones 

that require the distance pathway to go around the east end of Cuba, the first in a long list of 

possible modifications of distance measurements to match oceanographic currents. Modifying 

these estimates of distance further based on oceanography could lead to even better fits of 

genetic signals. Hypotheses of invasion pathways generated by our genetic data could be further 

tested by coupled biophysical models that consider specific dispersal patterns by year (Cowen et 

al. 2006; Galindo et al. 2006). These models help to account for specific life histories and 

dispersal traits of the marine species and their environment.  

Dispersal capability likely influences the genetic patterns during a range expansion. In 

theoretical range expansion literature, relatively limited and constant dispersal is often assumed; 

however, many invasive species have the capacity to disperse long distances. For example, long 

distance dispersal has been shown to counteract the impacts of repeated founder events during 

expansion in European starlings in South Africa (Berthouly-Salazar et al. 2013). Even in marine 

systems that have relatively high local retention and self-recruitment, stochastic long-distance 

dispersal events are thought to be major drivers of genetic patterns (Simpson et al. 2014). Many 

marine species have the capacity to disperse hundreds to thousands of kilometers during their 

pelagic larval phase via ocean currents (Cowen et al. 2007), and in that way, currents shape 

population genetic structure from shallow water (White et al. 2010) to the deep sea (Bors et al. 

2012). In fact, in many invasive species, selection has been demonstrated for traits that confer the 

ability for long-distance dispersal, or increased dispersal speed or capacity, as has been seen in 

ladybirds (Lombaert et al. 2014), cane toads (Phillips et al. 2010), and crickets (Thomas et al. 

2001). In lionfish, the invasion of the Caribbean is thought to have been facilitated by long-

distance dispersal events driven by hurricanes and other severe disruptions to standard current 

flow (Johnston & Purkis 2015).  

 

Study design and genetic signals  

The year of recruitment of individual fish is likely to affect genetic outcomes. For 

example, the fish sampled from the Cayman Islands—while collected in 2013—putatively 

recruited to the reef as early as 2005/2006, which would make them the oldest fish in the study 

(see Appendix I). The observed heterozygosity of the Cayman Islands population falls below the 

regression line generated for the data. This finding could be a result of the fact that the sampled 
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Cayman fish are from an older age bracket, potentially representing a genetic cohort from earlier 

in the invasion—one of lower diversity than in expected in 2013. Therefore, the age and 

recruitment date of samples in population genetic studies of range expansion can impact results. 

Population genetic papers usually assume a sufficiently long time scale of genetic change that the 

specific age class of individuals sampled is unimportant to the genetic conclusions (Bors et al. 

2012); however, in range expansions when rapid genetic change is expected, differences of one 

or two years could change the expected genetic signals.  

This study is the first to employ RAD-seq to describe range expansion genetics in 

lionfish. While the development of NGS has accelerated the generation and analysis of large 

amounts of reduced representation genomic data, and the subsequent resolution of questions in 

the field of non-model species genomics (Reitzel et al. 2013; Therkildsen et al. 2013; Merz et al. 

2013), limitations to our analysis without whole genome sequencing remain. Specifically, allele 

surfing may be too difficult to definitively detect using the methods in this paper because 

identifying and measuring the frequency of rare alleles requires specific sampling considerations 

not always possible when relying on field sample collection. Our sites were distributed 

throughout the known invaded range, recognizing that perfect sampling of the whole area of 

invasion in the Caribbean is nearly impossible. Strong allele surfing could still be taking place 

and remain undetected by our analyses. The use of reduced representation libraries still only 

yields data for less than one percent of the lionfish genome. Therefore, the likelihood of 

capturing loci that are experiencing allele surfing—unless there are many such loci—is low.  

 

Conclusions and implications 

Range expansions, while an undeniably important force in shaping genetic diversity 

across the planet, have limited signatures in some species due to the specific context of the 

expansion. Here we have demonstrated that while not all the predicted patterns of expansion 

manifest themselves in the lionfish populations sampled, the range expansion process has led to 

disequilibrium closer to the range front. Caribbean populations of lionfish are well mixed and 

dispersal among sites is high, potentially precluding the detection of predicted decreases in allele 

frequency along the expansion axis in populations sampled in 2013.  

 Ultimately, the lack of obvious decreases in average allele frequency or allelic richness 

suggests that the process of expansion is unlikely to cause long-lasting limits to the adaptive 
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potential of lionfish in their invaded range. It could also be inferred that signals of disequilibrium 

dissipate over time and space for the lionfish. Time series comparisons of spatial patterns of 

diversity will be crucial to fully understand how a rapid invasion like that of the lionfish affects 

adaptive potential and the evolution of the species. In addition to temporal research, having 

better coverage of the lionfish genome and an understanding of exactly what part of the genome 

is being sequenced will help to clarify how the process of range expansion effects genomes.  
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CHAPTER 4 APPENDICES  
 
Appendix I. Sample collection information and size distributions  
 
 Samples were collected from a variety of locations, habitat types, and depths within each 

region. Ages of fish used in RAD-sequencing were estimated using a growth curve as described 

in the methods and the likely year of recruitment was calculated from age (in days) and date of 

collection (Figure I.1). The locations used to calculate distances are presented in Table I.1. The 

sample location, length (standard and/or total), sex, weight, latitude and longitude of location 

collected, habitat type, collection date, and depth if available is presented in Table I.2 for all 

collected and used individuals.  

Figure I.1. (A) Lionfish ages calculated from length measurements, and (B) likely recruitment years for 
samples included in the RAD-seq portion of the study.  
 

 
Table I.1. Latitude and longitude used in distance calculations (often the most common location of 
collection for individual fish).  
  

Location  Dive site name Latitude (N) Longitude (W) 
Florida, USA Biscayne Bay  25.5662 -80.0906 
The Bahamas  “Ron’s Revenge” 24.5213 -76.2153 
Jamaica  “English Reef” 17.8728 -77.7654 
Dominican Republic Bayahibe 18.3431 -68.8338 
Grand Cayman  “Pedro’s Castle” 19.2615 -81.2800 
US Virgin Islands  Buck Island 1 17.7824 -64.6198 
Mexico  Cozumel Marine Park  20.4547 -86.9922 
Honduras  Roatan Island  16.2106 -86.3241 
Belize Ambergris Caye  18.1197 -87.8221 

(A) (B)
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Table I.2. Sample information for each individual used in the RAD-sequencing portion of this study.  
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Appendix II: Quality and quantity of RAD-sequencing in the Stacks pipeline 

Process_radtags program specifics  

For the single-end sequence plate (95 samples), Illumina sequencing of the prepared 

RAD libraries yielded 179,873,518 million reads, 1,238,285 (0.69%) of which were discarded 

due to low quality, 17,646,010 (9.81%) of which were discarded due to absence of a barcode, 

and 38,589,757 (21.45%) of which were discarded due to the absence of or ambiguity in the 

restriction site. After filtering, 122,399,466 (68.05%) were used moving forward in the Stacks 

pipeline (Figure II.1A). For the paired-end RAD-seq plate (25 samples for this study), only the 

first read of the paired end data are used here as population genomic data. Illumina sequencing of 

the prepared paired-end RAD libraries yielded 126,382,552 reads, 275,853 (0.22%) of which 

were discarded due to low quality, 20,527,070 (16.24%) were discarded due to absence of a 

barcode, and 26,373,050 (20.87%) were discarded due to the absence of or ambiguity in the 

restriction site. After filtering, 79,206,579 (62.67%) of the total reads were used moving forward 

in the Stacks pipeline (Figure II.1B). For single end Illumina sequencing, for each population, the 

percentage of reads discarded due to low quality was less than 0.5% and the percentage of reads 

discarded due to an ambiguous RAD-tag was between 18.2% (for the USVI samples) and 35.5% 

(for the Mexico samples). For the paired-end Illumina sequencing, for each population, the 

percentage of reads discarded due to low quality was less than 0.3% and the percentage 

discarded due to ambiguous barcodes ranged from 18.68% (for The Bahamas samples) and 

29.54% (for the Honduras samples).  

 

Figure II.1: Total percentages of reads retained and filtered out due to ambiguous barcodes, ambiguous 
rad tags, or low quality by process_radtags. (A) for single end data, (B) for paired end data.  

 

(A) (B)
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Denovomap.pl and populations programs results  
 
 The mean merged depth of coverage remained steady as more reads were added to the 

analysis, indicating that as reads were added, so were loci (Figure II.2). The sequencing type did 

not affect the ultimate outcome of depth of coverage, but individuals sequenced with paired-end 

Illumina sequencing had slightly higher total utilized reads (Figure II.2).  

Figure II.2. Mean merged depth of coverage vs. number of utilized reads for each sample shown by 
population (top panel) and by sequencing type (bottom panel).   
 

 

 
 

 The filtering requirements by Stacks populations programs affected the number of loci 

used in analysis in predictable ways: the more stringent the requirements for loci being shared 
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between populations and individuals, the fewer loci were retained for analysis. The two ways to 

alter these requirements are with the –p and –r arguments in the program. As the requirements 

for the number of populations (-p) and percent of individuals within a population (-r) are relaxed, 

the number of loci used converged on a range between 40,000-50,000 with 25,000 to 30,000 of 

those being variant loci that informed population genetic statistics (Figure II.3).  

 

Figure II.3. Number of (A) total loci and (B) variant loci analyzed by the populations program in 
STACKS for different –p and –r parameters.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(A) (B)

-p flag -p flag
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Appendix III. Calculations of distance and impact of distance measurements 

on summary statistics regressions  

 As described in the Methods section, distance was calculated multiple ways (Table III.1), 

and summary statistics were regressed against each measurement (Figure III.1). Results for the 

regressions varied slightly with the “modified-ocean-distance” the best fit regression for the data 

(Table III.2).  

 
Table III.1. Different calculations of distance (in km) from Florida using (1) Euclidian distance, (2) least-
cost distance through the ocean with the only requirement being that the path remain in the water, and (3) 
least-cost distance through the ocean with the requirement that for sites to the West of Cuba, the path 
travel around the East side of the island.   

Site Euclidian   Ocean  Modified Ocean  

Florida 0 0 0 

Bahamas 406 409.02 409.02 

Jamaica 885 1303.79 1303.79 

Cayman Islands 678 1084.90 1556.56 

Dominican Republic 1409 1518.20 1518.20 

Mexico 906 889.1  2122.87 

Belize 1148 1127.80 2239.69 

Honduras 1222 1266.5 2180.68 

US Virgin Islands 1816 1816.40 1816.40 

 
 
 
Figure III.1. Regressions of observed heterozygosity against Euclidian distance and through-ocean 
distance measures. The modified ocean distance regression is in Figure 2 of the main chapter text. 
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Table III.2. Regression results for observed heterozygosity for multiple distance-regimes. 

 

Distance Regime R2 p-value 

Euclidian 0.4623 0.044 

Ocean 0.5365 0.025 

Modified-Ocean 0.7436 0.003 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	 153 

Appendix IV. Results from mitochondrial D-Loop sequencing and analysis  

 Five haplotypes were sequenced across the nine study sites (Figure IV.1), corresponding 

to previously reported haplotypes named H01, H02, H03, H04, and H06 (Betancur-R et al. 

2009). In previous research, nine haplotypes have been described in the entire invaded range, but 

only four of those have been described in the southern part of the expansion which is the focus of 

this study (not including The Bahamas, which is often considered to be part of the northern 

expansion) (Toledo-Hernández et al. 2014; Butterfield et al. 2015; Johnson et al. 2016). H02 is 

the most common haplotype, both in the present study (n = 146), and in previous studies (e.g., 

Butterfield et al. 2015). Haplotype H01 was sequenced in 61 individuals. H03, H04, and H06 

were sequenced in 2, 7, and 1 individual(s) respectively.  

The four haplotypes that have ever been found south of The Bahamas (in this study and 

previous studies) are H01, H02, H03, and H04. Contrary to previous findings, haplotype H03 

was not found in this study. However, this is not wholly unexpected because in previous studies, 

H03 was only observed in the Cayman Islands, Puerto Rico, and Panama. Puerto Rico and 

Panama are not included in this study, and the sample size from the Cayman Islands may be too 

small to detect a rare haplotype. Therefore, the results of this portion of the study are similar to 

what has been reported previously. The only exception to expected trends is the low haplotype 

diversity reported for Florida, where only two haplotypes were sequenced in this study.  

 

Figure IV.1. Distribution of the mtDNA D-Loop haplotypes in the study area.  
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Appendix V. BayEnv Bayes Factor sorting information  
 
 
Figure V.1. Number of loci per bin in the BayEnv decimal binning step of identifying the top 5% of Bayes factors. 
The upper bound of the bin was not included in the bin (e.g., the first bin includes those with a frequency of 0 but 
not of 0.1) 
 

Bin Number  
of loci 

0-0.1 4326 
0.1-0.2 843 
0.2-0.3 486 
0.3-0.4 362 
0.4-0.5 374 
0.5-0.6 363 
0.6-0.7 366 
0.7-0.8 547 
0.8-0.9 841 
0.9-1.0 4251 
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ABSTRACT 

Despite the potential to gain insight through the study of temporal dynamics of range expansions 

and species invasions, a temporal perspective is largely missing from the empirical range 

expansion literature. This study describes population genetic patterns at two time points during the 

invasion of the Indo-Pacific lionfish, Pterois volitans, which has invaded both the US Atlantic 

coast (a northern expansion) and the Caribbean Sea (a southern expansion) over a matter of 

decades, with the southern expansion commencing as recently as 2004. We utilize individual 

lionfish samples collected in approximately 2008 and 2013 to represent two time points during 

this rapid invasion.) We analyzed 1,054 single nucleotide polymorphisms (SNPs) sequenced in 

207 individuals across 14 populations from 11 geographic locations at two time points. SNP data 

were generated using both double-digest restriction enzyme associated DNA sequencing (ddRAD-

seq) methods (for the earlier time point) and single enzyme RAD-seq methods (for the later time 

point). Range expansion signals appeared to be stronger at the later time point, possibly indicating 

that the forces of oceanographic mixing and dispersal may not disrupt the signals of decreased 

observed heterozygosity generated by range expansion. While all steps were taken to process the 

two types of RAD-seq data in the same way, there is still a possibility that different ascertainment 

biases between the two sequencing methods could be responsible for the variation between 

observations at the two time points. 
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INTRODUCTION 

The body of theoretical and simulation-based research focused on range expansions has 

grown dramatically since the early 2000s (Edmonds et al. 2004; Travis et al. 2007; Hallatschek 

& Nelson 2008; Excoffier et al. 2009; Slatkin & Excoffier 2012). This burgeoning field has 

developed specific expectations regarding the distribution of genetic diversity during an 

expansion. Specifically, there is an expectation that genetic diversity will decrease towards a 

moving range boundary due to genetic drift (Excoffier et al. 2009). Patterns of decreased 

diversity with expansion have been described in several species on different time scales, 

including in humans during the expansion out of Africa (Ramachandran et al. 2005; Sousa et al. 

2014), although relatively few studies address rapid expansions on decadal time scales. In 

humans, the genomic signature of expansion is still evident today in the distribution of genetic 

diversity globally, indicating that the repercussions of expansion can persist long past the 

original expansion event (Sousa et al. 2014).  

Patterns of decreased diversity towards a moving range margin are expected in both 

expansions of species’ native ranges due to changing environments, and expansions 

characteristic of species invasions in which a new region is colonized. Four phases of biological 

invasions have been described: (1) transport, (2) introduction, (3) establishment, and (4) spread 

(Blackburn et al. 2011). It is the final step, spread, in which range expansion dynamics dominate. 

In fact, some of the first empirical data pertaining to any form of range expansion have been 

generated for invasive species (White et al. 2013; Tepolt & Palumbi 2015; Bors, Chapter 3; 

Bors, Chapter 4). In the invasive bank vole in Ireland, for example, in the wake of a post-

establishment range expansion, decreases in observed and expected heterozygosity as well as 

allelic richness correlate with distance from the point of invasion (White et al. 2013). In marine 

systems, signals of range expansion may be less pronounced, as was reported in Chapter 4 in the 

lionfish, Pterois volitans. Lionfish populations were shown to have decreased observed 

heterozygosity with increased distance from Florida, but unlike the bank vole, demonstrated 

steady levels of expected heterozygosity and allelic richness throughout the invaded range (Bors, 

Chapter 4).  

A temporal perspective is largely missing from the nascent empirical range expansion 

literature. Temporal dynamics could be critical to understanding the ways that range expansions 

affect population genomics and the duration of resulting genomic signatures. Many of the 
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theoretical models of expansion assume limited dispersal (Hallatschek & Nelson 2008), which 

may be appropriate in some systems but does not apply to many marine species. Laboratory 

experiments demonstrating the most striking results of range-expansion related allele surfing 

occur in systems without any dispersal (Hallatschek et al. 2007). Assumptions about limited or 

negligible dispersal that are made in many of the simulations and models of range expansion, 

make it difficult to use those models to predict how dispersal and post invasion expansion 

interact to shape genetic diversity in a natural system. What is the strength and duration of 

genomic signals of expansion in an invading marine species with high dispersal capabilities? 

Will signals persist long enough to affect the future evolution of the species or will dispersal act 

to homogenize genetic signals? Intrinsic to these questions is the tension between the spatial 

forces of range expansion and the processes responsible for developing and maintaining genetic 

connectivity between populations, namely migration and larval dispersal. There is a balance 

between these processes that varies based on species and ecosystem. 

Comparisons of genetic data from multiple time points during an invasion are essential for 

identifying changes in the composition and distribution of genetic diversity through time. For the 

invasive shrimp Palaemon macrodactylus, for example, mitochondrial data from multiple time 

points allowed for the detection of a second introduction along the US Atlantic coast (Bors, 

Chapter 3). Genetic studies that have taken a historical or temporal perspective have used 

amplified fragment length polymorphic markers (Fennell et al. 2014), mitochondrial DNA 

sequencing (Fonseca et al. 2010), and microsatellite markers (Chen et al. 2010). It is only 

recently that next generation sequencing technologies paired with reduced representation library 

preparation techniques for non-model species have started to be used for temporal studies in any 

marine species. For example, single nucleotide polymorphism (SNP) data have recently been 

used to track genomic shifts in commercially targeted cod species over the course of 

approximately 80 years, showing a correlation in genomic changes with temperature and also 

fishing pressures (Therkildsen et al. 2013). 

Here, we focus on temporal genetic signals in a highly successful marine invasive species, 

the Indo-Pacific lionfish, Pterois volitans. The lionfish invasion in the Western Atlantic and 

Caribbean Sea is unprecedented in both rate of geographic spread and ecological damage (Hixon 

et al. 2016). For a complete description of the invasion pathway, please see Chapter 4. The rapid 

expansion of lionfish represents an opportunity to explore the temporal population dynamics of a 
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highly dispersive invasive marine fish undergoing range expansion. Luckily, because of the 

ecological and economic impacts of the invasion, removal efforts have been ongoing in many 

parts of the invaded range. Non-governmental organizations, researchers, and recreational divers 

have been collecting fish as part of removal efforts, improving the availability of samples 

throughout the invaded range from multiple time points, thus creating an opportunity to use 

temporal samples in genomic research. This study presents the first temporal population genomic 

data using restriction enzyme associated DNA sequencing (RAD-seq) in the lionfish.   

The present study uses genomic data from 1,054 single nucleotide polymorphisms (SNPs) 

generated for lionfish from a total of 14 populations from 11 geographic locations at two time 

points during the invasion. We use samples from 2007-2009 that represent a time point earlier in 

the invasion and samples from 2013-2014 that represent a time point approximately 5 years later 

in the invasion. The two datasets generated from these two time points in the invasion will be 

called TP1 (“time point 1”) and TP2 (“time point 2”). Data are presented for 207 individuals 

across the 14 populations (North Carolina, Bermuda, The Bahamas, the Cayman Islands, and 

Mexico from TP1; Florida, The Bahamas, the Dominican Republic, Jamaica, the US Virgin 

Islands, the Cayman Islands, Mexico, Honduras, and Belize from TP2). Yet another level of 

complexity exists in the sampling effort: North Carolina and Bermuda were invaded in 2000 as 

part of the northern expansion of lionfish (before the Caribbean expansion). The expansion up 

the US east coast will be referred to as the “northern expansion” while the expansion into the 

Caribbean will be referred to as the “southern expansion.” Data presented here represent a re-

analysis of data from Chapter 4 (TP2) augmented by additional RAD-seq data generated for TP1.  

This study tests three main hypotheses regarding the temporal dynamics of range expansion 

genomics in the lionfish, Pterois volitans. The first hypothesis stipulates that in TP1 data (earlier 

time point), the northern expansion should have weaker genomic signatures of decreased 

diversity along the expansion axis than the southern expansion at either TP1 or TP2 due to the 

strength of the Gulf Stream as a source of oceanographic mixing and the fact that the northern 

invasion is older, thus giving genomic signatures of range expansion more time to dissipate in 

the face of other forces driving population dynamics. The second hypothesis stipulates that with 

time, the genomic signature of range expansion—specifically decreased diversity towards the 

edge of the invaded range—should weaken. Therefore, we predicted that relationships of 

decreased observed heterozygosity with distance from Florida like those observed for the later 
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time point (TP2) in Chapter 3 would be stronger earlier in the invasion (TP1). The third 

hypothesis stipulates that overall diversity in lionfish populations in the Caribbean region should 

be lower earlier in the invasion (TP1) than later in the invasion (TP2) due to the initial 

colonization event of the Caribbean followed by an influx of more diversity through time. 

 

METHODS 

Sample collection and DNA preparation  

Lionfish individuals were used from a total of 14 populations from 11 geographic locations 

across two time points (Figure 1, Table 1). For the first time point (TP1), lionfish individuals 

were collected from North Carolina, Bermuda, The Bahamas, and the Cayman Islands by teams 

of SCUBA divers in 2007 and 2008 and tissue was subsampled and stored at the University of 

North Carolina, Wilmington. Samples from Mexico were collected in 2009 by teams of SCUBA 

divers. Subsamples of fin clip tissue from those samples were stored on Whatman Paper (GE 

Life Sciences, Pittsburgh, PA, USA) and archived in the U.S. National Oceanic and Atmospheric 

Administration (NOAA) Beaufort Laboratory in Beaufort, North Carolina. Extractions of 

genomic DNA for TP1 samples were carried out at UNC, Wilmington, using methods described 

in (Freshwater et al. 2009). Samples from TP2 were collected as described in the Chapter 4 

Methods.   

For TP2 samples as well as the lionfish from Mexico collected in 2009, genomic DNA 

(gDNA) was extracted from muscle or fin clip tissue using a CTAB and proteinase K digest, a 

phenol-chloroform purification, and ethanol precipitation method as described in Herrera et al. 

(2015). gDNA was stored in AE buffer from a QIAGEN DNeasy Blood and Tissue extraction kit 

(Qiagen GmbH, Germany) at 4° C or -20° C until gene amplification and sequencing.  
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Figure 1. Map of the study region showing sampling locations. Locations with a red star are included in 
both the TP1 and TP2. Colored contours on the map show the extent of the invasion in the years from 
2004-2009, by which point all of the nine sites had been invaded. 
 

 
 
Table 1. Collection locations, years, number of samples collected, latitude, longitude, and distance from 
Florida (the point of invasion). Sample sites are specified as belonging to either TP1 or TP2.   
 

Location Collection  
Year  

n Latitude Longitude Distance  
from FL (km) 

TP1  
Bermuda 2008 16 32.2983 -64.6811 1737.1 
North Carolina 2008 15 33.6389 -76.9417 941.71 
The Bahamas 2007 22 24.5213 -76.2153 409.02 
Cayman Islands 2008 20 19.2615 -81.2800 1556.56 
Mexico  2009 13 20.4547 -86.9922 2122.87 
TP2  
Florida 2013 11 25.5663 -80.0906 0 
The Bahamas 2013 9 24.5213 -76.2153 409.02 
Jamaica 2013 14 17.8728 -77.7654 1303.79 
Dominican Republic 2013 16 18.3431 -68.8338 1518.20 
Cayman Islands 2013 11 19.2615 -81.2800 1556.56 
US Virgin Islands 2013, 2014 15 17.7824 -64.6198 1816.40 
Mexico 2013 7 20.4547 -86.9922 2122.87 
Honduras 2013 16 16.2106 -86.3241 2180.68 
Belize 2013 20 18.1197 -87.8221 2239.69 
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RAD-sequencing and data processing  

In order to take advantage of the opportunity to combine datasets to gain a more in depth 

temporal perspective, genomic data generated by two different types of RAD-sequencing is 

analyzed together in this study. Both double digest RAD-sequencing (ddRAD-seq) (Peterson et 

al. 2012) and single digest RAD-sequencing (RAD-seq) (Miller et al. 2007; Baird et al. 2008) 

were undertaken at two different institutions. For samples undergoing RAD digest with a single 

enzyme, two different sequencing rounds resulted in some individuals being sequenced with 

paired-end Illumina sequencing and some with single-end Illumina sequencing (Illumina Inc., 

San Diego, CA, USA).  

Double digest RADseq libraries were prepared using a modified protocol described in 

Peterson et al. (2012). High quality genomic DNA was isolated using a Wizard® Plus SV 

Miniprep DNA Purification kit (Promega, Madison, WI, USA) with suction manifold, and DNA 

concentrations were quantified using a Qubit 2.0 (Life Technologies) fluorometer. To prepare 

RADseq libraries, 500 ng of DNA from each sample was double digested with 10 U each of 

SBfI-HF® (8-cutter) and MspI (4-cutter) (New England Biolabs, Ipswich, MA) at 37 °C for 3 

hours. Digested DNA was purified using AMPure (Agencourt) magnetic beads. Thirty-two 

custom P1-SBfI oligo adapters with unique 6 basepair barcodes were ligated to DNA fragments 

from each of the respective 32 samples from each site. Indexed custom P2-MspI oligo adapters 

were annealed to the other end of each fragment. Ligation reactions consisted of 6.25 nM P1 

adapter, 0.625 μM P2 adapter, 1.25 mM rATP and 200 U T4 DNA ligase (New England 

Biolabs), incubated at 4oC over night. Ligation reactions were heat-killed at 65 °C for 10 min, 

followed by slow (2%) ramp to room temperature.  

Samples were divided into three libraries, each with 32 labeled individuals (total of 96) 

and each library was indexed again before sequencing. Libraries were purified using AMPure 

(Agencourt) magnetic beads and 2 µl of each DNA pool was amplified using 1x Phusion® High-

Fidelity PCR Master Mix (New England Biolabs) and 1 μM of a modified Illumina amplification 

primer mix (P1-forward: 5’-AATGATACGGC GACCACCG*A-3’ ; P2-reverse: 5’-

CAAGCAGAAGACG GCATACG*A-3’). PCR was run as follows: 30 s 98 °C, 30 s 58 °C, 1 

min 72 °C, 18 cycles. Following magnetic bead purification of the amplified product, RAD 

libraries were quantified and sequenced on a single Illumina Hi-Seq 2500 lane by the Duke 

University Center for Genomic and Computational Biology sequencing center (50 basepair 
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single-end run). For samples in the TP2 dataset and those samples from the ddRAD that were 

sequenced using a paired end Illumina run, RAD-seq was carried out as described in Chapter 4.  

Double digest RAD-seq data were filtered using the process_radtags program in Stacks 

v. 1.19 (Catchen et al. 2013). Reads were filtered for quality with a minimum phred score of 10 

in a sliding window of 15% read length (default settings) and sorted by individual-specific 

barcode. Reads were truncated to 42 basepairs including the 6 basepair restriction site. 

To proceed with parallel data for further analyses, specific filtering measures were taken 

for those samples that were not sequenced with ddRAD methods. In order to directly compare 

previously sequenced and analyzed RAD-seq data for TP2 presented in Chapter 4, with the 

ddRAD seq data produced for TP1, the sequencing data from individuals were truncated to 42 

nucleotide basepairs in length. Samples from the TP2 that were sequenced using a single enzyme 

for RAD digest and sequenced with single end Illumina sequencing were initially processed with 

the Stacks v. 1.19 RAD-seq analysis software (Catchen et al. 2013) process_radtags program 

with default settings as described in Chapter 4. Individual de-multiplexed fastq files were then 

truncated to 42 basepairs in another run of the process_radtags program in Stacks v. 1.35 (-t 42 

and -e sbfI). The first read of paired-end Illumina sequences were filtered for quality with a 

minimum phred score of 10 in a sliding window of 15% read length (default settings) and sorted 

by individual-specific barcode. Reads were truncated to 42 nucleotides. Fastq files for modern 

samples that were sequenced using paired end Illumina sequencing were concatenated (making 

one fastq file moving forward to the next processing steps). Processed sequence data for the TP1 

that were sequenced with using paired-end Illumina sequencing were concatenated with the 42 

basepairs reads for the same individual fish from the ddRAD digest.  

Once the sequences for all samples were filtered using the same stringency requirements 

and trimmed to 42 basepairs, and all duplicate runs of individuals were concatenated, the Stacks 

program denovomap.pl was run on the entire dataset (n = 207) using a stack-depth parameter (-

m) of 3, such that three reads were required to generate a stack (i.e., a locus); a within-individual 

distance parameter (-M) of 3, allowing for three SNP differences in a read; and a between-

individual distance parameter (-n) of 3, allowing for three fixed differences between individuals 

to build a locus in the catalog. 
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Population genomic analyses  

Population summary statistics (allele frequencies, observed and expected 

heterozygosities, p, and FIS) were calculated by the populations program in Stacks v.1.35, using 

loci found in all 14 populations and in at least 80% of individuals per population (-p 14, -r 0.8). 

For each RAD-tag, only one SNP was used through filtering with the program flag –

write_single_snp (if there were two or more SNPs in the sequence, Stacks would use the first one 

in analysis). Heterozygosity (observed and expected) values were also calculated in the R 

Package PopGenKit (https://cran.r-project.org/web/packages/PopGenKit/index.html) to provide 

secondary validations of reported values. Allelic richness was calculated using PopGenKit. For 

generating a regression of population genomic summary statistics against distance from Florida, 

distances were calculated in R with the package ‘gdistance’ as described in Chapter 4. Distances 

to Bermuda and North Carolina, however, were calculated as the shortest path through water in 

the program Google Earth using the ruler tool between two geo-locations.  

Three methods were used to describe the genetic structure of lionfish populations in the 

study area: principal component analysis, a Bayesian structure analysis, and FST calculations. 

The smartpca program in EIGENSOFT (Price et al. 2006) was used to perform a principal 

component analysis (PCA) of genetic diversity. Custom iPython notebooks used to convert 

Stacks PLINK output files into EIGENSOFT input files, and for the visualization of the PCA are 

available at the author’s GitHub (https://github.com/ekbors/thesis_scripts). Smartpca in 

EIGENSOFT was run with no iterations of outlier removal (‘numoutlieriter’ = 0) with otherwise 

default parameters. In addition to the PCA analysis, fastSTRUCTURE (Pritchard et al. 2000; 

Hubisz et al. 2009; Raj et al. 2013) was run with the number of genetic lineages (the value of k) 

set to values between one and fourteen to assess genetic structure through a hierarchical analysis, 

and the program chooseK.py was run to select the value of K most consistent with the program’s 

spatial structure model. FST values were calculated by the populations program in Stacks using a 

p-value cutoff of 0.05 and a Bonferroni correction (using the ‘bonferroni_gen’ flag in the 

populations program). 
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RESULTS 

RAD-seq and single nucleotide polymorphism calling 

 After sequence processing by the programs process_radtags and denovomap.pl, a catalog 

of 1,611,368 RAD-tags was generated by Stacks v. 1.35 (Catchen et al. 2013). For population 

genomic analyses, 1,054 loci were identified that were shared across all 14 populations with a 

requirement that 80% of the individuals in a population have the locus. This number of loci is an 

order of magnitude lower than what was used for analysis in Chapter 4 in which longer 

sequencing reads and only single-digest RAD-seq were used. The double digest RAD-seq 

generated fewer loci and likely represent a small bottleneck in these analyses. Still, the number 

of loci is also greatly restricted by the requirement that all loci used be present in 14 of the 

populations. Using a less stringent filtering requirement would result in more loci for anlaysis. 

 

Spatial and temporal population genomics 

 Three expansions were characterized in this study: the “northern expansion” in the TP1 

dataset, the “southern expansion” in the TP1 dataset, and the “southern expansion” in the TP2 

dataset. Observed heterozygosity ranged from 0.054 in the TP2 Cayman Island population to 

0.0918 in the TP1 Bahamas population, with consistently lower values for observed 

heterozygosity in the modern data than the historic data (Table 2). Observed heterozygosity plots 

for the northern expansion in the TP1 dataset have no clear linear trend with distance from 

Florida with a slope almost equal to zero (Figure 2). Heterozygosity regressions for both the TP1 

and the TP2 for the southern invasion have negative slopes but only the TP2 regression is 

significant (Figure 2). Both the northern and southern regressions for TP1 include The Bahamas 

but still, in both cases, only 3 populations were used in the regression analysis. From these 

limited data, it is difficult to determine exactly what the relationship or regression may be. 

Therefore, conclusions must be treated as preliminary in nature and final assessment of trends in 

each dataset will depend on the addition of more data. In summary, there were apparent although 

not always significant negative relationships between observed heterozygosity and distance from 

Florida in both theTP1 and the TP2 southern expansions. Allelic richness and expected 

heterozygosity were both almost constant throughout the range and across the sampled years 

(Figures 3 and 4).  
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Table 2. Summary statistics including the number of private alleles, the average number of individuals 
(averaged across all the loci), the value of the major allele (p), observed heterozygosity (HOBS), expected 
heterozygosity (HEXP), nucleotide diversity (pi), and FIS.  
 

Site (year) Private 
alleles 

N (avg) p HOBS HEXP Pi FIS 

FLO (2013) 30 10.7412 0.9384 0.0849 0.0869 0.0912 0.0256 
BAH (2013) 36 8.7194 0.9342 0.0757 0.0927 0.0984 0.0647 
USV (2013) 88 14.0578 0.9368 0.0629 0.0902 0.0936 0.1074 

DOM (2013) 53 14.9175 0.9389 0.0629 0.0869 0.0899 0.0949 
JAM (2013) 50 13.3128 0.9395 0.0686 0.0859 0.0893 0.0688 
CAY (2013) 37 10.2919 0.9411 0.0537 0.0829 0.0872 0.1037 
MEX (2013) 40 6.5991 0.9404 0.0586 0.0827 0.0895 0.0828 
HON (2013) 49 15.1137 0.9373 0.0672 0.0881 0.0912 0.0763 

BEL (2013 61 18.2237 0.9378 0.0549 0.0884 0.0909 0.1266 
CAY (2008) 7 19.4047 0.9427 0.0835 0.081 0.0832 0.0054 
MEX (2009) 93 11.9374 0.941 0.0782 0.0854 0.0892 0.0348 
BAH (2007) 27 21.6474 0.9375 0.0912 0.0918 0.094 0.0136 

BER (08) 10 17.8218 0.9395 0.0907 0.0874 0.0899 0.0024 
NC (2008) 23 16.6427 0.9361 0.0916 0.0927 0.0956 0.0168 
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Figure 2. Observed heterozygosity plotted against distance (km) from Florida for both TP1 and TP2 
samples. Sites that are part of the TP1 dataset are represented by squares (northern) and diamonds 
(southern); sites that are part of the TP2 dataset are represented by circles. Heavy dashed line is the 
regression for TP2 (R2 = 0.71, p-value = 0.004), other regression lines are not shown on this figure 
because they were not statistically significant.  
 

 
 
Figure 3. Expected heterozygosity plotted against distance (km) from Florida for both TP1 and TP2 
samples. Sites that are part of the TP1 dataset are represented by squares (northern) and diamonds 
(southern); sites that are part of the TP2 dataset are represented by circles.  
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Figure 4. Allelic richness plotted against distance (km) from Florida for both TP1 and TP2 samples. Sites 
that are part of the TP1 dataset are represented by squares (northern) and diamonds (southern); sites that 
are part of the TP2 dataset are represented by circles. 
 

 
 
Figure 5. The difference between expected heterozygosity and observed heterozygosity plotted against 
distance for both TP1 and TP2 samples. Sites that are part of the TP1 dataset are represented by squares 
(northern) and diamonds (southern); sites that are part of the TP2 dataset are represented by circles. 
Heavy dashed line is the regression for TP2 (R2 = 0.67, p-value = 0.007), lighter dashed line is the TP1 
southern data (not a significant regression), and the dotted line is the regression for the TP1 northern data 
(not a significant regression).  
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The PCA generated by the smartpca program in EIGENSOFT showed one large cluster 

of individuals with some slight variation of which populations were dominant in different parts 

of the larger cluster. The first eigenvector explains 13.1% of the variation in the data. The second 

eigenvector explains 11.8% of the variation in the data. The third eigenvector explains 11.4% of 

the variation in the data. The PCA resulted in some subtle clustering patterns mostly between the 

northern TP1 data and other sites (Figure 6). Notably, North Carolina, The Bahamas, and 

Bermuda from TP2 cluster to an edge of the PCA (i.e., on the bottom right in Figure 6A and to 

the bottom left in Figure 6B). Structure analysis yielded similar patterns. The ChooseK.py 

program from fastSTRUCTURE reported a value of k (number of genetic lineages) that 

maximizes likelihood of one, and a value of k that accounts for genetic structuring of three 

(Figure 7). With a value of k = 3, a clear difference in samples from the TP1 northern range and 

the other populations (dark blue and light blue in Figure 7). Interestingly, individuals from The 

Bahamas in 2013 have more similarity to samples from 2008 than the other modern locations. 

The two red samples highlighted in Figure 7 are likely an artefact of the inappropriate number of 

k, meaning that while the program postulated 1-3 as the correct value, here just k = 3 is shown; 

however, k = 2 may be closer to the true accurate value for these data. Furthermore, FST values 

were only statistically significantly different from zero in some of the pairwise comparisons. 

Most of the significant values occurred between historic populations and modern populations 

(Table 3).  

Figure 6. Principal Component Analysis of SNP data for all samples. Sites that are part of the TP1 
dataset are represented by squares (northern) and diamonds (southern); sites that are part of the TP2 
dataset are represented by circles. Axes have been zoomed in to show the main cluster of sites.  
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Figure 7. fastSTRUCTURE plot for k = 3 in which each genetic lineage is a different color (see key).  

 
 
Table 3. FST values for comparisons between TP1 sites and all sites. Values were corrected in Stacks with 
a Bonferroni correction and all those reported are statistically significantly different from zero, albeit very 
small.  
 

 CAY08 MEX08 BAH07 BER08 NC08 
FLO 0.000995025 0 0.00155837 0.000851471 0 
BAH 0 0 0 0 0 
USV 0.000647401 0 0.000606709 0.00270324 0 
DOM 0.000752807 0 0.000639074 0.0021891 0 
JAM 0 0 0.0012228 0.0030433 0 
CAY 0 0 0.00211288 0.00121501 0.00170131 
MEX 0 0 0 0 0 
HON 0 0 0.00165499 0.002827 0 
BEL 0 0 0.00100577 0.0028938 0.000593235 
CAY08  0 0.000523948 0 0 
MEX08   0 0 0 
BAH07    0 0 
BER08     0 
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DISCUSSION 

 This study used 1,054 SNPs sequenced in the invasive lionfish, Pterois volitans, across 

14 populations at 11 geographic locations from two time points in the invasion to describe how 

patterns of genetic diversity during the invasion changed through time and to test three 

hypotheses. Of the three hypotheses tested in this work, only the first was supported by the 

results. The first hypothesis predicted a weaker signal of expansion in the northern expansion 

pathway for TP1 than in the southern expansion pathway (in both TP1 and TP2). This was 

supported, albeit by limited data, for the northern expansion in which all measures of genetic 

diversity—HOBS, HEXP, and ARICH—were essentially constant while HOBS showed a slight 

negative trend in the southern expansion (not statistically significant). The second hypothesis 

generated the prediction that genomic signatures of range expansion would be weaker in TP2 

than in TP1, because with time, population processes would lead to dispersal and mixing which 

would act to diminish the genomic signals of expansion. This was not observed. In fact, the 

decrease in observed heterozygosity was more pronounced in TP2 data than in TP1 data, 

although, as discussed in the Results, conclusions regarding the regressions of diversity are 

tenuous due to limited numbers of population sampled. Additionally, the slopes of the two lines 

may not be comparable because the data included in the TP1 dataset did not cover the same 

geographic range as that for the TP2 dataset, potentially affecting the slope of the line and 

therefore the results. Interestingly, the difference between expected and observed heterozygosity 

only had a significant relationship related to distance from Florida in the modern dataset. For 

TP2 populations, with increasing distance from Florida, the difference between expected and 

observed heterozygosity became greater, indicating a greater tendency towards equilibrium (as 

discussed in Chapter 4). However, this tendency towards disequilibrium was predicted to be 

stronger earlier in the invasion (at TP1), before mixing and population growth might offset 

disequilibrium signals from expansion. The final hypothesis was that genetic diversity overall 

would be lower earlier in the invasion due to founder effects. This hypothesis was not supported 

by the data. In fact, genetic diversity was, overall, higher earlier in the invasion. While all efforts 

were made to make data for TP1 and TP2 equivalent, it is still possible that the differences in 

ddRAD-seq and a single enzyme RAD-seq resulted in artefacts in heterozygosity data.  

In addition to investigating patterns of genetic diversity for the different invasion pathways at 

both time points, population genetic structure was compared across all data sampled. For TP1 
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data, there were two groups of populations—one to the north and one to the south, representing 

the two invasion pathways (the initial expansion from Florida in 2000 and the second to the 

south in 2004). The Bahamas from TP1 clustered in the PCA with northern populations despite 

the timing of the first observation there. These data supported our first hypothesis that the two 

invasion pathways in the historic dataset would be different. The exact mechanism 

(oceanographic dispersal or other dynamics) is not possible to determine from these data.  

 Results presented here are counterintuitive to what was expected for two time points in an 

invasion: heterozygosity appears to be decreasing with time throughout the invaded range. This 

could indicate that the process of expansion is more complex than predicted. Indeed, additional 

theory that expands on the original prediction of range expansion theory used to generate 

hypotheses presented here, have sometimes shown counterintuitive patterns of genetic diversity 

in range expansions depending on the specific mechanisms driving spread (i.e., pushed waves vs. 

pulled waves) (Bonnefon et al. 2014). Also, while all steps were taken to process the two types 

of RAD-seq data in the same way, there is still a possibility that ascertainment bias introduced by 

the second kind of RAD-seq data is responsible for the variation between observations at TP1 

and TP2. Therefore, additional data from TP1 generated using single-enzyme RAD-seq will be 

critical to determine the degree to which this potential bias might affect observed patterns.  

 

Future Directions of This Research  

Results presented here generate rather than resolve a series of questions pertaining to the 

dynamics of range expansion over time in a marine invasive species. Intriguing and 

counterintuitive results for genetic comparison of lionfish between (approximately) 2008 and 

2013 showed lower observed heterozygosity in the second time point (TP2) than in the first 

(TP1). These results highlight the need for further study of this system because the dynamics 

driving population genomic summary statistics are may be highly complex (Bonnefon et al. 

2014). Continued temporal sampling and analysis may be able to distinguish between a persistent 

trend and random change through time.  

To reiterate, the differences in RAD-sequencing techniques used for different portions of 

this dataset also lead to questions about the ways in which methodology could bias the 

heterozygosity measurements. While all samples were filtered, trimmed, analyzed the same way, 

the genomic library and the sequencing reads were not generated the same way. RAD-seq 
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methods have only been developed recently and further research is needed to ascertain if there 

were biases to sequencing of diversity using one method over another.  

Ultimately, the results from this study indicate that the temporal and spatial dynamics of 

range expansion are more complex than predictions based on a simple model of decreased 

diversity with distance from the point of invasion. While expectations for this pattern were met 

in terms of absolute values of observed heterozygosity for some portions of the dataset, the 

temporal signals of diversity did not meet expectations of expansion signals become weakened 

with time.  
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CHAPTER 6 

 

 

Conclusion  
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I. THE BIG PICTURE  

We live in the Anthropocene, a geological age defined by human influence (Waters et al. 

2016). Anthropogenic pressures on the marine environment, from the coasts to the deep sea, are 

unprecedented (Miles 2009; Barange et al. 2010; Ramirez-Llodra et al. 2011; Van Dover et al. 

2012). Global change is affecting species distributions in both terrestrial (Parmesan & Yohe 

2003; Thomas et al. 2004; Parmesan 2006; Sunday et al. 2012) and marine systems (Parmesan & 

Yohe 2003; Perry 2005; Sabatés et al. 2006; Sorte et al. 2010; Booth et al. 2011; Jones & 

Southward 2012; Sunday et al. 2012; Poloczanska et al. 2013). In addition to changing species 

ranges where they already exist, global climate change, habitat alteration, and increased 

international trade and travel are likely to amplify the number, rate, and consequences of species 

invasions (Mainka & Howard 2010). In the world’s oceans, increases over the last two centuries 

in marine transport and shipping as well as expanding reliance on marine resources have led to 

significant increases in the number of non-native species introduced to marine ecosystems (Ruiz 

et al. 2000). 

  In the face of such a dramatic reshuffling of life on earth, there is an urgency now to 

describe repercussions of rapid change. This dissertation contributes to that effort by producing 

population genetic and genomic information for multiple marine species undergoing dynamic 

population changes.  

 

II. DISSERTATION REVIEW 

 The four data chapters in this dissertation highlight specific characteristics of the 

processes of invasion, expansion, and connectivity in marine populations. Chapter 2 reported 

population genetic patterns of two deep-sea invertebrates in New Zealand with varying life 

history traits. The study evaluated the placement of benthic protection areas in New Zealand, 

highlighting the importance of both life history and regional oceanographic patterns in 

determining population structure of benthic species. The work reports patterns that are an 

averaged summary of historic population genetic connectivity, identifying substantial physical 

barriers to dispersal that lead to persistent patterns of genetic diversity. In Chapter 3, the context 

of a rapid marine invasion along the US Atlantic coast provided a system to refine our concept of 

important processes driving connectivity patterns.  
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The benefit of existing genetic resources for Palaemon macrodactylus allowed for a 

comparison in Chapter 3 of newly generated data in one invaded region with published global 

data. Results supported an invasion scenario of multiple introductions of P. macrodactylus in the 

invaded range. Chapter 3 highlights the importance of genetics for describing marine invasions 

and uncovering invasion pathways that are sometimes impossible to piece together through 

observations. The use of genome-wide single nucleotide polymorphisms (SNPs) also allowed for 

a directionality index analysis of the invasion (Peter & Slatkin 2013), which corroborated 

mitochondrial DNA evidence for multiple introductions. SNP data also facilitated a more in-

depth population structure analysis which led us to conclude that human-mediated transport and 

introduction of marine invasive species may be at least as important as other factors in shaping 

population genetic structure and determining invasion dynamics in some marine species. This 

result represented a dramatic addition to the existing paradigm of genetic connectivity research: 

one in which anthropogenic activities are explicitly considered as part of marine systems. In this 

way, Chapter 3 logically elaborated on the conclusions of Chapter 2.   

Chapter 4 contains the first population genomic data generated using RAD-seq for the 

invasive lionfish, Pterois volitans. Using 12,759 loci, geographic patterns were observed 

correlating diversity with distance from the point of invasion—specifically a pattern of decreased 

observed heterozygosity with increased distance from Florida—despite a lack of spatial 

metapopluation genetic structure. Patterns in FIS indicated that in addition to the spatial processes 

of range expansion, population demography (e.g., population density) could play a role in 

shaping diversity in different portions of the range. Chapter 4 emphasizes the utility of 

population genomic data for generating hypotheses about invasion pathways. Finally, novel 

methods were introduced that identify specific loci in the genome with unique patterns of 

diversity in the range—e.g., those that changed from major to minor allele or those with large 

differences in frequency throughout the range—and we compared those loci to genomic regions 

identified with outlier analyses. These types of analyses could become more common as the 

utility of RAD-seq data is more fully realized.  

 With a spatial perspective developed in Chapter 4, a temporal approach was then taken in 

Chapter 5 to extend and deepen our understanding of how the lionfish invasion is unfolding in 

the Caribbean Sea and the US East Coast. Data generated for Chapter 5 did not support the 

hypothesis that with time, genetic signatures of range expansion would weaken due to the 
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interaction of forces that promote connectivity and dispersal with the spatial forces of invasion. 

Further research on the specific temporal dynamics of this system—specifically into what could 

drive decreases in overall heterozygosity through time—will help clarify what the temporal 

dynamics of the lionfish have been and what the continuing invasion will mean for lionfish 

population genomics.  

 

III. FUTURE DIRECTIONS AND FINDING THE RIGHT TOOL FOR THE JOB  

 Undeniably, reduced representation library methods like RAD-seq have enabled the non-

model species research community to explore genomic questions in species without a sequenced 

genome. Still, RAD-seq has limitations. Most notably, not being able to accurately designate all 

the reads to a specific genomic region—or even to specify the type of region (e.g., gene-coding, 

regulatory, neutral)—represents a major limitation of the method. Significantly more genetic 

information can be gathered when RAD-seq can be used to generate genetic maps through 

crossing of individuals in a laboratory setting (historically the initial purpose of the method). As 

a population genomic tool, RAD-seq is the state of the art for non-model species but significantly 

more insight will come from a deeper knowledge of the sites being sequenced. Combining RAD-

sequencing with other methods, like transcriptomics, may generate a more nuanced view of the 

markers being used in population genomic analyses. Future work is underway to utilize the 

paired-end sequences generated for Chapter 4 to assemble longer contiguous reads to better 

identify the regions of the genome containing analyzed SNPs. Another potential problem with 

RAD-sequencing, which was encountered in Chapter 5, is that it is not always possible to 

accurately identify and quantify the ascertainment bias in the sequencing. It is known that 

polymorphism in restriction sites can lead to ascertainment biases that underestimates diversity 

(Arnold et al. 2013). However, it is not clear how variable the impact of this ascertainment bias 

is nor how ascertainment bias will affect the combination of different types of RAD-sequencing 

(Chapter 5).  

One major question unanswered by my work concerns the relative importance of genetic 

drift and selection during range expansion. In the analyses presented here, disentangling drift and 

selection remains challenging because of the similarity in the population genomic signals of 

genetic drift and selection in an expansion. One example of successful disentanglement used 

approximate Bayesian computation to test invasion scenarios (Antoniazza et al. 2014). Another 
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possible method for disentangling the drift-selection balance during expansion could be based on 

coalescent comparisons of patterns from expansion and selection (Nullmeier & Hallatschek 

2013), but this would require RAD-seq data amenable to coalescent analysis, which is still in 

development.  

This dissertation presents empirical research motivated by theory. Empirical and 

theoretical approaches to scientific questions participate in an iterative, reflexive process in 

which the two parallel tracks of inquiry periodically inform one another. Some of the questions 

generated by this research will be best further explored with theoretical or computational tools. 

For example, understanding the circumstances that break the expectations of range expansion 

can possibly be observed in empirical work. I described one such situation in the northern 

expansion of lionfish along the US East Coast in which dispersal and oceanographic processes 

possibly erase any patterns generated by allele surfing. However, actually determining the point 

at which range expansion expectations fail is a task perhaps best approached with simulations or 

laboratory experiments. It is important, one might say, to use the right tool for the job. Thus, the 

place for this dissertation research is within an iterative process of theory and empiricism in 

which predictions are made, patterns are observed, paradigms are amended, and new hypotheses 

are developed.  
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