
Trends 

Advances in research and medical practices have made significant inroads towards the 

treatment of diseases at the single patient level. This paradigm, precision medicine, holds 

the promise of reducing adverse effects, improving preventative care, and reducing costs 

by tailoring individual treatment based on highly detailed diagnostics.   

 

Humans harbor trillions of microbes, termed the microbiome, which is now being 

appreciated as being a hugely substantial facet of health. Immune, metabolic, 

neurological, and other processes impact and are impacted by the microbiome. 

 

The microbiome not only is a significant factor in health, but it is one that can be both 

readily assayed through DNA sequencing and directly modified by various targeted 

interventions. Therefore, the currently genetic information dominated field of precision 

medicine would be greatly enhanced by the introduction of the microbiome. 
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Abstract 12 

Understanding how individual people respond to medical therapy is a key facet of 13 

improving the odd-ratio that interventions will have a positive impact. Reducing the non-14 

responder rate for an intervention or reducing complications associated with a particular 15 

treatment or surgery is the next stage of medical advance. The Precision Medicine 16 

Initiative, launched in January 2015, set the stage for enhanced collaboration between 17 

researchers and medical professionals to develop next-generation techniques to aid 18 

patient treatment and recovery, and increased the opportunities for impactful preemptive 19 

care. The microbiome plays a crucial role in health and disease, as it influences 20 

endocrinology, physiology and even neurology, altering the outcome of many different 21 

disease states, and it augments drug responses and tolerance. We review the implications 22 

Manuscript Click here to download Manuscript kuntz_gilbert_final.docx 



2 

of the microbiome on precision health initiatives and highlight excellent examples, 23 

whereby precision microbiome health has been implemented. 24 

  25 
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Introduction to Precision Medicine 26 

The sequencing of the human genome [1] in 2001 fostered advances in both our 27 

understanding of the genomic basis of disease and in the DNA sequencing technologies 28 

required to bring the results of this understanding to patients. This is often referred to as 29 

precision genomic medicine, which utilizes a patient’s individual genome to inform 30 

treatment and care, based on known genomic markers for disease [2]. The broader, 31 

inclusive field of precision medicine couples a person’s treatment with what is known 32 

about their population, life style, and medical history, by matching clinical data and 33 

genetic biomarkers. Since the genome is sometimes conceptualized as the core of human 34 

individuality, at least in terms of disease, the broader field of precision medicine is often 35 

conflated with genomic medicine. Precision medicine, however, includes aspects 36 

downstream from the genome, including gene expression and protein expression as well 37 

as metabolic markers. Nonetheless, genomic information is the most commonly used and 38 

has had great successes [3]. Cancer treatment in particular has been revolutionized by 39 

genomic medicine [4], which exemplifies that despite difficulties in implementing 40 

precision medicine, it is a deeply important development. In particular, achieving the 41 

goals of precision medicine, including diagnosing disease more accurately and reducing 42 

the relative risk of treatments, side effects, and non-responses to medications, will 43 

revolutionize both treatment courses — ideally at the single patient level [5] — and the 44 

structuring of medical care and costs, moving towards cheaper, preventative focused 45 

medicine. 46 

 47 

The Microbiome as a Precision Medicine Frontier 48 
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In this review we focus on a more recent but in many ways analogous development, that 49 

of introducing the microbiome into precision medicine. The human microbiome is the 50 

“the ecological community of commensal, symbiotic, and pathogenic microorganisms 51 

that literally share our body space” [6]. These microorganisms, mainly bacteria, fungi, 52 

archaea, and viruses in the gastrointestinal tract, are slightly more abundant than the 53 

human cells in the body, leading some to classify them as an newly discovered organ [7]. 54 

It is important to note however that the microbiome is compositionally and 55 

spatiotemporally far more fluid and mutable than human cells and organs. Therefore, the 56 

microbial “organ” may be better described as a “cloud” of genetic information accessory 57 

to the stable human genome [8]. Certainly, the influences of the microbiome on our 58 

physiology are significant and multitudinous, affecting immunology [9], neurology 59 

[10,11], endocrinology [12], and, importantly for precision medicine, disease states and 60 

clinical outcomes. Because microbiome science is a nascent but quickly developing field, 61 

additional important functions of the microbiome are likely still to be discovered. These 62 

discoveries are driven by similar sequencing technology as that which has enabled 63 

personal genomics, and this technology is decreasing rapidly in price [13], so much so 64 

that personal microbiome sequencing is already available to the consumer (e.g. American 65 

Gut - americangut.org; uBiome - ubiome.com). Furthermore, the well-developed analysis 66 

and statistical techniques of genomic medicine have commonalities with microbiome 67 

analysis. Since microbiome states are highly individual even between co-raised identical 68 

twins [14], but can be rapidly changed [15] (unlike genetics), there is a profound 69 

opportunity for individualized treatments. However, the microbiome, like any ecosystem 70 

is also profoundly complex, and so the goals of precision microbial medicine require 71 
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considerably more research before they are appropriately realized [16]. Nonetheless, the 72 

microbiome, as we shall exemplify here, is primed and ready for precision medicine, and 73 

therefore the clinical application of this new therapeutic area is on the immediate horizon. 74 

Various complementary routes of assaying and modifying the microbiome have been 75 

proposed and tentatively utilized towards this end; these will be laid out here in the 76 

following text as well as diagrammatically (Figure 1). 77 

 78 

Review of Microbiome Analysis Techniques 79 

How then could microbiome precision medicine be implemented? Currently two 80 

complementary analyses, both beginning with the extraction of microbial genomic DNA, 81 

are standard in the field: 16S rRNA sequencing and shotgun metagenomics. The 16S 82 

rRNA gene has both highly conserved regions, allowing for the usage of extremely 83 

bacterially nonspecific primers, and “hypervariable” regions, where base pair differences 84 

can often provide species level identification [17]. Thus, 16S rRNA amplicon sequencing 85 

provides a robust tool for identification as well as classification and even discovery of 86 

bacteria [18]. A typical 16S rRNA study utilizes the differences in observed communities 87 

of bacteria between differing samples to obtain statistically significant correlations 88 

between bacterial composition and sample description, for example to identify 89 

differences in the gut microbiomes of children born to obese mothers [19]. These studies 90 

have led to key insights into the human microbiome. While historically the majority of 91 

biomedical research on bacteria has focused on eliminating pathogens, many bacteria as 92 

well as communities of bacteria are important in both health and disease [6]. Though 93 

identifying causative bacteria in disease states will be an important facet of precision 94 
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medicine, understanding the overall ecology of the microbiome may be equally or even 95 

more vital. 96 

 97 

Therefore, to go beyond bacterial identification and subsequent, limited patient 98 

stratification, it will be essential to understand the functional potential of the microbiome. 99 

Shotgun metagenomics enables the researcher to understand this function potential 100 

through analysis of the complete genomic repertoire of the community, by sequencing 101 

DNA extracted from that community, rather than relying on amplification of a marker 102 

gene. Taxonomy can still be determined from signature genes (including 16S rRNA), but 103 

it is also possible to assign phylogeny of the functional genes by comparing the DNA 104 

sequence against a library of genomes from close relatives [20]. In addition, 105 

metagenomics enables the assembly of genomes from organisms in the microbiome that 106 

are resistant to culture, providing a higher resolution exploration of the taxa associated 107 

with each person [21]. This enables us to determine the metabolic and signaling capacity 108 

of each taxon, to determine how it will interact with the rest of the body [22]. This clearly 109 

makes metagenomics of great interest for the development of precision medicine; 110 

however, one must be aware of the challenges this technique presents. Metagenomic 111 

studies are necessarily more expensive and computationally complex than 16S rRNA 112 

based studies. Possible contamination from undesired DNA and biases of analyses 113 

towards culturable organisms [23] further complicate matters. Ultimately metagenomics 114 

is an extremely useful tool, but the application of this technology to precision medicine 115 

will require a better understanding of the implications of these limitations, especially 116 

when scaling up to treatments of large patient populations.  117 
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 118 

Notably, both 16S sequencing and shotgun metagenomics are currently somewhat blunt 119 

tools, especially when describing the fluid nature of the microbiome. Evolution of 120 

microorganisms, horizontal transfer of genes, and subtleties in the characterization into 121 

types of microbiomes [24] problematize the microbiome snapshot style data often 122 

acquired. As sequencing costs continue to decrease, however, scientists can sample more 123 

densely in time to capture previously unobservable subtleties in microbial interactions 124 

and utilize time series techniques to uncover dynamic ecological phenomena [25]. 125 

Additionally, the gut microbiome is known to be spatially inhomogeneous, in ways that 126 

influence function and disease states [26]. This limitation too might be surpassed in the 127 

near future, owing to emerging sampling techniques and protocols (e.g., laser 128 

microdissection of colonic crypt mucus [27]). 129 

 130 

Avenues Towards Microbiome-Based Precision Therapies 131 

Microbiome-xenobiotic interactions 132 

That gene polymorphisms can drive changes in drug metabolism has been known for 133 

some time; it was noted as early as 1957 that atypical forms of serum cholinesterase led 134 

to potentially fatal reactions to certain anesthetics [28]. This and other adverse drug 135 

reactions are estimated to cost from 30 to 130 billion dollars in the USA annually [29,30] 136 

and are a significant source of patient non-compliance and therapy failure [31]. Reducing 137 

these adverse reactions is a primary goal of precision medicine. While some interactions 138 

are idiosyncratic, a recent survey of adverse drug events observed that about 35% of 139 

these events were drug-gene or drug-drug-gene interactions involving cytochrome P450 140 
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oxidase (CYP) variants [32]. CYPs are generally considered the body’s innate and 141 

primary general purpose drug metabolizers; they are involved in about 75% of total 142 

human drug modification [33].  143 

 144 

However, microbial metabolism in the gut is also a significant factor in 145 

biotransformation, especially for low solubility, low permeability compounds [34]. 146 

Currently, more than 60 drugs have been identified to have microbiome interactions 147 

according to the PharmacoMicrobiomics database [35], and given the vast number of 148 

possible unique microbial metabolic transformations [36], many more interactions are 149 

likely to be discovered compared with the apparently relatively limited number of human 150 

genetic interactions. The plasticity of the microbiome may make these interactions 151 

dynamic, necessitating precision medicine that is not only patient specific but temporarily 152 

appropriate [37]. Importantly, the primary forms of xenobiotic metabolism are different 153 

between human and bacterial cells: oxidation and conjugation dominate in the former 154 

case, reduction and hydrolysis in the latter [34]. Metabolism of drugs is actually a key 155 

component of many therapies; so-called “prodrugs” are essentially drugs that will be 156 

metabolized into a pharmacologically active drug after consumption. Therefore, 157 

production of active drug metabolites from prodrugs is sometimes dependent on the 158 

microbiome, with the possibility to either improve or worsen outcomes [38]. This often 159 

manifests as a modulation of bioavailability to the human, an important consideration for 160 

prediction of appropriate dosing in precision medicine. Efficacy and side effects are also 161 

altered directly by microbial metabolism. For example, acetaminophen toxicity shows 162 

substantial variability within a given human population [39], and the microbiome has 163 
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been identified as playing a role in this variability. Members of the genus Clostridium, as 164 

well as other bacteria can produce p-cresol, which competes as a substrate for SULT1A1 165 

(a human liver enzyme) with acetaminophen [40]. A reduction in the breakdown of 166 

acetaminophen by SULT1A1 causes a build-up of NAPQI, which leads to hepatotoxicity. 167 

This general pattern of competition between bacterial metabolites and drugs for human 168 

enzyme modification constitutes a major challenge in pharmacology [41]. Directly 169 

harmful substances can also be formed by microbiota, as is the case in bacterial β-170 

Glucuronidase mediated diarrhea in response to an antitumor camphothecin derivative 171 

[42]. Strikingly, in some cases even strain level differences can lead to altered 172 

metabolism, such as inactivation of digoxin by a non-universal E. lenta gene. Digoxin has 173 

a narrow therapeutic window, and thus a wrong dosage could lead to significant toxicity, 174 

highlighting the need for further study of metagenomic diagnostics and insights to 175 

adverse outcomes [43].  176 

 177 

Furthermore, alternative mechanisms for xenobiotic-microbiome interaction including 178 

immune [9,44,45] and endocrine [12] modulation by bacteria are known to exist, 179 

complicating and enlarging the pool of possible drug-microbiome interactions. Lastly, 180 

there are possible reciprocal relations: drugs may both be altered by the microbiome and 181 

alter the microbiome. For example, antipsychotic medication has been shown to both 182 

alter the microbiome and have microbiome-dependent side effects [46]. While this 183 

greatly complicates endeavors to understand microbiota-xenobiotic interactions, it also 184 

points towards a different microbiome driven approach to precision medicine: directly 185 

targeting the microbiome for clinical results. 186 
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 187 

Targeting the microbiome 188 

It is clear that medication is already utilized to have a direct effect on the microbiome; 189 

one needs to look no further than antibiotics. While these drugs are utilized for the 190 

eradication of pathogenic bacteria, they have widespread effects on the microbiome, 191 

possibly leading to adverse outcomes. Secondary infections caused by antibiotics are well 192 

known, most saliently Clostridium difficile [47], but it is often less appreciated that 193 

antibiotics can have side effects on the human, for instance fluoroquinolone associated 194 

cardiotoxic [48] and neuropsychiatric [49] reactions. Importantly, consequences of 195 

antibiotic usage, such as reduction of inflammation, are possibly not only human off-196 

target drug effects, but also unintended consequences of microbial community disruption 197 

[50]. Studies using mouse models suggest that stress induced increases in circulating 198 

cytokines were abrogated by broad-spectrum antibiotic treatment [51]. Furthermore, 199 

these types of interactions are not limited to drugs classified as antibiotics; many other 200 

drugs have antibiotic and other microbial community structure and function modulating 201 

properties that are beginning to be appreciated [52,53]. While many of these 202 

perturbations to the microbiome are associated with poorer outcomes, some drugs may 203 

derive some or all of their beneficial qualities from alteration of the microbiome, thus 204 

they could be considered a form of discriminatory antibiotic.  205 

 206 

A precision medicine therapy that leverages microbial community structural modulation 207 

could have beneficial clinical impact. Certainly if pathogen-specific antibiotics were 208 

developed, the odds ratio could be greatly increased compared to traditional antibiotics. A 209 
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clear approach is to design a species-specific enzyme inhibitor or other antimicrobial 210 

molecules. For example, a Streptococcus mutans-targeted drug based on the fusion of a 211 

species-specific targeting peptide domain with a wide-spectrum antimicrobial peptide 212 

domain has already been developed [54]. However, the bacterial community was also 213 

altered when using this peptide, despite its high specificity [55]. This is likely because the 214 

environment of Streptococcus mutans, the oral microbiome, presents significant 215 

structural and functional complexity [56]. It has been suggested that targeted antibiotics 216 

may shift the microbiome into a healthier state, but of course there is also the potential 217 

for negative ecological effects, although these may be less than for traditional antibiotics. 218 

 219 

An intriguing approach that may largely avoid the problem of system scale changes in 220 

microbial community structure, as well as that of increasing antimicrobial resistance, is to 221 

non-lethally target specific enzymes in the bacteria. This has been realized at the multi-222 

species level [57] through targeted inhibition of bacterial tri-methyl amine (TMA) 223 

formation by 3,3-Dimethyl-1-butanol (DMB, a structural analog of choline) ultimately 224 

attenuating atherosclerosis in a high choline diet mouse model. Surprisingly, slight 225 

alterations of bacterial composition were still observed, underscoring the extremely 226 

dynamic nature of the microbiome. Nonetheless, this study points towards a microbiome-227 

based intervention for a specific (i.e., “Western”) diet-driven disease. In this case, a 228 

single target approach is undesirable, as reduction of global TMA formation is the goal, 229 

but given the availability of single isozyme inhibitors [58], precision, non-lethal drugs 230 

likely could be developed. These furthermore have the potential to be minimally 231 

bioavailable to the human, limiting side effects, and might be exploited not only to target 232 
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pathogens but also to reduce microbiota-drug interactions through selective elimination 233 

of problem microbes.  234 

 235 

A final approach for targeted antimicrobials has been successfully employed for 236 

approximately 100 years, though not as popularly in the western world [59]. Phages were 237 

independently discovered in France and England, though developed as a therapy first in 238 

the former. Despite great successes in treatment, especially of cholera, commercialization 239 

of phage therapy failed due to production problems and other complications and so was 240 

subsequently ignored in the US and Europe after the development of antibiotics [60]. 241 

Scientists in the Soviet Union (especially Georgia) continued to develop phage therapy, 242 

having been cut off from antibiotic advances due to World War II. Here it was effectively 243 

used it to control outbreaks of gastrointestinal diseases and refined further during the 244 

Cold War and afterwards [61]. The basic premise of this technique is that many bacterial 245 

species, and maybe even each strain (sub-species), are predated upon by a unique phage 246 

[62]. Phage target bacteria cell-membrane protein and sugar complexes that are unique to 247 

each bacterial taxon. Therefore, by identifying the correct phage it should be possible to 248 

precisely remove a specific bacterial species from an assemblage. This will enable 249 

accurate restructuring of a microbiome so as to precisely augment the functional 250 

properties of that consortium. In fact, recent evidence from the commercial sector 251 

suggests that the same mechanisms employed by phages to target and penetrate bacterial 252 

cells can be programmed into nano-particles that mimic these phage-properties to infect 253 

and kill specific cells (Pers. Comm. Jeffrey Miller, UCLA). In this new future, we may 254 

have ultimate control over the microbiome. 255 
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 256 

Prebiotic treatments 257 

Conversely, instead of targeting the microbiome to reduce deleterious bacteria, one could 258 

aim to increase the levels of beneficial bacteria or otherwise positively alter the structure 259 

or function of the microbiome. Substances applied in this way are often referred to as 260 

prebiotics. However, the types of prebiotics currently studied are limited in scope, usually 261 

non-digestible fiber compounds that stimulate growth of Bifidobacterium and other taxa 262 

to produce short chain fatty acids (SCFA) including butyrate and propionate [63]. 263 

Though this is promising as a broad treatments for several conditions [64], efforts for 264 

precision medicine in this sphere will require the expansion of the scope of prebiotics. 265 

Given that metagenomic and metabolomic advances continue to better characterize the 266 

metabolic potential of the microbiome, especially across groups with vastly different 267 

diets [65], prebiotic compounds that stimulate alternative beneficial bacteria towards 268 

useful metabolic endpoints will be discovered [66].  269 

 270 

More audaciously, one might aim at fine-tuning the interactions between microbiota of 271 

the gut microbiome. The microbiome is a complex, human co-evolved ecosystem that 272 

produces many bioactive compounds, often for intercellular communication [26]. These 273 

compounds could be mined to find those which modulate the microbiome in a beneficial 274 

way, thus unearthing novel prebiotics [67]. While microbial community disruption is the 275 

consequence of both xenobiotic and microbiome targeted drug metabolism, these types of 276 

prebiotics might provide a more gentle perturbation than possible with the former by 277 

harnessing already existing biological pathways. This goal certainly seems distant, but as 278 
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dynamical systems approaches to studying the microbiome continue to develop, we may 279 

find that treating certain dysbiotic states require perturbations of varying magnitudes or 280 

delicate maintenance of the stability of the microbiome, especially in at-risk populations 281 

[68]. 282 

 283 

Precision probiotics 284 

Perhaps the most direct strategy for altering the microbiome is the usage of probiotics, 285 

live microbes administered for health benefits. This idea has been employed since at least 286 

1907 when Élie Metchnikoff hypothesized lactic acid producing bacteria could implant in 287 

the gastrointestinal tract to enhance longevity [69]. Today the probiotic landscape is still 288 

dominated by lactic acid bacteria, specifically genera Lactobacillus, though it is now 289 

appreciated that their beneficial properties are not limited to the production of a single 290 

metabolite and that other potential probiotic bacteria, perhaps isolated from healthy 291 

individuals [70], could affect various outcomes through multifarious means [71]. This 292 

opens the door to precision probiotic development since application of microorganisms is 293 

highly specific with regards to both applied agent and effect. Devices now exist for 294 

isolating microorganisms based on metabolic output [72], and work is being done to 295 

identify probiotic bacteria that produce particular compounds of therapeutic potential 296 

[73]. This may include compounds whose efficacies are contingent on route of 297 

administration, for example those that are inactive orally. Furthermore, probiotics are 298 

being bioengineered to expand their ranges and modes of actions as well as their 299 

robustness and incorporation [74]. However, it is important to keep in mind that 300 

interactions with diet, established microbiota, and genetics, are known to modulate 301 
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overall health outcomes if not specific effects and mechanisms of probiotics [71]. 302 

Therefore effective patient classification and stratification is required for best results. 303 

Success of this program will require detailed insights into metagenomic potential and 304 

ecological interactions of presumptive probiotic bacteria, making precision probiotic 305 

development a task of considerable difficulty but one that has already seen demonstrable 306 

results, for example in enhancing resistance to Clostridium difficile infection [75] and 307 

suppressing hepatocellular carcinoma growth in mice [76].  308 

 309 

Regulation and Application 310 

Despite the therapeutic promise of the microbiome, its application to precision medicine 311 

requires overcoming considerable hurdles. One may anticipate that failure to successfully 312 

apply genomic medicine may lead to delays in the application of the microbiome as a 313 

precision therapy. For example, the current legal and R&D model is not well suited for 314 

development of genome-informed drugs [77]. Microbiome therapies likewise face 315 

difficulties, especially owing to the wide breadth of treatment options, many of which 316 

lack analogs in current medical practice. Furthermore, clinicians have been reticent to use 317 

the results of genomic information — and thus likely future microbiome data — in 318 

treatment due to both uncertainties on its importance and lack of understanding [78]. 319 

These problems are highlighted in the case of Plavix® (clopidogrel), whereby despite an 320 

FDA box warning [79] indicating serious or fatal risk for those carrying certain 321 

CYP2C19 variants, this drug is still routinely used on genetically incompatible patients 322 

due to poor coverage by insurance and failure to clinically utilize genetic testing [80]. In 323 

the case of the microbiome, fecal transplant treatment for Clostridium difficile colitis is 324 
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known to be highly effective especially in recurrent infection [81]; however, this 325 

procedure still requires a licensed practitioner to have a protocol approved by their local 326 

Institutional Review Board, and therefore each patient needs to be consented prior to 327 

therapy. For a therapy with >90% success rate this is peculiar. However, it is because we 328 

still lack the ability to characterize the microbial community of donor stool appropriately. 329 

This means that we do not know the active components of the fecal transplant, and 330 

therefore it is very difficult to regulate this using standard legislation under FDA 331 

protocols. More importantly, we still don’t fully understand the implications for 332 

microbiome therapy on a large scale. While fecal transplants are becoming extremely 333 

numerous with few legitimate side effects, it is still hard to predict the outcome across a 334 

broad population. The same is true for genomic medicine, whereby the interaction of 335 

genes with the environment is difficult to predict [82]. This requires enormous sample 336 

populations for any investigation to be statistically significant [83]. Though the future is 337 

bright for genomic medicine, particular issues currently impede efforts towards its 338 

development. 339 

 340 

Fortunately, some of the difficulties in genomic medicine research and deployment might 341 

be lessened in precision microbiome medicine. Environmental-microbiome interactions 342 

are potentially more easily studied because there is a more direct interaction between the 343 

two, allowing for simpler identification of sample populations and achievement of 344 

statistical power. With the correct experimental design, genetic variation can be 345 

sufficiently decoupled from microbiome and environmental factors. In fact, studies of 346 

this nature already exist, both on humans [84] and especially on mice, where genetics can 347 
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be well controlled [85]. This bottom-up approach can then be extended by genomic 348 

studies which better account for confounding factors. Even where genetics is a significant 349 

factor, such as in mental health disorders, incorporating the microbiome greatly increases 350 

understanding and ultimately treatment of diseases [86]. Of course in disease states where 351 

the effects of genetic variation are either entirely or nearly absent, the microbiome is a 352 

great candidate for investigation. Conditions such as obesity [87] and inflammatory 353 

bowel disease [88] can in subsets of patients be driven by dysbiosis, a chronic, systemic 354 

maladaptation of the gut microbiome to the host. Unlike genomic medicine, there are 355 

possibilities especially for these conditions to do research in an in vitro environment, 356 

most excitingly in artificial gut paradigms [89]. Microbiome precision medicine also has 357 

the opportunity to break free of present R&D and legal hurdles to precision medicine. 358 

The regulation and marketing of these treatments will at least pose challenges for 359 

traditional models [90,91], as evidenced by the FDA’s current stance on probiotics [92], 360 

which has led to faster product delivery to the public but also quality control and 361 

effectiveness issues [93]. Prioritizing treatments will be an important aspect of achieving 362 

R&D, FDA, and ultimately clinician support; unnecessary testing on low risk 363 

communities and for low benefit interventions, will only hamper the development of 364 

microbiome precision medicine. 365 

 366 

Notable Application: Medically Underserved Communities 367 

Given the above unique assets of the microbiome modality of precision medicine, a 368 

promising potential area for its development is in low socio-economic status (SES) and 369 

other under-served communities. Low SES is associated with reduced diversity in the gut 370 
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microbiome [94]. Numerous factors are also present especially in urban communities that 371 

reduce immunoregulation, including reduced exposure to microbes in the natural 372 

environment [95] and increased stress [96], and increase obesity prevalence and 373 

dysbiosis, including increased density of fast-food restaurants [97] and lack of physical 374 

activity [98]. This is likely interrelated with microbiome-associated diseases such as 375 

asthma [99] and gastrointestinal symptoms [100]. The vast majority of genomic variants 376 

discovered are either rare with large effects or common with small effects, unlike in this 377 

situation where there is a possibility of appreciable effect size combined with biomarker 378 

occurrence. Therefore, these at-risk communities present a potentially illuminating cohort 379 

for microbiome.  380 

 381 

Of course, great care must be taken to not draw inappropriate or invalid associations 382 

between microbiome [101] (or genome [102]) variations and minority status. Lack of 383 

cultural understanding and disparities in access to services have driven poor research 384 

trends in the past and continue to be a deep issue in the development of precision 385 

medicine. Access issues in particular have caused demonstrable problems; statistics on 386 

epidermal growth factor receptor testing, for example, show associations of lower 387 

educational attainment and income with reduced likelihood of testing [103], and studies 388 

suggest health insurance coverage alone does not explain this general effect [104,105]. 389 

For precision medicine to succeed then, under-served populations must be both active 390 

participants and beneficiaries of research. Microbiome research in particular could lead to 391 

high impact clinical interventions for these communities, hopefully spurring its 392 

development. It is both an opportunity and imperative for microbiome precision medicine 393 
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to address social epidemiological trends, but this is only possible through the combined 394 

efforts of researchers, clinicians, the government, and perhaps most importantly the 395 

people at large. 396 

 397 

Concluding Remarks 398 

Here we have presented a collection of potential avenues towards introducing the 399 

microbiome into precision medicine. Though it is difficult to know if and when these 400 

techniques will ultimately make it to the clinic (see Outstanding Questions), there is 401 

substantial evidence that microbiome-based medicine holds great future potential to 402 

improve odds-ratios, reduce side effects, stratify patients, and precisely treat previously 403 

difficult or untreatable conditions. Ultimately, the microbiome must become an integral 404 

part of precision medicine as a whole, since so much of human functioning and 405 

metabolism is dependent upon it. If this is to happen in the near future, as it hopefully 406 

should, we must better understand the microbiome and its interactions with the human 407 

and the environment via a concerted effort and conversation between researchers, 408 

clinicians, patients, the government, and most importantly, the broader community.  409 

 410 

Figure 1 411 

A schematic of methods in precision microbiome medicine and their possible interplay: 412 

a) As an example, certain microbes, here represented in red, metabolize the compound 413 

cycasin to produce a carcinogenic compound methylazoxymethanol (MAM) [106]. This 414 

functional potential of the microbe might be discovered through metagenomic 415 

sequencing. b) If targeted removal of the red microorganism — identified in a patient via 416 
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16S sequencing — was desired, without harming commensal bacteria, represented in 417 

shades of blue, three approaches (green arrows) might be utilized. Direct removal of the 418 

deleterious microorganism through targeted antibiotics ideally would not affect 419 

commensal bacteria. Probiotic treatment introduces new beneficial microorganisms while 420 

prebiotic treatment favors the growth of existing beneficial microorganisms. Note that 421 

prebiotic and probiotic treatments do not directly remove the targeted microorganism, but 422 

in certain cases may shift the gut ecology such that it does not thrive [107]. In all three 423 

cases, the specific circumstances may affect which treatment is best employed and what 424 

residual outcomes there are on the microbiome. 425 

 426 
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Outstanding Questions 

 

What is the relative significance of specific microbial actors versus whole microbiome 

ecology in disease states, and how will drugging specific bacteria affect ecological 

succession following this perturbation? How will this depend on the milieu in which a 

species is situated (e.g., presence of different taxa performing a similar ecological role)? 

Additionally, what roles might phages, fungi, viruses play? 

 

How closely coupled are genetics and the microbiome, and how can these fields be 

integrated into a unified practice of precision medicine?  

 

Which microbiome-driven disease states can be successfully cured? Which instead 

require prophylactic or palliative, noncurative therapy?  

 

What is the best way to move precision microbiome medicine results out into the clinic? 

What changes in regulatory, governmental as well as research and development processes 

will need to occur for this to happen? 

 

How will the needs of different groups be best addressed across diets, lifestyles, and 

environments? What interventions will ultimately require social change rather than 

medical therapy, and what will the interplay between these fields be? 

Outstanding Questions
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