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Abstract 24 

Here we provide first evidence that the stable oxygen and carbon isotopic composition 25 

(δ18O, δ13C) of the high-magnesium calcite skeleton red coral Corallium rubrum can be used 26 

as a reliable seawater temperature proxy. This is based upon the analyses of living colonies of 27 

C. rubrum from different depths and localities in the Western Mediterranean Sea. The 28 

assessment of the growth rates has been established through the analysis of growth band 29 

patterns. The δ18O and δ13C compositions show large variability with a significant difference 30 

between the branches and the bases of the colonies. In both coral portions, the δ18O and δ13C 31 

values are highly correlated and show well-defined linear trends. Following the “lines 32 

technique” approach developed by Smith et al. (2000) for scleractinian aragonitic deep-water 33 

corals, our data have been combined with published values for the deep-sea gorgonian corals 34 

Isididae and Coralliidae from Kimball et al. (2014) and Hill et al. (2011) resulting in the 35 

following  δ18O temperature equation:  36 
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 37 

T (°C) = -5.05 ± 0.24 x (δ18Ointercept) + 14.26 ± 0.43 38 

(R² = 0.962, p value < 0.0001) 39 

 40 

The error associated with this equation is ± 0.5 °C at the mean temperature of the data 41 

set, ± 0.7 °C for corals living in 2 °C water and ± 1 °C for coral living in warmer water (17 42 

°C).  43 

The highly significant δ18Ointercept vs. temperature relationship combined with the 44 

“lines technique” method can be reliably applied to the calcitic skeleton to obtain calcification 45 

temperature estimates in the past, although this approach requires the knowledge of the past 46 

δ18O and δ13C composition of seawater and it is labor and time intensive.  47 

 48 
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 51 

1. Introduction 52 

Corals represent a valuable archive of paleoenvironmental conditions due to their wide 53 

spatial and vertical distribution in the global ocean. Specifically, several studies have proven 54 

that skeletal aragonite and calcite of scleractinian and gorgonian corals encode a rich record 55 

of ambient environmental conditions during skeletal formation, providing a key tool for 56 

paleoceanographic reconstructions (Adkins et al., 2003; Kimball et al., 2014; Montagna et al., 57 

2007; Roark et al., 2005; Robinson et al., 2014; Sherwood and Edinger, 2009; Sherwood et 58 

al., 2008, 2005; Smith et al., 2000; Thresher et al., 2009, 2004; Tracey et al., 2007).  59 

Much information is currently available on the geochemical response to climatic 60 

changes in the aragonitic skeletons of shallow and deep-water scleractinian corals (Gagan et 61 

al., 2000; McCulloch et al., 1999; Mitsuguchi et al., 1996; Montagna et al., 2005, 2006; 62 

Pelejero et al., 2005), while fewer comparable studies exist for calcitic corals, as for example 63 

for the bamboo corals Keratoisis (Hill et al., 2012, 2011; Sinclair et al., 2011; Thresher et al., 64 

2009; Yoshimura et al., 2015) and the deep-sea coral specimens of the families Isididae and 65 

Coralliidae (Kimball et al., 2014).  66 

Stable oxygen isotopes of marine biogenic carbonates have been widely used to 67 

reconstruct past ocean temperatures, since the pioneering study of Epstein et al. (1953) on 68 
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mollusk shells. However, as already observed in other marine calcifying organisms (e.g. 69 

Bemis et al., 1998; Ziveri et al., 2012, 2003) δ18O values in scleractinian corals, especially in 70 

deep-water corals, often differ from the expected thermodynamic equilibrium values due to 71 

“vital effects” (Adkins et al., 2003; McConnaughey, 1989). For the majority of the tropical 72 

corals studied so far, the quasi-constant δ18O disequilibrium offset enables the application of 73 

species-specific and site-specific calibration equations (Gagan et al., 1994; Leder et al., 1996), 74 

which take into account and correct for the “vital effects” on δ18O. On the other hand, this 75 

empirical approach seems unattainable for deep-water corals that show a much wider range of 76 

δ18O and δ13C within their skeleton (indicative of strong “vital effects”) (Adkins et al., 2003; 77 

López Correa et al., 2010) and do not exhibit evident seasonal growth bands like their tropical 78 

counterparts. However, based on the fact that some skeletal portions of deep-water corals 79 

approach isotopic equilibrium for δ18O and δ13C, Smith et al. (2000) developed a method to 80 

obtain paleotemperatures from scleractinian deep-water corals. This so called “lines 81 

technique” approach consists of calculating a linear regression between the ambient 82 

temperatures and the equilibrium δ18O values, which are identified as the value of the coral at 83 

δ13Ccoral = ambient δ13CDIC (DIC = Dissolved Inorganic Carbon) along a regression line of 84 

multiple δ18O vs. δ13C values within the skeleton of an individual coral. This method has been 85 

recently applied also to calcitic Isididae and Coralliidae corals spanning a range of 86 

temperatures from 2.0 to 11.2 °C (Hill et al., 2011; Kimball et al., 2014). A general 87 

temperature vs. δ18Ointercept equation for calcitic corals has been calculated (Kimball et al., 88 

2014) with a best-estimated precision of ±0.5 °C. 89 

The family Coralliidae has a fossil record dating back at least to the Miocene (Vertino 90 

et al., 2010). At present the family includes some 20 species distributed in all oceans, 91 

generally at depths greater than 500 m (Bayer and Cairns, 2003), with the noticeable 92 

exception of Corallium rubrum, which is preferentially distributed at shallower subtidal 93 

depths. Corallium rubrum (Linnaeus, 1758) is a gonochoric slow-growing gorgonian coral 94 

(Anthozoa, Gorgonacea) that thrives in subtidal to bathyal habitats in the Mediterranean Sea 95 

and the Eastern Atlantic Ocean (Cattaneo-Vietti and Cicogna, 1993; Chintiroglou et al., 1989; 96 

Rossi et al., 2008; Taviani et al., 2011; Zibrowius et al., 1984). This species has been 97 

commercially harvested since ancient times for the high economic value of its red axial 98 

calcitic skeleton (Taviani, 1997; Tescione, 1973; Tsounis et al., 2007). 99 

In this paper, four living specimens of the Mediterranean red coral Corallium rubrum 100 

were collected from different sea floor environmental conditions and studied with focus on 101 
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their growth band pattern and stable isotopic compositions (δ18O and δ13C). We applied the 102 

“lines technique” method of Smith et al. (2000) to the skeleton of C. rubrum extending the 103 

calibration for calcitic corals over a temperature range from 2°C to 17°C. The aim of the 104 

study was to test the ability of this coral species to serve as a reliable archive of seawater 105 

temperature.  106 

2. Materials and methods 107 

2.1. Coral sampling  108 

 Four living specimens of C. rubrum were collected by SCUBA diving in the Western 109 

Mediterranean Sea at different depths and from different environmental settings (Figure 1, 110 

Table 1), to explore the effect of seawater temperature on their δ18O and δ13C values. In 111 

particular, three small colonies were retrieved from Riou Island near Marseille, Medes Islands 112 

(Spain) and Scandola (Corsica) in June and July 2008 at 15 m, 18 m and 21 m, respectively. 113 

The fourth colony was collected off Portofino (Italy) in May 2009 at deeper depth (50 m). 114 

(Table 1, Figure1).  115 

2.2. Environmental settings 116 

Hourly seawater temperature series were obtained from the T-MedNet network 117 

(www.t-mednet.org). This network has acquired temperature data in Corsica and Medes 118 

Islands since 2004 and in Riou Island since 2003 using autonomous temperature data loggers 119 

(StowAway TidibiT). The annual mean temperatures at the shallowest Mediterranean North 120 

western sites in Riou Island, Medes Islands and Corsica are similar (16.37, 16.45 and 17.34°C 121 

respectively) (Table 1) whereas it is lower nearby Portofino (14.61°C), obtained from the 122 

NOAA NODC WOA13 database (Boyer et al., 2013). The seasonal temperature variability 123 

differs strongly between the different sites (Fig. 2). The largest variability is evidently 124 

encountered at the shallowest sites with 6.70°C at Riou Island, 8.52°C at Corsica, and 8.62°C 125 

at Medes Islands. At 50 m off Portofino the seasonal variability is reduced to ~ 3.95°C. The 126 

temperature range for the Medes Islands, Riou Island and Corsica has been calculated from 127 

the high resolution temperature data acquired from T-MedNet network.  128 

The sites of Riou Island, Medes Islands and Corsica are predominantly influenced by 129 

the Northern currents, the Northwestern and Northern orographic winds (Tramontana and 130 

Mistral) promoting deep and cold water upwelling, and the Rhône river fresh water input, 131 

http://www.t-mednet.org/


5 
 

whose plume can extend to the Spanish coast to the West and to the Marseilles Gulf to the 132 

East (Bavestrello et al., 1993; Bensoussan et al., 2010; Linares et al., 2013; Millot, 1990, 133 

1979; Petrenko, 2003; Salat and Pascual, 2002; Vielzeuf et al., 2013; Younes et al., 2003). In 134 

addition, in the Medes Islands some episodes of surface T inversion during winter can also be 135 

caused by the influence of the Ter River, located 5 km south of the islands (Salat and Pascual, 136 

2002. Bensoussan et al., (2010) showed that the summer temperature in the Medes Islands is 137 

around 22-24°C close to the water surface and around 18-20°C at depth (40 m); whereas in 138 

Riou Island repetitive deep and cold upwelled waters have been noted due to the strong 139 

influence of the Rhône River and mistral winds. The water column stratification in Corsica is 140 

stable in summer (Bensoussan et al., 2010; www.t-mednet.org).  141 

Despite the different locations and depth of the samples, the salinity values are similar 142 

with annual mean values ranging from 37.748 at Medes Islands to 38.015 at the site of 143 

Portofino (NOAA NODC WOA13 database) (Table 1). 144 

The oxygen isotopic values of the ambient seawater were sourced from the NASA 145 

GISS LeGrande_Schmidt2006 v1p1 δ18O (Grid-1x1) database (LeGrande and Schmidt, 2006) 146 

that covers wide areas and depths in the western Mediterranean. These values are reported 147 

relative to the Vienna Standard Mean Ocean Water (V-SMOW) and range from 1.31‰ to 148 

1.39‰ V-SMOW which are comparable to that reported in Pierre (1999) (between 0.76‰ and 149 

1.37‰ V-SMOW in the surface). Seawater δ13C (δ13CDIC) values were selected from Pierre 150 

(1999) and are reported relative to Vienna Pee Dee Belemnite (V-PDB). In the Western 151 

Mediterranean they vary between 0.87‰ and 1.50‰ V-PDB (Pierre, 1999) and strongly 152 

depend on the CO2 exchange between the atmosphere and the surface water as well as on 153 

exchange with deep water. The δ13C values around the Riou Island are lower compared to the 154 

other studied sites due to the injection of old CO2 from intermediate and deep waters to the 155 

surface during winter mixing (Pierre, 1999).  156 

Ambient seawater δ18O compositions and temperatures were used to calculate the 157 

expected calcite δ18O values based on the inorganically-precipitated calcite equation of Kim 158 

and O’Neil (1997) for low-temperature (10-40 °C), which was modified by Bemis et al. 159 

(1998) using a quadratic approximation.  160 

2.3 Sample preparation 161 

2.3.1 Thin section 162 

http://www.t-mednet.org/
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The coral specimens were first photographed for documentation and then cut with a 163 

diamond blade above the colony base and perpendicular to the growth direction of the stem. 164 

Stem and branch sections of the samples from Portofino, Medes Islands and Riou Island were 165 

embedded in epoxy resin (Araldit and Araldur) and cured at room temperature for 24h. The 166 

epoxy blocs were cut and shaped with a Buehler ISOMET low-speed saw, polished in several 167 

steps with silicon carbide powder (800 grit) and glued to the glass slides. The sections were 168 

finally polished to a thickness of 70 - 35 µm and cleaned in an ultrasonic bath.  169 

2.3.2 Organic matrix staining 170 

Thin sections were treated following the organic matrix staining approach of Marschal 171 

et al. (2004). Briefly, the thin sections were decalcified in 2% acetic acid solution for 4 to 5 h, 172 

then gently rinsed in tap water and stained with Toluidine blue at 0.05% for 10–30 s and 173 

finally air-dried. Some thin sections were repeatedly stained to improve the visualization of 174 

the organic matrix rings under a stereomicroscope. After decalcification, special care was 175 

taken in the handling of the slabs to avoid breakage of the delicate organic matrix structure. 176 

These stained thin sections were observed under the stereomicroscope for growth ring 177 

counting. 178 

2.4. Age determination 179 

Estimates of the age of the colonies and their growth rate (in the annular zone) were 180 

based on counting the alternating dark and light blue growth rings in the etched and stained 181 

thin section observed under the stereomicroscope (Marschal et al., 2004) (Figure 3).  182 

To minimize error in age determination, we deliberately avoided investigating the 183 

skeleton portion close to the oldest and youngest polyps of the colony, as well as the crowded 184 

and missing zone where the rings are very close, cut or stuck to each other. The rings were 185 

analyzed in different portions of the annular part of the axial skeleton of each specimen to 186 

improve the ring counting. The thicknesses of the growth rings were calculated using the 187 

publically accessible image-processing program Image J (Schneider et al., 2012). 188 

2.5. Carbonate micro-sampling for δ18O and δ13C 189 

Micro-meter scale sampling of carbonate powders for stable isotope analyses was 190 

carried out along the entire stem diameter of the four specimens using a Merchantek 191 
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Micromill (New Wave) at GeoZentrum Nordbayern (GZN) in Germany. Individual transects 192 

measured ∼2.5 mm in length, 50 μm in width and 150 μm in depth and were oriented parallel 193 

to the growth increments at intervals of about 90 µm for Portofino (PF), 93 µm for Medes 194 

Islands (MI), 83 µm for Riou Island (RI) and 80 µm for Corsica (CO) (Figure 4). Some of the 195 

micromill transects were defined following the growth layers that were visible without 196 

staining the organic matrix whereas other tracks were generated automatically by the 197 

computerized Micromill all the way through the coral skeleton surface (i.e. at constant 198 

spacing). The created tracks vary hence slightly per individual, but grant for the highest 199 

feasible spatial resolution.  200 

2.6. Mass Spectrometry 201 

Aliquots containing ~25 µg of coral material were analyzed for carbon and oxygen 202 

isotopes at GZN in Germany. Carbonate powders were reacted with 100% phosphoric acid at 203 

70°C using a Gasbench II connected to a Thermo Delta V Plus isotope ratio mass-204 

spectrometer. All values are reported in ‰ relative to Vienna Pee Dee Belemnite (V-PDB) by 205 

assigning a δ13C value of +1.95‰ and a δ18O value of -2.20‰ to NBS 19. The overall 206 

external analytical precision, based on 39 replicate analyses of the certified standard NBS 19, 207 

was better than ± 0.09 ‰ and ± 0.04 ‰ (1SD) for δ18O and δ13C, respectively. The data are 208 

presented in the conventional delta-notation: 209 

δ18Osample = ((18O/16O)sample / (18O/16O)standard) – 1) x 1000 210 

 211 

3. Results 212 

3.1 Age and growth rates 213 

 214 

Based on the organic matrix staining method of Marschal et al. (2004), the estimated 215 

coral ages in the Medes Islands, Portofino and Riou Island sites are 30 ± 1, 27 ± 6 and 18 ± 2 216 

years, respectively (Table 2). In the cross-sections, coral growth bands are partly intersected 217 

or discontinuous especially close to the area of the medullar zone. This is particularly the case 218 

for the coral from the Portofino site leading to slightly distinct number of growth bands in the 219 

different compartments of the coral and thus higher age error. An insignificant correlation was 220 

found between the basal diameter and the number of growth rings (R = 0.533 and ρ = 0.642). 221 

This is probably due to the low number of analyzed specimens and their distinct sampling 222 
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locations. The ring thickness within the annular zone varies along the growth direction, with 223 

the annual rings becoming narrower towards the external edge of the coral. Accordingly, the 224 

growth rate decreases as the age of the colony increases, from 85 ± 12 µm/yr for the youngest 225 

colony (Riou Island) to 56 ± 6 µm/yr for the oldest colony (Medes Islands) (Table 2). The 226 

sample from Portofino has an average growth rate of 118 ± 3 µm/yr. The mean growth rate 227 

calculated by dividing the basal diameter by the number of growth rings varies from 172 ± 7 228 

µm/yr for the specimen from Medes Islands to 276 ± 65 µm/yr for the deeper sample from 229 

Portofino (Table 2). 230 

3.2 Stable isotope variation 231 

Tables 3 and 4 report the δ18O and δ13C values of the annular and medullar zones of 232 

the four specimens analyzed, the mean values (±1SD) and the isotopic range for the entire 233 

stem, annular and medullar portions. The δ18O and δ13C vary from -2.70 to 0.89‰ and -6.35 234 

to -0.27‰, respectively, with the largest variations observed for the Portofino specimen. 235 

Overall, the coral branches show more negative δ18O and δ13C values compared to the bases 236 

(Tables 3, 4, Figs. 5 and 6). Furthermore, the δ18O and δ13C values exhibit large variations 237 

across the annular and medullar portions of the axial skeleton (Fig. 5). The medullar zone 238 

generally presents slightly more negative δ18O and δ13C values (from -2.70 to 0.83‰ and 239 

from -6.35 to -0.27‰, respectively) compared to the annular zone (from -1.04 to 0.89‰ for 240 

δ18O and from -5.19 to -0.69‰ for δ13C), especially for the specimens from Portofino, Riou 241 

Island and Corsica (Figure 5A, 5C and 5D; Table 4). In particular, the larger annular vs. 242 

medullar variation is observed for the specimen collected off Portofino (Figure 5A). Here the 243 

difference in isotopic composition between the annular and medullar zone is 3.93‰ for δ13C 244 

and 2.46‰ for δ18O. On the other hand, the sample from Corsica shows the smallest variation, 245 

with a maximum difference between the medullar and the annular portions of 1.43‰ for δ13C 246 

and 0.88‰ for δ18O. This is mainly due to the fact that the sub-samples were collected mostly 247 

within the annular zone and close to the medullar zone. Figure 5B shows the variation of the 248 

δ18O and δ13C values across the skeleton base of the coral collected from Medes Islands. The 249 

δ13C mean value for the annular zone (-1.94 ± 0.72 ‰) is similar to that in the medullar zone 250 

(-1.91 ± 0.32‰). However, the annular zone shows a higher δ13C variation compared to the 251 

medullar zone. The mean δ18O values are -0.03 ± 0.26‰ in the annular zone and -0.45 ± 252 

0.27‰ in the medullar part.  253 

The δ18O values of the coral were compared to the expected equilibrium δ18O values 254 
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calculated using the equation by Bemis et al. (1998) (Table 4). All the coral values are 255 

consistently offset from the δ18O equilibrium, showing the biological imprint on the 18O/16O 256 

fractionation during the skeleton formation (vital effect). In particular, the annular and 257 

medullar zones in the branch fragments from Riou Island and Corsica show δ18O values that 258 

are lower by 1.43 ± 0.04‰ and 1.71 ± 0.02‰, respectively with respect to the expected 259 

equilibrium values (Table 4). A smaller δ18Ocoral - δ18Oequilibrium difference is observed for the 260 

annular zone of the base of the colony from Medes Islands (1.01 ± 0.01‰), suggesting that 261 

calcite forming the basal stem of C. rubrum precipitates closer to equilibrium compared to the 262 

calcite of the branches (see discussion). 263 

Similarly, the coral δ13C values are more negative when compared to the expected 264 

equilibrium δ13C calculated using the equation by Romanek et al. (1992) (Table 4), with the 265 

δ13C composition of the basal stem being about 1‰ closer to equilibrium than the branches 266 

(i.e. 4.19 ± 0.36‰ for the basal portion and 5.84 ± 0.74‰ for the branches).  267 

3.3 δ13C vs. δ18O 268 

The δ13C vs. δ18O results show highly significant linear regressions, both in the 269 

annular and medullar zone (R² between 0.33 and 0.70), but generally display different slopes 270 

for the different coral portions (Fig. 5, Table 5). Overall, the medullar zone shows a steeper 271 

δ13C vs. δ18O slope and higher intercept values compared to the annular portion (Fig. 5). A 272 

positive and highly significant δ13C vs. δ18O linear regression is also observed when 273 

considering all the data together (R² = 0.62, p value <0.0001) (Fig. 6).  274 

Figure 7 shows the different δ13C vs. δ18O linear regressions in the analyzed coral 275 

portions (medullar vs. the two annular zones) for all the specimens investigated. With the 276 

exception of the sample from Corsica, for which all the regression slopes are very similar, the 277 

regressions between δ13C and δ18O values for the other specimens show distinct slopes and 278 

intercepts. Furthermore, the coefficients of determination decrease when the two annular 279 

zones are considered separately, in particular for the sample from Medes Island (Fig. 7B).    280 

 Despite these differences, the mean δ13C and δ18O values are generally the same, 281 

within error, across the two different sides of the annular zone (Table 6).  282 

Following the “lines technique” approach, the δ18Ointercept for each specimen was 283 

obtained from the least squares linear regression analysis of coral δ18O vs. δ13C (corrected for 284 

local δ18Osw and δ13CDIC) at δ13C = 0‰. The calculated δ18Ointercept values were finally plotted 285 
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against the ambient seawater temperatures, together with published data from Hill et al. 286 

(2011) and Kimball et al. (2014), and a general linear regression was derived over a 287 

temperature range from 2°C to 17.34°C.   288 

 289 

4. Discussion 290 

4.1. Growth rate 291 

Our findings on C. rubrum growth rates ranging from 172 ± 7 to 276 ± 65 µm/year are 292 

consistent with previous estimates provided by Bramanti et al., (2014) (0.241±0.061 and 293 

0.237±0.062 mm/year for specimens from Portofino and Cap de Creus), Benedetti et al., 294 

(2016) (0.26±0.07 and 0.21±0.08 mm/year for specimens from the North and Central 295 

Tyrrhenian Sea), Vielzeuf et al., (2013) (0.200±0.02 mm/year for a specimen from Medes 296 

Islands) and Garrabou and Harmelin, (2002) (0.240±0.05 mm/year for corals from Riou 297 

Island). 298 

The average annual growth rates, determined either by dividing the basal diameter by 299 

the number of growth rings or by selecting only the annular portion (Table 2), indicate a 300 

certain variability between the shallower and deeper coral specimens, with the sample from 301 

Portofino (50m water depth) growing twice as fast as the specimen from Medes Islands (18m 302 

water depth). This difference in growth rate is still significant even when the errors in age 303 

estimation are taken into account, suggesting a biological response of the coral to different 304 

site-related environmental conditions, such as for example a greater availability of 305 

resuspended detrital particulate organic matter in deeper zones, as reported by Tsounis et al., 306 

(2006). This could eventually provide more energy supply for the coral to increase its growth 307 

rate. On the other hand, the growth rate of C. rubrum decreases at high temperatures (Vielzeuf 308 

et al., 2013)  and this could explain the lower value for the samples from Medes Islands and 309 

Riou Island compared to the one from Portofino. However, the specimen from Riou Island is 310 

growing faster than the coral from Medes Islands even though the seawater temperature of the 311 

two sites is similar, likely suggesting a decrease in growth rate with colony age as observed 312 

by Bramanti et al. (2014). A detailed study should be conducted to identify the environmental 313 

factors controlling C. rubrum calcification, combining growth rate measurements of various 314 

specimens with critical seawater parameters (e.g. temperature, nutrient content, seawater 315 

carbonate chemistry, etc.).  316 
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4.2. δ 18O and δ 13C composition of C. rubrum 317 

The strong linear regressions between δ18O and δ13C values obtained for the high Mg 318 

calcite (HMC) skeleton of C. rubrum specimens (Fig. 5) are consistent with the δ18O-δ13C 319 

relationship often observed for aragonitic shallow and deep-water corals (e.g. Adkins et al., 320 

2003; López Correa et al., 2010; McConnaughey, 1989) as well as for other calcitic corals 321 

(Hill et al., 2011; Kimball et al., 2014; Yoshimura et al., 2015). Moreover, similarly to 322 

scleractinians and other calcitic coral species, the oxygen and carbon isotopic composition of 323 

the Mediterranean C. rubrum is strongly depleted in 18O and 13C relative to inorganically-324 

precipitated calcite (Table 4). This is especially the case for the medullar zone in the coral 325 

branches characterized by δ18O and δ13C values shifted by almost 2‰ from the expected 326 

equilibrium based on ambient seawater temperature. Both the annular and medullar zones for 327 

the basal portion and the branches display a large variation in δ18O and δ13C over short 328 

distances (Table 4) that cannot be explained by water temperature fluctuations. If the micro-329 

meter variations in oxygen isotopes across the micromill transects are converted to seawater 330 

temperature using, for example, the equation by Bemis et al. (1998), the calculated range 331 

would be equivalent to more than 12°C for the Portofino specimen, which is much higher than 332 

the seasonal fluctuation recorded at the sampling location (Fig. 2). Moreover, considering that 333 

the micromill sampling resolution (80 to 93 µm intervals) integrated approximately one year, 334 

the calculated temperature range far exceeds the interannual variability. This clearly means 335 

that seawater temperature does not represent the major controlling factor of the variability in 336 

δ18O values in ontogenetic transects of C. rubrum. Similar conclusions were drawn for the 337 

magnesium distribution in C. rubrum by Vielzeuf et al., (2013), which suggested a minor 338 

temperature control on magnesium incorporation. As extensively reported for other 339 

scleractinian and gorgonian coral species, the Mediterranean HMC coral C. rubrum seems 340 

also to exert a strong physiological control on the fractionation of stable isotopes and the 341 

uptake of trace elements. Biologically-induced isotopic fractionation shifts the δ13C and δ18O 342 

composition towards more negative values relative to expected equilibrium and generates 343 

large micro-meter scale isotopic variability that is not proportional to seawater temperature or 344 

seawater chemistry variations. As suggested for tropical and cold-water scleractinian corals, 345 

the observed deviation of the δ18O values from expected equilibrium might be the result of the 346 

kinetic effects associated to the hydration and the hydroxylation reactions of the CO2 during 347 

the coral skeleton formation (McConnaughey, 1989). In particular, the kinetic model assumes 348 
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that skeleton precipitation occurs faster than the complete isotopic equilibration of HCO3
- 349 

with H2O, preventing the coral skeleton to reach oxygen isotopic equilibrium. This model 350 

would also explain the difference in δ18O between the colony base and coral branches, with 351 

the latter growing faster and showing more negative δ18O values compared to the coral base 352 

(Table 4).  353 

 Overall, our micromill isotope data clearly show that there is not a simple dependency 354 

of C. rubrum δ18O with seawater calcification temperature. Conversely, following the “lines 355 

technique” approach by Smith et al. (2000) for scleractinians and recently applied to calcitic 356 

corals (Hill et al., 2011; Kimball et al., 2014), the strong relationship between the δ18O and 357 

δ13C values and their intercept may be a valuable proxy for ocean temperature. 358 

4.3. C. rubrum as a temperature archive 359 

The coral δ18O values calculated from the linear regression equations δ18O vs. δ13C for 360 

the annular zone (corrected for local δ18Osw and δ13CDIC) at δ13C = 0‰ vary from -0.52 to 0.33 361 

(Table 7). These δ18O intercept values were compared with those calculated by Kimball et al., 362 

(2014) and Hill et al. (2011) (modified by Kimball et al., 2014) for the calcitic Isididae and 363 

Coralliidae corals spanning a range of temperatures from 2 to 11.2 °C (Fig. 8). Overall, the 364 

δ18Ointercept values obtained from the C. rubrum specimens plot close to the confidence interval 365 

of the regression line calculated by Kimball et al. (2014) (Fig. 8), although they are slightly 366 

higher to what expected considering the ambient seawater temperature. The relatively poor fit 367 

between our data and the regression line of Kimball et al. (2014) extrapolated for higher 368 

temperatures is puzzling. It might be partially related to the seawater δ18O and δ13C values 369 

used to calculate the δ18O intercepts for C. rubrum. In fact, this calculation is sensitive to the 370 

seawater isotopic values applied to correct coral δ18O and δ13C; for example, the δ18Ointercept 371 

value for the Medes Islands sample would change from -0.52 to -0.68 if using δ18Osw of 372 

1.39‰ (instead of 1.31‰) and δ13CDIC of 0.87‰ (instead of 1.20‰). Similarly, some of the 373 

δ18Ointercept values calculated by Kimball et al. (2004) using available seawater δ18O and δ13C 374 

sourced from database (e.g. WOCE) might be not entirely accurate. Other possible 375 

explanations for the relatively poor fit are laboratory offsets in δ18O and δ13C and potential 376 

species-specific fractionation of oxygen and carbon isotopes during the skeleton formation of 377 

calcitic corals (i.e. Isididae vs. Coralliidae). Although our data do not perfectly plot on the 378 

extrapolated regression line of Kimball et al. (2014), they are consistent with the general trend 379 
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of decreasing δ18Ointercept values with increasing temperature. Therefore, we decided to derive 380 

a general δ18Ointercept vs. temperature equation by combining our data with those of Kimball et 381 

al. (2014) and Hill et al. (2011) (Fig. 8A): 382 

T (°C) = -5.2 ± 0.33 x (δ18Ointercept) + 14.64 ± 0.58    (1) 383 

(R² = 0.937, p-value < 0.0001) 384 

 The δ18O intercept values for C. rubrum slightly change when excluding a few very 385 

negative δ18O and δ13C data points in the annular zone of the coral branches of the Riou 386 

Island and Corsica samples (Fig. 5 and table 7). These “anomalous” points, with δ18O and 387 

δ13C values lower than the average minus the standard deviation of the annular zone, have 388 

values comparable to those measured in the medullar zone, suggesting a stronger biological 389 

control. These micro-meter scale portions within the annular zone are most likely the result of 390 

the irregular shape of the medullar portion (see Fig. 3) and the micromill transect intercepting 391 

multiple medullar sub-regions. By rejecting those values from the annular zone, the newly 392 

calculated δ18Ointercept values for Riou Island and Corsica (-0.18 and -0.22, respectively; Table 393 

7) approach the values obtained from the basal portions.  394 

 The δ18Ointercept vs. temperature relationship using the new values together with the 395 

data by Kimball et al. (2014) and Hill et al. (2011) yields the following calibration equation 396 

(Fig. 8B):  397 

T (°C) = -5.05 ± 0.24 x (δ18Ointercept) + 14.26 ± 0.43   (2) 398 

(R² = 0.962, p-value < 0.0001) 399 

  400 

The overall precision is ± 1°C, as quantified by the standard error of estimates 401 

calculated from Bevington and Robinson, (1992). Compared to Kimball et al. (2014), this new 402 

equation improves the temperature estimates for calcitic corals living in warmer temperature. 403 

The errors in the temperature estimates were calculated based on the 95% confidence intervals 404 

and correspond to ± 0.5 °C for δ18Ointercept values near the average of the data set (1.44‰), ± 405 

0.7 °C for lower temperatures (2°C) and ± 1 °C for warmer temperatures (17°C).  406 

 407 

Equations 1 and 2 are similar within error and present a maximum of ~ 0.5°C 408 

difference at highest temperature for a given δ18Ointercept. The δ18O vs. temperature sensitivity 409 
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for both regression lines is parallel to expected δ18O equilibrium values based on the 410 

inorganically-precipitated calcite equation of Shackleton, (1974) and Kim and O’Neil (1997) 411 

modified by Bemis et al. (1998) (Fig. 8). Moreover, the slopes of the biologically-precipitated 412 

calcite equations (-5.2 and -5.05) also approximate the slope of the biogenic aragonite 413 

temperature equation (-4.34; Grossman and Ku, 1986) (Fig. 8). However, there is a clear shift 414 

in the intercept, which reflects the fact that an isotopic fractionation exists between aragonite 415 

and calcite (~ 0.8 ‰ at 25°C; Kim et al., 2007).   416 

 The consistency of our data for C. rubrum to those obtained from Hill et al. (2011) and 417 

Kimball et al. (2014) suggests that different species of gorgonian calcitic corals fractionate 418 

oxygen and carbon following similar mechanisms. Based on the highly significant δ18Ointercept 419 

vs. temperature relationship, the “lines technique” method can be reliably applied to the 420 

calcitic skeleton to obtain calcification temperature estimates in the past, although this 421 

approach requires the knowledge of the past δ18O and δ13C composition of seawater and it is 422 

labor and time intensive. However, the advantage of this method when applied to live-423 

collected and fossil C. rubrum and more in general to calcitic corals is that it can potentially 424 

provide decadal to centennial time series of seawater temperature at annual resolution. This 425 

can be done by micromilling multiple sub-samples along growth bands and reasonably 426 

assuming stable seawater δ18O and δ13C for the past decades to the last 100 years. Finally, the 427 

“lines technique” method applied to calcitic corals could be combined with the estimates of 428 

past seawater temperature based on the geochemical composition (e.g. Sr/Ca, Li/Mg) of 429 

coeval aragonitic corals to potentially reconstruct variations in seawater δ18O and eventually 430 

salinity in regions, like the Mediterranean, where a well-defined δ18O-salinity relationship 431 

exists (Pierre, 1999).  432 

 433 

 434 

 435 

Conclusions 436 

The skeleton of four specimens of the Mediterranean slow-growing coral C. rubrum 437 

collected in the north-western Mediterranean Sea between 15 and 50 m water depth was 438 

investigated for growth ring counting (age determination) and stable isotopes. The ring 439 

thickness varies in the annular zone from 56 µm/yr for the specimen collected in the Medes 440 

Islands to 118 µm/yr for the deeper sample from Portofino. The values of the mean growth 441 

rate calculated for the entire diameter (Table 2) are similar to previous findings for the same 442 
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coral species. The micromill δ13C and δ18O values show a strong fine-scale variability, with 443 

the internal medullar zone being generally depleted in 18O and 13C compared to the external 444 

annular portion. There is also a significant isotopic difference between the branch and the 445 

basal stem of the coral. All the coral portions are characterized by δ18O and δ13C values 446 

shifted from the expected oxygen and carbon equilibrium values for inorganically-precipitated 447 

calcite, suggesting a strong kinetic and/or physiological control during the skeletal formation. 448 

The δ18O and δ13C values show highly significant positive linear correlations that were used 449 

to calculate the δ18Ointercept relationship with temperature, following the “lines technique” 450 

method developed by Smith et al. (2000) for aragonitic corals. A general calibration equation 451 

was obtained by combining our data with those published by Hill et al. (2011) and Kimball et 452 

al. (2014), extending the previous calibrations for calcitic corals over a temperature range 453 

from 2°C and 17°C.   454 

 455 
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 675 
 676 
 677 
 678 
Figure Captions 679 

 680 

Fig. 1. Map with the locations of the C. rubrum specimen analyzed. Four colonies have been 681 

retrieved by scuba diving from the shallow water (between 15 to 50 m depth) of Riou Island, 682 

Medes Islands (Spain), Scandola (Corsica) and Portofino (Italy). 683 

 684 

Fig. 2. Mean monthly temperatures sourced from the NOAA NODC WOA13 (0.25° grid) 685 

Database (Boyer et al., 2013) (from 1955 to 2012) and the T-MedNet network (from 2004 to 686 

2014). 687 

 688 

Fig. 3. Toluidine blue stained thinsection of C. rubrum from Medes Islands under the 689 

stereomicroscope. The annual growth pattern in the basal stem are visible as alternating dark 690 

and light bands. 691 

 692 

Fig. 4. C. rubrum colony from Riou Island (A). Position of the micromill tracks across the 693 

entire branches and bases (B to E). These tracks for stable isotope sampling are oriented 694 

parallel to the growth increments. (B) Tracks (RI-1 to RI-44) on the branch of the Riou Island 695 

sample, (C) Tracks (CO-1 to CO-35) on the branch of the Corsica sample, (D) Tracks (MI-1 696 

to MI-72) on the base of the Medes Island sample, and (E) Tracks (PF-1 to PF-86) on the base 697 

of the Portofino sample. 698 

 699 

Fig. 5. Coral δ18O (grey circles) and δ13C (white circles) values plotted against the linear 700 

micromill distance from the outer edge of the skeleton for the samples PF (A), MI (B), RI (C) 701 

and CO (D) as well as the linear regressions of δ18O vs. δ13C (rectangles: medullar zone; black 702 

circles: annular zone; solid grey line: linear regression for all the data; solid black line: linear 703 

regression for the annular zone; dashed line: linear regression for the medullar zone). The 704 

micro-gram sub-samples for stable isotopes were obtained using a Merchantek Micromill 705 

(New Wave) across longitudinal stem sections (see Fig. 4). Arrows indicate growth direction 706 

from the central axial portion (medullar) towards the outer edge of the coral. Large rectangles 707 

indicate the sub-samples within the medullar zone.  708 

 709 
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Fig. 6. δ18O and δ13C values obtained from the basal stems (rectangles: MI; triangles: PF) and 710 

from the branches (crosses: RI; circles: CO). 711 

 712 

Fig. 7. δ18O-δ13C linear regressions for (A) RI, (B) MI, (C) CO, and (D) PF samples. 713 

(rectangles:  medullar zone; circles: annular zone). Grey and white symbols represent values 714 

obtained from the two different sides of the annular zone (dashed line: linear regression for 715 

the medullar zone; solid lines: linear regressions for the annular zones).  716 

 717 

 718 

Fig. 8. Linear regressions (with 95% confidence intervals) of δ18Ointercept values vs. ambient 719 

seawater temperature obtained by combining the data from this study (A) calculated from the 720 

full data or (B) from selected data, with the data by Kimball et al. (2014) and Hill et al. (2011) 721 

(red envelope: 95% confidence interval for the regression line calculated using all the data; 722 

blue envelope: 95% confidence interval for the regression line calculated using a selection of 723 

the data, see discussion; yellow envelope: 95% confidence interval for the regression line of 724 

Kimball et al. (2014)). The regression lines are compared with the calcite–water fractionation 725 

curve determined by Bemis et al. (1998) and Shackleton, (1974), and aragonite–water 726 

fractionation curve by Grossman and Ku (1986). 727 

 728 

 729 
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Tab.1. Sampling locations of live-collected Corallium rubrum specimens from the Mediterranean Sea. 

aTemperature values are sourced from T-MedNet network (www.t-mednet.org)  
b Temperature and Salinity values are sourced from NOAA NODC WOA13 (0.25° grid) Database (Boyer et al., 2013). 
c Data from NASA GISS LeGrande_Schmidt2006 v1p1 δ18O (Grid-1x1). 
d Data from Pierre (1999). 

 

Sample Sampling 
Location 

Depth 
(m) Latitude Longitude Date of 

sampling 
Temperature 

(°C) 
Salinity  
(psu)b  

δ18Osw  

(‰ V-SMOW )c 
δ13CDIC  

(‰ V-PDB )d 
RI 

(Branch) 
Riou Island, 

France 15 43°11'N 05°23'E 06/2008 16.37 ± 1.28 a  38.009 ± 0.020 1.31 ± 0.017 0.80 

CO 
(Branch) 

Scandola Palazzu, 
Corsica, France 

21 42°21'N 08°32'E 07/07/2008 17.34 ± 0.90 a 37.929 ± 0.048 1.34 ± 0.017 0.90 

PF (Base) Portofino, Italy 50 44°18'N 09°13'E 05/2009 14.61 ± 0.16 b 38.015 ± 0.011  1.39 ± 0.006 1.20 ± 0.22 

MI (Base) Medes Islands, 
Spain 18 42°02'N 03°13'E 27/06/2008 16.45 ± 0.89 a 37.748 ± 0.058 1.31 ± 0.019 1.20 ± 0.22 

http://www.t-mednet.org/
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Tab.2. Sampling depth, mean seawater temperature, diameter and age estimation of PF, MI and RI specimens. Growth rate values (mean 

± 1SD) represent the average of the growth rates calculated from different transects in the annular zone.  

Sample  Depth (m)  Mean T (°C) Diameter (mm) Age estimation (year) 
Growth rate in the 

annular zone 
(µm/yr) 

Mean growth rate  
 (µm/yr) 

RI 15 16.37 ± 1.28 4.25 18 ± 2 85 ± 12 236 ± 27 

MI 18 16.45 ± 0.89 5.16 30 ± 1 56 ± 6 172 ± 7 

PF 50 14.61 ± 0.16 7.44 27 ± 6 118 ± 3 276 ± 65 

 

 

Tab.3. Isotope data (δ13C and δ18O)a for the Mediterranean red coral Corallium rubrum. 
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Sample 
Linear 

distance 
(mm) 

δ13C  
(‰V-PDB) 

δ18O  
(‰V-PDB) Sample 

Linear 
distance 

(mm) 
δ13C  

(‰V-PDB) 
δ18O  

(‰V-PDB) Sample 
Linear 

distance 
(mm) 

δ13C  
(‰V-PDB) 

δ18O 
(‰V-
PDB) 

Sample 
Linear 

distance 
(mm) 

δ13C 
(‰V-
PDB) 

δ18O 
(‰V-
PDB) 

PF-1 0.045 -2.20 0.33 MI-1 0.047 -2.07 -0.31 CO-1 0.040 -3.46 -0.33 RI-1 0.04 -3.29 -0.52 
PF-2 0.134 -2.25 0.06 MI-2 0.140 - - CO-2 0.121 -4.38 -0.64 RI-2 0.13 -3.82 -0.98 
PF-3 0.224 -2.23 -0.20 MI-3 0.234 -1.79 -0.04 CO-3 0.201 -4.16 -0.47 RI-3 0.21 -4.22 -1.02 
PF-4 0.313 -2.37 0.07 MI-4 0.327 -1.88 0.05 CO-4 0.282 -3.77 -0.22 RI-4 0.29 -4.17 -1.04 
PF-5 0.403 -1.91 0.15 MI-5 0.421 -2.04 0.22 CO-5 0.362 -3.85 -0.44 RI-5 0.38 -3.83 -0.54 
PF-6 0.492 -2.37 0.21 MI-6 0.514 -1.98 0.30 CO-6 0.443 -3.99 -0.46 RI-6 0.46 - - 
PF-7 0.582 -2.36 0.23 MI-7 0.608 -2.00 0.12 CO-7 0.523 -4.14 -0.66 RI-7 0.54 -3.07 -0.21 
PF-8 0.671 -2.15 -0.24 MI-8 0.701 -2.28 0.02 CO-8 0.604 -4.12 -0.49 RI-8 0.63 -2.89 0.01 
PF-9 0.761 -1.61 0.48 MI-9 0.795 -2.38 0.06 CO-9 0.684 -4.45 -0.68 RI-9 0.71 -3.05 0.08 

PF-10 0.850 -1.73 0.39 MI-10 0.888 -2.24 0.14 CO-10 0.765 -4.54 -0.81 RI-10 0.80 -3.45 -0.57 
PF-11 0.940 -1.84 0.43 MI-11 0.982 -1.78 0.32 CO-11 0.845 -4.58 -0.96 RI-11 0.88 -3.54 -0.62 
PF-12 1.029 -1.77 0.28 MI-12 1.075 -1.63 0.26 CO-12 0.926 -4.14 -0.73 RI-12 0.96 -3.37 -0.60 
PF-13 1.119 -2.70 -0.31 MI-13 1.169 -1.12 0.23 CO-13 1.006 -4.43 -0.89 RI-13 1.05 -3.29 -0.42 
PF-14 1.208 -2.57 -0.04 MI-14 1.262 -0.95 0.42 CO-14 1.087 -4.76 -1.08 RI-14 1.13 -3.16 -0.51 
PF-15 1.298 -2.14 0.33 MI-15 1.356 -1.31 0.01 CO-15 1.167 -4.53 -0.86 RI-15 1.22 -2.96 -0.12 
PF-16 1.387 -2.74 -0.11 MI-16 1.449 -1.48 0.07 CO-16 1.248 -4.68 -0.92 RI-16 1.30 -2.87 -0.29 
PF-17 1.477 -2.39 0.13 MI-17 1.543 -1.72 0.16 CO-17 1.328 -4.89 -1.03 RI-17 1.38 -2.94 -0.29 
PF-18 1.566 -1.54 0.40 MI-18 1.636 -1.63 0.00 CO-18 1.409 -4.87 -1.10 RI-18 1.47 -3.56 -0.84 
PF-19 1.656 -1.21 0.43 MI-19 1.730 -0.99 0.31 CO-19 1.489 -4.75 -0.98 RI-19 1.55 -3.12 -0.67 
PF-20 1.745 -1.00 0.44 MI-20 1.823 -0.69 0.30 CO-20 1.570 -4.77 -0.92 RI-20 1.63 -2.93 -0.35 
PF-21 1.835 -1.00 0.47 MI-21 1.917 -1.08 -0.02 CO-21 1.650 -4.69 -0.75 RI-21 1.72 -2.82 -0.19 
PF-22 1.924 -1.36 0.25 MI-22 2.010 -0.96 0.43 CO-22 1.731 -4.72 -0.87 RI-22 1.80 -2.62 -0.14 
PF-23 2.014 -1.08 0.49 MI-23 2.104 -0.99 0.32 CO-23 1.811 -4.72 -0.71 RI-23 1.89 -3.13 -0.50 
PF-24 2.103 -1.63 0.31 MI-24 2.197 -1.06 0.19 CO-24 1.892 -4.48 -0.85 RI-24 1.97 -3.09 -0.29 
PF-25 2.193 -0.92 0.80 MI-25 2.291 -1.15 0.22 CO-25 1.972 -4.40 -0.47 RI-25 2.05 -3.29 -0.26 
PF-26 2.282 -1.20 0.75 MI-26 2.384 -1.10 0.23 CO-26 2.053 -4.48 -0.60 RI-26 2.14 -3.36 -1.17 
PF-27 2.372 -1.50 0.51 MI-27 2.478 -1.24 0.01 CO-27 2.133 -4.53 -0.74 RI-27 2.22 -4.17 -1.24 
PF-28 2.461 -1.14 0.60 MI-28 2.571 -1.19 0.05 CO-28 2.214 -4.57 -0.66 RI-28 2.30 -4.40 -1.30 
PF-29 2.551 -0.99 0.58 MI-29 2.665 -1.13 0.03 CO-29 2.294 -4.75 -0.57 RI-29 2.39 -4.28 -1.21 
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PF-30 2.640 -1.31 0.23 MI-30 2.758 -1.26 0.03 CO-30 2.375 -4.66 -0.53 RI-30 2.47 -3.96 -1.02 
PF-31 2.730 -1.31 0.51 MI-31 2.852 -1.48 -0.13 CO-31 2.455 -4.69 -0.68 RI-31 2.56 -3.68 -0.86 
PF-32 2.819 -2.13 0.28 MI-32 2.945 -1.72 -0.08 CO-32 2.536 -5.02 -0.92 RI-32 2.64 -3.59 -0.64 
PF-33 2.909 -2.72 0.06 MI-33 3.039 -1.89 -0.32 CO-33 2.616 -5.08 -0.70 RI-33 2.72 -3.25 -0.51 
PF-34 2.998 -2.15 0.23 MI-34 3.132 -2.00 -0.28 CO-34 2.697 -5.19 -0.97 RI-34 2.81 -3.26 -0.35 
PF-35 3.088 -2.39 0.27 MI-35 3.226 -2.00 -0.33 CO-35 2.777 -5.18 -0.89 RI-35 2.89 -3.17 -0.59 
PF-36 3.177 -2.70 0.04 MI-36 3.319 -2.17 -0.30     RI-36 2.97 -2.76 -0.05 
PF-37 3.267 -3.08 -0.18 MI-37 3.413 -2.25 -0.43     RI-37 3.06 -2.66 -0.11 
PF-38 3.356 -3.06 -0.16 MI-38 3.506 -1.79 -0.23     RI-38 3.14 -2.88 -0.35 
PF-39 3.446 -3.50 -0.32 MI-39 3.600 -1.75 -0.21     RI-39 3.23 -3.18 -0.47 
PF-40 3.535 -3.17 -0.18 MI-40 3.693 -1.81 -0.28     RI-40 3.31 -3.52 -0.39 
PF-41 3.625 -2.63 0.25 MI-41 3.787 -1.62 -0.20     RI-41 3.39 -3.78 -0.49 
PF-42 3.714 -2.20 0.24 MI-42 3.880 -1.39 -0.31     RI-42 3.48 -3.97 -0.57 
PF-43 3.804 -1.69 0.54 MI-43 3.974 -1.75 -0.37     RI-43 3.56 -4.03 -0.68 
PF-44 3.893 -1.39 0.72 MI-44 4.067 -2.09 -0.92     RI-44 3.65 -3.54 -0.46 
PF-45 3.983 -1.26 0.75 MI-45 4.161 -2.50 -1.01         
PF-46 4.072 -1.57 0.73 MI-46 4.254 -2.31 -1.02         
PF-47 4.162 -1.20 0.89 MI-47 4.348 -1.89 -0.61         
PF-48 4.251 -1.55 0.35 MI-48 4.441 -1.59 -0.42         
PF-49 4.341 -1.83 0.41 MI-49 4.535 -1.36 -0.35         
PF-50 4.430 -1.54 0.59 MI-50 4.628 -1.65 -0.43         
PF-51 4.520 -1.29 0.34 MI-51 4.722 -2.24 -0.61         
PF-52 4.609 -0.78 0.65 MI-52 4.815 -2.38 -0.69         
PF-53 4.699 -0.86 0.60 MI-53 4.909 -2.15 -0.55         
PF-54 4.788 -1.06 0.71 MI-54 5.002 -1.85 -0.47         
PF-55 4.878 -1.44 0.73 MI-55 5.096 -2.00 -0.23         
PF-56 4.967 -1.79 0.44 MI-56 5.189 -2.40 -0.23         
PF-57 5.057 -2.06 0.24 MI-57 5.283 -2.60 -0.31         
PF-58 5.146 -1.39 0.59 MI-58 5.376 -2.84 -0.61         
PF-59 5.236 -6.35 -2.70 MI-59 5.470 -2.61 -0.20         
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 a these data are not corrected for local δ13CDIC and δ18Osw. 

* Numbers in bold type: Medullar zone. 

PF-60 5.325 -3.58 -1.96 MI-60 5.563 -2.53 -0.29         
PF-61 5.415 -3.35 -1.62 MI-61 5.657 -2.89 -0.32         
PF-62 5.504 -2.76 -1.52 MI-62 5.750 -2.82 -0.29         
PF-63 5.594 -3.02 -1.57 MI-63 5.844 -2.75 -0.21         
PF-64 5.683 -0.27 0.83 MI-64 5.937 - -         
PF-65 5.773 -0.91 0.76 MI-65 6.031 -3.07 -0.39         
PF-66 5.862 -2.15 -0.05 MI-66 6.124 -2.88 -0.29         
PF-67 5.952 -3.08 -0.29 MI-67 6.218 -2.97 -0.25         
PF-68 6.041 -1.87 0.55 MI-68 6.311 -3.23 -0.36         
PF-69 6.131 -1.89 0.49 MI-69 6.405 -2.92 -0.14         
PF-70 6.220 -2.16 0.21 MI-70 6.498 -2.80 -0.23         
PF-71 6.310 -1.52 0.72 MI-71 6.592 -2.69 -0.12         
PF-72 6.399 -2.08 0.10 MI-72 6.685 -2.59 0.01         
PF-73 6.489 -2.32 -0.24             
PF-74 6.578 -2.45 -0.09             
PF-75 6.668 -1.54 0.18             
PF-76 6.757 -0.92 0.68             
PF-77 6.847 -1.24 0.40             
PF-78 6.936 -1.54 0.29             
PF-79 7.026 -1.78 0.58             
PF-80 7.115 -1.97 0.50             
PF-81 7.205 -2.41 0.13             
PF-82 7.294 -2.31 0.45             
PF-83 7.384 -2.42 0.49             
PF-84 7.473 -2.35 0.42             
PF-85 7.563 -2.08 0.53             
PF-86 7.652 -2.10 0.32             
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Tab.4. δ13C and δ18O mean values (± 1SD) of the four C. rubrum specimens. Isotope values were obtained from the annular and medullar zones. 

Values in parentheses represent the isotope range.    

Sample 
Entire stem Annular zone Medullar zone δ18Oeq  

(‰ V-PDB)a 
δ13Ceq 

(‰ V-PDB)b 
δ13C (‰ V-PDB) δ18O (‰ V-PDB) δ13C (‰ V-PDB) δ18O (‰ V-PDB) δ13C (‰ V-PDB) δ18O (‰ V-PDB) 

RI (Branch) 
-3.39 ± 0.47 

(-4.40 to -2.62) 

-0.54 ± 0.35 

(-1.30 to 0.08) 

-3.29 ± 0.50 

(-4.22 to -2.62) 

-0.42 ± 0.30 

(-1.04 to 0.08) 

-3.54 ± 0.41 

(-4.4 to -2.96) 

-0.72 ± 0.35 

(-1.30 to -0.12) 0.98 ± 0.29 1.80 

CO (Branch) 
-4.53 ± 0.39 

(-5.19 to -3.46) 

-0.73 ± 0.22 

(-1.10 to -0.22) 

-4.44 ± 0.44 

(-5.19 to -3.46) 

-0.65 ± 0.20 

(-0.97 to -0.22) 

-4.71 ± 0.12 

(-4.89 to -4.48) 

-0.92 ± 0.13 

(-1.10 to -0.71) 0.81 ± 0.21 1.90 

MI (Base) 
-1.93 ± 0.62 

(-3.23 to -0.69) 

-0.16 ± 0.32 

(-1.02 to 0.43) 

-1.94 ± 0.72 

(-3.23 to -0.69) 

-0.03 ± 0.26 

(-0.61 to 0.43) 

-1.91 ± 0.32 

(-2.50 to -1.36) 

-0.45 ± 0.27 

(-1.02 to -0.08) 0.97 ± 0.21 2.20 ± 0.22 

PF (Base) 
-1.97 ± 0.84 

(-6.35 to -0.27) 

0.20 ± 0.61 

(-2.70 to 0.89) 

-1.61 ± 0.48 

(-2.42 to -0.78) 

0.43 ± 0.24 

(-0.24 to 0.89) 

-2.49 ± 0.97 

(-6.35 to -0.27) 

-0.14 ± 0.80 

(-2.70 to 0.83) 1.44 ± 0.04 2.20 ± 0.22 

a Values calculated using the equation by Bemis et al. (1998) 
b Values calculated using the equation by Romanek et al. (1992) 
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Tab.5. Linear regression equations of δ18O (Y) vs. δ13C (X) obtained from the annular, medullar zones and the entire stem. 

 

 
 
 
 

 

 

Sample 
annular zone medullar zone Entire Stem 

Equation N R² Equation N R² Equation N R² p-value 

RI (Branch) Y = 0.50 X+1.24 25 0.70 Y = 0.72 X+1.84 18 0.71 Y = 0.62 X+1.56 43 0.70 <0.0001 

CO (Branch) Y = 0.34 X+0.88 23 0.57 Y = 0.59 X+1.84 11 0.33 Y = 0.42 X+1.17 35 0.56 <0.0001 

MI (Base) Y = 0.26 X+0.48 49 0.52 Y = 0.55 X+0.61 21 0.44 Y = 0.28 X+0.38 71 0.28 0.000002 

PF (Base) Y = 0.29 X+0.90 51 0.36 Y = 0.69 X+1.57 35 0.69 Y = 0.60 X+1.38 86 0.68 <0.0001 
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Tab.6. Mean δ13C and δ18O values obtained from the two opposite sides of the annular zone.  

Sample 
δ13C (‰ V-PDB) δ18O (‰ V-PDB) 

Side 1 Side 2 Side 1 Side 2 

RI (Branch) -3.35 ± 0.50 -3.54 ± 0.53 -0.42 ± 0.20 -0.53 ± 0.46 

CO (Branch) -4.15 ± 0.33 -4.78 ± 0.29 -0.60 ± 0.22 -0.70 ± 0.16 

MI (Base) -1.49 ± 0.47 -2.66 ± 0.36 0.13 ± 0.17 -0.29 ± 0.15 

PF (Base) -1.89 ± 0.49 -2.09 ± 0.27 0.42 ± 0.16 0.17 ± 0.24 
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Tab.7. Least squares linear regression equations of δ18O (Y) vs. δ13C (X) calculated using 

values corrected for local δ18Osw and δ13CDIC. The δ18Ointercept values are calculated from the 

linear regressions at δ13C = 0 ‰. For the calculations only the values from the annular zone 

were used.   

 Sample Temperature 
(°C) Equation N R² δ18Ointercept  

(‰ V-PDB) p-value 

 

Including 

the 

anomalous 

data point 

 

 

RI (Branch) 

CO (Branch) 

MI (Base) 

PF (Base) 

16.37 

17.34 

16.45 

14.61 

Y = 0.50 X + 0.33 

Y = 0.34 X - 0.15 

Y = 0.26 X - 0.52 

Y = 0.29 X - 0.14 

25 

24 

48 

51 

0.70 

0.57 

0.52 

0.36 

0.33 

-0.15 

-0.52 

-0.14 

< 0.0001 

0.00002 

< 0.0001 

 0.0001 

 

Excluding 

the 

anomalous 

data point 

 

 

RI (Branch) 

CO (Branch) 

MI (Base) 

PF (Base) 

16.37 

17.34 

16.45 

14.61 

Y = 0.37 X - 0.18 

Y = 0.33 X - 0.22 

Y = 0.26 X - 0.52 

Y = 0.29 X - 0.14 

22 

22 

48 

51 

0.55 

0.48 

0.52 

0.36 

-0.18 

-0.22 

-0.52 

-0.14 

< 0.0001 

0.0004 

< 0.0001 

< 0.0001 

 


