# Modeling the Influence of Environmental Factors on Human Respiratory Irritation from Natural Exposures to Karenia brevis Aerosols

Gary Kirkpatrick<sup>1</sup>, Barbara Kirkpatrick<sup>1,2</sup>, Gary Hitchcock<sup>3</sup>, and Porter Hoagland<sup>4</sup>,

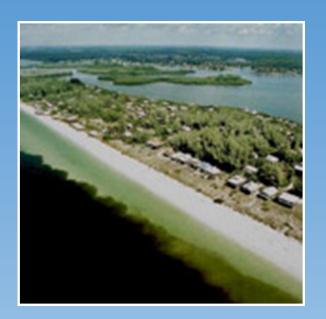
<sup>1</sup>Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL, 32436, USA.

<sup>2</sup>Department of Oceanography, Texas A&M University, College Station, TX 77843

<sup>3</sup>Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149-1098.

<sup>4</sup>Woods Hole Oceanographic Institution, Woods Hole, MA 02543










# Background

- Karenia brevis, toxic dinoflagellate
- Produces brevetoxins
- Annual blooms off the west coast of Florida
- Causes neurotoxic shellfish poisoning (NSP)
- Wind and wave action cause toxins to become part of the marine aerosol
- Woodcock (1948) first identified the association of respiratory irritation with Florida red tide



# Human respiratory impacts from toxic aerosols

- Asthmatics: changes in pulmonary function and symptoms after 1-hour beach exposure during red tide
- Remain symptomatic with decreased respiratory function 5 days after exposure
- Amount of toxin in the air highly variable from day to day, from beach to beach, and from morning to afternoon



# What factors might contribute to variability in public health impacts?

- We analyze data on:
  - Lifeguard reports of beach conditions
  - Bloom occurrences (cell counts)
  - Environmental conditions (meteorological and oceanographic measures)

#### Data:

 Beach Conditions Reporting System

Respiratory Irritation:

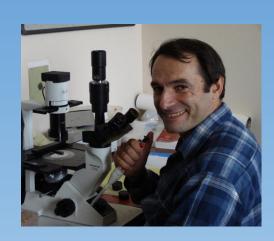
None, Slight, Moderate, High







The reports are subjective (no measurements taken, just an estimate) and designed to indicate to the beachgore which beach may be more preferable to visit at a particular time. Beach condition reports will be posted at 10 am and 3 pm. If a posting is late, please understand that the beach reporters may be involved in more pressing matters.


Get the Beach Conditions Report via telephone at 1-941-BEACHES. (1-941-232-2437)

Please take a moment and tell us what you think of the Beach Conditions site by taking our survey.

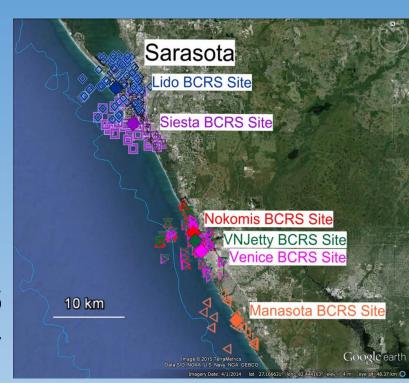
## Data:

#### 2. Bloom Conditions

- K. brevis abundance
  - Mote Marine Lab
  - FWC/Florida Wildlife Research Institute
  - FL ECOHAB project
- Used to identify periods of blooms
- For potential beach/respiratory impacts, we used cell counts 5 km from shore and >1,000 cells/L

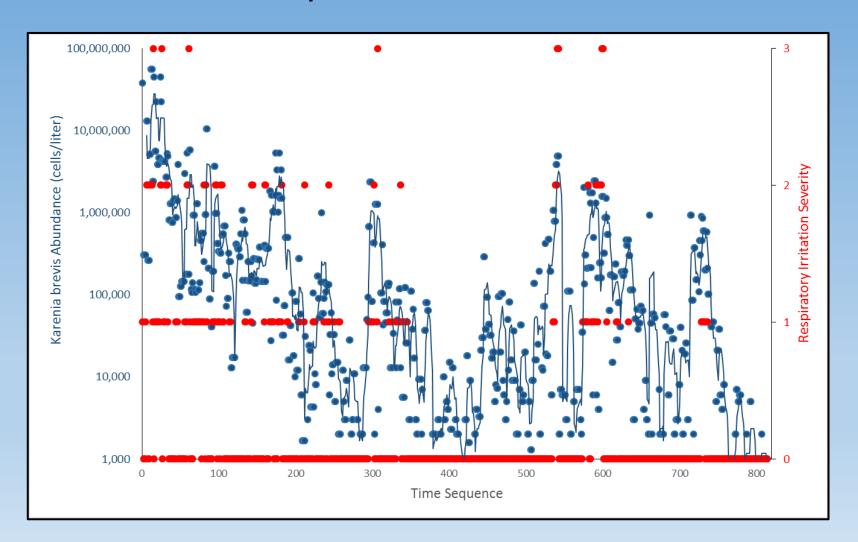


## Data:


## 3. Meteorology/Oceanography

- NWS station at Venice, FL
- Mote Marine Lab weather station at Sarasota, FL
- Water temperature
- Dew point
- Relative humidity
- Barometric pressure
- Wind direction relative to beach
- Wind speed




# Analysis:

- Data was analyzed using PRIMER-E
- Two analyses were conducted to evaluate each factor and its contribution to observed respiratory irritation data from 6 BCRS sites in Sarasota County
  - Analysis of Similarity (ANOSIM)
  - Similarity Percentages (SIMPER)



## Results:

Respiratory irritation highly correlated with *K. brevis* abundance. No surprise there!



# Differences\* in Public Health Impacts due to Environmental Factors

| From No<br>Impact to: | Water<br>Temperature<br>(+) | Barometric<br>Pressure<br>(-) | Wind Direction (Normal) | Relative<br>Humidity<br>(+) | Others | p-value |
|-----------------------|-----------------------------|-------------------------------|-------------------------|-----------------------------|--------|---------|
| Slight                | 1                           | 2                             | 3                       |                             |        | < 0.002 |
| Moderate              | 1                           | 2                             | 3                       |                             |        | < 0.006 |
| High                  | 2                           |                               | 3                       | 1                           |        | < 0.007 |

<sup>\*</sup>Estimated using PRIMER-E multivariate, nonparametric analysis

# Summary:

- Karenia brevis abundance was the strongest controlling factor for severity of respiratory irritation.
- Environmental factors had **much** less influence (low 'R' values) on respiratory severity than did *K. brevis* abundance.
- The contributions of environmental factors were highly significant to the differences between the respiratory irritation level of 'None' and all three others ('Slight', 'Moderate' and 'Severe').
  - Environmental factors that contributed the most to dissimilarities between samples from groups 'None' and 'Slight', and 'None' and 'Moderate' were water temperature and barometric pressure.
  - Dissimilarities between samples in groups 'None' and 'Severe' were largely based on relative humidity and water temperature.

#### Conclusions:

#### Scientific hypotheses:

 Brevetoxin aerosolization is due to air-sea interactions, partially related to diffusion and evaporation rates between the water and the surrounding atmosphere

#### Policy relevance:

 Projections of human public health impacts from K. brevis blooms may be improved through incorporation of relevant environmental parameters

# Acknowledgements

#### This work was supported by:

- ECOHAB FL NA06NOS478024
- NSF
  - Coupled Human and Natural Systems # 1009106
  - Research Experience for Undergraduates -# 0453955
- FWCC FL Red Tide Cooperative Agreements



Dynamics of Coupled Natural & Human Systems



Center for Sponsored Coastal Ocean Research



Fish & Wildlife Research Institute