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ABSTRACT: Discovery and identification of molecular
biomarkers in large LC/MS data sets requires significant
automation without loss of accuracy in the compound
screening and annotation process. Here, we describe a
lipidomics workflow and open-source software package for
high-throughput annotation and putative identification of lipid,
oxidized lipid, and oxylipin biomarkers in high-mass-accuracy
HPLC-MS data. Lipid and oxylipin biomarker screening
through adduct hierarchy sequences, or LOBSTAHS, uses
orthogonal screening criteria based on adduct ion formation
patterns and other properties to identify thousands of
compounds while providing the user with a confidence score
for each assignment. Assignments are made from one of two
customizable databases; the default databases contain 14 068 unique entries. To demonstrate the software’s functionality, we
screened more than 340 000 mass spectral features from an experiment in which hydrogen peroxide was used to induce oxidative
stress in the marine diatom Phaeodactylum tricornutum. LOBSTAHS putatively identified 1969 unique parent compounds in
21 869 features that survived the multistage screening process. While P. tricornutum maintained more than 92% of its core
lipidome under oxidative stress, patterns in biomarker distribution and abundance indicated remodeling was both subtle and
pervasive. Treatment with 150 μM H2O2 promoted statistically significant carbon-chain elongation across lipid classes, with the
strongest elongation accompanying oxidation in moieties of monogalactosyldiacylglycerol, a lipid typically localized to the
chloroplast. Oxidative stress also induced a pronounced reallocation of lipidome peak area to triacylglycerols. LOBSTAHS can be
used with environmental or experimental data from a variety of systems and is freely available at https://github.com/
vanmooylipidomics/LOBSTAHS.

Reactive oxygen species (ROS) represent a persistent
source of stress in virtually all biological systems.1,2 The

negative cellular effects of ROS include protein damage,
mutation of DNA, and lipid peroxidation.3 While the profound
effects of oxidative stress have been documented extensively in
the lipids of mammals,4−6 ROS can induce equally significant
and wide-ranging remodeling of cell lipidomes in terrestrial and
marine plants.7−9 These ROS can act through a variety of
enzymatic and abiotic mechanisms to produce a broad and
heterogeneous suite of lipid products whose bioactivity and
diversity make them ideal as molecular biomarkers. These
products include both oxidized intact polar lipids (ox-IPL; e.g.,
oxidized phospholipids)8 and oxylipins, the smaller, direct
derivatives of fatty acids. Lipid biomarkers (both oxidized and
unoxidized) can be used to characterize the effects of ROS in
humans from cancer10 and other diseases such as athero-
sclerosis;11 in the marine environment, lipids can be used to
diagnose various sources of biological and abiotic stress,
including those imposed by nutrient limitation12,13 and viral

infection.14,15 The potency and specificity that make lipids
useful as biomarkers of oxidative stress also support their
function as bioactive “infochemicals”.16−18 In the ocean, for
example, oxylipins have been shown to regulate different
interspecific interactions among marine microbiota19−22 and
the metabolism of sinking marine particles by heterotrophic
bacteria.23

For several reasons, there exist few comprehensive methods
to screen, identify, and annotate large numbers of these
oxylipins and oxidized lipids alongside the many unoxidized
lipids from which they can originate.4,6 Oxylipins, like their
parent lipids, have a wide diversity of structures and
biochemical functions.4,24,25 They can be produced enzymati-
cally9,26,27 or abiotically,28,29 often occurring in very low
abundance relative to their intact polar lipid (IPL)
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precursors.6,30 Finally, unique and tailored computational
strategies are required to analyze the large volumes of data
necessary for comprehensive lipidomics or metabolomics.25,31

The limited number of analytical strategies developed
specifically to assess the effects of oxidative stress on the
lipidomes of humans4 and mammals32,33 have generally focused
on traditional oxylipins, such as hydroperoxy, hydroxy, epoxy,
oxo, and ketol fatty acids, while ignoring most molecular
precursors and intermediates. For example, direct-infusion mass
spectrometry has been used to identify select oxylipins
simultaneously with their unoxidized IPL and ox-IPL
precursors in the model plant Arabidopsis thaliana, but these
studies used manual data analysis methods to examine
oxidation of compounds containing only C16 and C18 fatty
acids.7,8 Ni et al. employed a shotgun approach to identify
oxidized lipids in rat cardiomyocytes, but their analysis was
limited only to intact carbonylated phospholipids.34 The
commercial LipidSearch software (Thermo Scientific) can
identify some oxidized lipids using MS/MS fragmentation
spectra, but this capability does not extend to oxylipins derived
from fatty acids.
We developed a new, rules-based screening approach that

can be used to identify a broad range of IPL, nonpolar lipids,
ox-IPL, and oxylipins in large, high-mass-accuracy HPLC-ESI-
MS data sets. Lipid and oxylipin biomarker screening through
adduct hierarchy sequences, or LOBSTAHS, is implemented as
an open-source package for R35 and integrates with the existing
packages xcms36−38 and CAMERA.39 The software is centered
around a novel screening methodology that exploits the unique
tendency of lipids to form adduct ions in consistent, diagnostic
patterns of abundance that remain relatively consistent across
sample types (e.g., for phosphatidylcholine in positive ion
mode, [M + H]+ > [M + Na]+ > [M + NH4 + ACN]+ > [M +
2Na − H]+ > [M + K]+). Using lipid data from cultures of a
mutant strain of a marine diatom designed for studies of
oxidative stress,40 we demonstrate how LOBSTAHS can be
used to resolve conflicting compound assignments, examine
differential expression of compounds across experimental
treatments, discover and identify potential ox-IPL and oxylipin
biomarkers, and identify potential isomers and isobars.
LOBSTAHS annotates each compound assignment with a

confidence score, allowing the user to define subsets for further
analysis. While we apply LOBSTAHS here to identify potential
biomarkers in a marine microorganism, it can be applied to any
HPLC-ESI-MS data set where the user expects the relative
proportions of the various adduct ions of each analyte to
remain constant across samples. LOBSTAHS requires data
from a mass spectrometer having both high resolving power
and high mass accuracy. While we developed the software using
data acquired on a Thermo Exactive Plus Orbitrap instrument,
LOBSTAHS could be used to analyze data acquired via FTICR-
MS or, when sufficient allowances are made for mass resolution,
a Q-TOF instrument.

■ THEORY AND DESIGN OF SOFTWARE AND
DATABASES

Design and Scope of Lipid-Oxylipin Databases.
LOBSTAHS draws compound assignments from customizable
onboard databases that contain structural and adduct ion
abundance data for various IPL, nonpolar lipids, ox-IPL, and
oxylipins (Tables S1 and S3). Each database entry represents a
different adduct ion of a potential analyte; because analytes
present differently in positive and negative ionization modes,

separate databases must be generated for compound identi-
fication in each mode. The standard package installation
includes two default databases that contain entries for 14 068
unique compounds, some of them particular to marine algae
(Tables S1 and S3). Alternatively, LOBSTAHS allows the user
to generate his or her own databases; instructions are provided
in the package documentation. The use of onboard databases
distinguishes LOBSTAHS from other software packages that
rely exclusively on external databases.

Database Generation. Databases are created in LOB-
STAHS by pairing empirical data with an in silico simulation.
To generate the default databases, we first calculated exact
masses for various triacylglycerols (TAG), free fatty acids
(FFA), polyunsaturated aldehydes (PUA), and molecules
belonging to eight different classes of intact polar diacylglycerol
(IP-DAG). Within each of these classes, we calculated the
masses of a wide range of possible structures having fatty acid
(FA) moieties of different acyl chain length, unsaturation, and
oxidation (Table S1). While the default databases include
entries for IPL and ox-IPL that contain primarily medium- and
long-chain fatty acids, users may generate additional databases
with entries for IPL composed of fatty acids of any length. The
databases also include exact masses for several photosynthetic
pigments common to the marine environment (Tables S1 and
S3). TAG and IP-DAG are identified by the “sum
composition”41 of double bonds and acyl carbon atoms in
each compound (e.g., PC 34:1, rather than PC 16:0−18:1).

Determination of Relative Abundances of Adduct
Ions for Inclusion in Databases. During database
generation, LOBSTAHS uses empirical data for the LC/MS
adduct ion(s) typically formed by each compound’s parent lipid
class (Table S2) to create several entries for each compound.
Each of the entries represents a different adduct ion of its
parent; the relative ranks of the adducts form the basis for the
hierarchy-based screening of compound assignments at the core
of our method. Relative adduct ion abundance data were
gathered from previous work42 and analysis of compounds
commonly observed in cultures and environmental samples
from marine microorganisms. Where possible, we confirmed
the results using authentic standards for representative
compounds. For ox-IPL, we applied adduct hierarchies
observed for the corresponding, unoxidized IPL. We assumed
ox-IPL would be unlikely to take charge on their oxidized
functional group(s) during ionization, thus forming adducts
similar to those of the corresponding unoxidized molecule. We
confirmed this similarity in ionization behavior through manual
inspection of several samples. Long-chain ox-IPL standards
other than those containing aldehyde moieties are not available
commercially.
A series of simple tables can be used to define additional

analytes and/or adducts beyond those which are included in the
default databases. For each new lipid or lipid class, LOBSTAHS
requires (1) the elemental composition of the new lipid or
parent moiety of the new lipid class, (2) a tabulation of
expected adducts (defining, as necessary, any new adducts), (3)
empirical adduct hierarchy data for any new adducts, and (4) if
applicable, the ranges of acyl carbon atoms, double bonds, and
oxidization states for which entries are to be generated. Specific
instructions are contained in the online documentation for the
software.

Lipidomics Workflow Based on xcms, CAMERA, and
LOBSTAHS. Because high resolving power and high mass
accuracy alone are often not sufficient to resolve isobaric ions
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or to distinguish among species that have identical mono-
isotopic masses but different elemental compositions,44 we
employ high-performance liquid chromatography (HPLC) in
lieu of a simple direct-infusion approach. Data must first be
converted to an open-source format (.mzXML) and, if
necessary, from profile to centroid mode. If data are acquired
using ion mode switching, LOBSTAHS requires that positive
and negative ion mode scan data also be extracted into separate
files. Procedural details and an R script that can be used to
automate these steps for data obtained from an Orbitrap
instrument are described in the Supporting Information. For
purposes of the present study, we consider two ions to be
isobaric when the underlying features have different exact
masses but the m/z difference is less than the instrument’s
demonstrated mass accuracy (in this case, 2.5 ppm). Once data
files have been converted and extracted, the existing R packages
xcms36−38 and CAMERA39 are used for feature detection, peak
grouping, chromatographic alignment, identification of pseu-
dospectra, and discovery of features representing possible

secondary isotope peaks (Scheme 1, “Pre-processing & feature
detection”).

Database Assignments and Progressive Screening in
LOBSTAHS Using Orthogonal Criteria. After preprocessing,
screening and annotation are performed according to the
workflow in Scheme 1. First, initial compound assignments are
applied to features from the database using a narrow m/z mass
tolerance specified by the user in ppm. A series of optional
orthogonal screening criteria can then be applied to the features
and their assignments. First, users may exclude from the data
set any features representing secondary isotope peaks; the
presence of these features can be a significant obstacle in
metabolomics.45−47 We programmed LOBSTAHS to exclude
these secondary peaks, rather than merge the elements of each
feature’s isotopic envelope into a single parameter.46

Next, LOBSTAHS can screen the feature’s retention time
against a retention time “window” defined for the accompany-
ing assignment’s parent lipid class. LOBSTAHS includes a set
of default retention time window data (Table S4) for the
chromatographic conditions we describe here. Detailed

Scheme 1. Preparation, Screening, and Annotation of HPLC-MS Lipid Data Using LOBSTAHSi

aWe automate several functions of the ProteoWizard msConvert tool.43 b,cxcms36−38 was chosen for its command-line features and because it
permits follow-on use of the R package CAMERA39 to identify isotopes. dIPO54 can be used to optimize the values of parameters for some xcms and
CAMERA functions. eMultiple assignments will likely exist for many peakgroups in a typical data set. fThis criterion may be useful when the subject
data set contains lipids of exclusively eukaryotic origin. gIn the case of C2a, the adduct ion hierarchy for the parent compound is completely satisfied;
i.e., the pseudospectrum contains peakgroups representing every adduct ion of the compound of greater theoretical abundance than the least
abundant adduct ion present. In the case of C2b, the adduct ion of greatest theoretical abundance and some lesser adduct ion is present, but adduct
ions of intermediate abundance are not observed. hBoth outcomes may apply simultaneously at this decision point if the data set contains isobars and
isomers of the assignment. iAnnotation codes (in bold) may be applied as indicated; these are designed to assist the user in evaluating assignment
confidence during subsequent data analysis.
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instructions for application of retention time data from other
chromatographic methods are included in the Supporting
Information. A third filter can then be applied to exclude
assignments of IPL, ox-IPL, FFA, and PUA that contain an odd
total number of acyl carbon atoms. We envision that this filter
would be applied to data of exclusively eukaryotic origin: Since
nonacetogenic fatty acid synthesis is confined almost exclusively
to bacteria and archaea,48 FA synthesized by eukaryotes will be
composed of an even total number of carbon atoms.
After applying these initial optional criteria, LOBSTAHS

then screens each assignment using adduct ion hierarchy data
(Scheme 1, “Application of core adduct ion hierarchy screening
rules”; Table S2). This screening serves as the primary
orthogonal filter to eliminate any confounding secondary
isotopes and unassigned lipid-extractable features still remain-
ing in the data set. During this process, LOBSTAHS uses a
series of rules to compare the relative abundance ranks of sets
of adduct ion assignments that have the same parent
compound. The package makes several annotations using
simple codes that indicate the degree to which the assignment
complies with the hierarchy rules (Scheme 1, in bold).
Assignments that fail the adduct ion hierarchy screening criteria
are excised from the data set, and all remaining assignments in
the data set are then pooled.
Additional rules-based screening is then performed on the

pooled data to identify and annotate possible isomers and
isobars (Scheme 1, “Isomer & isobar detection, annotation”).
Codes can be applied to identify positional or regioisomers
(code C3r), functional structural isomers (code C3f), or isobars
(code C3c). LOBSTAHS can apply several of these different
codes to a given assignment as long as the criterion for each is
satisfied. Upon completion of screening, LOBSTAHS produces
an R object containing the annotated data set. Statistical
analysis can then be performed in R on the final matrix of
compound assignments, or the results can be exported to a .csv
file for external analysis.

■ EXPERIMENTAL SECTION

Model Data Set Used To Demonstrate the Workflow.
To demonstrate LOBSTAHS, we applied the workflow in

Scheme 1 to examine the effect of oxidative stress on a model
algal lipidome. For the analysis, we used lipid data collected
from cultures of a mutant strain of the marine diatom
Phaeodactylum tricornutum, which was designed for studies of
oxidative stress. In the study,40 a strain of P. tricornutum
(CCMP2561; Provasoli-Guillard National Center for Marine
Algae and Microbiota) was genetically modified49 to express a
reduction−oxidation sensitive green fluorescent protein
(roGFP) at different locations within the cell.50,51 Cultures of
the transformants were treated with three concentrations of
H2O2 (0, 30, and 150 μmol L−1) to evaluate the effects of
peroxidation; culture conditions are described in van Creveld et
al.40

Sample Collection and Extraction. In the experiment,
duplicate samples for lipid analysis were collected from each
treatment at 4, 8, and 24 h time points. Two procedural blanks
were also collected. Sample material was collected by vacuum
onto 0.7 μm pore size glass fiber filters (GF/F), which were
snap frozen in liquid nitrogen and then stored at −80 °C until
thawed for extraction. Extraction was performed using a
modified Bligh and Dyer52 method described in Popendorf et
al.;42 an internal standard (dinitrophenyl-phosphatidylethanol-
amine, DNP-PE) and a synthetic antioxidant (butylated
hydroxytoluene, BHT) were added at the time of extraction.
Lipid extracts were transferred to 2 mL HPLC vials, topped
with argon, and stored at −80 °C prior to analysis. All
chemicals used in sample extraction and chromatography were
LC/MS grade or higher. Where used, water was obtained from
a Milli-Q system without further treatment (EMD Millipore,
Billerica, MA, USA).

HPLC-ESI-MS Analysis. Samples from the P. tricornutum
data set were analyzed by HPLC-ESI-MS using a modification
of the method described in Hummel et al.53 Lipid extracts were
evaporated to near dryness and reconstituted in a similar
volume of 7:3 acetonitrile/isopropanol. Headspace was filled
with argon to minimize further oxidation. For HPLC analysis,
an Agilent 1200 system (Agilent, Santa Clara, CA, USA)
comprising temperature-controlled autosampler (4 °C), binary
pump, and diode array detector was coupled to a Thermo
Exactive Plus Orbitrap mass spectrometer (ThermoFisher

Table 1. Evaluation of Lipidomics Method Performance using IPL Standards

lipid class
origin of
standard

moieties
present in
standarda

dominant
positive mode
adduct ion

ion exact
m/z

observed
m/zb

rel. mass
uncertainty
(ppm)c

correct
LOBSTAHS

ID?

confidence in
assignment after adduct
hierarchy screeningd

structural isomers or
isobars present after

screening?

MGDG natural 34:0 [M + NH4]
+ 776.6246 776.6248 0.2 yes high no

36:0 [M + NH4]
+ 804.6559 804.6561 0.3 yes high no

DNP-PE synthetic 32:0 [M + NH4]
+ 875.5505 875.5507 0.2 yes high no

SQDG natural 34:3 [M + NH4]
+ 834.5396 834.5398 0.2 yes high no

34:2 [M + NH4]
+ 836.5552 836.5554 0.2 yes high no

PG synthetic 32:0 [M + NH4]
+ 740.5436 740.5438 0.3 yes high no

PE synthetic 32:0 [M + H]+ 692.5225 692.5227 0.3 yes high no
PC synthetic 32:0 [M + H]+ 734.5694 734.5696 0.2 yes high no
DGDG natural 34:2 [M + NH4]

+ 934.6462 934.6463 0.1 yes high yes
36:4 [M + NH4]

+ 958.6462 958.6463 0.1 yes high yes
mean 0.2
aMultiple moieties were present in glycolipid standards purified from natural samples; only predominant moieties are shown. bMean observed m/z
ratio in 5 independent samples. cSee the following equation:

− ×measured exact mass calculated exact mass
calculated exact mass

106

d“High confidence”: Assignment fully satisfied all adduct hierarchy rules and other screening criteria.
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Scientific, Waltham, MA, USA). Chromatographic conditions,
electrospray ionization source settings, MS acquisition settings,
and procedures used for calibration of the mass spectrometer
are described in the Supporting Information. Using authentic
standards and two independent methods for MS feature
detection, we determined the average relative mass uncertainty
of the exactive was <0.2 ppm (Tables 1 and S6); evaluation of
these standards is discussed below.
Analysis of P. tricornutum Data Using LOBSTAHS.

xcms, CAMERA, and LOBSTAHS were then used to identify
and annotate lipidome components in the positive ionization
mode data. The R package IPO54 was used to optimize settings
for several xcms functions, and a 2.5 ppm mass uncertainty
tolerance was used to obtain database matches in LOBSTAHS.
Using the annotated output we obtained from LOBSTAHS, we
then calculated the relative abundances of lipidome constitu-
ents present in the 0 and 150 μM H2O2 treatments at 24 h.
Statistical techniques were used to identify biomarkers of
oxidative stress. Unless otherwise noted, we restricted our
analysis to only “high confidence” assignments; these were
assignments without structural isomers or isobars given codes
of C1 or C2a according to the logic in Scheme 1. The specific
settings used in xcms, CAMERA, and LOBSTAHS, details of
statistical methods, and links to scripts we used to obtain results
and figures are included in the Supporting Information text and
Table S5.

■ RESULTS AND DISCUSSION
Screening and Annotation of P. tricornutum Data in

LOBSTAHS. Using LOBSTAHS, we identified 21 869, or 6.4%,
of the 340 991 mass spectral features initially detected in the
data set using xcms. Sequential application of the various
screening criteria allowed us to exclude features from the data
set based on specific characteristics (Table 2). Of these initial
features, 177 053, or 52%, were immediately eliminated as likely

secondary isotope peaks identified by CAMERA. The 163 938
remaining features were then matched at 2.5 ppm against
entries in the default positive mode database. We then used
LOBSTAHS to perform screening based on feature retention
time and assignment total acyl carbon number. LOBSTAHS
excluded 7792 features because the retention time fell outside
the range expected for the assignment’s parent lipid class. An
additional 7733 features were eliminated because the
compound assignment did not contain an even total number
of acyl carbon atoms; this optional restriction was applied given
the known eukaryotic origin of the data. Adduct ion hierarchy
screening was then applied to the remaining 52 337 features.
Application of this final orthogonal filter yielded a data set
containing 2056 compound assignments; these assignments
represented 1969 unique parent compounds (Table 2).
The identities of 1163, or 57%, of these final database

assignments were unique within the scope of our database,
meaning the underlying features were matched in the final data
set to only one possible parent compound. 1149 of these
assignments were IPL, ox-IPL, or TAG (Figure 1a); the
remainder were photosynthetic pigments. We classified 1056 of
these identifications as “high confidence,” indicating that the
distribution of adducts present in the constituent features
perfectly satisfied the adduct hierarchy rules (Figure 1a and
symbols with darkest tones in Figures S2−S10); these were
used in the analysis below.

Identification and Annotation of Isomers and Isobars.
The remaining 893 assignments (43.4%) were characterized by
some degree of ambiguity, meaning the data set contained at
least one isobar or structural functional isomer of the
underlying features (Table S7; symbols with lightest tones in
Figures S2−S10). In 752 instances, the dominant adduct of the
parent compound was a (functional) structural isomer of the
dominant adduct of a different compound assigned from the
database (Chart S1, first example). In 195 cases, the dominant
adduct ion of the parent compound was an isobar of the
primary adduct ion of a different compound (Chart S1, second
example). Although these ambiguous assignments represented
43.4% of all assignments in the screened data set, they belonged
to just 25% of retained features (27% of peak groups; Table
S7). The difference was due to the presence of a small number
of features (793) whose 54 assignments were doubly
ambiguous, i.e., having both isobars and functional structural
isomers (symbols with two-tone shading in Figures S2−S10;
Chart S1, third example). The number of competing assign-
ments for each identified compound varied largely by lipid
class. For example, LOBSTAHS found no functional structural
isomers for compounds identified in several lipid classes:
digalactosyldiacylglycerol (DGDG), phosphatidylethanolamine
(PE), and sulfoquinovosyldiacylglycerol (SQDG) (Figures S3,
S7, and S9). Doubly ambiguous assignments were confined to
only four classes: diacylglyceryl carboxyhydroxymethylcholin
(DGCC), diacylglyceryl trimethylhomoserine and diacylglycer-
yl hydroxymethyl-trimethyl-β-alanine (DGTS and DGTA),
phosphatidylcholine (PC), and phosphatidylglycerol (PG)
(Figures S2, S4, S6, and S8).

Annotation of Potential Regioisomers. LOBSTAHS
also identified regioisomers for 352 unique parent compounds
in the P. tricornutum lipidome (Table S7; symbols with black
dots in Figures S2−S10). These were instances in which the
same assignment was applied to two or more features appearing
at different retention times in the same sample. Many of these
assignments were oxylipins and ox-IPL, indicating the presence

Table 2. Progressive Screening and Annotation of the
P. tricornutum Dataset using xcms, CAMERA, and
LOBSTAHS

no. present in data set

operation(s) applied peaks
peak
groups

database
assignmentsa

unique
parent

compounds

xcms and CAMERA

initial feature
detection;
preprocessing

340 991 18 314

LOBSTAHS

eliminate secondary
isotope peaks

163 938 12 146

apply initial
compound
assignments from
database

67 862 5077 15 929 14 076

apply RT screening
criteria

60 070 4451 13 504 11 779

exclude IP-DAG/
TAG with odd total
no. of acyl C atoms

52 337 3871 7458 6283

adduct ion hierarchy
screening

21 869 1595 2056b 1969

aFigure reflects all assignments from database, including photo-
synthetic pigments. b1163, or 57%, of these had no competing
assignments such as functional structural isomers or isobars; these
1163 assignments represented 990 unique parent compounds.
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of multiple oxidized isomers of the same parent IPL that could
be used as biomarkers for oxidative stress. Without further
analysis, we were unable to determine whether these isomers
represented the oxidation of a fatty acid by the same
mechanism at a different acyl carbon position or instead the
presence of different oxidized functional groups that yielded
equivalent exact masses (e.g., a dihydroxy-, hydroperoxy-, or α-
or γ-ketol acid). The level of identification and annotation
provided by LOBSTAHS supports a wide range of possible
molecular structures for each assignment; an example from the
data set is presented in Chart S1. The data were consistent with
studies in both model plant7,8 and animal34 systems that

demonstrated the coexistence of a diversity of ox-IPL with both
their parent IPL and smaller, traditional oxylipin degradation
products.

Evaluation of Screening and Identification Perform-
ance Using Two Methods. As a means of validating the
accuracy and reliability of our approach, we asked LOBSTAHS
to identify and annotate all species present in 5 quality control
(QC) samples of known composition that were interspersed
randomly with samples from the P. tricornutum data set prior to
analysis on the mass spectrometer (Table 1; Table S6). The
samples contained a mixture of authentic IPL standards that has
been used extensively in other work in our laboratory.42,55

Because the choice of preprocessing software can have a
significant impact on feature detection,56 we conducted parallel
analyses with both xcms/CAMERA and an alternative program,
MAVEN.47,57 In both cases, LOBSTAHS correctly identified all
components of the standard mixture without ambiguity (Table
1; Table S6). Because purified standards do not exist for long-
chain ox-IPL, we were unable to directly evaluate the Type 1
error rate for their identification. As a second means of
validation, we compared assignments in the screened data set to
two independent inventories of the P. tricornutum lipidome.58,59

LOBSTAHS found and identified with high confidence 13 of
the 16 most abundant IPL and TAG species in one inventory58

and nearly all those in the other.59 While our approach also
correctly identified the three remaining components in the
former study (PG 32:1, PG 36, and DGTS and DGTA 40:10),
functional structural isomers or isobars made unambiguous
identification impossible without further manual inspection of
ms2 spectra.

Resilience of Core P. tricornutum Lipidome under
Oxidative Stress. Evidence of the effect of oxidative stress on
the lipidome of P. tricornutum was observed through
comparison of compounds identified in 0 and 150 μM H2O2
treatments at 24 h (Figures 1 and 2a,b and Table S9). That the
two treatments produced only subtle differences in molecular
diversity (Figure 1b) suggests much of the core lipid inventory
remained robust to the imposed oxidative stress. The vast
majority of the 949 oxidized and unoxidized lipid moieties we
identified in the healthy organism (879, or 92.6%) could still be
identified in the lipidome of the stressed cultures (Figure 1b).
On the basis of peak area, oxidized lipid moieties accounted for
5−7% of the P. tricornutum lipidome across nearly all
treatments and time points. On the basis of the relatively
consistent size of this oxidized lipid fraction and its persistence
in even the 0 μM H2O2 treatment, we consider it a quantitative
constraint on the baseline level of lipid peroxidation associated
with metabolic processes in photosynthetic organisms.1,2

Differences in Degree of Remodeling between Lipid
Classes and Functional Groupings. We used similarity
profile analysis of the scaled LOBSTAHS data60 to place the
annotated features into 181 groups of components which
clustered significantly according to their behavior (Figures 2
and S11). The components of each group are given in Table
S8. We further examined the up- and downregulation of
lipidome components under oxidative stress by dividing
potential biomarkers into classes based on their molecular
headgroups (Table S9). This allowed us to examine class-
specific differences in the number of acyl carbon atoms, acyl
carbon-to-carbon double bonds, and oxidation states (i.e.,
additional oxygen atoms) of component lipids under the two
treatments. Differential expression of chemical properties
within several classes (Figure 2; Table S9) suggested the

Figure 1. (a) All IPL, ox-IPL, and TAG identified in the P. tricornutum
data set with high confidence (N = 1039; figure excludes pigments).
(b) Distribution by lipid class of high-confidence assignments made in
the 0 and 150 μM H2O2 treatments at 24 h (N = 894 and N = 848,
respectively). Ellipse size in (b) reflects the number of compounds
identified within each class and treatment. The assignments presented
in (a) and (b) fully satisfied the LOBSTAHS adduct hierarchy
screening criteria (i.e., annotated “C1” or “C2a” according to the logic
in Scheme 1) and had no competing assignments, such as possible
structural isomers, identified in the data set. Excluded are those
compounds having an odd total number of acyl carbon atoms.
aGeneral direction of movement within m/z versus RT plot, for a given
lipid class and oxidation state. The direction of movement that results
from addition or removal of additional oxygen atom(s) varies by lipid
class. bNot to scale.
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P. tricornutum lipidome was remodeled in subtle but pervasive
ways.
Fatty Acid Chain Elongation Is an Apparent Response

to Oxidative Stress in the Chloroplast. Oxidative stress
appeared to induce elongation of fatty acids throughout the
P. tricornutum lipidome (Table S9). Lipid moieties upregulated
by oxidative stress had longer fatty acid chains than those that
were downregulated. We observed the greatest breadth of
structural change in monogalactosyldiacylglycerol (MGDG), a
lipid typically localized to the chloroplast (Table S9; Figure
2b). Moieties of MGDG upregulated in the 150 μM H2O2

treatment had significantly longer fatty acid chains and were
more oxidized than those downregulated under oxidative stress;
oxidation and elongation were also accompanied by a
statistically significant decrease in acyl chain unsaturation
(Table S9). The MGDG moieties responsible for these shifts
in class structural properties were confined largely to groups 1,
2, 4, 5, 7, 9, 12, 166, 167, and 180 in our similarity profile
analysis (Figures 2b and S11; Table S8). Lipid oxidation has
been previously linked in the diatom Skeletonema costatum to
lipolytic cleavage of MGDG and phospholipids within the
chloroplast, resulting in oxylipin production from free fatty
acids.61 While intact oxidized MGDG species have not been
previously observed in algae, ox-MGDG have been docu-
mented in terrestrial plants upon wounding.8 The production
of ox-IPL in Arabidopsis thaliana may be a means of binding
ROS within the cell membrane to limit damage elsewhere.62

Significant Enrichment Observed in TAG. Whereas the
impact of oxidative stress within most lipid classes was confined
to relatively modest changes in structural properties, treatment
with 150 μM H2O2 induced a very significant enrichment in the
fraction of peak area we identified as triacylglycerols (TAG;
Figure 2c). Enigmatically, the TAG moieties upregulated in the
150 μM treatment were significantly less oxidized than those
downregulated (Table S9). We hypothesize that the growth of
this chemically reduced TAG pool may be evidence of
enhanced de novo production of unoxidized TAG as a
response to oxidative stress. Increased TAG synthesis is a
known response to nutrient starvation in virtually all algae,63,64

including P. tricornutum.58,59 While increased TAG production
in algae has not been previously linked directly to oxidative
stress, increased production has been observed as a response to
viral infection in the haptophyte alga Emiliania huxleyi.65

■ CONCLUSIONS
Using a model data set, LOBSTAHS allowed us to identify
differences in lipid speciation between treatments that could be
used as potential indicators of oxidative stress in P. tricornutum.
This potential extended beyond individual oxylipins and ox-IPL
to sets of highly interrelated compounds that represented
different stages of degradation and oxidation within the same
lipidome (Figures 2 and S11; Table S8). While we
demonstrated our approach using culture data from a single
marine diatom, we designed LOBSTAHS so it can be used with
exact-mass HPLC/MS data from virtually any experiment or
natural system.
For a minority of features in the screened data set that had

isobars and/or structural isomers (Table S7; Figures S2−S10),
we were unable to make unambiguous identifications using
LOBSTAHS alone. Many of these could be identified more
rigorously through comparison with results from alternative
commercial software or by manual inspection using authentic
standards or diagnostic MS fragmentation patterns. Our
objective, however, was not to definitively characterize a few
individual compounds with absolute certainty but instead to
putatively identify a broad range of possible biomarkers for
further analysis and discovery. In doing so, LOBSTAHS
achieves a level of certainty between Level 3 (“Putatively
characterized compound classes”) and Level 2 (“Putatively
annotated compounds”), using the scheme of Sumner et al.66

The overall results we obtained with the P. tricornutum data set
demonstrate the ability of LOBSTAHS to assist in this task.
The screening and annotation process allowed us to assess a
range of levels of confidence on the putative assignments,

Figure 2. Remodeling of the Phaeodactylum tricornutum lipidome after
24 h, as visualized from data analyzed with LOBSTAHS. (a) Heatmap
showing relative abundances across two treatments (0 and 150 μM
H2O2) of all IPL, ox-IPL, and TAG identified with high confidence.
Each row (N = 896) represents a different compound identified from
the database; Figure S11 contains an expanded version of the plot that
includes labels for each individual compound. (b) Heatmap detail,
showing changes in the most abundant (N = 40) moieties of
monogalactosyldiacylglycerol (MGDG), a lipid typically localized to
the chloroplast. (c) Fraction of total peak area identified as
triacylglycerol (TAG) at three time points during the experiment.
Error bars are ± SD of two replicates. In (a) and (b), shading shows
the relative abundance of each compound as a fold difference of the
mean peak area observed in that treatment from the mean peak area of
the compound observed across all treatments. Dendrogram clustering
and group definitions were determined by similarity profile analysis.60

The numbers and identities of the components assigned to each group
in (a) are given in Table S5 and Figure S11. Solid black lines in the
dendrogram indicate branching that was statistically significant (P ≤
0.01).
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producing an ample subset of high-confidence compound
identifications sufficient to facilitate a detailed statistical
analysis. Future integration of methods such as chiral
HPLC67 or matching of diagnostic ms2 fragmentation spectra,
with screening tools such as the one we present here, will assist
in discovery of biomarkers in larger data sets and with even
greater confidence.
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