- 1 Unusual butane- and pentanetriol-based tetraether lipids in Methanomassiliicoccus
- 2 *luminyensis,* a representative of the seventh order of methanogens
- 3 Running title: Lipid composition of Methanomassiliicoccus luminyensis
- 4
- 5 Kevin W. Becker^{a+*}, Felix J. Elling^{a†}, Marcos Y. Yoshinaga^a, Andrea Söllinger^b, Tim Urich^{b.§},
- 6 Kai-Uwe Hinrichs^a
- 7
- 8 ^aMARUM Center for Marine Environmental Sciences & Department of Geosciences,
- 9 University of Bremen, 28359 Bremen, Germany
- ¹⁰ ^bDepartment of Ecogenomics and Systems Biology, University of Vienna, 1090 Vienna,
- 11 Austria
- 12
- 13 ⁺present address: Department of Marine Chemistry and Geochemistry, Woods Hole
- 14 Oceanographic Institution, Woods Hole, MA 02543, USA.
- ¹⁵ [†]present address: Department of Earth and Planetary Sciences, Harvard University,
- 16 Cambridge, MA 02138, USA.
- 17 §present address: Institute of Microbiology, Ernst Moritz Arndt University Greifswald, 17489
- 18 Greifswald, Germany
- 19
- 20 *Corresponding author: Kevin W. Becker, E-mail: kbecker@whoi.edu

21 Abstract

22 A new clade of archaea has recently been proposed to constitute the seventh methanogenic 23 order, the Methanomassiliicoccales, which is related to the Thermoplasmatales and the uncultivated archaeal clades Deep-Sea Hydrothermal Vent Euryarchaeota Group 2 and 24 Marine Group-II Euryarchaeota, but only distantly related to other methanogens. In this 25 26 study, we investigated the membrane lipid composition of Methanomassiliicoccus luminyensis, the sole cultured representative of this seventh order. The lipid inventory of M. 27 luminyensis comprises a unique assemblage of novel lipids as well as lipids otherwise typical 28 29 for either thermophilic, methanogenic, or halophilic archaea. For instance, glycerol 30 sesterpanyl-phytanyl diether core lipids mainly found in halophilic archaea were detected, and so were compounds bearing either heptose or methoxylated glycosidic head groups, 31 both of which have so far not been reported for other archaea. The absence of guinones or 32 methanophenazines is consistent with a different biochemistry of methanogenesis compared 33 to the methanophenazine-containing methylotrophic methanogens. The most distinctive 34 characteristic of the membrane lipid composition of *M. luminyensis*, however, is the presence 35 36 of tetraether lipids in which one glycerol backbone is substituted by either butane- or 37 pentanetriol, i.e., lipids recently discovered in marine sediments. Butanetriol dibiphytanyl glycerol tetraether (BDGT) constitutes the most abundant core lipid type (>50% relative 38 39 abundance) in M. luminyensis. We have thus identified a source for these unusual orphan 40 lipids. The complementary analysis of diverse marine sediment samples showed that BDGTs are widespread in anoxic layers, suggesting an environmental significance of 41 Methanomassiliicoccales and/or related BDGT producers beyond gastrointestinal tracts. 42

43 Importance

Cellular membranes of members of all three domains of life, *Archaea, Bacteria*, and *Eukarya*, are largely formed by lipids in which glycerol serves as backbone for the hydrophobic alkyl chains. Recently, however, archaeal tetraether lipids with either butanetriol or pentanetriol as backbone were identified in marine sediments and attributed to uncultured sediment-dwelling

48 archaea. Here we show that the butanetriol-based dibiphytanyl tetraethers constitute the 49 major lipids in *Methanomassiliicoccus luminyensis*, the currently only isolate of the novel 50 seventh order of methanogens. Given the absence of these lipids in a large set of archaeal 51 isolates, these compounds may be diagnostic for the *Methanomassiliicoccales* and/or closely 52 related archaea.

Keywords: methanogens; archaea; *Methanomassiliicoccus luminyensis*; membrane lipids;
butane- and pentanetriol-based tetraether lipids.

55 Introduction

Methane is a potent greenhouse gas and an important intermediate in the global carbon cycle (1–3). Biogenic methane is predominantly produced by archaea inhabiting diverse anoxic environments such as sediments, soils, wetlands, and the digestive tracts of termites and ruminants (2, 4). All cultured methanogens to date belong to the phylum *Euryarchaeota*, while metagenomic sequencing revealed a putative methanogenic metabolism for members of the uncultivated *Bathyarchaeota* (formerly known as Miscellaneous Crenarchaeotal Group, MCG) indicating that methanogenesis might not be restricted to the *Euryarchaeota* (5).

Methanogens are classified into seven orders (Methanobacteriales, Methanococcales, 63 64 Methanomicrobiales, Methanosarcinales, Methanocellales, Methanopyrales and 65 Methanomassiliicoccales) that generate methane from H2/CO2, acetate, formate, or 66 methylated substrates (2, 6-8). Of these, the Methanomassiliicoccales have only recently been described, representing the seventh order of methanogens (6, 7, 9). These 67 68 Euryarchaeota have been detected based on gene biomarker analyses in diverse environments such as lakes, soils, and marine sediments, but are particularly abundant in 69 70 the digestive tracts of ruminants (10-15). A single pure culture, Methanomassiliicoccus 71 luminyensis, as well as a few enrichment cultures have been obtained, all of which reduce methanol or methylamines with H_2 as electron donor (6, 16–20). 72

The Methanomassiliicoccales are only distantly related to other methanogens and form a 73 74 distinct cluster within the Thermoplasmata with the non-methanogenic thermoacidophilic 75 Thermoplasmatales and other related lineages such as the Deep-Sea Hydrothermal Vent Euryarchaeota Group 2 (DHVEG-2), and the uncultivated Terrestrial Miscellaneous 76 77 Euryarchaeota Group (TMEG), Marine Benthic Group D (MBG-D), and Marine Group II 78 Euryarchaeota (MG-II; Fig. 1; 7, 21). Especially the latter two groups are widely distributed in 79 marine sediments and the surface ocean, respectively, but lack cultured representatives (22, 80 23). Along with the Methanomassiliicoccales, MBG-D and other benthic Euryarchaeota are of particular interest in environmental microbiology and geosciences as they could be important 81 contributors to microbial biomass and activity in the sedimentary biosphere (24-26). In 82 samples where MBG-D and MG-II dominated 16S rRNA gene libraries, glycerol dibiphytanyl 83 glycerol tetraethers (GDGTs) have frequently been detected as major archaeal lipids, 84 indicating that these archaeal groups may be able to synthesize these lipids (27-29). 85 Moreover, intact GDGTs, e.g., GDGTs attached to glycosidic polar head groups, are 86 87 commonly used for quantifying archaeal abundance in the subseafloor biosphere (25, 30-33). Understanding the potential sources of GDGTs is of primary importance for reliable 88 89 quantification of benthic archaeal biomass using lipid biomarkers (31, 32).

Here, we report the lipid composition of the sole isolated representative of the 90 91 Methanomassiliicoccales, M. luminyensis strain B10(T). The lipid analyses were facilitated by recently developed HPLC-MS methods that allow the comprehensive, simultaneous analysis 92 of archaeal core and intact polar glycerol-based membrane lipids as well as respiratory 93 quinones, i.e., membrane-bound electron carriers (34, 35). We show that M. luminyensis 94 95 strain B10(T) contains a diverse suite of unique tetraether lipids with either butanetriol or pentanetriol substituting a glycerol backbone moiety. Such lipids were recently found in 96 marine and estuarine sediments, but have not previously been detected in cultured archaeal 97 98 representatives (36-38). We further documented the distribution of butanetriol-based lipids in 99 diverse marine sediments, which suggested the widespread presence of relatives of M. 100 luminyensis.

4

101 Material and Methods

102 Phylogenetic analysis

103 High quality 16S rRNA gene sequences of archaeal groups of interest (alignment quality >90, 104 pintail 100, sequence quality >90) with a minimum length of 1400 nt were obtained from the 105 SILVA Ref NR SSU r123 database (39). If more than ten sequences per group were downloaded, the sequences were clustered with 94.5% sequence identity using cd-hit-est of 106 107 the CD-HIT Suite (Huang et al 2010) to obtain representative sequences of different genera 108 (40). After aligning the sequences using the SINA online alignment tool (41) the alignment 109 was improved by gap removal with Gblocks using the least stringent parameters to avoid 110 losing phylogenetic information (42). The alignment was uploaded to the Model Selection tool 111 of the IQ-TREE web server to select the best suited nucleotide substitution model. A maximum likelihood tree was calculated with IQ-TREE applying the GTR model (+F+I+G4) 112 113 (43). Ultrafast bootstrap (1000 replicates) was used to verify branch support (44). FigTree (http://tree.bio.ed.ac.uk/software/figtree/) and Adobe Illustrator (Adobe Systems Inc., San 114 Jose, CA) were used for visualizing the phylogenetic tree. 115

116 Cultivation and lipid extraction

M. luminyensis was grown in an anaerobic medium based on the medium published by Lang et al. (20). Cultures (2 x 20 mL), inoculated with 10% of a previous culture grown under the same conditions, were grown in 120 mL serum flasks at 37° C for 7 days under an atmosphere containing 80% H₂ and 20% CO₂. Cells were harvested by centrifugation (20 minutes; 13,000 g) and were subsequently lyophilized.

Lipids from *M. luminyensis* were ultrasonically extracted following a modified Bligh & Dyer protocol (45) using a monophasic mixture of methanol, dichloromethane, and aqueous buffer (2:1:0.8, v:v:v). A 50 mM phosphate buffer (pH 7.4) was used for the first two extractions while a 50 mM trichloroacetic acid buffer (pH 2) was used for two additional extractions. The total lipid extracts (TLE) were dried under a stream of N_2 and stored at -20°C until measurement. In addition to *M. luminyensis*, twelve marine sediment samples from a variety of depositional environments (Table 2) were analyzed and prepared as described in Liu et al. (31).

130 Intact polar and core lipid analysis

131 Intact polar and core lipids were analyzed by injecting TLE aliquots dissolved in methanol:dichloromethane (9:1, v:v) on a Dionex Ultimate 3000 high performance liquid 132 133 chromatography (HPLC) system connected to a Bruker maXis Ultra-High Resolution 134 quadrupole time-of-flight tandem mass spectrometer equipped with an electrospray ion source operating in positive mode (Bruker Daltonik, Bremen, Germany). The mass 135 spectrometer was set to a resolving power of 27,000 at m/z 1,222 and every analysis was 136 mass-calibrated by loop injections of a calibration standard and correction by lock mass, 137 leading to a mass accuracy of better than 1-3 ppm. Ion source and other MS parameters 138 were optimized by infusion of standards (acyclic GDGT (GDGT-0), monoglycosidic (1G-) 139 GDGT-0, diglycosidic (2G-) GDGT-0) into the eluent flow from the LC system using a T-140 141 piece.

Analyte separation was achieved using reversed phase (RP) HPLC on an Acquity UPLC 142 143 BEH C₁₈ column (1.7 μm, 2.1 x 150 mm, Waters, Eschborn, Germany) maintained at 65 °C as described by Wörmer et al. (34). The injection volumes was 10 µL and analytes were 144 eluted at a flow rate of 0.4 mL min⁻¹ using linear gradients of methanol:water (85:15, v:v, 145 146 eluent A) to methanol:isopropanol (50:50, v:v, eluent B) both with 0.04% formic acid and 0.1% NH₃. The initial condition was 100% A held for 2 min, followed by a gradient to 15% B 147 in 0.1 min and a gradient to 85% B in 18 min. The column was then washed with 100% B for 148 149 8 min.

To determine relative abundances of core lipids, 50% of the TLE was hydrolyzed with 1 M HCl in methanol for 3 h at 70 °C to yield core lipids (46). Additionally, biomass was hydrolyzed directly using 1 M HCl in methanol for 16 h at 70 °C; subsequently lipids were 153 ultrasonically extracted three times from hydrolyzed biomass using DCM:MeOH 5:1 (v:v). 154 The hydrolyzed TLE and the extract obtained from hydrolyzed biomass were analyzed on the same HPLC-MS system using normal phase (NP) chromatography and an atmospheric 155 156 pressure chemical ionization-II ion source operated in positive mode, as described by Becker 157 et al. (47). Briefly, hydrolyzed TLE aliquots were dissolved in *n*-hexane:2-propanol (99.5:0.5, 158 v:v) and injected onto two coupled Acquity BEH Amide columns (2.1 x 150 mm, 1.7 µm 159 particle size, Waters, Eschborn, Germany) maintained at 50 °C. The injection volume was 10 µL. Lipids were eluted using linear gradients of *n*-hexane (eluent A) to *n*-hexane:2-propanol 160 161 (90:10, v:v; eluent B) at a flow rate of 0.5 mL min⁻¹. The initial gradient was 3% B to 5% B in 2 min, followed by increasing B to 10% in 8 min, to 20% in 10 min, to 50% in 15 min and 162 163 100% in 10 min, followed by 6 min at 100% B to flush and 9 min at 3% B to re-equilibrate the columns. 164

Lipids were identified by retention time as well as accurate molecular mass and isotope pattern match of proposed sum formulas in full scan mode and MS^2 fragment spectra. Integration of peaks was performed on extracted ion chromatograms of ±10 mDa width and included the [M+H]⁺ ions for NP-HPLC-MS and additionally [M+NH₄]⁺ and [M+Na]⁺ ions for RP-HPLC-MS. Where applicable, doubly charged ions were included in the integration.

170 Lipid abundances were corrected for response factors of commercially available as well as 171 purified standards. Purified standards were obtained from extracts of Archaeoglobus fulgidus as described in Elling et al. (46). The abundances of monoglycosidic (1G) glycerol 172 173 dibiphytanyl glycerol tetraethers (GDGTs) and butanetriol dibiphytanyl glycerol tetraethers (BDGTs) were corrected for the response of purified acyclic 1G-GDGT standard, while 174 monoheptose (1Hp)-1G-BDGT was corrected for the response of purified acyclic 2G-GDGT 175 standard due to the structural similarity of the lipids (Fig.1). The abundances of 176 phosphatidylglycerol (PG), 1G-PG-BDGTs and 1Hp-1G-PG-BDGT were corrected for the 177 response of a commercially available 1G-PG-GDGT standard (Matreya LLC, Pleasant Gap, 178 179 PA, USA). The abundances of 1G- and 2G-archaeols (ARs) were corrected for the response

of respective purified standard, while triglycosidic (3G-) ARs as well as Methoxy-1G 180 181 (1MeOG) 1G and 1MeOG-2G-ARs were corrected for the response of 2G-AR. PG-AR abundances were corrected for the response of a commercial phosphatidylethanolamine 182 archaeol standard (Avanti Polar Lipids Inc., Alabaster, AL, USA). Due to the lack of 183 appropriate standards, polyprenols were not corrected for their relative response. The 184 185 abundances of core GDGTs, BDGTs, pentanetriol dibiphytanyl glycerol tetraethers (PDGTs), 186 glycerol dibiphytanol diethers (GDDs) and butanetriol dibiphytanol diethers (BDDs) were corrected for the response factors of purified GDGT-0, while the abundance of core AR was 187 188 corrected for the response factors of the respective purified standard. The lower limit of detection for lipids was < 1 pg μ L⁻¹. 189

190 Results

191 Intact polar and core lipid composition

192 Eighteen different intact polar lipids (IPLs) with either di- or tetraether core structure and nine 193 different polar head groups were detected in M. luminyensis. Head groups include mono-, di 194 and trihexose, methoxy hexose, phosphatidylglycerol, monoheptose and combinations of the 195 different head group types (Fig. 2 and 3). Detected IPLs comprise AR (two C₂₀ isoprenoid side chains), GDGT-0, extended (Ext) and diextended (diExt) AR, the latter containing C₂₀₋₂₅ 196 and C₂₅₋₂₅ isoprenoidal chains, respectively, as core lipid structures. Methoxy hexose and 197 198 heptose-containing lipids have been tentatively identified by multiple stage mass 199 spectrometry (Fig. 4, Table 1). Moreover, the dominant compounds were identified as IPLs 200 possessing a butanetriol dibiphytanyl glycerol tetraether (BDGT) core (Fig. 5, Table 1). 201 These unusual tetraether lipids are characterized by the replacement of one glycerol moiety 202 with a butanetriol (37) and have not been found in any other cultured archaea to date. Free 203 core lipids were relatively abundant and occurred as AR, GDGT, BDGT, as well as GDD and 204 BDD. Neither GDD nor BDD lipids were detected as IPLs (see Fig. 3). Besides these IPLs and core lipids, we detected saturated and unsaturated C_{45} and C_{50} polyprenols, which 205

206 contained up to one double bond per isoprenoid unit. Methanophenazines and respiratory207 quinones were not detected.

208 Di- and tetraether based IPLs with glycosidic head groups account for 49% of the total lipids, 209 Total phosphate-based lipids comprise 33%, while non-polar free core lipids and polyprenols 210 contribute the remaining 18%. The most abundant single lipid in M. luminyensis is a PG-211 BDGT, contributing 20% to the total lipid pool (see Table 1). Phosphatidylglycerol is the dominant single head group representing 25% of total head groups (Fig. 6a) followed by 1G 212 213 and 1Hp-1G with 14% and 16%, respectively, while other head groups are equally distributed with 8-9%, except for 3G, which showed the lowest relative abundance (3%). The dominant 214 215 core structure in *M. luminyensis* in the total di- and tetraether lipid pool, including IPLs, is 216 BDGT, accounting for more than 50% (Fig. 6b). The second most abundant core lipid is diExt-AR with 30%, while all other core lipids comprise <10% of total core lipids. 217

218 Since not all lipids might be solvent-extractable from cells (48, 49), we acid-hydrolyzed the 219 biomass and compared the core lipid distribution with that obtained from the TLE as well as 220 to that obtained from acid hydrolysis of the TLE (Fig. 6b). The relative abundance of BDGTs 221 was substantially higher (up to 82%) in the extracts obtained after acid hydrolysis of the TLE 222 and direct hydrolysis of the biomass compared to the TLE (Fig. 6b). Similarly, the relative 223 abundance of GDGTs increased to almost 20%. Consequently, several lipids showed 224 strongly reduced abundances in the hydrolyzed extracts or were not detectable anymore as in case of the diether lipids Ext- and diExt-AR. While AR showed a similar relative 225 226 abundance in the hydrolyzed TLE compared to direct analysis of the TLE, its abundance was particularly low in the hydrolyzed biomass extract. As shown by Huguet et al. (49), 227 concentrations of GDGTs were substantially higher (one to two orders of magnitude) in 228 directly hydrolyzed biomass compared to regular lipid extraction protocols for Nitrosopumilus 229 230 maritimus biomass. Thus, although we did not generate quantitative information, BDGT and GDGT concentration in the hydrolyzed biomass might be so high that they overwhelm the 231 232 signal of the diether compounds during mass spectrometry. Interestingly, in the hydrolyzed extracts, acyclic to dicyclic PDGT and mono- and bicyclic BDGTs were detected; both compound groups were not detectable in the TLE.

235 Occurrence of BDGTs in the marine environment

To further examine the environmental significance of the unusual BDGTs, we investigated their distribution in 12 marine sediments from diverse settings (Table 2). BDGTs were detected in two-thirds of the samples, including the Peru Margin, Hydrate Ridge, Mediterranean sapropels, Cascadia Margin and Namibia Margin. In these samples, BDGT core lipids accounted for 0.1 and 3.5% of archaeal core tetraethers (GDGTs + BDGTs; Table 2). BDGTs were not detected in sediments from the Equatorial Pacific, Namibia Margin surface sediment and the deep subsurface of the Cascadia Margin.

243 Discussion

244 Lipid inventory of M. luminyensis compared to other archaea

245 The most distinctive characteristics of the membrane lipid composition of *M. luminyensis* are BDGTs and PDGTs which are present as IPLs and free core lipids and have not been 246 247 reported from other archaea. Thus, these unusual lipids may be diagnostic for members or 248 close relatives of the Methanomassiliicoccales. Both, BDGT and PDGT lipids seem to be selectively bound in the acid-hydrolysable fraction, indicated by higher relative abundances 249 in the hydrolyzed biomass compared to the Bligh and Dyer extract (Fig. 6). Potentially, these 250 251 lipids are preferentially bound to proteins in the membranes and were released by the acid 252 treatment. In bacteria as well as in archaea, membrane proteins have been shown to selectively bind lipids, such as fatty acids, isoprenoids, and different phospho- and 253 254 glycolipids, influencing the structural and functional integrity of proteins (e.g., 50, 51–53).

However, the biological function as well as the biosynthetic pathway of BDGTs and PDGTs remain unknown. Since the biosynthesis of archaeal membrane lipids typically involves dihydroxyacetone phosphate (DHAP) as an intermediate that is converted to glycerol-1258 phosphate (G1P; 54), a different biosynthetic pathway might be required for butane- and 259 pentanetriol-containing lipids (37). The genomes of Methanomassiliicoccales contain genes well known to be involved in archaeal ether lipid biosynthesis, including genes encoding 260 261 homologues of G1P dehydrogenase, 3-O-geranylgeranyl-sn-glycerlyl-1-phosphate (GGGP) 262 and digeranylgeranylglyceryl phosphate (DGGGP) synthases, and four enzymes responsible 263 for the activation of the diglyceride, the addition of polar head groups to the glycerol moiety, 264 and the final production of archaeol via the subsequent reduction of the unsaturated 265 isoprenoid chains (20, 21). Only one gene for GGGP synthase, and no second homologue to 266 this gene could be identified that might encode a hypothetical enzyme catalyzing the formation of a GG-butanetriyl-P or GG-pentanetriyl-P intermediate from butanetriol or 267 268 pentanetriol, respectively, and geranylgeranyl diphosphate (GGPP). Nevertheless, future 269 studies on Methanomassiliicoccus BDGT and PDGT biosynthesis might help to elucidate their unresolved biochemistry. Moreover, although the identification of BDGTs and PDGTs 270 271 based on HPLC-MS as well as degradation experiments by Zhu et al. (37) seems conclusive, 272 the exact structures of these unusual lipids, e.g., the stereochemistry of the butane- and pentanetriol backbone, remain to be fully resolved, e.g., by using NMR-spectroscopy. 273

274 M. luminyensis further possesses a unique membrane lipid composition of mixed di- and 275 tetraethers with glycosidic and phosphatidylglycerol head groups, which differs distinctly from 276 all other methanogens and archaea. While Ext-AR as major core lipid in M. luminyensis is 277 widespread in halophilic archaea (55-57), it is only present in trace amounts in other 278 methanogens including Methanosarcina barkeri (58) and Methanothermobacter 279 thermautotrophicus (59). In environmental samples, the detection of Ext-AR has been 280 frequently associated with methane oxidizing archaea (60-62). The diExt-AR that we detected in M. luminyensis has so far only been reported in halophiles (63) and as the 281 282 dominant lipid in the thermophile Aeropyrum pernix (64), but not in methanogens. Moreover, 283 heptose-based membrane lipids have not been reported in Archaea, while heptose is a 284 common constituent of polysaccharides in Bacteria (e.g., 65, 66, 67).

285 Phosphate-bound polyprenols occur widespread in all domains of life and they mainly 286 function as membrane-bound (poly-)saccharide carriers involved in cell wall assembly (68-72). We found abundant phosphate-free polyprenols in M. luminyensis, which have 287 288 previously been detected in the thermophilic methanogen M. thermautotrophicus grown 289 under hydrogen-limitation; it was suggested that they may play a role in membrane 290 stabilization (73). Their high relative abundance (14% of total detected lipids, Table 1) in M. 291 luminyensis implies an important role of free polyprenols also in this archaeon. However, 292 their distribution among other archaea has not yet been studied and the function of 293 phosphate-free polyprenols in archaeal cells remains elusive.

294 The unusual membrane lipid composition of M. luminyensis is consistent with its 295 phylogenetically distant relationship to other orders of methanogens (9). Additionally, in contrast to the high diversity of respiratory guinones in related members of the 296 297 Thermoplasmatales (35, 74, 75), no quinones were detected in M. luminyensis. Similarly, no 298 methanophenazines, respiratory guinone-analogs found in Methanosarcinales (35, 76) and 299 Methanosaeta (77), were detected in M. luminyensis. This finding supports studies of Lang et 300 al. (20) and Söllinger et al. (15) who suggested that the biochemistry of methanogenesis in 301 Methanomassiliicoccales may be fundamentally different from that of other, 302 methanophenazine- and cytochrome-containing methylotrophic archaea.

303 We further validated the potential of BDGTs and PDGTs as biomarkers for *M. luminyensis* by 304 analyzing 25 cultured archaea that we recently analyzed for their respiratory quinone 305 composition (35). These species cover the phyla Eury-, Cren- and Thaumarchaeota and 306 within the Euryarchaeota several methanogens as well as the Methanomassiliicoccales-307 related thermoacidophile Thermoplasma acidophilum. We did not detect BDGTs or PDGTs in 308 any of these archaea. This indicates a high chemotaxonomic potential of these lipids for 309 Methanomassiliicoccales, although we cannot exclude that other, uncultured archaeal lineages also synthesize these lipids. Thus, BDGT biosynthesis might represent another 310 311 evolutionarily distinct feature of Methanomassiliicoccales similar to the unique pathways for methanogenesis and energy conservation (9, 20, 78). Specific membrane lipid adaptation within the *Thermoplasmata* is supported by the fact that for example *Aciduliprofundum boonei* belonging to DSHVE-2 contains H-shaped GDGTs (79), while they have not been reported from *Thermoplasmatales* species (80) as well as were not detected in *M. luminyensis*. Analysis of the lipid inventory of other cultured representatives of the seventh order of methanogens are, however, required to provide detailed information about the phylogenetic patterns for the biosynthesis of butane- and pentanetriol-based lipids.

319 Implications for environmental studies

320 Butane- and pentanetriol-based tetraether lipids have recently been identified in a number of 321 environmental settings, such as deeply buried marine (37) and shallow estuarine sediments 322 (36). Meador et al. (36) suggested a potential association of BDGTs with the Miscellaneous Crenarchaeotal Group (MCG) due to the positive correlation of BDGT lipids with the relative 323 324 abundance of MCG 16S rRNA sequences in microbial communities of estuarine sediments from the White Oak River, NC, USA (hereafter WOR). The authors further interpreted the 325 326 notable ¹³C-depletion of BDGTs as evidence for BDGT-producers either being autotrophs or heterotrophs feeding on ¹³C-depleted substrates. While being consistent with the isotopic 327 328 lines of evidence, our results suggest that the source of BDGTs in WOR sediments might 329 instead be members or relatives of the Methanomassiliicoccales (see Fig. 1). In fact, members of the "environmental clade" of Methanomassiliicoccales were previously assigned 330 to TMEG (15). Although Methanomassiliicoccales were not specifically described in WOR 331 332 sediments, which is likely due to the low coverage of commonly used primers for Methanomassiliicoccales, closely related clades such as MBG-D and TMEG were abundant 333 in these samples (36, 81). Indeed, we evaluated commonly used primers against 334 335 Methanomassiliicoccales, including the one used to sequence archaea from WOR sediments 336 (23, 82) using TestPrime 1.0 and SILVA SSU r126 RefNR dababase (83), and the coverage 337 was only between 0.5% and 56% for zero mismatches. Accordingly, the positive correlation 338 of MCG with BDGTs in the WOR sediments (36) may instead result from the co-occurrence

of MCG and *Methanomassiliicoccales* and/or uncultivated *Thermoplasmata*, such as TMEG and MBG-D, which was observed by operational taxonomic unit network analysis in various marine sediments (84). However, in samples where MBG-D dominate 16S rRNA clone libraries, both BDGTs and PDGTs were not detected, while GDGTs were the most abundant lipids (27). This suggests that members of the MBG-D inhabiting the Pakistan margin sediments are not a major source for BDGT and PDGT lipids and that BDGT synthesis is limited to a subgroup within the *Thermoplasmata*.

346 The analysis of twelve globally distributed marine sediments from various environmental 347 settings revealed the widespread occurrence of BDGT core lipids (Table 2), implying a large 348 environmental distribution of Methanomassiliicoccales and/or relatives that may constitute 349 additional sources. This supports recent metagenomic studies, which showed that besides aut and rumen (6, 13, 14) Methanomassiliicoccales also occur ubiquitously in marine and 350 351 terrestrial anaerobic environments (10, 15, 84, 85). Similarly to WOR, 16S rRNA gene 352 sequences of Methanomassiliicoccales were not reported for the investigated sites likely due 353 to a mismatch of commonly used primers against hitherto undetected clades (23), while other 354 uncultured Thermoplasmatale were detected (86). In some samples, for instance in the 355 equatorial Pacific, BDGTs were not detected, which is probably related to low TOC concentrations (30) and sulfate reducing conditions (87) at this site. The relative abundance 356 357 of BDGTs in the 12 samples analyzed in this study (Table 2) is much lower than in the 358 estuarine WOR sediments, where BDGTs accounted for 15% of the total archaeal core lipid 359 pool on average (36). While this data indicates that the conditions in the WOR sediments 360 select for the BDGT-producers, the factors controlling the distribution of the seventh order of 361 methanogens and how they compete with hydrogenotrophic and methylotrophic methanogens, as they require both H_2 and methanol, remains a target for future studies. If 362 future studies confirm the specificity of BDGTs as biomarkers for the seventh order of 363 364 methanogens, their detection will enrich strategies for investigating these aspects in 365 environmental samples, cultivation experiments, and the gastro-intestinal tracts of humans 366 and ruminant animals (e.g., 14, 17).

14

367 Acknowledgements

We thank X.-L. Liu for providing sediment TLE and T.W. Evans for assistance with sample 368 369 processing. This study was funded by the European Research Council under the European Union's Seventh Framework Programme-"Ideas" Specific Programme, ERC grant 370 agreement No. 247153 (Advanced Grant DARCLIFE; PI: K.-U.H.) and by the Deutsche 371 372 Forschungsgemeinschaft through the Gottfried Wilhelm Leibniz Prize awarded to K.-U.H. (Hi 616-14-1) and instrument grant Inst 144/300-1 (LC-gToF system).). A.S. and T.U. were 373 374 financially supported by a UNI:DOCS fellowship and a short-term travel grant (KWA) of the 375 University of Vienna (Austria).

376 References

1. Montzka SA, Dlugokencky EJ, Butler JH. 2011. Non-CO₂ greenhouse gases and

378 climate change. Nature **476**:43–50.

- Garcia J-L, Patel BKC, Ollivier B. 2000. Taxonomic, phylogenetic, and ecological
 diversity of methanogenic archaea. Anaerobe 6:205–226.
- Cicerone RJ, Oremland RS. 1988. Biogeochemical aspects of atmospheric methane.
 Global Biogeochem. Cycles 2:299–327.
- Conrad R. 2009. The global methane cycle: recent advances in understanding the
 microbial processes involved. Environ. Microbiol. Rep. 1:285–292.
- 385 5. Evans PN, Parks DH, Chadwick GL, Robbins SJ, Orphan VJ, Golding SD, Tyson
- 386 **GW**. 2015. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by
- 387 genome-centric metagenomics. Science **350**:434–438.
- 388 6. Paul K, Nonoh JO, Mikulski L, Brune A. 2012. "Methanoplasmatales,"
- Thermoplasmatales-related archaea in termite guts and other environments, are the
 seventh order of methanogens. Appl. Environ. Microbiol. **78**:8245–8253.
- 391 7. Borrel G, O'Toole PW, Harris HMB, Peyret P, Brugère J-F, Gribaldo S. 2013.
- 392 Phylogenomic data support a seventh order of methylotrophic methanogens and
- 393 provide insights into the evolution of methanogenesis. Genome Biol. Evol. 5:1769–

394 1780.

395	8.	Sakai S, Imachi H, Hanada S, Ohashi A, Harada H, Kamagata Y. 2008.
396		Methanocella paludicola gen. nov., sp. nov., a methane-producing archaeon, the first
397		isolate of the lineage "Rice Cluster I", and proposal of the new archaeal order
398		Methanocellales ord. nov. Int. J. Syst. Evol. Microbiol.
399	9.	Borrel G, Parisot N, Harris HMB, Peyretaillade E, Gaci N, Tottey W, Bardot O,
400		Raymann K, Gribaldo S, Peyret P, O'Toole PW, Brugère J-F. 2014. Comparative
401		genomics highlights the unique biology of Methanomassiliicoccales, a
402		Thermoplasmatales-related seventh order of methanogenic archaea that encodes
403		pyrrolysine. BMC Genomics 15:679.
404	10.	Lever MA. 2013. Functional gene surveys from ocean drilling expeditions - a review
405		and perspective. FEMS Microbiol. Ecol. 84:1–23.
406	11.	Wright A-DG, Toovey AF, Pimm CL. 2006. Molecular identification of methanogenic
407		archaea from sheep in Queensland, Australia reveal more uncultured novel archaea.
408		Anaerobe 12 :134–139.
409	12.	Wright A-DG, Auckland CH, Lynn DH. 2007. Molecular diversity of methanogens in
410		feedlot cattle from Ontario and Prince Edward Island, Canada. Appl. Environ. Microbiol.
411		73 :4206–4210.
412	13.	Janssen PH, Kirs M. 2008. Structure of the archaeal community of the rumen. Appl.
413		Environ. Microbiol. 74 :3619–3625.
414	14.	Poulsen M, Schwab C, Jensen BB, Engberg RM, Spang A, Canibe N, Højberg O,
415		Milinovich G, Fragner L, Schleper C, Weckwerth W, Lund P, Schramm A, Urich T.
416		2013. Methylotrophic methanogenic Thermoplasmata implicated in reduced methane
417		emissions from bovine rumen. Nat. Commun. 4 :1428.
418	15.	Söllinger A, Schwab C, Weinmaier T, Loy A, Tveit AT, Schleper C, Urich T. 2015.
419		Phylogenetic and genomic analysis of Methanomassiliicoccales in wetlands and animal
420		intestinal tracts reveals clade-specific habitat preferences. FEMS Microbiol. Ecol. 92.
421	16.	lino T, Tamaki H, Tamazawa S, Ueno Y, Ohkuma M, Suzuki K, Igarashi Y, Haruta

422		S. 2013. Candidatus Methanogranum caenicola: a novel methanogen from the
423		anaerobic digested sludge, and proposal of Methanomassiliicoccaceae fam. nov. and
424		Methanomassiliicoccales ord. nov., for a methanogenic lineage of the class
425		Thermoplasmata. Microbes Environ. 28:244–250.
426	17.	Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M. 2012.
427		Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon
428		isolated from human faeces. Int. J. Syst. Evol. Microbiol. 62:1902–1907.
429	18.	Borrel G, Harris HMB, Tottey W, Mihajlovski A, Parisot N, Peyretaillade E, Peyret
430		P, Gribaldo S, O'Toole PW, Brugere J-F. 2012. Genome sequence of "Candidatus
431		Methanomethylophilus alvus" Mx1201, a methanogenic archaeon from the human gut
432		belonging to a seventh order of methanogens. J. Bacteriol. 194 :6944–6945.
433	19.	Borrel G, Harris HMB, Parisot N, Gaci N, Tottey W, Mihajlovski A, Deane J,
434		Gribaldo S, Bardot O, Peyretaillade E, Peyret P, O'Toole PW, Brugere J-F. 2013.
435		Genome sequence of "Candidatus Methanomassiliicoccus intestinalis" Issoire-Mx1, a
436		third Thermoplasmatales-related methanogenic archaeon from human feces. Genome
437		Announc. 1 :e00453–13–e00453–13.
438	20.	Lang K, Schuldes J, Klingl A, Poehlein A, Daniel R, Brune A. 2015. New mode of
439		energy metabolism in the seventh order of methanogens as revealed by comparative
440		genome analysis of "Candidatus Methanoplasma termitum." Appl. Environ. Microbiol.
441		81 :1338–1352.
442	21.	Borrel G, Parisot N, Harris H, Peyretaillade E, Gaci N, Tottey W, Bardot O,
443		Raymann K, Gribaldo S, Peyret P, O'Toole P, Brugere J-F. 2014. Comparative
444		genomics highlights the unique biology of Methanomassiliicoccales, a
445		Thermoplasmatales-related seventh order of methanogenic archaea that encodes
446		pyrrolysine. BMC Genomics 15 :679.
447	22.	Karner MB, DeLong EF, Karl DM. 2001. Archaeal dominance in the mesopelagic
448		zone of the Pacific Ocean. Nature 409 :507–510.
449	23.	Teske A, Sørensen KB. 2008. Uncultured archaea in deep marine subsurface

450 sediments: have we caught them all? ISME J. **2**:3–18.

451	24.	Lloyd KG, Schreiber L, Petersen DG, Kjeldsen KU, Lever M a, Steen AD,			
452		Stepanauskas R, Richter M, Kleindienst S, Lenk S, Schramm A, Jørgensen BB.			
453		2013. Predominant archaea in marine sediments degrade detrital proteins. Nature			
454		496 :215–218.			
455	25.	Biddle JF, Lipp JS, Lever MA, Lloyd KG, Sørensen KB, Anderson R, Fredricks			
456		HF, Elvert M, Kelly TJ, Schrag DP, Sogin ML, Brenchley JE, Teske A, House CH,			
457		Hinrichs K-U. 2006. Heterotrophic Archaea dominate sedimentary subsurface			
458		ecosystems off Peru. Proc. Natl. Acad. Sci. U. S. A. 103:3846-3851.			
459	26.	Parkes RJ, Cragg B, Roussel E, Webster G, Weightman A, Sass H. 2014. A review			
460		of prokaryotic populations and processes in sub-seafloor sediments, including			
461		biosphere:geosphere interactions. Mar. Geol. 352 :409–425.			
462	27.	Yoshinaga MY, Lazar CS, Elvert M, Lin Y-S, Zhu C, Heuer VB, Teske A, Hinrichs			
463		K-U. 2015. Possible roles of uncultured archaea in carbon cycling in methane-seep			
464		sediments. Geochim. Cosmochim. Acta 164:35–52.			
465	28.	Lincoln SA, Wai B, Eppley JM, Church MJ, Summons RE, DeLong EF. 2014.			
466		Planktonic Euryarchaeota are a significant source of archaeal tetraether lipids in the			
467		ocean. Proc. Natl. Acad. Sci. U. S. A. 111:9858–9863.			
468	29.	Pearson A, Ingalls AE. 2013. Assessing the use of archaeal lipids as marine			
469		environmental proxies. Annu. Rev. Earth Planet. Sci. 41 :359–384.			
470	30.	Lipp JS, Morono Y, Inagaki F, Hinrichs K-U. 2008. Significant contribution of			
471		Archaea to extant biomass in marine subsurface sediments. Nature 454 :991–994.			
472	31.	Liu X, Lipp JS, Hinrichs K-U. 2011. Distribution of intact and core GDGTs in marine			
473		sediments. Org. Geochem. 42 :368–375.			
474	32.	Lipp JS, Hinrichs K-U. 2009. Structural diversity and fate of intact polar lipids in			
475		marine sediments. Geochim. Cosmochim. Acta 73:6816–6833.			
476	33.	Xie S, Lipp JS, Wegener G, Ferdelman TG, Hinrichs K-U. 2013. Turnover of			
477		microbial lipids in the deep biosphere and growth of benthic archaeal populations.			

478 Proc. Natl. Acad. Sci. U. S. A. **110**:6010–6014.

479	34.	Wörmer L, Lipp JS, Schröder JM, Hinrichs K-U. 2013. Application of two new LC-			
480		ESI-MS methods for improved detection of intact polar lipids (IPLs) in environmental			
481		samples. Org. Geochem. 59 :10–21.			
482	35.	Elling FJ, Becker KW, Könneke M, Schröder JM, Kellermann MY, Thomm M,			
483		Hinrichs K-U. 2016. Respiratory quinones in Archaea: phylogenetic distribution and			
484		application as biomarkers in the marine environment. Environ. Microbiol. 18 :692–707.			
485	36.	Meador TB, Bowles M, Lazar CS, Zhu C, Teske A, Hinrichs K-U. 2015. The			
486		archaeal lipidome in estuarine sediment dominated by members of the Miscellaneous			
487		Crenarchaeotal Group. Environ. Microbiol. 17:2441–2458.			
488	37.	Zhu C, Meador TB, Dummann W, Hinrichs K-U. 2014. Identification of unusual			
489		butanetriol dialkyl glycerol tetraether and pentanetriol dialkyl glycerol tetraether lipids in			
490		marine sediments. Rapid Commun. Mass Spectrom. 28:332–338.			
491	38.	Knappy CS, Yao P, Pickering MD, Keely BJ. 2014. Identification of homoglycerol-			
492		and dihomoglycerol-containing isoprenoid tetraether lipid cores in aquatic sediments			
493		and a soil. Org. Geochem. 76 :146–156.			
494	39.	Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner			
495		FO. 2013. The SILVA ribosomal RNA gene database project: improved data			
496		processing and web-based tools. Nucleic Acids Res. 41 :D590–D596.			
497	40.	Yarza P, Yilmaz P, Pruesse E, Glockner FO, Ludwig W, Schleifer K-H, Whitman			
498		WB, Euzeby J, Amann R, Rossello-Mora R. 2014. Uniting the classification of			
499		cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat			
500		Rev Micro 12 :635–645.			
501	41.	Pruesse E, Peplies J, Glöckner FO. 2012. SINA: Accurate high-throughput multiple			
502		sequence alignment of ribosomal RNA genes. Bioinformatics 28 :1823–1829.			
503	42.	Castresana J. 2000. Selection of conserved blocks from multiple alignments for their			
504		use in phylogenetic analysis. Mol. Biol. Evol. 17 :540–552.			
505	43.	Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. 2014. IQ-TREE: A fast and			

506		effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol.			
507		Evol			
508	44.	Minh BQ, Nguyen MAT, von Haeseler A. 2013. Ultrafast approximation for			
509		phylogenetic bootstrap. Mol. Biol. Evol.			
510	45.	Sturt HF, Summons RE, Smith K, Elvert M, Hinrichs K-U. 2004. Intact polar			
511		membrane lipids in prokaryotes and sediments deciphered by high-performance liquid			
512		chromatography/electrospray ionization multistage mass spectrometry - new			
513		biomarkers for biogeochemistry and microbial ecology. Rapid Commun. Mass			
514		Spectrom. 18 :617–628.			
515	46.	Elling FJ, Könneke M, Lipp JS, Becker KW, Gagen EJ, Hinrichs K-U. 2014. Effects			
516		of growth phase on the membrane lipid composition of the thaumarchaeon			
517		Nitrosopumilus maritimus and their implications for archaeal lipid distributions in the			
518		marine environment. Geochim. Cosmochim. Acta 141:579–597.			
519	47.	Becker KW, Lipp JS, Zhu C, Liu X-L, Hinrichs K-U. 2013. An improved method for			
520		the analysis of archaeal and bacterial ether core lipids. Org. Geochem. 61 :34–44.			
521	48.	Nishihara M, Koga Y. 1987. Extraction and composition of polar lipids from the			
522		archaebacterium, Methanobacterium thermoautotrophicum: effective extraction of			
523		tetraether lipids by an acidified solvent. J. Biochem. 101 :997–1005.			
524	49.	Huguet C, Martens-Habbena W, Urakawa H, Stahl DA, Ingalls AE. 2010.			
525		Comparison of extraction methods for quantitative analysis of core and intact polar			
526		glycerol dialkyl glycerol tetraethers (GDGTs) in environmental samples. Limnol.			
527		Oceanogr. Methods 8:127–145.			
528	50.	Laganowsky A, Reading E, Allison TM, Ulmschneider MB, Degiacomi MT,			
529		Baldwin AJ, Robinson C V. 2014. Membrane proteins bind lipids selectively to			
530		modulate their structure and function. Nature 510 :172–175.			
531	51.	Yeagle PL. 2014. Non-covalent binding of membrane lipids to membrane proteins.			
532		Biochim. Biophys. Acta - Biomembr. 1838 :1548–1559.			
533	52.	Lee AG. 2004. How lipids affect the activities of integral membrane proteins. Biochim.			

534 Biophys. Acta - Biomembr. **1666**:62–87.

535	53.	Eichler J, Adams MWW. 2005. Posttranslational Protein Modification in Archaea.			
536		Microbiol. Mol. Biol. Rev. 69:393–425.			
537	54.	Nishihara M, Koga Y. 1995. sn-glycerol-l-phosphate dehydrogenase in			
538		Methanobacterium thermoautotrophicus: key enzyme in biosynthesis of the			
539		enantiomeric glycerophosphate backbone of ether phospholipids of Archaebacteria. J.			
540		Biochem. 117 :933–935.			
541	55.	De Rosa M, Gambacorta A, Nicolaus B, Ross HNM, Grant WD, Bu'Lock JD. 1982.			
542		An asymmetric archaebacterial diether lipid from alkaliphilic halophiles. Microbiology			
543		128 :343–348.			
544	56.	Kates M. 1996. Structural analysis of phospholipids and glycolipids in extremely			
545		halophilic archaebacteria. J. Microbiol. Methods 25 :113–128.			
546	57.	Kates M. 1993. Biology of halophilic bacteria, Part II - Membrane lipids of extreme			
547		halophiles: biosynthesis, function and evolutionary significance, p. 1027–1036. In			
548		Kushner, MKDJ, Matheson, AT (eds.), The Biochemistry of Archaea (Archaebacteria).			
549		Elsevier Science, Amsterdam, The Netherlands.			
550	58.	De Rosa M, Gambacorta A, Lanzotti V, Trincone A, Harris JE, Grant WD, Rosa M			
551		De, Gambacorta A, Lanzotti V, Trincone A, Harris JE, Grant WD. 1986. A range of			
552		ether core lipids from the methanogenic archaebacterium Methanosarcina barkeri.			
553		Biochim. Biophys. Acta 875:487–492.			
554	59.	Mancuso CA, Odham G, Westerdahl G, Reeve JN, White DC. 1985. C_{15},C_{20},and			
555		$C_{\rm 25}$ isoprenoid homologues in glycerol diether phospholipids of methanogenic			
556		archaebacteria. J. Lipid Res. 26 :1120–1125.			
557	60.	Yoshinaga MY, Wörmer L, Elvert M, Hinrichs K-U. 2012. Novel cardiolipins from			
558		uncultured methane-metabolizing archaea. Archaea 2012 :832097.			
559	61.	Stadnitskaia A, Bouloubassi I, Elvert M, Hinrichs K-U, Sinninghe Damsté JS.			
560		2008. Extended hydroxyarchaeol, a novel lipid biomarker for anaerobic methanotrophy			
561		in cold seepage habitats. Org. Geochem. 39 :1007–1014.			

562	62.	Yoshinaga MY, Kellermann MY, Rossel PE, Schubotz F, Lipp JS, Hinrichs K-U.
563		2011. Systematic fragmentation patterns of archaeal intact polar lipids by high-
564		performance liquid chromatography/electrospray ionization ion-trap mass spectrometry.
565		Rapid Commun. Mass Spectrom. 25 :3563–3574.
566	63.	De Rosa M, Gambacorta A, Nicolaus B, Grant WD. 1983. A C_{25} , C_{25} diether core
567		lipid from archaebacterial haloalkaliphiles. Microbiology 129 :2333–2337.
568	64.	Morii H, Yagi H, Akutsu H, Nomura N, Sako Y, Koga Y. 1999. A novel
569		phosphoglycolipid archaetidyl(glucosyl)inositol with two sesterterpanyl chains from the
570		aerobic hyperthermophilic archaeon Aeropyrum pernix K1. Biochim. Biophys. Acta
571		1436 :426–436.
572	65.	Mayberry WR, Smith PF, Langworthy TA. 1974. Heptose-containing pentaglycosyl
573		diglyceride among the lipids of Acholeplasma modicum. J. Bacteriol. 118 :898–904.
574	66.	Adams GA, Young R. 1965. Capsular polysaccharides of Serratia marcescens. Can.
575		J. Biochem. 43 :1499–1512.
576	67.	Osborn MJ. 1963. Studies in the Gram-negative cell wall. I. Evidence for the role of 2-
577		keto-3-deoxyoctonoate in the lipopolysaccharide of Salmonella typhimurium. Proc.
578		Natl. Acad. Sci. U. S. A. 50 :499–506.
579	68.	Surmacz L, Swiezewska E. 2011. Polyisoprenoids – Secondary metabolites or
580		physiologically important superlipids? Biochem. Biophys. Res. Commun. 407:627-632.
581	69.	Swiezewska E, Danikiewicz W. 2005. Polyisoprenoids: Structure, biosynthesis and
582		function. Prog. Lipid Res. 44:235–258.
583	70.	Hartley MD, Imperiali B. 2012. At the membrane frontier: A prospectus on the
584		remarkable evolutionary conservation of polyprenols and polyprenyl-phosphates. Arch.
585		Biochem. Biophys. 517 :83–97.
586	71.	Albers S-V, Meyer BH. 2011. The archaeal cell envelope. Nat. Rev. Microbiol. 9:414-
587		426.
588	72.	Meyer BH, Albers S-V. 2001. Archaeal Cell Walls. eLS. John Wiley & Sons, Ltd.
589	73.	Yoshinaga MY, Gagen EJ, Wörmer L, Broda NK, Meador TB, Wendt J, Thomm M,

590 **Hinrichs K-U**. 2015. *Methanothermobacter thermautotrophicus* modulates its

591 membrane lipids in response to hydrogen and nutrient availability. Front. Microbiol.

- 592 **6**:1–9.
- 593 74. Shimada H, Shida Y, Nemoto N, Oshima T, Yamagishi A. 2001. Quinone profiles of
 594 Thermoplasma acidophilum HO-62. J. Bacteriol. 183:1462–1465.
- 595 75. Golyshina O V, Lünsdorf H, Kublanov I V, Goldenstein NI, Hinrichs K-U, Golyshin
- 596 PN. 2016. The novel extremely acidophilic, cell-wall-deficient archaeon *Cuniculiplasma*
- 597 divulgatum gen. nov., sp. nov. represents a new family, Cuniculiplasmataceae fam.

598 nov., of the order *Thermoplasmatales*. Int. J. Syst. Evol. Microbiol. **66**:332–340.

- 599 76. Abken HJ, Tietze M, Brodersen J, Bäumer S, Beifuss U, Deppenmeier U. 1998.
- 600 Isolation and characterization of methanophenazine and function of phenazines in
- 601 membrane-bound electron transport of *Methanosarcina mazei* Gö1. J. Bacteriol.
- 602 **180**:2027–2032.
- Welte C, Deppenmeier U. 2011. Membrane-bound electron transport in *Methanosaeta thermophila*. J. Bacteriol. **193**:2868–2870.
- 605 78. Borrel G, Gaci N, Peyret P, O'Toole PW, Gribaldo S, Brugere J-F. 2014. Unique
- 606 characteristics of the pyrrolysine system in the 7th order of methanogens: implications
- 607 for the evolution of a genetic code expansion cassette. Archaea **2014**:374146.
- 608 79. Schouten S, Baas M, Hopmans EC, Reysenbach A-L, Damsté JSS. 2008.
- 609 Tetraether membrane lipids of Candidatus "Aciduliprofundum boonei", a cultivated
- 610 obligate thermoacidophilic euryarchaeote from deep-sea hydrothermal vents.
- 611 Extremophiles **12**:119–24.
- 80. Shimada H, Nemoto N, Shida Y, Oshima T, Yamagishi A. 2002. Complete Polar
 Lipid Composition of *Thermoplasma acidophilum* HO-62 Determined by High-
- 614 Performance Liquid Chromatography with Evaporative Light-Scattering Detection. J.
- 615 Bacteriol. **184**:556–563.
- 616 81. Lazar CS, Biddle JF, Meador TB, Blair N, Hinrichs K-U, Teske AP. 2015.
- 617 Environmental controls on intragroup diversity of the uncultured benthic archaea of the

618		Miscellaneous Crenarchaeotal Group lineage naturally enriched in anoxic sediments of
619		the White Oak River estuary (North Carolina, USA).
620	82.	Lazar CS, Biddle JF, Meador TB, Blair N, Hinrichs K-U, Teske AP. 2014.
621		Environmental controls on intragroup diversity of the uncultured benthic archaea of the
622		Miscellaneous Crenarchaeotal Group lineage naturally enriched in anoxic sediments of
623		the White Oak River Estuary (North Carolina, USA). Environ. Microbiol. 49.
624	83.	Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO.
625		2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and
626		next-generation sequencing-based diversity studies. Nucleic Acids Res. 41:e1-e1.
627	84.	Fillol M, Auguet J-C, Casamayor EO, Borrego CM. 2015. Insights in the ecology and
628		evolutionary history of the Miscellaneous Crenarchaeotic Group lineage. ISME J.
629	85.	Zhou Z, Chen J, Cao H, Han P, Gu J-D. 2014. Analysis of methane-producing and
630		metabolizing archaeal and bacterial communities in sediments of the northern South
631		China Sea and coastal Mai Po Nature Reserve revealed by PCR amplification of mcrA
632		and pmoA genes. Front. Microbiol. 5 :789.
633	86.	Durbin AM, Teske A. 2012. Archaea in organic-lean and organic-rich marine
634		subsurface sediments: an environmental gradient reflected in distinct phylogenetic
635		lineages. Front. Microbiol. 3:168.
636	87.	D'Hondt S, Jørgensen BB, Miller DJ, Batzke A, Blake R, Cragg BA, Cypionka H,
637		Dickens GR, Ferdelman T, Hinrichs K-U, Holm NG, Mitterer R, Spivack A, Wang
638		G, Bekins B, Engelen B, Ford K, Gettemy G, Rutherford SD, Sass H, Skilbeck CG,
639		Aiello IW, Guèrin G, House CH, Inagaki F, Meister P, Naehr T, Niitsuma S, Parkes
640		RJ, Schippers A, Smith DC, Teske A, Wiegel J, Padilla CN, Acosta JLS. 2004.
641		Distributions of microbial activities in deep subseafloor sediments. Science 306:2216-
642		2221.
643	88.	Liu X-L, Summons RE, Hinrichs K-U. 2012. Extending the known range of glycerol
644		ether lipids in the environment: structural assignments based on tandem mass spectral
645		fragmentation patterns. Rapid Commun. Mass Spectrom. 26:2295–2302.

646	89.	Elling FJ, Könneke M, Lipp JS, Becker KW, Gagen EJ, Hinrichs K-U. 2014. Effects				
647		of growth phase on the membrane lipid composition of the thaumarchaeon				
648		Nitrosopumilus maritimus and their implications for archaeal lipid distributions in the				
649		marine environment. Geochim. Cosmochim. Acta 141:579–597.				
650	90.	Schouten S, Hopmans EC, Baas M, Boumann H, Standfest S, Könneke M, Stahl				
651		DA, Sinninghe Damsté JS. 2008. Intact Membrane Lipids of "Candidatus				
652		Nitrosopumilus maritimus," a Cultivated Representative of the Cosmopolitan Mesophilic				
653		Group I Crenarchaeota. Appl. Environ. Microbiol. 74:2433–2440.				
654	91.	Koga Y, Morii H. 2005. Recent advances in structural research on ether lipids from				
655		archaea including comparative and physiological aspects. Biosci. Biotechnol. Biochem.				
656		69 :2019–2034.				
657	92.	Knappy CS, Nunn CEM, Morgan HW, Keely BJ. 2011. The major lipid cores of the				
658		archaeon Ignisphaera aggregans: implications for the phylogeny and biosynthesis of				
659		glycerol monoalkyl glycerol tetraether isoprenoid lipids. Extremophiles 15 :517–528.				
660	93.	Nichols PD, Franzmann PD. 1992. Unsaturated diether phospholipids in the Antartic				
661		methanogen Methanococcoides burtonii. FEMS Microbiol. Lett. 98:205–208.				
662	94.	Wegener G, Krukenberg V, Ruff SE, Kellermann MY, Knittel K. 2016. Metabolic				
663		capabilities of microorganisms involved in and associated with the anaerobic oxidation				
664		of methane. Front. Microbiol. 7:46.				
665	95.	Kellermann MY, Yoshinaga MY, Wegener G, Krukenberg V, Hinrichs K-U. 2016.				
666		Tracing the production and fate of individual archaeal intact polar lipids using stable				
667		isotope probing. Org. Geochem. 95:13–20.				
668	96.	Pitcher A, Rychlik N, Hopmans EC, Spieck E, Rijpstra WIC, Ossebaar J, Schouten				
669		S, Wagner M, Sinninghe Damsté JS. 2010. Crenarchaeol dominates the membrane				
670		lipids of Candidatus Nitrososphaera gargensis, a thermophilic group I.1b Archaeon.				
671		ISME J. 4 :542–552.				

672 Table and Figure legends

Table 1. IPLs and core lipids in the TLE of M. luminyensis. Molecular masses of [M+H]⁺, 673 674 [M+NH₄]⁺ and [M+Na]⁺ adducts in positive ion mode RP-HPLC-MS¹, diagnostic fragment ions in MS² experiments and relative abundance of lipids are shown. For interpretations of mass 675 spectra see main text. Abbreviations: AR, glycerol diphytanyl diether (archaeol); Ext-AR, 676 677 glycerol sesterpanyl-phytanyl diether (extended archaeol); diExt-AR, glycerol disesterpanyl 678 diether (diextended archaeol); GDGT, glycerol dibiphytanyl glycerol tetraether; GDD, glycerol dibiphytanol diether; BDGT, butanetriol dibiphytanyl glycerol tetraether; BDD, butanetriol 679 680 dibiphytanol diether; 1G, monoglycosyl; 2G, diglycosyl; 3G, triglycosyl; 1Hp, monoheptose; 681 PG, phosphatidylglycerol; 1MeOG, methoxyglycosyl.

Table 2. Percentage of core BDGTs relative to total isoprenoidal core tetraethers
[BDGTs/(BDGTs + GDGTs) x 100] in selected sediment samples (n.d., not detected).
Detailed information on sampling sites has been published in Liu et al. (31, 88).

685 Fig. 1. Phylogenetic tree of archaea, including methanogens and clades found in marine sediments, and the major core lipids described for cultivated and enriched representatives. 686 687 Lipid data of Methanomassiliicoccales from this study, for other cultivated archaea from 27, 79, 89-93 and for ANME enrichments from 94, 95. The maximum likelihood tree is derived 688 689 from nearly full-length 16S rRNA gene sequences. Bootstrap values (1000 replicates) were calculated to verify branch support ($\bullet \ge 95$ %; $\circ > 80$ %). The scale bar indicates substitutions 690 per site. Abbreviations: MG-II, Marine Group II, DHVEG-2, Deep-Sea Hydrothermal Vent 691 Euryarchaeota Group 2; TMEG, Terrestrial Miscellaneous Euryarchaeota Group; MBG, 692 693 Marine Benthic Group; MG, Marine Group; ANME, anaerobic methanotroph; MCG, 694 Miscellaneous Crenarchaeotal Group; GDGT, glycerol dibiphytanyl glycerol tetraether; 695 GTGT, glycerol trialkyl glycerol tetraether; GDD, glycerol dibiphytanyl diether; BDD, butanetriol dibiphytanyl diether; BDGT, butanetriol dibiphytanyl glycerol tetraether; PDGT, 696 pentanetriol dibiphytanyl glycerol tetraether: Uns, unsaturated; Ext, extended, OH, hydroxy; 697 698 M, macrocyclic; MeO, methoxy; Me, methylated; H, H-shaped.

Fig. 2. Molecular structures of all identified intact polar and core lipids in 699 700 Methanomassiliicoccus luminyensis. Lipids include glycerol diphytanyl diether (archaeol), glycerol sesterpanyl-phytanyl diether (extended archaeol), glycerol disesterpanyl diether 701 (diextended archaeol), glycerol dibiphytanyl glycerol tetraether (GDGT), glycerol dibiphytanol 702 703 diether (GDD), butanetriol dibiphytanyl glycerol tetraether (BDGT), butanetriol dibiphytanol 704 diether (BDD), pentanetriol dibiphytanyl glycerol tetraether (PDGT) core lipids and saturated 705 and unsaturated C_{45} and C_{50} polyprenols with up to one double bond per isoprenoid unit. 706 BDGT and PDGT core lipids with one and two cyclopentyl moieties are also shown. Intact 707 polar lipids consist of di- and tetraether core lipids attached to a polar head group.

708 Fig. 3. Reversed phase HPLC-MS analyses of *M. luminyensis* TLE showing (a) extracted ion chromatogram of all identified lipids (including C₄₆-GTGT injection standard) and (b) density 709 710 map plot allowing three-dimensional view on chromatographic separation and mass-to-711 charge ratio (m/z) with intensity on the z-axis (from low intensities indicated by white colors to 712 intermediate intensities indicated by blue color and high intensities indicated by red color). 713 Lipid nomenclature designates combinations of core lipid types (AR, archaeol; Ext-AR, 714 extended-AR; diExt-AR, diextended-AR; GDGT, glycerol dibiphytanyl glycerol tetraether; 715 GDD, glycerol dialkanol diether; BDGT, butanetriol dibiphytanyl glycerol tetraether; BDD, 716 butanetriol dibiphytanol diether) and head groups (PG, phosphatidylglycerol; 1G, monoglycosyl; 2G, diglycosyl; 3G, triglycosyl; PG, phosphatidyl glycerol; 1Hp-1G, 717 monoheptose-1G; 1G-PG; 1Hp-1G-PG; 1MeOG-1G, methoxy-1G; 1MeOG-2G). For 718 719 structures of lipids see Fig. 2.

Fig. 4. MS^2 spectra of ammoniated ($[M+NH_4]^+$) 1Hp-1G-BDGT (m/z 1687.5) and 1MeOG-1G-AR (m/z 1078.9), respectively. The chemical structures and the formation of major product ions are also drawn. The glycerol extension in the BDGT structure is either located at *sn*-1 or *sn*-3 positions of the glycerol. Both, 1MeOG and 1Hp head group structures have only been tentatively identified based on their exact mass in full scan and MS^2 experiments and their full characterization requires further structural elucidation. However, for example for the peak at m/z 1078.9 [M+NH₄]⁺ we observed a dominant fragment ion associated with core Ext-AR (62) in the MS² spectrum, resulting from a neutral loss of 1G + 176.1 Da + NH₃ and likely indicating a methylated dihexose head group (96). We interpreted the spectrum to represent a 1MeO-1G-Ext-AR. Similarly, we observed a loss of 2G + CH₂O + NH₃ (354.1 Da) and BDGT core lipid fragment ions (37, 38) for the peak at m/z 1687.3 [M+NH₄]⁺ and tentatively identified this IPL as heptose-containing lipid, 1Hp-1G-BDGT. The polar head group is either located at the glycerol or butanetriol moiety.

Fig. 5. (a) Magnified section of density map plot in the tetraether area showing the major diagnostic ions of butanetriol and corresponding solely glycerol containing lipids in the TLE of *M. luminyensis*, analyzed by RP-HPLC-MS. (b) and (c) show MS² spectra of sodiated ($[M+Na]^+$) core BDGT (*m/z* 1338.3) and 1G-BDGT (*m/z* 1500.4), respectively. BDGT spectra match those shown by Zhu et al. (37) and Knappy et al. (38). The glycerol extension in the BDGT structure is either located at *sn*-1 or *sn*-3 positions of the glycerol and the polar head group of intact BDGTs is either located at the glycerol or butanetriol moiety.

Fig. 6. (a) Relative abundance of different head groups in the TLE of *M. luminyensis*. (b) Relative abundance of core lipids in the TLE, acid hydrolyzed TLE and acid hydrolyzed biomass of *M. luminyensis*. For the TLE, free and head group-bound core lipids were considered. For chemical structures and abbreviations see Fig. 2.

28

Core lipids

Monohexose (1G) n = 1 Dihexose (2G) n = 2 Trihexose (3G) n = 3

он 10

Methoxylated hexose (1MeOG)

но

но-**[С₄Н₇**

но-[C₄H₇

но-**[C₄H₇**

но-[С₅Н

но-[C₅H₉

но-[C₅H₉

Heptose (1Hp)

~ ₽ ₽ ₹ HQ,

Phosphatidylglycerol (PG)

Compound	<i>m/z</i> ([M+H] ⁺ ; [M+NH ₄] ⁺ ; [M+Na] ⁺)	Characteristic fragment ions in MS ²	Retention time (min)	Relative lipid abundance (%)
GDD	1246.2965; 1263.3230; 1268.2784	669.7	23.0	0.3
BDD	1260.3121; 1277.3387; 1282.2940	683.7	23.2	0.3
GDGT	1302.3227; 1319.3492; 1324.3046	743.7	24.5	1.3
BDGT	1316.3383; 1333.3649; 1338.3203	757.7	24.8	2.1
1G-GDGT	1464.3755; 1481.4020; 1486.3574	1302.3; 743.7	23.5	3.0
1G-BDGT	1478.3911; 1495.4177; 1500.3731	1316.3; 757.7	23.6	6.7
PG-BDGT	1470.3414; 1487.3680; 1492.3234	a)	22.8	19.0
1G-PG-BDGT	1632.3943; 1649.4208; 1654.3762	1470.3	22.2	6.8
1Hp-1G-BDGT	1670.4545; 1687.4811; 1692.4365	1316.3	23.1	13.1
1Hp-1G-PG-BDGT	1824.4576; 1841.4842; 1846.4396	b)	21.6	6.2
AR	653.6806; 670.7072; 675.6626	373.4	19.0	0.8
PG-AR	807.6837; 824.7103; 829.6657	733.6; 537.4	14.8	0.8
1G-Ext-AR	885.8117; 902.8382; 907.7936	373.4; 443.5; 723.8	19.3	1.1
1G-diExt-AR	955.8899; 972.9165; 977.8719	443.5; 793.8	21.1	0.4
1MeOG-1G-Ext-AR	1061.8802; 1078.9067; 1083.8621	373.4; 443.5; 723.8	19.0	5.5
2G-Ext-AR	1047.8645; 1064.8911; 1069.8465	373.4; 443.5; 723.8	18.4	6.1
1MeOG-1G-diExt-AR	1131.9584; 1148.9850; 1153.9404	443.5; 793.8	20.8	1.3
2G-diExt-AR	1117.9428; 1134.9693; 1139.9247	443.5; 793.8	20.3	1.7
1MeOG-2G-Ext-AR	1223.9330; 1240.9595; 1245.9149	373.4; 443.5; 723.8	18.6	4.9
3G-Ext-AR (a)	1209.9173; 1226.9439; 1231.8993	373.4; 443.5; 723.8	17.5	0.6
3G-Ext-AR (b)	1209.9173; 1226.9439; 1231.8993	373.4; 443.5; 723.8	18.0	1.4
1MeOG-2G-diExt-AR	1294.0112; 1311.0378; 1315.9932	443.5; 793.8	20.5	1.6
3G-diExt-AR (a)	1279.9956; 1297.0221; 1301.9775	443.5; 793.8	19.5	0.3
3G-diExt-AR (b)	1279.9956; 1297.0221; 1301.9775	443.5; 793.8	20.0	0.5
$C_{\rm 50:1}$ - $C_{\rm 50:10}$ polyprenols	699.6-717.8; 716.7-734.8; 721.6-739.8	loss of H_2O (-18.0 Da)	18.1-22.6	8.5
C45:0 - C45:9 polyprenols	631.6-649.7; 648.6- 666.7; 653.6-671.7	loss of H ₂ O (-18.0 Da)	16.4-21.7	5.6

a) fragmentation not fully resolved

b) no MS² data available

Cruise	Site and Core	Sediment	Total organic	% BDGTs
Citilise	Sile and Core	deptil (III)	carbon (wt/o)	/0 00013
M76/1	GeoB12806-2	0.1	8.9	n.d.
(Namibia Margin)	GeoB12807-2	3.1	7.4	0.21
ODP201	1229D 4H4	30.7	4.7	0.36
(Peru Margin)	1229A 22H1	185.9	0.47	3.5
ODP201	1226B 10H3	83.8	1.1	n.d.
(Equatorial Pacific)	1226E 20H3	320	0.28	n.d.
(1				
ODP204	1250D 6H5	43.5	0.96	1.1
(Hydrate Ridge)	1250D 12H5	100.3	1.3	0.12
()				
IODP311	1237C 10H5	79.8	0.64	n.d.
(Cascadia Margin)	1237C 13C6	109.8	0.56	0.21
ODP 160	966C 5H02	40	5.7	0.81
(Mediterranean Sapropel)	966C 7H04	65	7.4	0.34