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Abstract 21 

A new clade of archaea has recently been proposed to constitute the seventh methanogenic 22 

order, the Methanomassiliicoccales, which is related to the Thermoplasmatales and the 23 

uncultivated archaeal clades Deep-Sea Hydrothermal Vent Euryarchaeota Group 2 and 24 

Marine Group-II Euryarchaeota, but only distantly related to other methanogens. In this 25 

study, we investigated the membrane lipid composition of Methanomassiliicoccus 26 

luminyensis, the sole cultured representative of this seventh order. The lipid inventory of M. 27 

luminyensis comprises a unique assemblage of novel lipids as well as lipids otherwise typical 28 

for either thermophilic, methanogenic, or halophilic archaea. For instance, glycerol 29 

sesterpanyl-phytanyl diether core lipids mainly found in halophilic archaea were detected, 30 

and so were compounds bearing either heptose or methoxylated glycosidic head groups, 31 

both of which have so far not been reported for other archaea. The absence of quinones or 32 

methanophenazines is consistent with a different biochemistry of methanogenesis compared 33 

to the methanophenazine-containing methylotrophic methanogens. The most distinctive 34 

characteristic of the membrane lipid composition of M. luminyensis, however, is the presence 35 

of tetraether lipids in which one glycerol backbone is substituted by either butane- or 36 

pentanetriol, i.e., lipids recently discovered in marine sediments. Butanetriol dibiphytanyl 37 

glycerol tetraether (BDGT) constitutes the most abundant core lipid type (>50% relative 38 

abundance) in M. luminyensis. We have thus identified a source for these unusual orphan 39 

lipids. The complementary analysis of diverse marine sediment samples showed that BDGTs 40 

are widespread in anoxic layers, suggesting an environmental significance of 41 

Methanomassiliicoccales and/or related BDGT producers beyond gastrointestinal tracts. 42 

Importance 43 

Cellular membranes of members of all three domains of life, Archaea, Bacteria, and Eukarya, 44 

are largely formed by lipids in which glycerol serves as backbone for the hydrophobic alkyl 45 

chains. Recently, however, archaeal tetraether lipids with either butanetriol or pentanetriol as 46 

backbone were identified in marine sediments and attributed to uncultured sediment-dwelling 47 
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archaea. Here we show that the butanetriol-based dibiphytanyl tetraethers constitute the 48 

major lipids in Methanomassiliicoccus luminyensis, the currently only isolate of the novel 49 

seventh order of methanogens. Given the absence of these lipids in a large set of archaeal 50 

isolates, these compounds may be diagnostic for the Methanomassiliicoccales and/or closely 51 

related archaea.  52 

Keywords: methanogens; archaea; Methanomassiliicoccus luminyensis; membrane lipids; 53 

butane- and pentanetriol-based tetraether lipids. 54 

Introduction 55 

Methane is a potent greenhouse gas and an important intermediate in the global carbon 56 

cycle (1–3). Biogenic methane is predominantly produced by archaea inhabiting diverse 57 

anoxic environments such as sediments, soils, wetlands, and the digestive tracts of termites 58 

and ruminants (2, 4). All cultured methanogens to date belong to the phylum Euryarchaeota, 59 

while metagenomic sequencing revealed a putative methanogenic metabolism for members 60 

of the uncultivated Bathyarchaeota (formerly known as Miscellaneous Crenarchaeotal Group, 61 

MCG) indicating that methanogenesis might not be restricted to the Euryarchaeota (5).  62 

Methanogens are classified into seven orders (Methanobacteriales, Methanococcales, 63 

Methanomicrobiales, Methanosarcinales, Methanocellales, Methanopyrales and 64 

Methanomassiliicoccales) that generate methane from H2/CO2, acetate, formate, or 65 

methylated substrates (2, 6–8). Of these, the Methanomassiliicoccales have only recently 66 

been described, representing the seventh order of methanogens (6, 7, 9). These 67 

Euryarchaeota have been detected based on gene biomarker analyses in diverse 68 

environments such as lakes, soils, and marine sediments, but are particularly abundant in 69 

the digestive tracts of ruminants (10–15). A single pure culture, Methanomassiliicoccus 70 

luminyensis, as well as a few enrichment cultures have been obtained, all of which reduce 71 

methanol or methylamines with H2 as electron donor (6, 16–20).  72 
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The Methanomassiliicoccales are only distantly related to other methanogens and form a 73 

distinct cluster within the Thermoplasmata with the non-methanogenic thermoacidophilic 74 

Thermoplasmatales and other related lineages such as the Deep-Sea Hydrothermal Vent 75 

Euryarchaeota Group 2 (DHVEG-2), and the uncultivated Terrestrial Miscellaneous 76 

Euryarchaeota Group (TMEG), Marine Benthic Group D (MBG-D), and Marine Group II 77 

Euryarchaeota (MG-II; Fig. 1; 7, 21). Especially the latter two groups are widely distributed in 78 

marine sediments and the surface ocean, respectively, but lack cultured representatives (22, 79 

23). Along with the Methanomassiliicoccales, MBG-D and other benthic Euryarchaeota are of 80 

particular interest in environmental microbiology and geosciences as they could be important 81 

contributors to microbial biomass and activity in the sedimentary biosphere (24–26). In 82 

samples where MBG-D and MG-II dominated 16S rRNA gene libraries, glycerol dibiphytanyl 83 

glycerol tetraethers (GDGTs) have frequently been detected as major archaeal lipids, 84 

indicating that these archaeal groups may be able to synthesize these lipids (27–29). 85 

Moreover, intact GDGTs, e.g., GDGTs attached to glycosidic polar head groups, are 86 

commonly used for quantifying archaeal abundance in the subseafloor biosphere (25, 30–87 

33). Understanding the potential sources of GDGTs is of primary importance for reliable 88 

quantification of benthic archaeal biomass using lipid biomarkers (31, 32). 89 

Here, we report the lipid composition of the sole isolated representative of the 90 

Methanomassiliicoccales, M. luminyensis strain B10(T). The lipid analyses were facilitated by 91 

recently developed HPLC-MS methods that allow the comprehensive, simultaneous analysis 92 

of archaeal core and intact polar glycerol-based membrane lipids as well as respiratory 93 

quinones, i.e., membrane-bound electron carriers (34, 35). We show that M. luminyensis 94 

strain B10(T) contains a diverse suite of unique tetraether lipids with either butanetriol or 95 

pentanetriol substituting a glycerol backbone moiety. Such lipids were recently found in 96 

marine and estuarine sediments, but have not previously been detected in cultured archaeal 97 

representatives (36–38). We further documented the distribution of butanetriol-based lipids in 98 

diverse marine sediments, which suggested the widespread presence of relatives of M. 99 

luminyensis. 100 
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Material and Methods 101 

Phylogenetic analysis 102 

High quality 16S rRNA gene sequences of archaeal groups of interest (alignment quality >90, 103 

pintail 100, sequence quality >90) with a minimum length of 1400 nt were obtained from the 104 

SILVA Ref NR SSU r123 database (39). If more than ten sequences per group were 105 

downloaded, the sequences were clustered with 94.5% sequence identity using cd-hit-est of 106 

the CD-HIT Suite (Huang et al 2010) to obtain representative sequences of different genera 107 

(40). After aligning the sequences using the SINA online alignment tool (41) the alignment 108 

was improved by gap removal with Gblocks using the least stringent parameters to avoid 109 

losing phylogenetic information (42). The alignment was uploaded to the Model Selection tool 110 

of the IQ-TREE web server to select the best suited nucleotide substitution model. A 111 

maximum likelihood tree was calculated with IQ-TREE applying the GTR model (+F+I+G4) 112 

(43). Ultrafast bootstrap (1000 replicates) was used to verify branch support (44). FigTree 113 

(http://tree.bio.ed.ac.uk/software/figtree/) and Adobe Illustrator (Adobe Systems Inc., San 114 

Jose, CA) were used for visualizing the phylogenetic tree. 115 

Cultivation and lipid extraction 116 

M. luminyensis was grown in an anaerobic medium based on the medium published by Lang 117 

et al. (20). Cultures (2 x 20 mL), inoculated with 10% of a previous culture grown under the 118 

same conditions, were grown in 120 mL serum flasks at 37 °C for 7 days under an 119 

atmosphere containing 80% H2 and 20% CO2. Cells were harvested by centrifugation (20 120 

minutes; 13,000 g) and were subsequently lyophilized. 121 

Lipids from M. luminyensis were ultrasonically extracted following a modified Bligh & Dyer 122 

protocol (45) using a monophasic mixture of methanol, dichloromethane, and aqueous buffer 123 

(2:1:0.8, v:v:v). A 50 mM phosphate buffer (pH 7.4) was used for the first two extractions 124 

while a 50 mM trichloroacetic acid buffer (pH 2) was used for two additional extractions. The 125 

total lipid extracts (TLE) were dried under a stream of N2 and stored at -20 °C until 126 
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measurement. In addition to M. luminyensis, twelve marine sediment samples from a variety 127 

of depositional environments (Table 2) were analyzed and prepared as described in Liu et al. 128 

(31).  129 

Intact polar and core lipid analysis 130 

Intact polar and core lipids were analyzed by injecting TLE aliquots dissolved in 131 

methanol:dichloromethane (9:1, v:v) on a Dionex Ultimate 3000 high performance liquid 132 

chromatography (HPLC) system connected to a Bruker maXis Ultra-High Resolution 133 

quadrupole time-of-flight tandem mass spectrometer equipped with an electrospray ion 134 

source operating in positive mode (Bruker Daltonik, Bremen, Germany). The mass 135 

spectrometer was set to a resolving power of 27,000 at m/z 1,222 and every analysis was 136 

mass-calibrated by loop injections of a calibration standard and correction by lock mass, 137 

leading to a mass accuracy of better than 1-3 ppm. Ion source and other MS parameters 138 

were optimized by infusion of standards (acyclic GDGT (GDGT-0), monoglycosidic (1G-) 139 

GDGT-0, diglycosidic (2G-) GDGT-0) into the eluent flow from the LC system using a T-140 

piece. 141 

Analyte separation was achieved using reversed phase (RP) HPLC on an Acquity UPLC 142 

BEH C18 column (1.7 µm, 2.1 x 150 mm, Waters, Eschborn, Germany) maintained at 65 °C 143 

as described by Wörmer et al. (34). The injection volumes was 10 µL and analytes were 144 

eluted at a flow rate of 0.4 mL min-1 using linear gradients of methanol:water (85:15, v:v, 145 

eluent A) to methanol:isopropanol (50:50, v:v, eluent B) both with 0.04% formic acid and 146 

0.1% NH3. The initial condition was 100% A held for 2 min, followed by a gradient to 15% B 147 

in 0.1 min and a gradient to 85% B in 18 min. The column was then washed with 100% B for 148 

8 min. 149 

To determine relative abundances of core lipids, 50% of the TLE was hydrolyzed with 1 M 150 

HCl in methanol for 3 h at 70 °C to yield core lipids (46). Additionally, biomass was 151 

hydrolyzed directly using 1 M HCl in methanol for 16 h at 70 °C; subsequently lipids were 152 
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ultrasonically extracted three times from hydrolyzed biomass using DCM:MeOH 5:1 (v:v). 153 

The hydrolyzed TLE and the extract obtained from hydrolyzed biomass were analyzed on the 154 

same HPLC-MS system using normal phase (NP) chromatography and an atmospheric 155 

pressure chemical ionization-II ion source operated in positive mode, as described by Becker 156 

et al. (47). Briefly, hydrolyzed TLE aliquots were dissolved in n-hexane:2-propanol (99.5:0.5, 157 

v:v) and injected onto two coupled Acquity BEH Amide columns (2.1 x 150 mm, 1.7 µm 158 

particle size, Waters, Eschborn, Germany) maintained at 50 °C. The injection volume was 10 159 

µL. Lipids were eluted using linear gradients of n-hexane (eluent A) to n-hexane:2-propanol 160 

(90:10, v:v; eluent B) at a flow rate of 0.5 mL min-1. The initial gradient was 3% B to 5% B in 161 

2 min, followed by increasing B to 10% in 8 min, to 20% in 10 min, to 50% in 15 min and 162 

100% in 10 min, followed by 6 min at 100% B to flush and 9 min at 3% B to re-equilibrate the 163 

columns. 164 

Lipids were identified by retention time as well as accurate molecular mass and isotope 165 

pattern match of proposed sum formulas in full scan mode and MS2 fragment spectra. 166 

Integration of peaks was performed on extracted ion chromatograms of ±10 mDa width and 167 

included the [M+H]+ ions for NP-HPLC-MS and additionally [M+NH4]+ and [M+Na]+ ions for 168 

RP-HPLC-MS. Where applicable, doubly charged ions were included in the integration.  169 

Lipid abundances were corrected for response factors of commercially available as well as 170 

purified standards. Purified standards were obtained from extracts of Archaeoglobus fulgidus 171 

as described in Elling et al. (46). The abundances of monoglycosidic (1G) glycerol 172 

dibiphytanyl glycerol tetraethers (GDGTs) and butanetriol dibiphytanyl glycerol tetraethers 173 

(BDGTs) were corrected for the response of purified acyclic 1G-GDGT standard, while 174 

monoheptose (1Hp)-1G-BDGT was corrected for the response of purified acyclic 2G-GDGT 175 

standard due to the structural similarity of the lipids (Fig.1). The abundances of 176 

phosphatidylglycerol (PG), 1G-PG-BDGTs and 1Hp-1G-PG-BDGT were corrected for the 177 

response of a commercially available 1G-PG-GDGT standard (Matreya LLC, Pleasant Gap, 178 

PA, USA). The abundances of 1G- and 2G-archaeols (ARs) were corrected for the response 179 
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of respective purified standard, while triglycosidic (3G-) ARs as well as Methoxy-1G 180 

(1MeOG) 1G and 1MeOG-2G-ARs were corrected for the response of 2G-AR. PG-AR 181 

abundances were corrected for the response of a commercial phosphatidylethanolamine 182 

archaeol standard (Avanti Polar Lipids Inc., Alabaster, AL, USA). Due to the lack of 183 

appropriate standards, polyprenols were not corrected for their relative response. The 184 

abundances of core GDGTs, BDGTs, pentanetriol dibiphytanyl glycerol tetraethers (PDGTs), 185 

glycerol dibiphytanol diethers (GDDs) and butanetriol dibiphytanol diethers (BDDs) were 186 

corrected for the response factors of purified GDGT-0, while the abundance of core AR was 187 

corrected for the response factors of the respective purified standard. The lower limit of 188 

detection for lipids was < 1 pg µL-1. 189 

Results  190 

Intact polar and core lipid composition 191 

Eighteen different intact polar lipids (IPLs) with either di- or tetraether core structure and nine 192 

different polar head groups were detected in M. luminyensis. Head groups include mono-, di 193 

and trihexose, methoxy hexose, phosphatidylglycerol, monoheptose and combinations of the 194 

different head group types (Fig. 2 and 3). Detected IPLs comprise AR (two C20 isoprenoid 195 

side chains), GDGT-0, extended (Ext) and diextended (diExt) AR, the latter containing C20-25 196 

and C25-25 isoprenoidal chains, respectively, as core lipid structures. Methoxy hexose and 197 

heptose-containing lipids have been tentatively identified by multiple stage mass 198 

spectrometry (Fig. 4, Table 1). Moreover, the dominant compounds were identified as IPLs 199 

possessing a butanetriol dibiphytanyl glycerol tetraether (BDGT) core (Fig. 5, Table 1). 200 

These unusual tetraether lipids are characterized by the replacement of one glycerol moiety 201 

with a butanetriol (37) and have not been found in any other cultured archaea to date. Free 202 

core lipids were relatively abundant and occurred as AR, GDGT, BDGT, as well as GDD and 203 

BDD. Neither GDD nor BDD lipids were detected as IPLs (see Fig. 3). Besides these IPLs 204 

and core lipids, we detected saturated and unsaturated C45 and C50 polyprenols, which 205 
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contained up to one double bond per isoprenoid unit. Methanophenazines and respiratory 206 

quinones were not detected. 207 

Di- and tetraether based IPLs with glycosidic head groups account for 49% of the total lipids, 208 

Total phosphate-based lipids comprise 33%, while non-polar free core lipids and polyprenols 209 

contribute the remaining 18%. The most abundant single lipid in M. luminyensis is a PG-210 

BDGT, contributing 20% to the total lipid pool (see Table 1). Phosphatidylglycerol is the 211 

dominant single head group representing 25% of total head groups (Fig. 6a) followed by 1G 212 

and 1Hp-1G with 14% and 16%, respectively, while other head groups are equally distributed 213 

with 8-9%, except for 3G, which showed the lowest relative abundance (3%). The dominant 214 

core structure in M. luminyensis in the total di- and tetraether lipid pool, including IPLs, is 215 

BDGT, accounting for more than 50% (Fig. 6b). The second most abundant core lipid is 216 

diExt-AR with 30%, while all other core lipids comprise <10% of total core lipids.  217 

Since not all lipids might be solvent-extractable from cells (48, 49), we acid-hydrolyzed the 218 

biomass and compared the core lipid distribution with that obtained from the TLE as well as 219 

to that obtained from acid hydrolysis of the TLE (Fig. 6b). The relative abundance of BDGTs 220 

was substantially higher (up to 82%) in the extracts obtained after acid hydrolysis of the TLE 221 

and direct hydrolysis of the biomass compared to the TLE (Fig. 6b). Similarly, the relative 222 

abundance of GDGTs increased to almost 20%. Consequently, several lipids showed 223 

strongly reduced abundances in the hydrolyzed extracts or were not detectable anymore as 224 

in case of the diether lipids Ext- and diExt-AR. While AR showed a similar relative 225 

abundance in the hydrolyzed TLE compared to direct analysis of the TLE, its abundance was 226 

particularly low in the hydrolyzed biomass extract. As shown by Huguet et al. (49), 227 

concentrations of GDGTs were substantially higher (one to two orders of magnitude) in 228 

directly hydrolyzed biomass compared to regular lipid extraction protocols for Nitrosopumilus 229 

maritimus biomass. Thus, although we did not generate quantitative information, BDGT and 230 

GDGT concentration in the hydrolyzed biomass might be so high that they overwhelm the 231 

signal of the diether compounds during mass spectrometry. Interestingly, in the hydrolyzed 232 
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extracts, acyclic to dicyclic PDGT and mono- and bicyclic BDGTs were detected; both 233 

compound groups were not detectable in the TLE. 234 

Occurrence of BDGTs in the marine environment 235 

To further examine the environmental significance of the unusual BDGTs, we investigated 236 

their distribution in 12 marine sediments from diverse settings (Table 2). BDGTs were 237 

detected in two-thirds of the samples, including the Peru Margin, Hydrate Ridge, 238 

Mediterranean sapropels, Cascadia Margin and Namibia Margin. In these samples, BDGT 239 

core lipids accounted for 0.1 and 3.5% of archaeal core tetraethers (GDGTs + BDGTs; Table 240 

2). BDGTs were not detected in sediments from the Equatorial Pacific, Namibia Margin 241 

surface sediment and the deep subsurface of the Cascadia Margin.  242 

Discussion 243 

Lipid inventory of M. luminyensis compared to other archaea 244 

The most distinctive characteristics of the membrane lipid composition of M. luminyensis are 245 

BDGTs and PDGTs which are present as IPLs and free core lipids and have not been 246 

reported from other archaea. Thus, these unusual lipids may be diagnostic for members or 247 

close relatives of the Methanomassiliicoccales. Both, BDGT and PDGT lipids seem to be 248 

selectively bound in the acid-hydrolysable fraction, indicated by higher relative abundances 249 

in the hydrolyzed biomass compared to the Bligh and Dyer extract (Fig. 6). Potentially, these 250 

lipids are preferentially bound to proteins in the membranes and were released by the acid 251 

treatment. In bacteria as well as in archaea, membrane proteins have been shown to 252 

selectively bind lipids, such as fatty acids, isoprenoids, and different phospho- and 253 

glycolipids, influencing the structural and functional integrity of proteins (e.g., 50, 51–53).  254 

However, the biological function as well as the biosynthetic pathway of BDGTs and PDGTs 255 

remain unknown. Since the biosynthesis of archaeal membrane lipids typically involves 256 

dihydroxyacetone phosphate (DHAP) as an intermediate that is converted to glycerol-1-257 
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phosphate (G1P; 54), a different biosynthetic pathway might be required for butane- and 258 

pentanetriol-containing lipids (37). The genomes of Methanomassiliicoccales contain genes 259 

well known to be involved in archaeal ether lipid biosynthesis, including genes encoding 260 

homologues of G1P dehydrogenase, 3-O-geranylgeranyl-sn-glycerlyl-1-phosphate (GGGP) 261 

and digeranylgeranylglyceryl phosphate (DGGGP) synthases, and four enzymes responsible 262 

for the activation of the diglyceride, the addition of polar head groups to the glycerol moiety, 263 

and the final production of archaeol via the subsequent reduction of the unsaturated 264 

isoprenoid chains (20, 21). Only one gene for GGGP synthase, and no second homologue to 265 

this gene could be identified that might encode a hypothetical enzyme catalyzing the 266 

formation of a GG-butanetriyl-P or GG-pentanetriyl-P intermediate from butanetriol or 267 

pentanetriol, respectively, and geranylgeranyl diphosphate (GGPP). Nevertheless, future 268 

studies on Methanomassiliicoccus BDGT and PDGT biosynthesis might help to elucidate 269 

their unresolved biochemistry. Moreover, although the identification of BDGTs and PDGTs 270 

based on HPLC-MS as well as degradation experiments by Zhu et al. (37) seems conclusive, 271 

the exact structures of these unusual lipids, e.g., the stereochemistry of the butane- and 272 

pentanetriol backbone, remain to be fully resolved, e.g., by using NMR-spectroscopy. 273 

M. luminyensis further possesses a unique membrane lipid composition of mixed di- and 274 

tetraethers with glycosidic and phosphatidylglycerol head groups, which differs distinctly from 275 

all other methanogens and archaea. While Ext-AR as major core lipid in M. luminyensis is 276 

widespread in halophilic archaea (55–57), it is only present in trace amounts in other 277 

methanogens including Methanosarcina barkeri (58) and Methanothermobacter 278 

thermautotrophicus (59). In environmental samples, the detection of Ext-AR has been 279 

frequently associated with methane oxidizing archaea (60–62). The diExt-AR that we 280 

detected in M. luminyensis has so far only been reported in halophiles (63) and as the 281 

dominant lipid in the thermophile Aeropyrum pernix (64), but not in methanogens. Moreover, 282 

heptose-based membrane lipids have not been reported in Archaea, while heptose is a 283 

common constituent of polysaccharides in Bacteria (e.g., 65, 66, 67).  284 
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Phosphate-bound polyprenols occur widespread in all domains of life and they mainly 285 

function as membrane-bound (poly-)saccharide carriers involved in cell wall assembly (68–286 

72). We found abundant phosphate-free polyprenols in M. luminyensis, which have 287 

previously been detected in the thermophilic methanogen M. thermautotrophicus grown 288 

under hydrogen-limitation; it was suggested that they may play a role in membrane 289 

stabilization (73). Their high relative abundance (14% of total detected lipids, Table 1) in M. 290 

luminyensis implies an important role of free polyprenols also in this archaeon. However, 291 

their distribution among other archaea has not yet been studied and the function of 292 

phosphate-free polyprenols in archaeal cells remains elusive. 293 

The unusual membrane lipid composition of M. luminyensis is consistent with its 294 

phylogenetically distant relationship to other orders of methanogens (9). Additionally, in 295 

contrast to the high diversity of respiratory quinones in related members of the 296 

Thermoplasmatales (35, 74, 75), no quinones were detected in M. luminyensis. Similarly, no 297 

methanophenazines, respiratory quinone-analogs found in Methanosarcinales (35, 76) and 298 

Methanosaeta (77), were detected in M. luminyensis. This finding supports studies of Lang et 299 

al. (20) and Söllinger et al. (15) who suggested that the biochemistry of methanogenesis in 300 

Methanomassiliicoccales may be fundamentally different from that of other, 301 

methanophenazine- and cytochrome-containing methylotrophic archaea. 302 

We further validated the potential of BDGTs and PDGTs as biomarkers for M. luminyensis by 303 

analyzing 25 cultured archaea that we recently analyzed for their respiratory quinone 304 

composition (35). These species cover the phyla Eury-, Cren- and Thaumarchaeota and 305 

within the Euryarchaeota several methanogens as well as the Methanomassiliicoccales-306 

related thermoacidophile Thermoplasma acidophilum. We did not detect BDGTs or PDGTs in 307 

any of these archaea. This indicates a high chemotaxonomic potential of these lipids for 308 

Methanomassiliicoccales, although we cannot exclude that other, uncultured archaeal 309 

lineages also synthesize these lipids. Thus, BDGT biosynthesis might represent another 310 

evolutionarily distinct feature of Methanomassiliicoccales similar to the unique pathways for 311 
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methanogenesis and energy conservation (9, 20, 78). Specific membrane lipid adaptation 312 

within the Thermoplasmata is supported by the fact that for example Aciduliprofundum 313 

boonei belonging to DSHVE-2 contains H-shaped GDGTs (79), while they have not been 314 

reported from Thermoplasmatales species (80) as well as were not detected in M. 315 

luminyensis. Analysis of the lipid inventory of other cultured representatives of the seventh 316 

order of methanogens are, however, required to provide detailed information about the 317 

phylogenetic patterns for the biosynthesis of butane- and pentanetriol-based lipids. 318 

Implications for environmental studies 319 

Butane- and pentanetriol-based tetraether lipids have recently been identified in a number of 320 

environmental settings, such as deeply buried marine (37) and shallow estuarine sediments 321 

(36). Meador et al. (36) suggested a potential association of BDGTs with the Miscellaneous 322 

Crenarchaeotal Group (MCG) due to the positive correlation of BDGT lipids with the relative 323 

abundance of MCG 16S rRNA sequences in microbial communities of estuarine sediments 324 

from the White Oak River, NC, USA (hereafter WOR). The authors further interpreted the 325 

notable 13C-depletion of BDGTs as evidence for BDGT-producers either being autotrophs or 326 

heterotrophs feeding on 13C-depleted substrates. While being consistent with the isotopic 327 

lines of evidence, our results suggest that the source of BDGTs in WOR sediments might 328 

instead be members or relatives of the Methanomassiliicoccales (see Fig. 1). In fact, 329 

members of the “environmental clade” of Methanomassiliicoccales were previously assigned 330 

to TMEG (15). Although Methanomassiliicoccales were not specifically described in WOR 331 

sediments, which is likely due to the low coverage of commonly used primers for 332 

Methanomassiliicoccales, closely related clades such as MBG-D and TMEG were abundant 333 

in these samples (36, 81). Indeed, we evaluated commonly used primers against 334 

Methanomassiliicoccales, including the one used to sequence archaea from WOR sediments 335 

(23, 82) using TestPrime 1.0 and SILVA SSU r126 RefNR dababase (83), and the coverage 336 

was only between 0.5% and 56% for zero mismatches. Accordingly, the positive correlation 337 

of MCG with BDGTs in the WOR sediments (36) may instead result from the co-occurrence 338 
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of MCG and Methanomassiliicoccales and/or uncultivated Thermoplasmata, such as TMEG 339 

and MBG-D, which was observed by operational taxonomic unit network analysis in various 340 

marine sediments (84). However, in samples where MBG-D dominate 16S rRNA clone 341 

libraries, both BDGTs and PDGTs were not detected, while GDGTs were the most abundant 342 

lipids (27). This suggests that members of the MBG-D inhabiting the Pakistan margin 343 

sediments are not a major source for BDGT and PDGT lipids and that BDGT synthesis is 344 

limited to a subgroup within the Thermoplasmata. 345 

The analysis of twelve globally distributed marine sediments from various environmental 346 

settings revealed the widespread occurrence of BDGT core lipids (Table 2), implying a large 347 

environmental distribution of Methanomassiliicoccales and/or relatives that may constitute 348 

additional sources. This supports recent metagenomic studies, which showed that besides 349 

gut and rumen (6, 13, 14) Methanomassiliicoccales also occur ubiquitously in marine and 350 

terrestrial anaerobic environments (10, 15, 84, 85). Similarly to WOR, 16S rRNA gene 351 

sequences of Methanomassiliicoccales were not reported for the investigated sites likely due 352 

to a mismatch of commonly used primers against hitherto undetected clades (23), while other 353 

uncultured Thermoplasmatale were detected (86). In some samples, for instance in the 354 

equatorial Pacific, BDGTs were not detected, which is probably related to low TOC 355 

concentrations (30) and sulfate reducing conditions (87) at this site. The relative abundance 356 

of BDGTs in the 12 samples analyzed in this study (Table 2) is much lower than in the 357 

estuarine WOR sediments, where BDGTs accounted for 15% of the total archaeal core lipid 358 

pool on average (36). While this data indicates that the conditions in the WOR sediments 359 

select for the BDGT-producers, the factors controlling the distribution of the seventh order of 360 

methanogens and how they compete with hydrogenotrophic and methylotrophic 361 

methanogens, as they require both H2 and methanol, remains a target for future studies. If 362 

future studies confirm the specificity of BDGTs as biomarkers for the seventh order of 363 

methanogens, their detection will enrich strategies for investigating these aspects in 364 

environmental samples, cultivation experiments, and the gastro-intestinal tracts of humans 365 

and ruminant animals (e.g., 14, 17). 366 
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Table and Figure legends 672 

Table 1. IPLs and core lipids in the TLE of M. luminyensis. Molecular masses of [M+H]+, 673 

[M+NH4]+ and [M+Na]+ adducts in positive ion mode RP-HPLC-MS1, diagnostic fragment ions 674 

in MS2 experiments and relative abundance of lipids are shown. For interpretations of mass 675 

spectra see main text. Abbreviations: AR, glycerol diphytanyl diether (archaeol); Ext-AR, 676 

glycerol sesterpanyl-phytanyl diether (extended archaeol); diExt-AR, glycerol disesterpanyl 677 

diether (diextended archaeol); GDGT, glycerol dibiphytanyl glycerol tetraether; GDD, glycerol 678 

dibiphytanol diether; BDGT, butanetriol dibiphytanyl glycerol tetraether; BDD, butanetriol 679 

dibiphytanol diether; 1G, monoglycosyl; 2G, diglycosyl; 3G, triglycosyl; 1Hp, monoheptose; 680 

PG, phosphatidylglycerol; 1MeOG, methoxyglycosyl.  681 

Table 2. Percentage of core BDGTs relative to total isoprenoidal core tetraethers 682 

[BDGTs/(BDGTs + GDGTs) x 100] in selected sediment samples (n.d., not detected). 683 

Detailed information on sampling sites has been published in Liu et al. (31, 88). 684 

Fig. 1. Phylogenetic tree of archaea, including methanogens and clades found in marine 685 

sediments, and the major core lipids described for cultivated and enriched representatives. 686 

Lipid data of Methanomassiliicoccales from this study, for other cultivated archaea from 27, 687 

79, 89–93 and for ANME enrichments from 94, 95. The maximum likelihood tree is derived 688 

from nearly full-length 16S rRNA gene sequences. Bootstrap values (1000 replicates) were 689 

calculated to verify branch support (● ≥ 95 %; ○ >80%). The scale bar indicates substitutions 690 

per site. Abbreviations: MG-II, Marine Group II, DHVEG-2, Deep-Sea Hydrothermal Vent 691 

Euryarchaeota Group 2; TMEG, Terrestrial Miscellaneous Euryarchaeota Group; MBG, 692 

Marine Benthic Group; MG, Marine Group; ANME, anaerobic methanotroph; MCG, 693 

Miscellaneous Crenarchaeotal Group; GDGT, glycerol dibiphytanyl glycerol tetraether; 694 

GTGT, glycerol trialkyl glycerol tetraether; GDD, glycerol dibiphytanyl diether; BDD, 695 

butanetriol dibiphytanyl diether; BDGT, butanetriol dibiphytanyl glycerol tetraether; PDGT, 696 

pentanetriol dibiphytanyl glycerol tetraether; Uns, unsaturated; Ext, extended, OH, hydroxy; 697 

M, macrocyclic; MeO, methoxy; Me, methylated; H, H-shaped. 698 
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Fig. 2. Molecular structures of all identified intact polar and core lipids in 699 

Methanomassiliicoccus luminyensis. Lipids include glycerol diphytanyl diether (archaeol), 700 

glycerol sesterpanyl-phytanyl diether (extended archaeol), glycerol disesterpanyl diether 701 

(diextended archaeol), glycerol dibiphytanyl glycerol tetraether (GDGT), glycerol dibiphytanol 702 

diether (GDD), butanetriol dibiphytanyl glycerol tetraether (BDGT), butanetriol dibiphytanol 703 

diether (BDD), pentanetriol dibiphytanyl glycerol tetraether (PDGT) core lipids and saturated 704 

and unsaturated C45 and C50 polyprenols with up to one double bond per isoprenoid unit. 705 

BDGT and PDGT core lipids with one and two cyclopentyl moieties are also shown. Intact 706 

polar lipids consist of di- and tetraether core lipids attached to a polar head group.  707 

Fig. 3. Reversed phase HPLC-MS analyses of M. luminyensis TLE showing (a) extracted ion 708 

chromatogram of all identified lipids (including C46-GTGT injection standard) and (b) density 709 

map plot allowing three-dimensional view on chromatographic separation and mass-to-710 

charge ratio (m/z) with intensity on the z-axis (from low intensities indicated by white colors to 711 

intermediate intensities indicated by blue color and high intensities indicated by red color). 712 

Lipid nomenclature designates combinations of core lipid types (AR, archaeol; Ext-AR, 713 

extended-AR; diExt-AR, diextended-AR; GDGT, glycerol dibiphytanyl glycerol tetraether; 714 

GDD, glycerol dialkanol diether; BDGT, butanetriol dibiphytanyl glycerol tetraether; BDD, 715 

butanetriol dibiphytanol diether) and head groups (PG, phosphatidylglycerol; 1G, 716 

monoglycosyl; 2G, diglycosyl; 3G, triglycosyl; PG, phosphatidyl glycerol; 1Hp-1G, 717 

monoheptose-1G; 1G-PG; 1Hp-1G-PG; 1MeOG-1G, methoxy-1G; 1MeOG-2G). For 718 

structures of lipids see Fig. 2. 719 

Fig. 4. MS2 spectra of ammoniated ([M+NH4]+) 1Hp-1G-BDGT (m/z 1687.5) and 1MeOG-1G-720 

AR (m/z 1078.9), respectively. The chemical structures and the formation of major product 721 

ions are also drawn. The glycerol extension in the BDGT structure is either located at sn-1 or 722 

sn-3 positions of the glycerol. Both, 1MeOG and 1Hp head group structures have only been 723 

tentatively identified based on their exact mass in full scan and MS2 experiments and their 724 

full characterization requires further structural elucidation. However, for example for the peak 725 
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at m/z 1078.9 [M+NH4]+ we observed a dominant fragment ion associated with core Ext-AR 726 

(62) in the MS2 spectrum, resulting from a neutral loss of 1G + 176.1 Da + NH3 and likely 727 

indicating a methylated dihexose head group (96). We interpreted the spectrum to represent 728 

a 1MeO-1G-Ext-AR. Similarly, we observed a loss of 2G + CH2O + NH3 (354.1 Da) and 729 

BDGT core lipid fragment ions (37, 38) for the peak at m/z 1687.3 [M+NH4]+ and tentatively 730 

identified this IPL as heptose-containing lipid, 1Hp-1G-BDGT. The polar head group is either 731 

located at the glycerol or butanetriol moiety. 732 

Fig. 5. (a) Magnified section of density map plot in the tetraether area showing the major 733 

diagnostic ions of butanetriol and corresponding solely glycerol containing lipids in the TLE of 734 

M. luminyensis, analyzed by RP-HPLC-MS. (b) and (c) show MS2 spectra of sodiated 735 

([M+Na]+) core BDGT (m/z 1338.3) and 1G-BDGT (m/z 1500.4), respectively. BDGT spectra 736 

match those shown by Zhu et al. (37) and Knappy et al. (38). The glycerol extension in the 737 

BDGT structure is either located at sn-1 or sn-3 positions of the glycerol and the polar head 738 

group of intact BDGTs is either located at the glycerol or butanetriol moiety. 739 

Fig. 6. (a) Relative abundance of different head groups in the TLE of M. luminyensis. (b) 740 

Relative abundance of core lipids in the TLE, acid hydrolyzed TLE and acid hydrolyzed 741 

biomass of M. luminyensis. For the TLE, free and head group-bound core lipids were 742 

considered. For chemical structures and abbreviations see Fig. 2. 743 
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Compound m/z ([M+H]+; [M+NH4]+; [M+Na]+) 
Characteristic 

fragment ions in MS2 
Retention 
time (min) 

Relative lipid 
abundance (%) 

GDD 1246.2965; 1263.3230; 1268.2784 669.7 23.0 0.3 

BDD 1260.3121; 1277.3387; 1282.2940 683.7 23.2 0.3 

GDGT 1302.3227; 1319.3492; 1324.3046 743.7 24.5 1.3 

BDGT 1316.3383; 1333.3649; 1338.3203 757.7 24.8 2.1 

1G-GDGT 1464.3755; 1481.4020; 1486.3574 1302.3; 743.7 23.5 3.0 

1G-BDGT 1478.3911; 1495.4177; 1500.3731 1316.3; 757.7 23.6 6.7 

PG-BDGT 1470.3414; 1487.3680; 1492.3234 a) 22.8 19.0 

1G-PG-BDGT 1632.3943; 1649.4208; 1654.3762 1470.3 22.2 6.8 

1Hp-1G-BDGT 1670.4545; 1687.4811; 1692.4365 1316.3 23.1 13.1 

1Hp-1G-PG-BDGT 1824.4576; 1841.4842; 1846.4396 b) 21.6 6.2 

AR 653.6806; 670.7072; 675.6626 373.4 19.0 0.8 

PG-AR 807.6837; 824.7103; 829.6657 733.6; 537.4 14.8 0.8 

1G-Ext-AR 885.8117; 902.8382; 907.7936 373.4; 443.5; 723.8 19.3 1.1 

1G-diExt-AR 955.8899; 972.9165; 977.8719 443.5; 793.8 21.1 0.4 

1MeOG-1G-Ext-AR 1061.8802; 1078.9067; 1083.8621 373.4; 443.5; 723.8 19.0 5.5 

2G-Ext-AR 1047.8645; 1064.8911; 1069.8465 373.4; 443.5; 723.8 18.4 6.1 

1MeOG-1G-diExt-AR 1131.9584; 1148.9850; 1153.9404 443.5; 793.8 20.8 1.3 

2G-diExt-AR 1117.9428; 1134.9693; 1139.9247 443.5; 793.8 20.3 1.7 

1MeOG-2G-Ext-AR 1223.9330; 1240.9595; 1245.9149 373.4; 443.5; 723.8 18.6 4.9 

3G-Ext-AR (a) 1209.9173; 1226.9439; 1231.8993 373.4; 443.5; 723.8 17.5 0.6 

3G-Ext-AR (b) 1209.9173; 1226.9439; 1231.8993 373.4; 443.5; 723.8 18.0 1.4 

1MeOG-2G-diExt-AR 1294.0112; 1311.0378; 1315.9932 443.5; 793.8 20.5 1.6 

3G-diExt-AR (a) 1279.9956; 1297.0221; 1301.9775 443.5; 793.8 19.5 0.3 

3G-diExt-AR (b) 1279.9956; 1297.0221; 1301.9775 443.5; 793.8 20.0 0.5 

C50:1 - C50:10 polyprenols 699.6-717.8; 716.7-734.8; 721.6-739.8 loss of H2O (-18.0 Da) 18.1-22.6 8.5 

C45:0 - C45:9 polyprenols 631.6-649.7; 648.6- 666.7; 653.6-671.7 loss of H2O (-18.0 Da) 16.4-21.7 5.6 
a) fragmentation not fully resolved  

b) no MS2 data available   

 



Cruise Site and Core 
Sediment 
depth (m) 

Total organic 
carbon (wt%) % BDGTs 

M76/1 GeoB12806-2 0.1 8.9 n.d. 

(Namibia Margin) GeoB12807-2 3.1 7.4 0.21 

     

ODP201 1229D 4H4 30.7 4.7 0.36 

(Peru Margin) 1229A 22H1 185.9 0.47 3.5 

     

ODP201 1226B 10H3 83.8 1.1 n.d. 

(Equatorial Pacific) 1226E 20H3 320 0.28 n.d. 

     

ODP204 1250D 6H5 43.5 0.96 1.1 

(Hydrate Ridge) 1250D 12H5 100.3 1.3 0.12 

     

IODP311 1237C 10H5 79.8 0.64 n.d. 

(Cascadia Margin) 1237C 13C6 109.8 0.56 0.21 

     

ODP 160 966C 5H02 40 5.7 0.81 

(Mediterranean Sapropel) 966C 7H04 65 7.4 0.34 
 


