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Abstract: The structure and behavior of horizontal acoustic modes for
a three-dimensional idealized model of a shelf-slope front are examined
analytically. The Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) method
is used to obtain convenient simple expressions and to provide physical
insight into the structure and behavior of horizontal modes as trapped,
leaky, or transition types. Validity regions for WKBJ expressions in
terms of slope and frontal parameters are found, and outside the regions
the asymptotic formulas for large order and large argument Hankel
functions are used. These combined approximations have very good ac-
curacy as shown by comparisons with numerical solutions for modal
shapes and horizontal wavenumbers.
VC 2016 Acoustical Society of America
[DRD]
Date Received: September 28, 2015 Date Accepted: March 2, 2016

1. Introduction

Recent research in shallow water ocean acoustic propagation examines the influences
of three dimensional (3-D) ocean feature models, such as the idealized coastal front
model of Lin and Lynch.1 The motivation for this paper is to demonstrate how ocean
environment variability that is characterized by feature model parameters can affect
acoustic quantities. One approach is to use numerical computations with different pa-
rameter values, but the relevant parameter ranges can be large. Another approach is to
find accurate approximate formulas which determine how acoustic quantities depend
on model parameters, with Ref. 2 containing a classic illustration for a 2-D model.
Such formulas are useful for sensitivity investigations and for revealing physical
insights into feature influences that are hidden in computations. The objective of this
paper is to illustrate, for the feature model in Ref. 1, an approximation approach that
lays the foundation for determining how acoustic quantities of interest depend on fea-
ture parameters.

The 3-D coastal front model1 is sketched in Fig. 1(a), with cylindrical coordi-
nates ðr; h; yÞ, where the y-axis is the shoreline and the curved front is r ¼ rI . Other
model parameters are an assumed constant density q, constant sound speeds c1
(inshore), and c2 (offshore) on either side of the front, and a constant bottom slope
angle a. The shallow ocean lies inside the wedge with a pressure release surface and a
hard reflecting bottom.

The approximation approach for normal mode quantities emphasizes the
Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) method. This technique has been widely
used in ocean acoustics, as in approximating mode functions in 3-D wedge geometry,3

and acoustic fields near caustics.4 Asymptotic approximations are also used to simplify
expressions containing large order and large argument Hankel/Bessel functions.5 The
results illustrate the accuracy of approximations for both horizontal wavenumbers and
mode shapes. This paper is a step toward the eventual goal of using such approxima-
tions to find convenient and accurate formulas for determining the sensitivity of acous-
tic quantities to parameter variations, both in this coastal slope front model and others
such as internal waves6 and seamounts.7

2. Review of previous analytical solution

Throughout this section the approach in Ref. 1 is followed. The acoustic pressure in
the wedge resulting from an inshore point source of one frequency f at location
ðr0; h0; 0Þ is expressed by the Fourier integral
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P r; h; yð Þ ¼ 1
2p

ð1
�1

G r; h; ky
� �

eikyydky (1)

with horizontal (along-front) wavenumber ky and Green’s function G. An analytical
expression for the solution P for large y is found by a method used in the problem
with no front.8 The function G is obtained using separation of variables and the end-
point method. The integral in Eq. (1) is approximated in the far field by using the
Pekeris branch cut in the ky-plane, neglecting branch line integrals, and evaluating the
residues at poles. The result corresponds to Eq. (9) of Ref. 1:

Pðr; h; yÞ �
X

n

X
m

QnmUnðh0ÞWnmðr0; ky;nmÞUnðhÞWnmðr; ky;nmÞeiky;nmy; (2)

where Un and Wnm are angular and radial modes, n and m are the angular and radial
mode numbers, and Qnm is a normalization constant for Wnm. The boundary conditions
of a pressure release surface ½Unð0Þ ¼ 0� and a hard reflecting bottom ½U0nðaÞ ¼ 0� pro-
duce UnðhÞ ¼

ffiffiffiffiffiffiffiffiffiffi
2=ap

p
sin ðgnhÞ , with the angular wavenumber gn ¼ ðp=aÞðn� 1=2Þ.

The radial modes Wnm are solutions to

1
r

d
dr

r
dWnm r; ky;nm

� �
dr

� �
þ k2

j � k2
y:nm �

g2
n

r2

� �
Wnm r; ky:nm

� �
¼ 0; (3)

where kj is the medium wavenumber and j denotes the inshore ðj ¼ 1; r < rI Þ or off-
shore ðj ¼ 2; r > rI Þ region. The solution Wnm satisfies the boundary and interface
conditions of finiteness at r ¼ 0, a Sommerfield radiation condition as r!1, and con-
tinuity with continuous derivative at r ¼ rI :

WnmðrÞ ¼
Jgn
ðkr1;nmrÞ; rI � r � 0;

ðJgn
ðkr1;nmrI Þ=Hð1Þgn

ðkr2;nmrI ÞÞHð1Þgn
ðkr2;nmrÞ; r � rI ;

(
(4)

where krj;nm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

j � k2
y;nm

q
. The dispersion relation for ky is a complicated formula

involving Hankel functions [Ref. 1, Eq. (5)], an equivalent form of which is

Fig. 1. (Color online) (a) Geometry of shelf-slope model and cylindrical coordinate system ðr; h; yÞ. Reference
parameter values are rI ¼ 4000 m, a ¼ 3�, f ¼ 25 Hz, c1 ¼ 1500 ms�1, and c2 ¼ 1520 ms�1. Based on figure
from Ref. 1. (b) Sketch of radial mode types and behavior on both sides of the front, showing Reðk2

yÞ versus

scaled range x ¼ ðr=gÞ2 for angular wavenumber g. For n ¼ 1 (shown), mode types are trapped [or whispering
gallery (WG)] for k�1 > ky > k2; transition (TR) for k2 > ky > k�2; and leaky for k�2 > ky > 0. This example is
appropriate for the reference parameter values. For cases n � 2, k2 is greater than k�1 , so no WG region occurs.

DeCourcy et al.: JASA Express Letters [http://dx.doi.org/10.1121/1.4954881] Published Online 7 July 2016

J. Acoust. Soc. Am. 140 (1), July 2016 DeCourcy et al. EL21

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  128.128.44.104 On: Mon, 01 Aug 2016 15:06:29

http://dx.doi.org/10.1121/1.4954881


kr1;nm
J 0gn

kr1;nmrIð Þ
Jgn

kr1;nmrIð Þ
¼ kr2;nm

H 1ð Þ
gn

0 kr2;nmrIð Þ
H 1ð Þ

gn
kr2;nmrIð Þ

: (5)

The dependence of the eigenvalues ky;nm on model parameters from Eq. (5) is opaque,
motivating the use of approximation methods.

3. Approximations of the normal modes and dispersion relation

Our eventual goal is to determine how model parameter variations influence acoustic
quantities. An intermediate step after this paper is to find convenient formulas
expressing the parameter variations of the wavenumbers ky;nm (or the modal phase
speeds 2pf =ky;nm). To obtain such formulas from a simplified dispersion relation, ap-
proximate formulas are first found for radial mode functions W (mode numbers n
and m are subsequently dropped on W; krj; ky; and g). Equation (3) is transformed
using BðrÞ ¼ r1=2WðrÞ, yielding

ðg2 � 1=4Þ�1B00 � qjðrÞB ¼ 0; qjðr; kyÞ ¼ r�2 � ðg2 � 1=4Þ�1k2
rj: (6)

The first approximation will be to replace ðg2 � 1=4Þ�1 with g�2. This is a good
approximation, because g2 � 900� 1=4 for the reference parameters in Fig. 1(a).

Simple approximations for solutions to Eq. (6) can be found over regions
where the function qj does not change sign, having either exponential ðqj > 0Þ or oscil-
latory ðqj < 0Þ behavior. Where qj changes sign a turning point in r occurs at
r ¼ 1=g�2krj 	 rtj , and separates exponential from oscillatory modal behavior. The
possible behaviors of BðrÞ are illustrated in Fig. 1(b) for representative parameter val-
ues. The horizontal axis represents a scaled distance x ¼ ðr=gÞ2 from the apex of the
wedge, with the vertical line at x ¼ xI denoting the front location. The vertical axis
represents the real part of k2

y. Although ky can be complex, the imaginary part is small
compared with the real part as will be seen later. The two solid curves qj ¼ 0 in Fig.
1(b) show locations of turning points inshore (left) and offshore (right) of the front.

Inshore, all radial modes have the same characteristics of exponential decay
closer to shore and oscillations closer to the front as suggested by Fig. 1(b). The modes
that decay exponentially offshore are trapped and are whispering gallery (WG) modes,
which have no decay in the along-shore y direction. Modes that are oscillatory every-
where offshore are leaky with small but non-negligible decay in y. Some modes possess
both exponential and oscillatory behavior offshore and are called transition (TR)
modes, which require more care to approximate. Because trapped acoustic energy and
oscillatory behavior are required for modes in some inshore region, q1 must be nega-
tive there. Therefore, the largest value of ky for any such mode is k�1 where

q1ðrI ; k�1Þ ¼ 0, which imposes an upper bound on ky: ky <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

1 � g2=r2
I

q
	 k�1:

Inshore of the front ðr < rI Þ all modes are approximated by the WKBJ solu-
tion to Eq. (6) with a turning point9 at rt1 < rI :

WinshoreðrÞ 
 ð2pgÞ�1=2½1� ðkr1r=gÞ2��1=4e�gr1ðrÞ; rt1 � r � 0;
ð2pgÞ�1=2½ðkr1r=gÞ2 � 1��1=4 sinðgj1ðrÞ þ p=4Þ; rI � rt1:

(
(7)

In Eq. (7) the functions r1 and j1 are defined by

rj rð Þ ¼ log
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

j r2
q

ajr

0
@

1
A� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2
j r2

q
; jj rð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

j � 1
q

� cos�1 1
bjr

 !
; (8)

and constants bj ¼ krj=g, for j ¼ 1, and the same definitions apply for j ¼ 2.
Offshore of the front, there are three cases: (A) q2 > 0 for all r > rI (leaky

modes), (B) q2 < 0 for all r > rI (trapped), or (C) q2 ¼ 0 for some r > rI (transition).
In cases (A) and (B) for which no offshore turning point exists, the WKBJ method is
used.9 The radiation condition for large r and mode continuity with Eq. (7) at the
front r ¼ rI is imposed, leading to the radial mode approximations

Wtrapped rð Þ 
 g2 � k2
r2r2

I

k2
r1r2

I � g2

 !1=4
sin gj1 rIð Þ þ p=4
� �

egr2 rIð Þ

2
4

3
5 ffiffiffiffiffiffi

2
pg

s
1� k2

r2

g2 r2

 !�1=4

egr2 rð Þ; (9)
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Wleaky rð Þ 
 k2
r2r2

I � g2

k2
r1r2

I � g2

 !1=4
sin gj1 rIð Þ þ p=4
� �

eigj2 rIð Þ

2
4

3
5 ffiffiffiffiffiffi

2
pg

s
k2

r2

g2 r2 � 1

 !�1=4

eigj2 rð Þ: (10)

The WKBJ solutions are valid for9

krj jr� rtjj � g1=3: (11)

In case (C) there is a turning point that requires k�2 < ky < k2 where

q2ðrI ; k�2Þ ¼ 0, and k�2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

2 � g2=r2
I

q
is a lower bound for ky. Because Eq. (11) gener-

ally does not hold close to the front location, asymptotic approximations of Hankel
functions are used instead of the WKBJ solutions. Because both the order and argument
of the Hankel and Bessel functions in Eq. (4) are large, the following TR mode expres-
sion can be derived by first applying large order, large argument Bessel and Hankel
function approximations, and then using a large order Airy function approximation,10

WtransitionðrÞ 

qtð2=pgÞ1=2½1� ðkr2r=gÞ2��1=4 sinðp=4� igr2ðrÞÞ; rt2 � r � rI ;

qtð2pgÞ�1=2½ðkr2r=gÞ2 � 1��1=4e�ip=4eigj2ðrÞ; r � rt2;

(
(12)

where

qt ¼
g2 � k2

r2r2
I

k2
r1r2

I � g2

 !1=4
sin gj1 rIð Þ þ p=4
� �

sin p=4� igr2 rIð Þ
� � : (13)

To obtain approximations to the dispersion relation for each mode type, the
interface condition of smoothness at r ¼ rI is applied to the approximations in Eqs.
(7)–(10) and Eqs. (12), (13). After lengthy algebra, identical dispersion relations arise
for the trapped and leaky modes, along with another relation for transition modes,

Trapped and leaky modes : tan gj1 rIð Þ �
p
4

� �
¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

r2r2
I � g2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

r1r2
I � g2

q þO g�2
� �

; (14)

Transition modes: tan gj1 rIð Þ�
p
4

� �
¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

r2r2
I �g2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

r1r2
I �g2

q cot
p
4
� igr2 rIð Þ

� �
þO g�2

� �
: (15)

4. Accuracy of approximations

To examine the accuracy of results in Sec. 3, wavenumber solutions to the approximate
dispersion relations given by Eqs. (14) and (15) are compared to high-accuracy values
of ky from Eq. (5). In addition, radial mode approximations Eqs. (7)–(10) and Eqs.
(12), (13) are compared to high-accuracy evaluations of the exact solution Eq. (4).

In Fig. 2(a) high-accuracy wavenumbers for the parameters used in Fig. 1 are
plotted for angular modes n¼ 1 (circles), 2 (triangles), and 3 (squares) in the complex
ky–plane, along with their corresponding approximations (crosses). The vertical dashed
lines represent ReðkyÞ ¼ k�2 for n ¼ 1; 2; and 3, and highlight the turning point in ky
that separates the leaky modes on the left from the TR modes on the right. The solid
vertical line represents ReðkyÞ ¼ k2, which separates WG modes on the right from TR
and leaky modes on the left. For n ¼ 1 the agreement is excellent for the nine WG
modes, two TR modes, and all the leaky modes shown. For n ¼ 2 there are no WG
modes, and the agreement is excellent for all but one of the leaky modes shown and
one of the three TR modes. For the two modes for which the agreement is less than
excellent, the real parts are still very close, and the much smaller imaginary parts agree
to about two significant digits. These two modes are close to the dashed vertical line
which represents ReðkyÞ ¼ k�2, which is the spectral location of a turning point. The sit-
uation is similar for n ¼ 3, with three leaky modes shown and two TR modes. One of
the latter occurs almost exactly at the turning point, so its imaginary part has a signifi-
cant relative error. Thus, apart from wavenumbers that are very close to k�2, the
approximations are very accurate and should be adequate for examining parameter
dependence.

Another accuracy test is to compare exact and approximate interference wave-
lengths for adjacent modes, Km;mþ1 ¼ 2p=Reðky;m � ky;mþ1Þ. Figure 2(b) shows Km;mþ1
versus m for n ¼ 1, and illustrates the close agreement between the exact solution
(circles) and the approximation (crosses). Figure 2(c) shows the relative percentage
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error of the approximation which is very small and less than 1% excepting one pair of
modes (the last transition and first leaky).

Comparisons are shown in Fig. 3 for three radial modes for n ¼ 1, with the
evaluation of analytic solutions shown as thick lines and approximate solutions shown
as thin. All expected properties are visible in the real parts: the WG mode [m ¼ 4, Fig.
3(a)] is trapped inshore of the front; the energy-leaking TR mode [m ¼ 11, Fig. 3(c)]
changes from exponential to oscillatory offshore; oscillations of the leaky mode
[m ¼ 15, Fig. 3(e)] become slower across the front from inshore to offshore.
Agreement between thick and thin curves is excellent except in small regions demar-
cated by circles around inshore and offshore turning points (shown as crosses). The
circles are defined by equality in Eq. (11), to specify where the asymptotic approxima-
tions are used. Analogous remarks apply for the corresponding imaginary parts: the
WG mode [m ¼ 4, Fig. 3(b)] has no imaginary part; the TR mode [m ¼ 11, Fig. 3(d)]
shows hybrid behavior; and the leaky mode [m ¼ 15, Fig. 3(f)] has a substantial imagi-
nary part. The imaginary parts of the approximations, like the real parts, have essen-
tially no disagreement with the exact solutions except near the turning points in r.

In summary, the approximate modal solutions are excellent matches to the
exact analytic solutions, except near turning points in range and for modes associated
with wavenumbers ky that are very close to curves separating transition and leaky
modes.

5. Conclusion

The modal solutions of an idealized model of an oceanic front over a sloping bottom
are analyzed using the WKBJ method and large order, large argument asymptotic

Fig. 3. (Color online) Comparison between approximate (thin curves) and exact (thick curves) real and imagi-
nary parts of radial mode functions versus range r for parameter values in Fig. 1. The vertical line at rI ¼ 4000
m represents the front. Real parts for (a) WG mode m ¼ 4, (c) TR mode m ¼ 11, and (e) leaky mode m ¼ 15,
and corresponding imaginary parts in (b), (d), and (f). Approximate mode shapes are seen to be excellent
approximations to exact shapes, except in narrow range interval bounded by two circles and containing a turn-
ing point (cross) where approximation is invalid.

Fig. 2. (Color online) Parameter values as for Fig. 1. (a) Comparison between approximate (crosses) and high-
accuracy (symbols) real and imaginary parts of wavenumbers ky, for n ¼ 1 (circles), 2 (triangles), and 3
(squares). Three dashed lines for n ¼ 1; 2; and 3 represent ReðkyÞ ¼ k�2, the maximum real ky value for leaky
modes. These turning points separate leaky modes (left of line) from transition modes (right of line), with the
right-most line corresponding to n ¼ 1 and left-most to n ¼ 3. (b) Interference wavelength Km;mþ1 for adjacent
modes and n ¼ 1, showing exact values (circles) and approximations (crosses). (c) Relative percentage error of
the interference wavelength approximations in (b).
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approximations for Hankel functions. The dispersion relation that specifies horizontal
modal wavenumbers ky is also approximated, from which accurate ky values can be
found. It is shown that the spectrum of real ky values is divided into three regions
associated with distinct mode types: trapped or whispering gallery, leaky, and transi-
tion, and that the associated approximate mode functions provide insights into their
different physical behaviors. The approximate dispersion relation formula is the same
for both trapped and leaky modes, while the result for transition modes is somewhat
more complicated. For both trapped and leaky modes, the radial mode shapes and the
horizontal wavenumbers agree very well with results from high accuracy numerical sol-
utions. These approximations will be used in future work to derive convenient and
accurate approximations for parameter dependence of modal wavenumbers, modal
phase speed, and other acoustic quantities.
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