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    Understanding the timing of extinction events is 
of interest to both paleobiologists concerned with 
macroevolutionary processes and patterns and ecol-
ogists concerned with the dynamics and conservation 
of threatened populations. In both cases, it is com-
mon that the only information available for inference 
about the extinction time of a species is a record 
of its sightings. For ancient species, these sightings 
typically consist of fossil fi nds, while for modern 
species they may consist of live or recently live 
specimens, other kinds of physical evidence, or visual 
sightings. 

 Numerous methods have been proposed for inference 
about extinction time based on a sighting record in 
both the paleobiological literature (e.g., Strauss and 
Sadler  1989 , Solow  1996 ) and the ecological literature 
(e.g., Solow  1993 , Rivadeneira et al.  2009 ). These 
methods differ in the underlying statistical model of 
the sighting record and also in whether a Bayesian 
or non- Bayesian approach is taken. The purpose of 
this note is to comment on a Bayesian method recently 
proposed by Alroy ( 2014 ). In developing this method, 
Alroy eschewed the usual approach of laying out a 
statistical model and applying Bayesian tools to it in 
favor of less formal exposition. This is not by itself 
a problem, but it can leave a reader (like me) some-
what confused. Here, I will return to the usual ap-
proach to clarify what Alroy ’ s method is aimed at, 
to raise some technical issues with its implementation, 
and to provide a standard Bayesian approach to the 
same problem that avoids these issues. 

 The situation considered by Alroy is as follows. A 
time interval (or stratigraphic section) is divided into 
equal subintervals 1, 2, …. The unknown extinction time 
 τ   E   is defi ned as the earliest subinterval following 
 extinction. Let  τ   j   be the event that  τ   E   =  j  with prior 
probability  π   j  , and let  T   j   be the event that  τ   E   ≤  j . 
Each subinterval is observed to contain either no 
sighting or at least one sighting. I will refer to the 
latter subintervals as occupied. The probability that 

subinterval  j  is occupied is  p  if  j  <  τ   E   and 0 if  j  ≥  τ   E  . 
Let  m  be the most recent occupied subinterval. Finally, 
let  s   j   be the partial sighting record through subinterval 
 j . 

 Alroy was interested in fi nding the posterior prob-
ability of  τ   m + j   (or  T   m + j  ) given  s   m + j  . To lay out a standard 
Bayesian approach, I will begin by focusing in some 
detail on the case  j  =   1. By Bayes’ Theorem

  (1)       

  The partial sighting record  s   m +1  is the augmentation 
of  s   m   by the event  u   m +1  that subinterval  m  + 1 is 
unoccupied, so that

  (2)       

  Also:

  (3)       
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 k  >  m  + 1, it follows that

  (4)       

  Retaining my notation  p  for the pre- extinction per- 
subinterval sighting probability, Alroy ( 2014  p. 587) 
gave the result

  (5)       

with  ε  1  and  E  described as the posterior and prior 
probability of  τ   m +1 . This agrees with Eq.  4  if  E  is the 
conditional probability pr( τ   m +1 | τ   E   >  m ). Note that, 
 because it involves  m , Alroy ’ s prior probability  E  is 
posterior to the sighting record .

 By the same argument leading to Eq.  4 , it can be 
shown that

  (6)            

  With the above interpretation of his notation, this 
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calculation in Alroy ( 2014 : 587). The posterior prob-
ability in Eq.  6  is  sequential  in the sense that it is 
conditional only on the observations through sub-
interval  m  +  j . In a  retrospective  setting involving 
inference about  τ   E   based on the entire sighting record, 
the probability of interest is

  (7)       

where  m  +  j  is the last subinterval before the present. 
The posterior probabilities in Eqs  6  and  7  only co-
incide when  j  =  T . This refl ects the fact that the 
entire sighting record provides information about ex-
tinction at or before  m  +  j  beyond that in the partial 
sighting record up to  m  +  j . 

 As a simple example of the difference between se-
quential and retrospective results, the years in which 
sightings of the Dodo ( Raphus cucullatus ) were made 
on an island off Mauritius are 1598, 1601, 1602, 1607, 
1611, 1628, 1631, 1638, and 1662 (Roberts and Solow 
 2003 ) and suppose that interest centers on the posterior 
probability that extinction occurred no later than 1672 
(i.e., 10 yr after the last sighting). Take 1598 as the 
beginning of the observation period and omit the initial 
sighting from the record. The corresponding values of 
 m  and  T  are 64 and 353, respectively, and the event of 
interest is  T   m +10 . Take the values of  p  to be 0.11 and 
  𝜋

j
=

1

m+T
=0.0024, j=1,2,… ,m+T    . From Eq.  6 , the 

sequential posterior probability pr( T   m +10 | s   m +10 ) is 0.055. 
From Eq.  7 , the retrospective posterior probability pr( T-
   m +10 | s   m + T  ) is 0.688. The former is what a person in 1672 
would have concluded about the  extinction of the Dodo, 
while the latter is what a person today would conclude 
about the extinction of the Dodo by 1672. I will return 
to this example below using a more appropriate prior 
distribution for extinction time. 

 This discussion is intended as a clarifi cation of what 
Alroy did and not a criticism of the sequential  approach. 
There certainly are situations in which the sequential 
approach is called for; for example, in monitoring a 
conservation or pest eradication program. However, 
in cases (such as the Dodo) where the entire sighting 
record is available, a good reason must be had not 
to use it. 

 I will now turn to Alroy ’ s implementation of the 
sequential approach. The discussion applies equally to 
the retrospective approach. These calculations require 
the specifi cation of the pre- extinction sighting proba-
bility  p . Alroy ( 2014 : 286) proposed estimating  p  by 
the proportion of subintervals between the earliest and 
latest occupied subintervals that are occupied, and then 
treating the estimate as correct. For the Dodo sighting 
record, this estimate is   7

63
=0.11    . This approach fails 

to account for uncertainty in  p . As a practical matter, 
ignoring this uncertainty will not be a problem when 

it is small, but this is not always the case. In inference 
about extinction,  p  is a so- called nuisance parameter. 
A standard approach, common to both Bayesian and 
non- Bayesian statistics, is to eliminate  p  by conditioning 
on the number  n  of occupied subintervals in the sight-
ing record, this number being a suffi cient statistic for 
 p  (e.g., Reid  1995 ). Conditional on  n , the likelihood 
is given by

  (8)       

  The combinatorial term in Eq.  8  is the number of 
ways that  n  of  m  +  j −1 pre- extinction subintervals 
can be occupied, these ways being equally likely. It 
follows that the posterior sequential extinction prob-
ability conditional on  n  is

  (9)       

  In the example involving the Dodo, the use of Eq.  9  
instead of Eq.  6  increases the posterior probability 
only slightly to 0.057. 

 A more interesting issue concerns the prior distribution 
of extinction time. As noted, Alroy worked with the 
posterior distribution of  τ   E   given that  τ   E   >  m . He took 
this distribution to be exponential and chose the 
 parameter to ensure that   pr

(
𝜏
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<m+r|𝜏

E
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)
=0.5   , 

where  r  is the observed range (Alroy  2014 : 586) or an 
estimate of the true range (Alroy  2014 : 587) or twice 
an estimate of the true range (Alroy  2014 : 588) of the 
species. Alroy ’ s approach here is unusual in the sense 
that it does not separate the prior specifi cation from 
the data. More importantly, although it appears to be 
connected to the notion of a non- informative prior, he 
gave no clear justifi cation for this choice of the expo-
nential parameter. 

 The standard Bayesian approach in this situation 
is to adopt a prior distribution for extinction time 
conditional on the value of a parameter and then to 
integrate this conditional prior distribution over a prior 
distribution for the parameter. This is the essence of 
the so- called hierarchical Bayes approach. As time or 
stratigraphic position is treated here as discrete, it is 
natural to take the conditional prior distribution of 
 τ   j   to be geometric so that

  (10)       

where  q  is the per- subinterval extinction probability. 
In the absence of prior information, it is also natural 
to adopt a uniform distribution for  q  with probability 
density function:
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  (11)       

  The sense in which this is non- informative is clear: a 
priori, all possible values of  q  are equally likely. It 
follows that

  (12)       

  which is a special case of the Yule- Simon distribution 
(Simon  1955 ). Other choices of  f ( q ) or, more generally, 
of specifying  π   j   are also possible. 

 Returning to the example of the Dodo, in this 
case,  r  =   64, and Alroy ’ s method takes 
  𝜋

m+j
=0.011exp(−0.011 (m+ j))    : or, by virtue of the 

memoryless property of the exponential distribution, 
  pr
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=0.011exp(−0.011j)   . The corresponding 

posterior probability pr( T  10 | n ,  s   m +10 ) given by Eq.  9  is 
0.19. If  instead, the standard Bayesian approach is 
used,   𝜋

m+j
=1∕((m+ j) (m+ j+1))    and pr( T  10 | n ,  s   m +10 ) is 

0.28. It cannot be said that one of these is right and 
the other wrong. The point is that the choice of prior 
distribution matters and the one in Eq.  12  has a clear 
justifi cation. 

 In summary, to a reader lacking Alroy ’ s intuition, the 
method he proposed is something of a black box. The 
purpose of this comment has been to open this box. 
Doing so has clarifi ed (a) that this method produces se-
quential extinction probabilities; (b) that it treats an estimate 
of the sighting probability as correct; (c) that the prior 
distribution of extinction time on which it is based is 
actually posterior to the sighting record, and (d) that the 
specifi cation of this distribution is without a clear justifi -
cation. In contrast, the standard Bayesian approach (the 
results of which are summarized in Eqs  9  and  12 ) addresses 
the same problem in a straightforward and transparent 
way, and there is something to be said for sticking with 
it unless it can be shown to be inferior.  
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      Corresponding Editor: P. de Valpine      The purpose of  Solow 
( 2016 )  is to comment on a recently published method 
of mine (Alroy  2014 ). It also presents two new Bayesian 
methods of inferring extinction. These methods, like 
several others, are based on ecological or paleonto-
logical observations such as the monk seal sightings 
reported by  Solow (1993 a )  or the dodo sightings listed 
by Roberts and Solow ( 2003 ). 

 Solow fi rst proposes a retrospective equation (number 
7) that uses fi xed per- interval sampling probabilities de-
rived from the observed data. Solow goes on to develop 
a second, sequential equation (number 9) that is instead 
based on combinatorial computations. He notes that in 
his view a “good reason” must be given to use sequential 
inference—i.e., inference based only on the data observed 
up to a time interval in the past that is of interest—when 
an entire sighting record could be used instead. 

 Neither of the new equations produce superior 
results. 

 This fact can be shown by applying Solow ’ s equations 
to two Monte Carlo simulation data sets reported by 
Alroy ( 2014 ), each of which summarized histories of 
1,000 species observed across 50 time intervals. Extinction 
was assumed to be a geometric process. In one trial of 
interest (Alroy  2014 , Fig. 3A), the per- interval sighting 
rate was 20% and the per- interval extinction rate was 
5%. The latter rate was selected in order to avoid having 
all species go extinct during the trial and to create enough 
extinctions for the process to be visible. In another trial 
(Alroy  2014 , Fig. 3C), the sighting rate was instead 50% 
but there was no extinction (making it possible to test 
for false positives). 

 Solow ’ s two equations perform very differently 
(Fig.  1 ). When cumulative counts are employed, equa-
tion 7 appears to be generally more accurate than 
the others given ongoing extinction (Fig.  1 A). It is 
shown to be extremely aggressive at the end of the 
time series, however, even when there is no extinction 
(compare Fig.  1 A,B). The reason that equation 7 
appears to work well here is that it nearly amounts 
to declaring a species extinct as soon as it is last 
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