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Singh et al. (2016) published a geochemical record of sediment compositions from the 

flood plain of the Ghaggar River in western India and use the changing provenance, 

particularly as traced by Nd isotope composition, to reconstruct how erosion patterns 

have changed over the past 100 k.y. In doing so they propose a link between climate 

change and erosion, and they argue for more erosion from the Higher Himalaya during 

warmer interglacial periods and more from the Lesser Himalaya during glacial intervals. 

While we support the concept of erosion patterns being climatically modulated we here 

take the opportunity to compare the data presented by Singh et al. (2016) to relevant 
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published records within the region greater Ghaggar region and to open a balanced 

discussion on how climate and erosion are coupled in the western Himalaya. 

Singh et al. (2016) show that after the Last Glacial Maximum, and especially after 

14 ka, sediments in their region of the Ghaggar plain exhibit less negative εNd values than 

before that time (Fig. 1). The authors interpret this trend to younger mean crustal age of 

the sources as a switch in the erosion away from the Lesser Himalaya towards the Higher 

Himalaya during the deglaciation. They relate this switch to the extent of glaciation, 

which they imply protected the High Himalayas from strong erosion during the glacial 

times. This observation is unexpected because the development in Nd isotope character in 

the Ghaggar flood plains is the reverse of the trend seen at the Indus delta over the same 

time interval (Clift et al., 2008)(Fig. 1). These opposing trends either imply that the 

Ghaggar catchment has the opposite response to climate change to the neighboring Indus 

basin, which does extend into the High Himalaya, or that other processes are influencing 

the isotopic character at the two boreholes analyzed by Singh et al. (2016). The 

suggestion that the sands analyzed by Singh et al. (2016) may have been deposited by a 

more southward flowing Sutlej River (Sinha et al., 2013)(Fig. 2) would only make the 

contrast with the delta record more profound because the Sutlej does drain both Greater 

and Lesser Himalaya and might be expected to parallel the regional trend. Although the 

Indus, unlike the Sutlej, receives sediment from the Karakoram, which could also 

influence the bulk isotope U-Pb zircon dating from the delta confirms that the change in 

basin-wide sediment composition after 15 ka is caused by a relative increase in sediment 

input from Lesser Himalaya sources (Clift et al., 2008). 



It is noteworthy that the reconstructed Ghaggar isotope trend of Singh et al. 

(2016) is similar both in direction and timing, as well as depth, as that seen at Marot (Fig. 

2), downstream of their drill sites (East et al., 2015), as well as at the much more distant 

section at Kanpur analyzed by Rahaman et al. (2009), and which was already highlighted 

in their study. Indeed, if we plot the isotope character of the floodplains of the Hakkra 

River (downstream equivalent of the Ghaggar in modern Pakistan) near Marot we see 

that they form as single progressive trend, culminating in εNd values of -13 to -14 (Fig. 1). 

However, explaining this trend as reflecting of a change in erosion patterns within the 

Himalayan ranges is difficult. The Ghaggar, on whose floodplains the drill sites of Singh 

et al. (2016) sit, together with the Hakkra drill sites at Marot, Alkasur and Tilwalla 

(Alizai et al., 2011; East et al., 2015)(Fig. 2), is only draining the Sub-Himalayas, not the 

Lesser or the Higher Himalaya, so its not clear how changes in the relative flux from 

these ranges would have actually impacted the drilled location. If we accept that the 

sediments are really deposited by the Sutlej, as suggested by Sinha et al. (2013), then it is 

possible that the relatively negative εNd values prior to 17 ka could be Himalayan (Sutlej) 

derived, but such flow is known to be finished by 5.2–5.7 ka at the latest (Clift et al., 

2012). The fact that the εNd values of the sands considered by Singh et al. (2016) have 

been consistently more positive than known modern Sutlej compositions since ~17 ka (-

17 to -19) (Alizai et al., 2011; Tripathi et al., 2004) also indicates that the drift to more 

positive εNd values was not caused by changes in the Sutlej basin, which is now more 

negative, but to mixing with another sediment source. The trend in Ghaggar-Hakkra εNd 

values is not directed towards a known modern river that could actually have received 

material from the Lesser and Higher Himalaya. Instead the trend since 14 ka has been 



away from the Himalayan draining tributaries but towards the average of the Thar Desert 

(Fig. 1), similar to the modern Ghaggar, which is perhaps no surprise given its location 

on the Ghaggar flood plain. 

The nearest Himalayan rivers to the Singh et al. (2016) drill sites are the Sutlej 

and Yamuna that have modern εNd values of -17.0 and -17.7 respectively on the flood 

plains (Tripathi et al. 2004), with -19 being measured by Alizai et al. (2011) in the Sutlej 

just before it leaves its headwaters. This compares with an average value of -13.7 for the 

Thar Desert and -15.6 for the modern Ghaggar. Because the Ghaggar sample of Tripathi 

et al. (2014) was taken quite far downstream it is likely that at least some of this value 

represents recycling of Thar Desert sand rather than the composition of the river as it 

leaves the headwaters. Although the Yamuna or Sutlej would have been affected by 

changes in the relative strength of erosion between the Higher and Lesser Himalayas, the 

composition of the sediment studied here is not consistent with either of these rivers 

being the source because the εNd values are too positive. 

The record of Singh et al. (2016) shows a rise in εNd values from around -17 at 17 

ka to around -15 at 5 ka. Such a change in isotopic character could be explained by 

drainage capture. In this scenario, the pre-17 ka section shows the influence of a west 

flowing river (Saini et al., 2009), possible the Sutlej or even the Yamuna River, whose 

capture to the modern eastward flow is loosely dated at some time between 49 and 10 ka 

(Clift et al., 2012). Thus the trends reconstructed by Singh et al. (2016) may reflect the 

loss of the Sutlej or Yamuna after 17 ka, together with recycling from the Thar Desert 

that sharply increases after 10 ka, the latter being driven by the weakening strength of the 

South Asian monsoon. The trend to more positive εNd values in the Ghaggur through the 



Holocene does not reflect change in erosion patterns in the mountains themselves,which 

the delta records show to be the opposite of what is proposed in this study. Alizai et al. 

(2011) interpreted single grain Pb isotope data from the Hakkra that parallels the Nd 

isotopes published by East et al. (2015) to reflect evolution of a Himalayan fed stream 

being clogged by Thar Desert sand as the stream dried up (Giosan et al., 2012). Such a 

change does not imply a major change of erosion in the source, as proposed by Singh et 

al. (2016). 

If this alternative explanation is accepted then it resolves the apparent discrepancy 

between the delta and the Ghaggar floodplain isotopic records. Otherwise, it would be 

difficult to understand why only the Ghaggar would show more Higher Himalayan 

erosion during post-glacial times when the Indus Basin on a larger scale shows the 

reverse. Our alternative explanation would also reconcile the trends in regional erosion 

with the idea that erosion during dry glacial times was focused in the glaciated Himalaya, 

while the wetter climate after deglaciation shifted the focus into Lesser Himalaya (Clift et 

al., 2008). In any case, glaciation is generally thought to increase rather than decrease 

erosion (Hallet et al., 1996) so a trend implying a larger Higher Himalayan flux during 

deglaciation proposed in the Ghaggar flood plains is enigmatic, although in the short term 

a local switch to more Higher Himalayan compositions could be driven by recycling from 

glacial lakes. 

 Recognition that proximal foreland records do not necessarily reflect erosion in 

the adjacent mountain chain is an important step in being able to use these sequences to 

reconstruct long-term environmental and erosional evolution of the mountains and also 



emphasize the importance of distal records for understanding orogenic scale responses to 

climate change. 
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Figure captions   

Figure 1.  Evolution in Nd isotopic character of the whole Indus basin as recorded at the 

delta, compared to the compositional evolution in the floodplains of the Ghaggar-Hakkra.  

The results from Singh et al. (2016) are consistent with the earlier dated from the 

floodplains in modern Pakistan forming a continuous floodplain but from a ephemeral 

river that did not drain the Lesser or Higher Himalaya. The trend towards desert dune 

compositions reflects the progressive demise of this river and its choking by the 

expansion of the Thar Desert during the Holocene. 

 

Figure 2. Annotated satellite map of NW India and Pakistan showing the location of the 

modern rivers, together with the drill sites mentioned in the text, as well as the paleo-

channels proposed by Saini et al. (2009), Sinha et al. (2013) and Clift et al. (2012). 
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