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Abstract 1	

 2	

Sound is a widely available cue in aquatic environments and is used by many marine 3	

animals for vital behaviors. Most research has focused on marine vertebrates. 4	

Relatively little is known about sound detection in marine invertebrates despite their 5	

abundance and importance in marine environments. Cephalopods are a key taxon in 6	

many ecosystems but their behavioral interactions relative to acoustic stimuli have 7	

seldom been studied.  Here we review current knowledge regarding (i) frequency 8	

ranges and sound levels that generate behavioral responses, (ii) the types of 9	

behavioral responses and their biological relevance. 10	

 11	

1. Introduction 12	

 13	

Sounds are abundant in the ocean. They are produced by a range of organisms 14	

(e.g., fish, crustaceans, mammals, etc.) and by abiotic conditions (e.g., wind, waves, 15	

rain, earthquakes, etc.). Underwater sounds travel relatively fast (~1500 m.s-1), can be 16	

detected over long distances (Urick 1983), and are often available when sensory cues 17	

such as light or chemical stimuli may be limited (Popper & Hastings, 2009). It is well 18	

established that many marine vertebrates detect and use sound for vital activities such 19	

as navigation, foraging, predator detection and reproduction (Fay & Popper, 1999; Au 20	

et al., 2000). The ability of marine invertebrates to detect and potentially use sound is 21	

far less understood, which is somewhat surprising given their relative abundance and 22	

central role in many aquatic ecosystems (Budelmann, 1992a, b; Boyle & Rodhouse, 23	

2005). 24	

Sound detection in cephalopods was first reported by Baglioni (1910), who 25	
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noted that octopuses reacted to low-frequency acoustic vibrations and water 1	

movements. Later publications included the description of behavioral (Dijkgraaf, 2	

1963; Komak et al., 2005), physiological (Kaifu et al., 2007), conditioned (Packard et 3	

al., 1990), and neurological responses (Hu et al., 2009; Mooney et al., 2010) to sound 4	

stimuli of different frequencies and intensities. 5	

The organs generally thought to enable sound detection in cephalopods are the 6	

statocysts (Hanlon & Messenger, 1996; Kaifu et al., 2008). These are paired organs 7	

located in the cartilage below the brain. They consist of a fluid-filled cavity 8	

containing a macula-statolith system for the detection linear acceleration (e.g., 9	

gravity) and a crista-cupula system for the detection of angular acceleration (e.g., 10	

movement) (Budelmann, 1975). Polarized hair cells are found in both the maculae and 11	

the cristae systems (Budelmann, 1979). The component of a sound field likely 12	

perceived by cephalopods is particle acceleration, not sound pressure (Packard et al., 13	

1990; Mooney et al., 2010). In addition to the statocysts, Sepia officinalis (European 14	

common cuttlefish) also has lines of epidermal hair cells, running over the head and 15	

arms, that detect local water displacement (Budelmann et al., 1991; Hanlon & 16	

Messenger, 1996). Their contribution to sound detection is poorly understood.  17	

In the past decades, the development and greater use of the ocean have led to a 18	

concurrent increase in anthropogenic noise (National Research Council, 2005).  This 19	

noise may stem from many sources including shipping and vessel traffic, sonar 20	

systems, seismic air guns, and oil drilling.  Our increased awareness of the influences 21	

of anthropogenic noise on the marine environment has led to several scientific studies 22	

addressing its potential impacts on diverse marine life (e.g. Mooney et al., 2009; 23	

André et al., 2011; Fewtrell & McCauley, 2012). (André et al. 2011) 24	

Cephalopods play an important role in ecosystems and are a key component of 25	
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food webs, providing a vital link from smaller invertebrates and fish to marine 1	

megafauna, birds, and humans (Boyle & Rodhouse, 2005). It is therefore important to 2	

investigate the potential impact of increased anthropogenic noise on cephalopods. 3	

Changes in the behavior and distribution of cephalopod populations could have 4	

substantial impacts on the survival and distribution of top predators such as marine 5	

mammal, sharks, and sea birds; such changes would also impact commercial fisheries 6	

(Boyle & Rodhouse, 2005).  In this paper, we review research regarding cephalopod 7	

behavioral responses to sound, placing these studies in the context of potential noise 8	

impacts. In particular, we address the frequency and sound level ranges that generate 9	

behavioral responses in cephalopods, the types of behavioral responses elicited and 10	

their biological relevance, 11	

 12	

2. Behavioral responses to various acoustic stimuli 13	

 14	

Cephalopods have a broad behavioral repertoire, including body movements 15	

(arms, mantle), body pattern changes, locomotor responses (jetting, fin movements) 16	

and inking (Hanlon & Messenger, 1996). Multiple ethograms have been published 17	

(e.g. Hanlon & Messenger, 1988; Hanlon et al., 1999 and references therein) and 18	

these provide the framework for future experiments in which behavioral responses to 19	

acoustic stimuli can be observed, recognized, and categorized in a quantitative 20	

manner.  21	

Figure 1 summarizes cephalopod responses to sound. Dijkgraaf (1963) 22	

reported jetting, darkening of the skin, and narrowing of the pupils in S. officinalis in 23	

response to taps on the tank walls. Body patterning changes were observed when 24	

using 180 Hz tones. Juvenile cuttlefish exhibited changes in body patterning, 25	
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displacements, and burrowing when exposed to local sinusoidal water motion from 20 1	

– 600 Hz (Komak et al., 2005). Certain frequencies generated substantially higher 2	

levels of activity in juvenile animals. Unfortunately, the stimuli intensities (measured 3	

as sound pressure level or particle motion) were not reported. Recently, using acoustic 4	

stimuli ranging from 80 – 1000 Hz and a range of sound levels (measured in both 5	

sound pressure and particle acceleration), Samson et al. (this conference, in prep) 6	

categorized the behavioral responses of S. officinalis to different tones. The responses 7	

included fin movements, body pattern changes, startle, jetting, and inking. Reactions 8	

considered to be escape and/or startle behavior (blanching, jetting, inking) mostly 9	

occurred at low frequencies and high sound levels. The average sound level needed to 10	

elicit a certain response varied for each sound frequency. 11	

Similar escape responses have been observed in squid Sepiotheutis australis 12	

exposed to seismic air gun noises. The animals showed inking and jetting behaviors, 13	

increased swimming speed, and swam upward, possibly to benefit from the sound 14	

shadow near the water surface (McCauley et al., 2000; Fewtrell & McCauley, 2012). 15	

In Octopus ocellatus, Kaifu et al. (2008) reported changes in respiratory rates during 16	

exposure to sounds 50 – 283 Hz. Although octopuses are also capable of body pattern 17	

changes, jetting, and inking, those behaviors were not mentioned in the literature as 18	

responses to sound stimuli.  19	

 20	

3. Potential for habituation to acoustic stimuli 21	

 22	

Studies on the potential for habituation of cephalopods to any kind of stimulus 23	

are scarce; most research on the learning capabilities of these animals has focused on 24	

memory and spatial learning (e.g. Karson et al., 2003; Agin et al., 2006). Visual 25	
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habituation to a predator model has been observed in the squid Lolliguncula brevis 1	

(Long et al., 1989); the squids showed a decrease in body pattern changes and jetting 2	

with repeated presentation of the fish models. Visual and tactile habituation were also 3	

demonstrated in Octopus vulgaris; animals showed long-term habituation to visual 4	

stimulation using a prey model, and a decrease in object handling over time (Kuba et 5	

al. 2006). 6	

Cephalopod habituation to acoustic stimuli has yet to be addressed in detail. 7	

Only a few notes on the subject, collected en passant during previous studies on 8	

sound detection in cephalopods, have been found in the scientific literature. Dijkgraaf 9	

(1963) mentioned a very quick habituation to a 180 Hz tone in S. officinalis; after only 10	

one exposure, the animals would not react to the stimulus anymore. Using juvenile S. 11	

officinalis, Komak et al. (2005) obtained opposite results: no habituation was 12	

observed to repeated stimuli of different frequencies ranging from 40 – 600 Hz. 13	

Following behavioral tests to different sound frequencies and levels, Samson 14	

et al. (this conference, in prep) exposed S. officinalis to repeated sound exposure at 15	

200 Hz and at different sound levels. A potential for habituation was observed; 16	

response intensity decreased but response extinction was not reached within the time 17	

of the experiments. 18	

 19	

4. Future research directions 20	

 21	

Studying behavioral responses in corroboration with physiological, 22	

conditioned, or neural responses is a productive way forward to determine the 23	

function of sound in cephalopod life history. Physiological responses, for example, 24	

can provide information on detection ranges and thresholds (Hu et al., 2009; Mooney 25	
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et al., 2010), but not on the use of sound by organisms and the role it plays in vital 1	

behaviors such as feeding, defense or reproduction.  Behavioral responses may also 2	

reveal cephalopod functional use of sound stimuli. Moreover, knowing how animals 3	

respond to sound is important from an ecological point of view (Hanlon & Shashar, 4	

2003) and should enable us to predict disruptive effects of anthropogenic sounds on 5	

population behaviors (e.g., migration, spawning) and ecosystems, as there is a 6	

substantial overlap among the hearing ranges of many key organisms and the ranges 7	

of anthropogenic noise in the ocean (Figure 2). It is unclear which type of acoustic 8	

information influences cephalopod ecology, given the low frequencies they react to, 9	

and the absence of behavioral responses to ultrasonic clicks typical of odontocetes, a 10	

prominent group of cephalopod predators (Wilson et al., 2007). 11	

Microscopic studies have shown that the hair cells in the statocysts and 12	

epidermal lines of S. officinalis and other cephalopods are polarized (Budelmann, 13	

1979; Budelmann et al., 1991). This characteristic of the hair cells could be the 14	

anatomical basis for directional hearing and sound location in cephalopods. The 15	

ability to sense the direction of acoustic stimuli and the location of acoustic sources 16	

has likely functions in defense but could also play roles in other behaviors including 17	

navigation. Investigating these potentials in cephalopods might shed light on 18	

important aspects of their sensory ecology. 19	

 20	
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Figure captions 9	

 10	

Figure 1: Sound detection ranges for several cephalopod species, determined using 11	

behavioral (B), conditioned (C), neurological (N) or physiological (P) responses. 12	

References from top to bottom: (1) Samson et al. (this conference, submitted), (2) 13	

Komak et al. (2005), (3) Packard et al. (1990), (4) Mooney et al. (2010), (5) Hu et al. 14	

(2009) twice, (6) Kaifu et al. (2008) (also indicated by numbers). 15	

 16	

Figure 2: Hearing ranges of several marine organisms in comparison to two important 17	

abiotic sound sources in the ocean. References: (2) Popper & Hastings, 2009 (fish), 18	

(3) Piniak et al., 2012 (sea turtles), (4) Au et al., 2000 (dolphins), (5) Wenz, 1962 19	

(abiotic sound sources). References for the cephalopod hearing range are listed in 20	

Figure 1. 21	
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