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ABSTRACT

Accurate estimation of the transport probabilities among regions in the ocean provides valuable in-

formation for understanding plankton transport, the spread of pollutants, and the movement of water masses.

Individual-based particle-tracking models simulate a large ensemble of Lagrangian particles and are a

common method to estimate these transport probabilities. Simulating a large ensemble of Lagrangian par-

ticles is computationally expensive, and appropriately allocating resources can reduce the cost of this method.

Two universal questions in the design of studies that use Lagrangian particle tracking are how many particles

to release and how to distribute particle releases. A method is presented for tailoring the number and the

release location of particles tomost effectively achieve the objectives of a study. Themethod detailed here is a

sequential analysis procedure that seeks to minimize the number of particles that are required to satisfy a

predefined metric of result quality. The study assesses the result quality as the precision of the estimates for

the elements of a transport matrix and also describes how the method may be extended for use with other

metrics. Applying this methodology to both a theoretical system and a particle transport model of the Gulf of

Maine results inmore precise estimates of the transport probabilities with fewer particles than from uniformly

or randomly distributing particle releases. The application of this method can help reduce the cost of and

increase the robustness of results from studies that use Lagrangian particles.

1. Introduction

Particle transport has implications throughout ocean-

ography. Phytoplankton and zooplankton that form the

base of the marine food web cannot overcome ocean

currents and are transported as small particles (Miller and

Wheeler 2012). Higher trophic levels, including many

invertebrates and fish, are transported as planktonic lar-

vae (Pineda et al. 2007).Oil and other chemical pollutants

often assemble into droplets that are transported as small

particles (Lynch et al. 2015). Understanding the move-

ment of these particles is critical to understanding marine

ecosystems.

Our knowledge of particle transport may be repre-

sented as a connectivity matrix whose elements give the

probability of transport among discrete geographic re-

gions (Cowen and Sponaugle 2009). One commonly

used method to estimate connectivity matrices is to

simulate many Lagrangian particles with an individual-

based model (IBM) and to compute the ensemble av-

erage of the particle trajectories. IBMs simulate particle

transport through Eulerian velocity fields that are pro-

duced by ocean circulation models. Because some

computational overhead is required to produce the

Eulerian velocity fields, IBMs operate most efficiently

when simulating large batches of particles. Each particle

responds to its local environment based on the attributes

that have been prescribed to it, which may include

buoyancy, swimming behavior, growth, or other rele-

vant processes (Irisson et al. 2009). This feature allows

IBMs to be configured for a variety of particle types and

has resulted in their use across multiple disciplines of

marine science (Lynch et al. 2015).

Accurate predictions with IBMs are dependent on

correct specification of the input parameters. In addition

to individual particle attributes that may be estimated

from field and laboratory data, IBM studies universally

require that the researcher choose howmany particles to

release and how to distribute particles among multiple
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origin sites. The number and distribution of particle

releases regulates the trade-off between computational

time and result accuracy. Brickman and Smith (2002)

present a discussion of the errors that may arise from

releasing too few particles. The first type of error, which

Brickman and Smith (2002) term U-I error, is that the

number of particles is insufficient to capture the un-

derlying statistics of the Eulerian velocity field. In the

event of U-I error, an identically configured replicate

trial will likely give different results. The second type of

error, U-II error, is that the particle release distribution

does not adequately sample a subarea of particular im-

portance. When U-II errors occur, replicate trials with

the same release locations will provide similar results,

but the results do not accurately describe the properties

of the region as a whole. Both Brickman and Smith

(2002) and Simons et al. (2013) presentmethods to avoid

these and similar errors. However, as we explain further

in section 5, the methods presented by Brickman and

Smith (2002) and Simons et al. (2013) require that the

researcher first simulate extra particles, then retrospec-

tively identify how many particles would have been re-

quired. IBM studies may simulate tens of millions of

particles and consume vast computational resources

(e.g., Watson et al. 2012; Jones et al. 2015), and so we

seek an alternative method that reduces the required

number of particles.

The second design issue, how to distribute particles

across origin sites, is more difficult and has been less

thoroughly explored in existing literature. One option is

to uniformly distribute releases across origin sites (e.g.,

Watson et al. 2012; Jones et al. 2015). In the case of

ecological studies, an alternative is to distribute par-

ticle releases based on known spawning distributions

(Gallego and North 2009). However, knowledge of

spawning distributions is often poor (Gallego and North

2009). As we will show, the choice of release distribution

may have substantial implications for the number of

particles that are required for statistical confidence, and

the issue of optimizing this release distribution is not

addressed by previously published methods. We

propose a sequential method to optimize the particle

release distribution across the origin sites.

We demonstrate our innovative method by estimating

the elements of the connectivity matrix. We seek to

answer the following questions: What is the minimum

number of particles that are necessary to robustly esti-

mate the transport probabilities? To minimize the re-

quired number of particles, how should particles be

distributed across origin sites? Although our pre-

sentation is in the context of estimating the connection

probabilities, the method may be applied to other ob-

jectives, such as parameterizing models of population

dynamics or assessing the contamination risk from pol-

lutant spills. In addition to the description of ourmethod

here, we are also releasing a software package that

implements it.

2. A sequential Bayesian procedure

Consider a study system with no origins and nd desti-

nations. Let pij be the unknown probability that a par-

ticle released from origin i is at destination j at a

specified time and let P5 [Pij] be the no 3 nd matrix of

these probabilities (Table 1). Our goal is to estimate P

to a specified precision using a minimal number of par-

ticles. Under the sequential Bayesian approach pro-

posed here, the matrix P is treated as a random variable.

Throughout our description of this procedure, we follow

the common statistics convention that random variables

are indicated by uppercase letters (e.g., Pij) and that

realizations of these variables are indicated by lowercase

letters (e.g., pij). As described in more detail below, at

each step of the sequential procedure, the current value

of an objective function measuring estimation precision

is compared to a stopping criterion (Fig. 1). If the cri-

terion is met, then the procedure terminates and each

element of P is estimated by its current expected value.

If the criterion is not met, then the current distribution

of P is used to allocate a new batch of particles to the

origins, these particles are released, the current distri-

bution of P is updated based on their observed desti-

nations, and the procedure is repeated. In this section,

we describe the basic statistical model, the stopping

criterion, and the allocation rule.

a. Statistical model

Letm
(k)
i be the number of particles through step k of

the sequential procedure that has been released from

origin i and let the random variable X
(k)
ij be the num-

ber of these with destination j. Under the assumption

that the destinations of different particles are in-

dependent and conditional on pi 5 (pi1, pi2, . . . , pi,nd),

the vector X
(k)
i 5 (X

(k)
i1 , X

(k)
i2 , . . . , X

(k)
i,nd

) has a multino-

mial distribution with m
(k)
i trials and probability vec-

tor pi with the probability mass function given by

Eq. (1). The probability mass function below describes

the likelihood of observing any realization, x
(k)
i , of the

random variable X
(k)
i :

pr(x
(k)
i j p

i
) } P

nd

j51

p
x
(k)
ij

ij . (1)

To implement the Bayesian approach, it is necessary

to specify a prior distribution for the probability vector
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Pi. A natural choice is the Dirichlet distribution with

probability density function:

pr(p
i
)} P

nd

j51

p
aij21

ij (2)

with parameters ai1, ai2, . . . ,ai,nd . In the absence of

prior information, it is again natural to take aij 5 1 for all

i and j so that all possible values of Pi are equally likely.

It follows that the distribution of Pi after step k is itself

Dirichlet with updated parameters a
(k)
ij 5 11 x

(k)
ij . This

reflects the fact that the Dirichlet distribution is the

conjugate prior distribution for multinomial data.

b. Stopping criterion

At step k, for each origin i, the current distribution of

Pi is Dirichlet with parameters a
(k)
ij 5 11 x

(k)
ij ,

j5 1, 2, . . . , nd. The decision whether to terminate the

procedure and estimate pij by its current mean,

m
(k)
ij 5

a
(k)
ij

�
nd

j51

a
(k)
ij

, (3)

or to release additional particles must be made on the

basis of this distribution. One measure of the current

uncertainty in Pij is its coefficient of variation:

CV
(k)
ij 5

s
(k)
ij

m
(k)
ij

, (4)

where

s
(k)
ij 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a
(k)
ij

 
�
nd

j51

a
(k)
ij 2a

(k)
ij

!
 
�
nd

j51

a
(k)
ij

!2 
�
nd

j51

a
(k)
ij 1 1

!

vuuuuuuuut
(5)

is the current standard deviation of Pij. We take as a

measure of overall precision the objective function:

H(k) 5 max
i,j

[CV
(k)
ij : pr(k)(P

ij
. d).p] , (6)

where pr(k)(Pij . d) is the current probability that Pij

exceeds d. Terms d and p are small user-specified prob-

abilities. The side condition is required because CV
(k)
ij

becomes excessively large if the current distribution ofPij

is concentrated near 0. The procedure terminates when

H(k) first falls below a specified value «. The choice of the

constants d and p is discussed below in section 6.

c. Allocation rule

If the stopping criterion is not satisfied in step k, then

step k1 1 begins by sequentially allocating each of a

batch of b particles to an origin site. Consider allocating

the first such particle under the assumption that, for each

origin, the destination of this particle is known. For each

origin, we would update the current distribution of P to

include this particle via Bayes’s theorem, compute the

value of the objective function H(k), and allocate the

particle to the origin for which the value of H(k) is

smallest. In practice, the destination of the particle

TABLE 1. The parameters for our sequential analysis routine are collected and defined here. Following common statistics convention,

random variables are indicated with capital letters and realizations of these variables are indicated with lowercase letters.

Symbol Description

no The total number of origin sites where particles are released.

nd The total number of destination sites where particles may arrive.

P5 [Pij] The connectivity matrix. Term pij is the unknown probability that a particle released from origin i will arrive at destination j.

Term P is the matrix of these probabilities, and the random variable Pi is the ith row of P.

pi A single realization of the random variable Pi.

m
(k)
i The number of particles that have been released from origin i up to and including step k.

X
(k)
ij A multinomially distributed random variable representing the number of particles released from origin i that arrive at

destination j up to and including step k of the procedure. The vector X
(k)
i 5 (X

(k)
i1 , X

(k)
i2 , . . . ,X

(k)
i,nd

).

x
(k)
ij A single realization of the random variable X

(k)
ij that gives the observed number of particles released from origin i and

arriving at destination j up to and including step k of the procedure.

a
(k)
i The vector of parameters for theDirichlet distribution forPi at the end of step k. Terma

(k)
i is composed ofa

(k)
i1 , a

(k)
i2 , . . . ,a

(k)
i,nd

.

m
(k)
ij The mean of the Dirichlet distribution for Pi after step k.

s
(k)
ij The standard deviation of the Dirichlet distribution for Pi after step k.

CV
(k)
ij The coefficient of variation of the Dirichlet distribution for Pi after step k.

H(k) The objective function used to determine when to terminate sampling and how to allocate particle releases.

d A threshold that determines when pij are too small to be relevant to the study goals.

p A probability threshold that determines when pij are too small to be relevant to the study goals.

« The threshold value for H(k) that determines when sampling terminates.

b The number of particles simulated in each batch.
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released at a particular origin is unknown until the entire

batch has been allocated and the IBM has been run. For

this reason, the particle is allocated to the origin with the

smallest expected value of the stopping criterion, where

this expected value is computed by integrating over the

entire predictive distribution for the destination. For a

single particle released from origin i, this predictive

distribution is Dirichlet multinomial with one trial and

parameters a
(k)
ij , j5 1, 2, . . . , nd.

A simulation approach to approximating the expected

value of the stopping criterion for a single particle re-

leased from origin i proceeds as follows: Simulate a re-

alization pi* of Pi from the Dirichlet distribution with

parameters a
(k)
ij , j5 1, 2, . . . , nd. Simulate a destination

from the multinomial distribution with one trial and

probability vector pi*. Update the current distribution of

Pi based on this simulated destination and compute the

new value of the stopping criterion. Repeat the process

many times and approximate the expected value of the

stopping criterion by the average of its new values

generated from these simulated destinations.

The same general approach is used to allocate the

second particle except that destinations are simulated

for both the first and second particles. However, in al-

locating the second particle, the origin of the first par-

ticle remains fixed at the origin selected as described

above. The process is repeated for each particle in

the batch. Because the origins of previously allocated

particles are not reconsidered when allocating later

particles, this procedure is not guaranteed to identify the

optimal allocation of the batch of particles. Pseudocode

to implement this allocation rule is provided in the

appendix.

3. Validation using artificial data

We validated our procedure using artificial data based

on ecological networks (e.g., Kininmonth et al. 2010;

Watson et al. 2011; Jones et al. 2015). For each replicate,

we constructed a connectivity matrix and then drew mul-

tinomial samples from it that represent Lagrangian parti-

cles. Because we know the underlying connectivitymatrix,

this test ensures convergence to the correct solution.

Our objective function measures the precision of each

pij, which may also be measured by the percent error in

the estimated connectivity matrix when the true con-

nectivity matrix is known. Because the connectivity

matrix that was used to generate the artificial data is

known, the artificial data may be used to assess the re-

lationship between the objective function H(k) and the

percent error. We randomly generated 25 connectivity

matrices with each having no 5 (4, 9, 16, and 25) origins

and no 1 1 destinations. The first no destinations were

the same as the origins, and between 0% and 10% of the

particles returned to these origins. Destination nd rep-

resented everywhere else. Each row of these connec-

tivity matrices gives the probability vector for a

multinomial distribution from which we took samples

that represent Lagrangian particles. We treated these

samples as a single run of a Lagrangian particle-tracking

model and estimated the connectivity matrix, and then

computed H(k) from this estimate. Term H(k) provides

an upper bound on the percent error (Fig. 2), indicating

FIG. 2. The objective function (vertical axis) is plotted against the

mean percent error in the estimated connectivity matrix (hori-

zontal axis). Each data point was computed by randomly gener-

ating a matrix x(k) from one of the artificially generated

connectivity matrices. The color indicates the number of particles

that were included in x(k), and the plotting symbol indicates the

number of destinations in the connectivity matrix.
FIG. 1. The sequential analysis procedure is an iterative process.

For each iteration, it first assesses whether enough particles have

been simulated based on the stopping rule. If not and if additional

particles are within the computational budget, then the particles

are distributed according to the allocation rule. If at any time the

stopping rule is satisfied or the budget is exhausted, the procedure

is terminated with either a successful or failed result.
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that it is a valuable error metric. The value of H(k) is

inversely related to the number of particles that fol-

lowed each possible pathway. When few particles have

been simulated relative to the number of destinations,

H(k) is large, indicating that these few particles may not

provide a good estimate for the connectivity matrix.

However, as the number of particles increases, bothH(k)

and the percent error decrease, and so small H(k) cor-

rectly indicates that the percent error is small. Fewer

particles are required for connectivity matrices with

fewer destinations because having fewer destinations

results in larger transport probabilities under our con-

nectivity matrix–generating scheme. Although the ex-

pected value of the posterior percent error could have

been used instead of the CV-based objective function,

the CV has the practical benefit of an analytic solution

and accurately indicates when the percent error is small.

We also tested that the allocation rule results in faster

convergence of H(k) than either uniformly or randomly

distributing particle releases. The uniform distribution

represents the null case where particles are released

throughout the domain, and the random distribution

mimics particle releases based upon criteria that do not

correlate well with the flow patterns (e.g., species dis-

tributions). Ourmethod consistently outperformed both

alternatives in 10 simulations, and the simulations re-

vealed interesting aspects ofH(k) (Fig. 3). The objective

function initially reacts only to the missing connec-

tions that have the largest CV, and H(k) reduces toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

(k)
i (m

(k)
i 1 2)21

q
for these connections. Therefore, the

objective function initially increases asymptotically to-

ward 1 until these missing connections are identified and

then subsequently decreases. Because our allocation

rule assumes that the objective function monotonically

decreases as more particles are simulated, this property

of the objective function is problematic. The threshold

number of particles required to satisfy P(pij $ d),p

may be computed by solving the relationp5F(d, 1, ni),

where F(d, 1, m
(k)
i ) is the cumulative distribution func-

tion of the beta distribution with shape parameters 1 and

m
(k)
i evaluated at d, and we recommend that users re-

lease this number of particles from each origin in the first

batch. Once the missing connections are identified, the

allocation rule outperforms the alternatives, and H(k)

decreases in proportion to the square root of the number

of particles. Term H(k) may also increase when pij are

approximately equal to d. In this scenario, connec-

tions alternate between satisfying and not satisfying

P(pij $ d)$p, and rapid changes in the value of H(k)

occur as shown by the uniform allocation scheme in

Fig. 3. However, these changes are transient features,

and so the allocation rule performs well in spite of them.

In all trials, the random distribution resulted in poor

convergence of the objective function, suggesting that

allocation schemes based on spawning distributions

should be avoided when the objective is to precisely

estimate the connectivity matrix.

Overall, our method performs well on artificial net-

works that represent ecological networks. It converges

to the correct solution, and converges more quickly than

either null distribution of particle releases.

4. Validation using a realistic tracking simulation

We further validated ourmethod using a simulation of

the Gulf of Maine as a representative IBM study. Our

simulation is based upon that of Huret et al. (2007). For

brevity, we describe only where our study differs from

the original. We used a particle-tracking model to sim-

ulate cod larval dispersal during January 1995. We

forced the particle-tracking model with hourly output

from the Finite Volume Coastal Ocean Model

(FVCOM; Chen et al. 2003). FVCOM was configured

FIG. 3. Ten sequential simulations were run using nine node artificially generated connec-

tivity matrices. The results of all 10 simulations were similar, and so only one of them is plotted

here. The number of particles included for the estimate for H(k) is depicted on the horizontal

axis, and the particle allocation scheme is given by the color of the line.
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using the third generation of the Gulf of Maine mesh,

which contains 48 451 nodes and 90 415 elements that

smoothly transition from 200-m resolution at the

coastline to 15-km resolution in the central Gulf of

Maine and extends from Maryland to Nova Scotia,

Canada (Fig. 4).

Particles that represent cod larvae were released from

three spawning sites along the coast of New England

(Fig. 4) throughout January 1995. The spawning grounds

were taken from the map published in Huret et al.

(2007). Particle release locations within each spawning

region were randomly selected in time and space from a

uniform distribution. Particle destinations were com-

puted from the position of the particle at 60 days age.

Our first test validated the use of a multinomial

distribution. The multinomial distribution assumes in-

dependence between particles, which may not be ap-

propriate if particles are released closely in space and

time. We released 1000 particles from each spawning

ground and estimated the connectivity matrix. We re-

peated this process 100 times with different release lo-

cations and timing and obtained 100 estimates for each

element of the connectivity matrix. We assumed that

the mean of these 100 trials represents the expected

outcome, and tested this assumption using the vari-

ance test fromBrickman and Smith (2002). The variance

of the mean leveled off after 40–60 trials, indicating

that our use of 100 trials is sufficient (supplemental

Fig. S1). We computed the x2 statistic for each element,

�100

k51 (pij 2 p̂
(k)
ij )2p21

ij , where p̂
(k)
ij is the estimate of pij

from the kth trial and pij is the mean of these estimates

across all 100 trials. The observed distributions of the x2

statistics did not differ from those that would result from

multinomial sampling (Fig. 5).

Our second test evaluated the allocation rule. We

sequentially released batches of 500 particles whose

distribution was determined by our allocation rule, ei-

ther by a uniform distribution or by a randomly chosen

distribution, until our computational budget of 50 000

particles was exhausted. During these tests, we set

«5 0:1, d5 0:005, and p5 0:05. In three repetitions, our

methodology consistently increased the convergence

rate of H(k) (Fig. 6). Only the optimized distribution

scheme satisfied the stopping criterion within the budget

by reaching the threshold value of 0.1. Upon exhausting

the budget, H(k) 5 0:116 0:0039 (mean plus/minus

standard deviation) for uniformly distributed particles

andH(k) 5 0:286 0:030 for the random distribution. The

optimized distribution satisfied the stopping criterion

after simulating 26 666 6 3253 particles. At the point

where the optimized distribution satisfied the stopping

criterion, H(k) 5 0:146 0:008 for the uniform distribu-

tion andH(k) 5 0:406 0:017 for the random distribution.

5. Alternative methods

Choosing the number of Lagrangian particles is a

fundamental component of IBM studies, and previous

publications have described alternative methods to ad-

dress this issue. Brickman and Smith (2002) proposed the

variance test as a method to identify the presence of both

U-I and U-II errors. To apply the variance test, re-

searchers first generate a set of release locations that

evenly distributes b particles throughout a single origin

site. The researchers then perform t replicate simulations

using this release distribution. Variability among the tri-

als emerges due to a stochastic component in the particle

velocities, and this variability is quantified with the test

statistic V(k). To compute V(k), the researchers draw a

random sample of k trials from the t trials available. Term

V(k) is the mean variance in a sample of size k divided by

k. TermV(k) decayswith increasingk, and the researchers

may be confident that their results are not subject to U-I

error when the V(k) versus k curve levels off. To protect

against U-II error, they suggest modifying the variance

test to use increasing b instead of increasing k.

FIG. 4. The study regions are depicted here. The numbered sites

are the particle release locations. The straight boundary lines in-

dicate the destination regions, and the black line nearshore in-

dicates the 30-m isobath that was used to determine suitable

habitat. The blue background mesh is the FVCOM mesh.
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Simons et al. (2013) propose an alternative method to

test the related question, howmany particles are required

to ensure that a simulation closely approximates a ref-

erence solution? The first step in their method is to

compute a single large trial with b particles and compute

a reference solution. Because this solution is computed

from the largest number of particles available, they as-

sume that it provides the best representation of the un-

derlying flow and they seek to replicate it with a reduced

number of particles. They begin by drawing a random

subset of s particles from the pool of b particles, and

compute a sample solution from this subset. They then

compare the sample solution to the reference solution by

computing the fraction of unexplained variance (FUV)

between the solutions as FUV(s) 5 12 r2, where r is the

linear correlation coefficient between the solutions. Re-

peating this process many times for multiple values of s,

they obtain a curve that plots FUV(s) against s. Finally,

they threshold this curvewhen FUV(s) is sufficiently small

to identify an appropriate value of s.

Although our procedure, the variance test, and the

FUV method all address similar questions, our method

is structured differently from the others in order to re-

duce the required number of particles. Both the variance

test and the FUV method begin by simulating a large

pool of trials or particles, and then they subsample from

this pool to estimate the variability in the results. For the

variance test, tmust be greater than k to subsample and

compute V(k). For the FUV method, b must be greater

than s to estimate FUV(s). In contrast, our method al-

ternates between simulating particles and assessing

convergence and then terminates as soon as conver-

gence is achieved. However, this design choice prohibits

subsampling from a larger pool to estimate the vari-

ability in the results, and instead we estimate the vari-

ability from the properties of the posterior distribution

for each pij. Each of the three proposed methods has

merits in addressing issues related to the number of re-

quired particles for IBM studies, but each method dif-

fers slightly in how each does it.

FIG. 5. The expected quantiles from a x2 distribution are plotted against the observed

quantiles of the x2 statistic from many particle-tracking simulations. The dashed lines indicate

a 95% confidence interval, and the solid line indicates a one-to-one relationship. For origins 1

and 2, we observed five possible destinations, and so there are 4 degrees of freedom in the x2

distribution. For origin 3, particles only went to three destinations due to strongly directional

southern flow, and so there are only 2 degrees of freedom.

JUNE 2016 JONE S ET AL . 1231



6. Discussion

We provide a flexible and reliable method to match

particle release counts and distributions to the specific

objectives of a particular study. The method avoids both

theU-I andU-II errors discussed in Brickman and Smith

(2002). U-I errors occur when replicate simulations

would result in substantially different results. Our

method avoids this error by evaluating a stopping cri-

terion and continuing the simulation until variability in

the results is sufficiently small. U-II errors occur when

the release distribution skips over subregions of partic-

ular importance. Whereas Brickman and Smith (2002)

evenly distribute particle releases throughout each ori-

gin and reuse the same release locations for each trial,

we draw a new set of release locations from a uniform

distribution for each step. This procedure avoid U-II

errors altogether, because a large number of randomly

drawn points will represent the underlying structure of

each origin. Although we draw the release locations

within each origin from a uniform distribution in our

examples, egg production models or finescale field data

may be used to generate these distributions when such

information is available (Gallego and North 2009). Our

method also addresses how to distribute releases among

multiple origins in order to minimize the number of

particles required to achieve statistical confidence,

which has not been done by prior studies.

Although our method assumes that b particles are

simulated in each batch, choosing b is dependent on the

specific IBM being used. IBMs may be operated in on-

line mode and load the Eulerian velocity fields directly

from a hydrodynamic model, or in offline mode and

read the velocity fields from archived output of a

FIG. 6. Particles were released uniformly, randomly, and using the allocation rule three times

in a particle-tracking model for the Gulf of Maine. Particles were simulated in batches of 500,

which are indicated by the shaded regions, and a total budget of 50 000 particles was permitted.

The colored lines display the decrease in value for the objective function during each simulation

and under each particle release scheme.
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hydrodynamic model. In either case, there is a compu-

tational cost to operating the hydrodynamic model or

reading the circulation fields. This cost is incurred every

time a batch of particles is simulated, but it is largely

independent of the number of particles being simulated

in each batch. A trade-off emerges where small b allows

our method to most effectively allocate particles among

origins and terminate most quickly, but large b increases

the efficiency of the IBM and reduces the cost per par-

ticle. Choosing an optimal value of b may reduce the

computational cost required to achieve convergence,

but the choice of b does not influence when our method

deems that convergence has been achieved. The compu-

tational overhead of loading the velocity fields is specific

to each IBM and hydrodynamicmodel configuration, and

so we recommend that researchers choose b such that

their IBM operates with a reasonable level of efficiency.

Our method also assumes that the multinomial

distribution is an appropriate model for the particle

destinations, which implies that the trajectories are in-

dependent. Multiple releases that are closely located in

time and space may result in correlation among trajec-

tories. However, randomly chosen release locations

within an origin, releases separated by at least the ve-

locity decorrelation scale, or tracking durations longer

than the Lagrangian decorrelation time will likely avoid

this concern. Each particle may only contribute to one

destination, which excludes settlement criteria based on

the proportion of time that a particle spends within a

destination region (e.g., Huret et al. 2007). An alterna-

tive is to assign each particle a probability of settling

during each time step and then remove it from further

consideration after settlement (e.g., Tian et al. 2009b).

Our examples focus on a single objective function and

stopping rule that reflect our objectives from applying

this procedure. Because the CV responds to the un-

certainty in each pij relative to the value of that pij, it is

appropriate for use when the estimates for pij are mul-

tiplied together and errors would be multiplicative (e.g.,

in a matrix projection population model). Likewise, ig-

noring very small pij was chosen to reflect that very low

connectivity rates among subpopulations may not sub-

stantially impact population demographics (Hastings

1993; Lowe and Allendorf 2010). Choosing the param-

eters d and p for this objective function is study specific,

but here we present some examples for consideration.

In ecology, only a few migrants per generation are

necessary to maintain genetic homogeneity, and many

fish spawn millions of eggs each year (Slatkin 1987).

Therefore, studies examining genetic connectivity must

quantify even rare connections, and d5 1026 may be

appropriate. However, a more frequent exchange of

individuals is required for connectivity to influence

population dynamics, and so studies examining pop-

ulation demographics may set d5 1022 (Hastings 1993;

Lowe and Allendorf 2010). The second parameter, p, is

analagous to the significance level in frequentist statis-

tical tests, and so we suggest p5 0:05 as a default value.

However, these are merely default suggestions, and re-

searchers may alter them based upon the goals of indi-

vidual studies.

More broadly, users may replace Eq. (6) with an ap-

propriate representation of what is important in their

system. The objective function must take the parameter

vectors a as an argument and return a single scalar value

that quantifies the quality of a. For example, ecological

studies that include population connectivity as one

component of a population model may quantify the

variability of the results differently. Realized population

connectivity patterns include spawning distributions and

postsettlement survival (Watson et al. 2010). Re-

searchers seeking to estimate these patterns may

develop a population model that includes these pro-

cesses, evaluate the population model using many

credible values for the connectivity matrix P and seek to

minimize the variance in the evaluations. Either the

output of a particle-tracking model or the objective

function must include all processes relevant to the study,

including, for example, survival and growth of larvae

and loss of particles to the model boundaries. The allo-

cation rule relies on two assumptions that any choice of

objective function must satisfy. First, the objective

function must decrease as the quality of the estimated

connectivity matrix increases. Second, releasing more

particles from an origin must reduce the contribution of

that origin to the value of the objective function. We

suggest that practitioners test these assumptions when

using a new objective function. The software package

associated with this publication includes methods for

performing this test. Our allocation rule is a greedy

heuristic that provides an improved, but suboptimal,

particle distribution. In the future, we hope to provide

theory that bounds the difference between the output of

our allocation rule and the optimal solution.

Particle counts in particle-tracking studies vary widely

from a few thousand (e.g., Huret et al. 2007; Tian et al.

2009a) to tens of millions (e.g., Watson et al. 2012; Jones

et al. 2015). Field research that relies on parentage,

tagging, or drifter data may be limited to only a few

hundred sample points (Almany et al. 2007; Planes et al.

2009). The appropriate number of particles is dependent

on the study goals, and readers and authors must take

care to avoid drawing conclusions beyond those that can

be justified by the number of particles. Our method

provides a robust and quantitative way to determine the

count and distribution of particle releases, which can help
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researchers obtain more precise estimates of transport

probabilities with reduced costs, draw appropriate con-

clusions from tracking experiments, and thus lead to

better understanding of marine ecosystems.

7. Code availability

An online interface to our method is available (http://

btjones.scripts.mit.edu/index.fcgi/research/sequential-

analysis-method). Source code and instructions for in-

stalling and accessing our method are available (https://

github.com/btjones16/sequential-analysis-software). The

source code repository includes R and C11 libraries,

together with a Simplified Wrapper and Interface Gen-

erator (SWIG) interface file that allows access to the

C11 library from Python, Octave, and other scripting

languages (Beazley 1996).
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APPENDIX

Pseudocode Implementation of Allocation Rule

This appendix provides pseudocode for a naïve im-

plementation of the allocation rule. We recommend

that readers refer to the software packages referenced

in the main text for more computationally efficient

implementations.

function computeExpectedPosteriorCost
(a(k)

i , n)
while estimate for H(k11) not converged do

pi*)draw from a Dirichlet distribu-
tions with parameters a

(k)
i

d)draw n particles from a multinomial
distribution with parameters pi*

a
(k11)
i )a

(k)
i 1 d

estimate H(k11)

end while
return estimated H(k11)

end function
b)number of particles to allocate
m) (0, 0, . . . , 0) (release distribution)

for 1, 2, . . . , b do
for i in origins do

H
(k11)
i )computeExpectedPosteriorCost

(a(k)
i , mi 1 1)
end for
i)arg min(H(k11)

i )

mi 5 mi 1 1
end for
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