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Abstract: 23 

Copepods are abundant crustaceans that harbor diverse bacterial communities, yet the 24 

nature of their interactions with microbiota are poorly understood . Here, we report that Vibrio 25 

elicits targeted transcriptional responses in the estuarine copepod Eurytemora affinis. We pre-26 

treated E. affinis with an antibiotic-cocktail and exposed them to either a zooplankton specialist 27 

(Vibrio sp. F10 9ZB36) or a free-living species (V. ordalii 12B09) for 24 hours. We then 28 

identified via RNA-Seq a total of 78 genes that were differentially expressed following Vibrio 29 

exposure, including homologs of C-type lectins, chitin-binding proteins and saposins. The 30 

response differed between the two Vibrio treatments, with the greatest changes elicited upon 31 

inoculation with V. sp. F10. We suggest that these differentially regulated genes play important 32 

roles in cuticle integrity, the innate immune response, and general stress responses, and that their 33 

expression may enable E. affinis to recognize and regulate symbiotic vibrios. We further report 34 

that V. sp. F10 culturability is specifically altered upon colonization of E. affinis.  These findings 35 

suggest that rather than acting as passive environmental vectors, copepods discriminately interact 36 

with vibrios, which may ultimately impact the abundance and activity of copepod-associated 37 

bacteria.   38 

 39 

Introduction: 40 

Animals have developed diverse mechanisms to initiate and regulate their interactions 41 

with microbiota in order to enrich for specific symbionts and prevent invasion by pathogens 42 

within microbially rich environments (Ezenwa et al. 2012; Buchon, Broderick and Lemaitre 43 

2013). Those bacteria that successfully associate with hosts receive benefits including increased 44 

access to nutrients (Douglas 2009), protection against environmental stressors (Chowdhury et al. 45 
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1997), increased frequency of horizontal gene transfer (Meibom et al. 2005; Aminov 2011) and 46 

enhanced persistence in the environment (Huq et al. 1983). Bacterial communities associated 47 

with copepods exhibit increased growth rates and production relative to those bacteria free-living 48 

in the surrounding seawater (Griffith, Douglas and Wainright 1990; Carman 1994), in addition to 49 

access to unique environments provided by their migrating hosts (Grossart et al. 2010). 50 

Colonization of copepods by Vibrio bacteria is a relatively well-studied zooplankton-bacteria 51 

interaction due to the prevalence of pathogenic vibrios (e.g. V. cholerae, V. parahaemolyticus) 52 

on these abundant chitinous organisms (e.g. Huq et al. 1983; Rawlings, Ruiz and Colwell 2007) 53 

and the dramatic impacts of these associations on the proliferation, virulence and physiology of 54 

vibrios (Kirn, Jude and Taylor 2005; Colwell 2009). However, whether copepods are in turn 55 

impacted by or further regulate colonizing vibrios is unknown. In light of copepods’ abundance 56 

across aquatic habitats and enrichment with Vibrio associates, copepod physiology may be an 57 

important influence on Vibrio ecology that has not yet been fully explored. 58 

Invertebrate host factors are increasingly recognized for their significant roles in 59 

symbiont acquisition and maintenance (Buchon, Broderick and Lemaitre 2013), often 60 

contributing to highly host-specific microbiomes (Franzenburg et al. 2013). As first lines of 61 

defense, the hard, chitinous exoskeleton and gut lining of arthopods such as copepods together 62 

form a physical and chemical barrier against pathogen attachment and invasion (Lemaitre and 63 

Hoffmann 2007; Vallet-Gely, Lemaitre and Boccard 2008). Chitinous surfaces are also known to 64 

induce genetic programs in Vibrio species, including the induction of natural competence 65 

(Meibom et al. 2005). Although invertebrates lack an adaptive immune system, focused studies 66 

have revealed a deeper level of complexity of the innate immune system than previously 67 

appreciated, including specific immune memory (Kurtz and Franz 2003; Little et al. 2003). 68 
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Elements of the innate immune system, including C-type lectins and antimicrobial peptides 69 

(AMPs), are known to enable invertebrate hosts to select for specific bacterial associates in 70 

addition to inhibiting growth of undesirable foreigners (Bulgheresi et al. 2006; Binggeli et al. 71 

2014). For example, in the marine nematode Laxus oneistus, a mucus-secreted C-type lectin is 72 

produced to mediate symbiont association with the cuticle by inducing symbiont aggregation and 73 

by directly binding to the symbiont’s antigens (Bulgheresi et al. 2006). Once bacterial symbionts 74 

are acquired, innate immune elements such as AMPs can be crucial for the invertebrate host to 75 

further regulate interactions with microbiota, including ensuring the proper localization of the 76 

symbionts within the host tissue (Login et al. 2011). Such finely-tuned and localized innate 77 

immune responses to bacterial symbionts complement those highly conserved, systemic innate 78 

immune responses to invading microbes, including the prophenoloxidase (proPO) cascade and 79 

catalase activity. The proPO cascade is induced when host recognition proteins are activated by 80 

microbial compounds, including bacterial surface attachment proteins and cell wall components 81 

(Medzhitov 2007) that initiate the conversion of ProPO into catalytically active phenoloxidase. 82 

Phenoloxidase in turn triggers the production of cytotoxic compounds and encapsulation of the 83 

microbial invaders (Cerenius, Lee and Söderhäll 2008 and references therein). In addition, 84 

catalases enzymatically decompose reactive oxygen species, specifically hydrogen peroxide, 85 

which is produced as part of the innate immune response (Ha et al. 2005; Wang et al. 2013). 86 

In this study, we have explored the responses of a copepod host to distinct Vibrio species. 87 

We chose as our model the copepod Eurytemora affinis, an invasive and abundant species that 88 

naturally associates with a diversity of pathogenic vibrios (Winkler, Dodson and Lee 2008; Zo et 89 

al. 2009) and has been consistently used in the few laboratory studies examining copepod-Vibrio 90 

interactions (Huq et al. 1983; Huq et al. 1984; Rawlings, Ruiz and Colwell 2007). However, to 91 
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our knowledge, our study is the first to examine the potential of the copepod host to 92 

discriminately respond to Vibrio associations. The two Vibrio species tested in this study inhabit 93 

similar coastal environments to E. affinis (Huq et al. 1983; Preheim et al. 2011) and possess 94 

distinct physical characteristics and ecological specializations: V. sp. F10 is classified as a 95 

zooplankton specialist that lacks the ability to degrade chitin (Preheim 2010; Preheim et al. 96 

2011), while V. ordalii has been inferred to be “almost exclusively free-living” because it is 97 

enriched in particle-free fractions of the water column and repeatedly absent from particles, 98 

zooplankton, and larger invertebrates (Hunt et al. 2008; Preheim et al. 2011; Szabo et al. 2013). 99 

Here, we examined the global transcriptomic response elicited in E. affinis by these two 100 

ecologically distinct Vibrio species.   101 

 102 

Materials and methods: 103 

Vibrio cultures 104 

Vibrio growth was first measured over 24 hours to confirm their ability to survive and 105 

grow under exposure conditions ideal for Eurytemora affinis (i.e. 15 PSU, 18 °C) (Fig. S1). In 106 

preparation for E. affinis exposure experiments, glycerol stocks of Vibrio cultures were streaked 107 

onto seawater complete (SWC) agar plates containing 15 PSU artificial seawater (ASW), 108 

peptone, yeast extract and glycerol before a 24-hour incubation at room temperature (RT). 109 

Several colonies were then transferred into 10 mL of SWC liquid media (15 PSU), shaken at 200 110 

rpm and incubated for 19 hours at 18 °C (V. sp. F10 9ZB36) or 28 °C (V. ordalii 12B09; 28 °C 111 

was chosen for V. ordalii to ensure robust rapid growth; Fig. S1).  For the E. affinis – Vibrio 112 

exposure experiments, 1 mL of overnight Vibrio culture was transferred to 100 mL of SWC 113 
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liquid media (15 PSU) and incubated for 19 hours at 100 rpm. Cultures were then pelleted at 114 

5,500 x g for 5 minutes and rinsed twice with 0.22-μm sterile filtered artificial seawater (15 PSU, 115 

RT) before diluting to the desired cell density (2 x 107 CFU mL-1). The final dilution factors for 116 

each strain were calculated from OD600 readings converted to CFU concentrations using 117 

independently determined standard curves for each strain and test condition (data not shown).  118 

To test whether V. sp. F10 and V. ordalii secrete extracellular chitinases, overnight 119 

cultures were grown in SWC media, as described above, spread onto plates comprised of 120 

approximately 2% (w/v) colloidal chitin in 1x marine agar (2216), and incubated at room 121 

temperature for 24-48 h. Colloidal chitin was prepared from crab shell chitin flakes (Sigma) 122 

(Murphy and Bleakeley 2012) and dyed with Remazol Brilliant Violet (Gomez Ramirez et al. 123 

2004). When extracellular chitinases hydrolyze the chitin substrate and covalently linked dye, a 124 

clear halo is left surrounding the chitinase-producing culture. Those cultures that do not secrete 125 

chitinases under the conditions examined may grow on the plate but will not produce a clear 126 

halo.  127 

Antibiotic treatment of the estuarine copepod Eurytemora affinis 128 

Eurytemora affinis cultures that originated from the Baie de L’isle Verte in the St. 129 

Lawrence estuary were generously provided by Carol Lee (University of Wisconsin). The 130 

copepod cultures were maintained at 12 °C and 15 PSU on a 14 h light/10 h dark cycle with 131 

moderate air bubbling (1-2 bubbles per second). The cultures were fed with Rhodomonas lens 132 

three times a week at a concentration of 1 x 106 cells mL-1.  133 

Before Vibrio exposure, E. affinis were fed and treated for 24 hours with an antibiotic 134 

mixture of ampicillin (0.3 mg mL-1), streptomycin (0.1 mg mL-1) and chloramphenicol (0.05 mg 135 
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mL-1) in moderately aerated, sterile seawater (15 °C, 15 PSU). To initially validate the 136 

effectiveness of the antibiotic cocktail in reducing the natural flora of E. affinis, individual whole 137 

copepods, homogenized copepods, or 400 μL of seawater from flasks containing either antibiotic 138 

treated or untreated copepods were placed into 2 mL of marine broth. The absorbance of the 139 

marine broth from each of the treatments was measured after 48 hours of incubation at 22 °C. In 140 

10 independent experiments, the antibiotic treatment dramatically reduced the OD600 of all three 141 

sample types (Fig. S2A). In all further Vibrio exposure experiments, the effectiveness of the 142 

antibiotic treatment was monitored via plate and direct counts of copepods from the control 143 

treatments (antibiotic treated and not inoculated with Vibrio), as described below, further 144 

demonstrating the success of the antibiotic treatment in reducing the native bacterial load (Table 145 

1, Fig. S2B, Fig 2C).  146 

E. affinis-Vibrio exposure experiments   147 

After 24 h of antibiotic treatment, copepods were rinsed with sterile seawater onto an 148 

autoclaved 400-μm sieve and captured with a transfer pipette. In the RNA-Seq experiment, 20 149 

mature, adult females were captured for each treatment replicate. ‘Mature, adult females’ were 150 

considered to include ovigerous females and non-ovigerous females with enlarged oviducts full 151 

of large oocytes, as previously defined (Boulange-Lecomte, Forget-Leray and Xuereb 2014). 152 

Follow-up qPCR experiments were performed with pools (n = 10-20 per replicate) of mature, 153 

adult females. For all exposures, copepods were placed into autoclaved 50 mL glass flasks 154 

containing Vibrio cultures diluted in sterile seawater (15 PSU, 15 °C) and incubated at 18 °C 155 

with moderate aeration for 24 h (14 h light/10 h dark cycle). After 24 h of Vibrio exposure, 156 

copepod samples used for the RNA-Seq and qPCR experiments were gently rinsed onto 157 
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autoclaved 333-μm mesh, transferred using plastic pipettors into 1 mL of PureZOL (Bio-Rad), 158 

and stored at -80 °C until RNA extraction within approximately four weeks.  159 

Although the typical density of copepods’ natural microbiota is ~ 105 cells copepod-1 160 

within an ambient marine environment containing 105-106 total bacterial cells mL-1 (Möller, 161 

Riemann and Sondergaard 2007; Tang, Turk and Grossart 2010), we chose an inoculation 162 

density of 2 x 107 colony forming units (CFU) mL-1 for the RNA-Seq and qPCR expression 163 

studies in order to increase the likelihood of eliciting a transcriptomic response in our test 164 

animals. Studies examining invertebrate host responses to bacteria frequently use a titre within or 165 

above this inoculation density and usually use more direct methods of infection (i.e., injection vs. 166 

our approach of immersion, as in Vodovare et al. 2005; Watthanasurorot et al. 2011; Cha et al. 167 

2015).  168 

To quantify the abundance of bacteria associated with E. affinis after 24 h, live copepods 169 

from the three treatments (V. sp. F10, V. ordalii, control) were rinsed onto autoclaved 333-μm 170 

mesh sieves with sterile ASW (18 °C, 15 PSU), and whole animals (5 per replicate) were 171 

homogenized in 200 μL of filter-sterilized ASW with sterile plastic pestles (Axygen Scientific, 172 

#PES15BSI). Homogenized copepods were then serially diluted and incubated for 20 h at RT on 173 

seawater complete [SWC] or thiosulfate-citrate-bile salts-sucrose [TCBS] agar plates before 174 

counting colony-forming units (CFU). Serial dilutions of the homogenized copepods were also 175 

preserved in formalin (1%) and stained with DAPI (10%) for direct counts on 0.22-μm black 176 

polycarbonate filters (EMD Millipore Isopore™, GTBP02500) under blue light excitation. 177 

Samples from the control treatment were not serially diluted, in anticipation of low cell densities.  178 

RNA extractions and library sequencing 179 
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Total RNA was extracted from E. affinis samples using the Aurum Total RNA Fatty and 180 

Fibrous Tissue Kit (Bio-Rad). Samples were homogenized in 1 ml PureZOL using a teflon 181 

homogenizer and processed according to the manufacturer’s protocol, with final elution from 182 

columns in 40 μL of warmed elution buffer (Tris buffer), as described previously (Aruda et al. 183 

2011). For qPCR, residual genomic DNA was removed with on-column DNase digestion. RNA 184 

yield and purity were quantified using a Nanodrop ND-1000 spectrophotometer, and RNA 185 

quality was visualized on a denaturing agarose gel. Quality of RNA samples submitted for 186 

Illumina sequencing was further assessed using a Bioanalyzer. The E. affinis samples, like many 187 

other arthropods, yielded one sharp peak on the Bioanalyzer due to a hidden break in their 28S 188 

rRNA that causes it to run at about the same size as the 18S rRNA. 189 

Directional, polyA-enriched RNA libraries were built by the Hudson Alpha Genomic 190 

Services Laboratory with the NEBNext® Ultra Directionality Kit (New England BioLabs) from 191 

1 μg of total RNA from each sample. The average fragment size of each library was 192 

approximately 300 bp. For transcriptome assembly, a library was constructed from a sample of 193 

pooled RNA made by combining approximately 200 ng from each sample (4 replicates per 194 

control, V. sp. F10-exposed, and V. ordalii-exposed treatment). The library constructed from this 195 

pooled sample was sequenced with 100 bp paired-end reads at a total sequencing depth of 111 196 

million reads on a HiSeq 2000. The libraries constructed from each of the twelve individual 197 

samples were multiplexed and sequenced across two lanes of the HiSeq2000 with 50 bp paired-198 

end reads at a total depth of 25 million reads per sample for differential expression analysis.  199 

De novo transcriptome assembly and post-assembly analysis 200 
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Trimmomatic software (Bolger, Lohse and Usadel 2014) was used in paired-end mode to 201 

remove adaptor sequences, low quality sequences (phred score < 20 bp), and the first 12 bp of 202 

the 5’ end of the read, which often contains a biased nucleotide composition due to nonrandom 203 

hexamer priming (Hansen, Brenner and Dudoit 2010). Reads greater than 50 bp in length after 204 

quality trimming were retained for assembly, resulting in a total of 102 million reads for 205 

assembly. An E. affinis transcriptome was assembled de novo with the RNA-seq assembler 206 

Trinity (version r2013-08-14) using default parameters for paired-end, directional reads 207 

(Grabherr et al. 2011). The assembled transcriptome consisted of 138,581 contiguous consensus 208 

sequences (contigs) that were grouped into 82,891 Trinity components (‘genes’). The size range 209 

of the transcripts was 201-23,627 bp with an N50 (weighted median) of 2,087 bp. The E. affinis 210 

assembly is qualitatively similar to other recently reported copepod and amphipod 211 

transcriptomes (Table S1).  The assembled E. affinis transcriptome is accessible through the 212 

Transcriptome Shotgun Assembly database (TSA, Bioproject PRJNA242763).  213 

Trinity-supported protocols and scripts for downstream analyses were followed using 214 

default parameters (Haas et al. 2013) to align reads associated with each library to the assembled 215 

transcriptome and to estimate abundances of the assembled transcripts (RSEM). Abundance 216 

counts of genes were TMM- (trimmed-mean of M-values) and FPKM- (fragments per kilobase 217 

per million reads mapped) normalized to account for differences in RNA production across 218 

samples (Robinson and Oshlack 2010) and gene length, respectively. The E. affinis genome was 219 

released in the midst of our analysis (Bioproject PRJNA203087), so a blastn search against the 220 

genome with a threshold e-value of 10-10 was performed to validate the origin of the transcripts 221 

as belonging to E. affinis. Principal component analysis (PCA) of the TMM- and FPKM- 222 

normalized abundance counts of all biological replicates across the three treatments, with Vibrio 223 
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sequences removed, identified one outlier in the control treatment that was subsequently dropped 224 

from further analysis (Fig. S3). Analysis of differentially expressed genes across the three 225 

treatments was performed with edgeR software (Robinson, McCarthy and Smyth 2010) with a 226 

minimum 2-fold difference in expression and a p-value cutoff for an FDR of 0.05. We chose a 2-227 

fold threshold in light of previous findings that known modulators of host-microbiota 228 

interactions are often regulated within this range (Broderick, Buchon and Lemaitre 2014).  229 

Representative sequences corresponding to the differentially expressed genes were 230 

provisionally annotated using blastx against the NCBI non-redundant (nr) database with a 231 

threshold e-value of 10-4. The remainder of the transcriptome was annotated by blastx against the 232 

Swissprot database. Blast2GO (Conesa et al. 2005) was also used to gain further information 233 

about the gene ontology (GO) terms and conserved protein domains associated with the genes of 234 

interest.  235 

Cloning and quantitative PCR (qPCR)  236 

To confirm the predicted sequences of the genes of interest and to generate standards for 237 

qPCR, 205-790 bp regions were cloned and sequenced as described previously (Aruda et al. 238 

2011). All primer sequences are provided in Tables S7 and S8.  Material for cloning was 239 

obtained from mature, adult E. affinis females preserved in PureZOL at -80 °C. Complementary 240 

cDNA (cDNA) was synthesized from 1 μg of total RNA per 20 μL reaction using the I-Script 241 

cDNA-synthesis kit (Bio-Rad) according to the manufacturer’s instructions. PCR products were 242 

cloned into pGEM-T Easy (Promega) and sequenced. For qPCR experiments, cDNA was 243 

synthesized from 450 ng of total E. affinis RNA in a 20 μL reaction. The 20 μL cDNAsynthesis 244 
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reactions were each diluted with molecular biology grade water, such that each microliter of 245 

diluted cDNA corresponded to 10 ng of total RNA.   246 

Gene expression was measured using SsoFast EvaGreen Supermix (Bio-Rad) on an 247 

iCycler iQ real-time PCR detection system (Bio-Rad).  The 20 μL EvaGreen reaction mixture 248 

contained 10 μL master mix, 8 μL molecular biology grade water, 1 μL diluted cDNA and 1 μL 249 

of 10 μM primers. The PCR conditions were: 95 ⁰C for 2 min followed by 40 cycles of 95 ⁰C for 250 

5 s and 62 ⁰C - 64 ⁰C for 10 s. All samples and standards were run in duplicate wells on the same 251 

plate for each gene of interest. After amplification, PCR products from each reaction were 252 

subjected to melt-curve analysis to ensure that only a single product was amplified. Selected 253 

products were also visualized on agarose gels and consistently yielded single bands.  254 

Gene expression was calculated relative to a standard curve of serially diluted plasmid 255 

standards encompassing the amplicon of interest and then base-2 log-transformed. A 256 

normalization factor equal to the geometric mean of three normalizer genes (Vandesompele et al. 257 

2002) was subtracted from the gene expression values. The normalizer genes were chosen from 258 

the Illumina data based on their moderate expression and low coefficient of variation between 259 

samples (i.e., thioredoxin domain-containing protein 5 (comp52262_c0), thyroid adenoma-260 

associated protein homolog (comp59254_c0), and human leucine-rich repeat neuronal protein 2-261 

like (comp53361_c0)). The normalizer genes exhibited stable expression throughout the study 262 

except for one V. sp. F10-exposed sample that exhibited very low expression of all three 263 

normalizer genes and was subsequently removed from further analysis. Results from three 264 

independent exposure experiments were combined to give a total of 8 biological replicates (after 265 

dropping one V. sp. F10 replicate, as explained above) in the V. sp. F10-exposed treatments, 9 266 

replicates in the V. ordalii-exposed treatments, and 10 replicates in the control treatment. One-267 
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way ANOVAs were used to compare mean gene expression among treatments, except in the 268 

cases of C-type lectin-like (comp47544, comp46353, comp49674)  and Saposin-like 269 

(comp58868) genes, for which Welch ANOVAs were used due to unequal variances among 270 

treatments.  Unplanned post-hoc comparisons (Tukey’s test) in genes with significant ANOVA 271 

results (p < 0.05) compared all possible pairs of treatment means.  272 

 273 

Results: 274 

Characterization of Vibrio cultures’ chitinolytic ability and association with E. affinis 275 

Metabolic characterization of V. sp. F10 9ZB36 and V. ordalii 12B09 using colloidal 276 

chitin plates suggested that V. sp. F10 does not secrete exogeneous chitinase under the conditions 277 

examined (Fig. S4), in accordance with previous findings that V. sp. F10 does not metabolize 278 

chitin (Preheim 2010). Conversely, V. ordalii does appear to secrete chitinase (Fig. S4), although 279 

the molecular basis for this physiological difference between the two Vibrio species is not clear. 280 

We also observed that unlike the copepod-associated V. ordalii colonies, the copepod-associated 281 

V. sp. F10 colonies were yellow on TCBS media, suggesting sucrose metabolism. 282 

Exposure to V. sp. F10 did not cause E. affinis mortality at any of the inoculation 283 

densities tested in this study (1 - 7 x 107 CFU mL-1) (Table S2). In some initial experiments, 284 

exposure to V. ordalii caused low levels of  E. affinis mortality (5-10%) at inoculation densities 285 

of 7 x 106 -  7 x 107 CFU mL-1. However, no mortalities were observed during any of the 286 

inoculations used for the transcriptome and qPCR expression studies (Table S2; densities of 2 x 287 

107 CFU mL-1).We quantified the abundance of bacteria associated with live E. affinis in 288 

comparison with that of ambient seawater through direct (DAPI staining) and plate counts 289 
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(Vibrio-selective thiosulfate-citrate-bile salts-sucrose [TCBS] and seawater complete [SWC] 290 

agar) of whole, homogenized copepods. The direct and plate counts of the copepods from the 291 

control treatments (antibiotic-treated, uninoculated) were consistently below statistical limits of 292 

detection (≤ 1 cell/field and < 30 CFU/plate, respectively) (Table 1, Fig. 2C, Fig. S2). The 293 

copepod-associated bacterial abundances, as measured via direct counts and plate counts on 294 

Vibrio-selective TCBS media were highly consistent for both V. ordalii and V. sp. F10 295 

treatments (Figure 2).  296 

The direct and SWC plate counts of V. ordalii-exposed copepods were highly consistent 297 

with one another (Fig. 1; Fig. 2; Table 1); conversely, there was great discrepancy (106-fold 298 

difference) between the direct and SWC plate counts for V. sp. F10-exposed copepods across all 299 

inoculation titers tested (Fig. 1; Fig. 2; Table 1).  The culturability of copepod-associated V. sp. 300 

F10 on SWC agar was consistently below detectable levels (< 30 CFU/plate), while direct counts 301 

remained high. We observed that the V. sp. F10 free-living in the ambient seawater of the 302 

incubation flasks did not have reduced culturability on SWC agar, suggesting that the change in 303 

the V. sp. F10 culturability is specific to association with copepods (Fig. 2A). The culturability 304 

of V. sp. F10 appears to rapidly decrease upon association with copepods, as there was a 300-305 

fold decrease in culturability on SWC agar between 6 and 24 hours of E. affinis inoculation (Fig. 306 

S5). Interestingly, copepod-associated V. sp. F10 demonstrated highly consistent direct and plate 307 

counts when the samples were cultured on TCBS agar (Fig. 2A), suggesting that the reduced 308 

culturability of copepod-associated V. sp. F10 is media-specific.  309 

RNA-Seq differential expression analysis  310 
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 We used RNA-Seq to identify changes in gene expression in E. affinis following 311 

exposure to either V. sp. F10 or V. ordalii. Overall, relative to the control treatments, the global 312 

gene expression pattern of the V. sp. F10-exposed treatment was the most distinct (Fig. 3). The 313 

global expression pattern of the V. ordalii-exposed treatment was very similar to the control 314 

treatment (Fig. 3). A total of 78 genes were differentially expressed with a fold change > 2 and a 315 

False Discovery Rate (FDR) > 0.05 in pair-wise comparisons of the three treatments (Table S3-316 

S5). The differentially expressed genes were annotated through blastx-based searches of the 317 

NCBI nr database, and putative functions were inferred based on associated gene ontology (GO) 318 

terms. Among the differentially expressed genes, 38 could be annotated and were associated with 319 

diverse predicated functions including cell signaling, immune function, maintenance of cuticle 320 

integrity, cellular transport, metabolism, and stress responses (Fig. 4). Many of these functions, 321 

notably maintenance of cuticle integrity, immune response, and stress responses, are specifically 322 

associated with invertebrate host responses to microbes.  323 

The majority of the 78 differentially expressed transcripts originated from the V. sp. F10-324 

exposed treatment (61 genes, 47 up-regulated, 14 down-regulated). The genes up-regulated by V. 325 

sp. F10 exposure are primarily involved in stress responses, cuticle integrity (chitin metabolism, 326 

chitin binding) and the innate immune response (C-type lectins, saposin-like) (Fig. 4, Table S3). 327 

V. sp. F10 exposure also induced mild up-regulation of several cell transport and cell signaling 328 

genes, as well as mild down-regulation of several cell signaling, metabolism, stress response and 329 

immune elements. Exposure to V. ordalii induced few transcriptional changes in E. affinis, with 330 

strong down-regulation (6-8 fold change compared to control) of two transcripts of unknown 331 

function also down-regulated by V. sp. F10 exposure and mild down-regulation of a knottin-like 332 

inhibitory protein unique to the V. ordalii exposure treatment (Table S4). A total of 53 genes 333 
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were differentially expressed between the V. sp. F10- and V. ordalii-exposed treatments, 16 of 334 

which were unique to this comparison (Table S5) and were primarily up-regulated in the V. sp. 335 

F10-exposed treatment. The majority of these genes were of unknown function, with a few 336 

involved in cell signaling and maintenance of cuticle integrity (Table S5).  Interestingly, two 337 

genes were similarly regulated in direction and magnitude in the V. sp. F10- and V. ordalii-338 

exposed treatments (Fig. 4, Table S5). These two genes had no significant match to the nr or 339 

InterProScan databases, although a BLAT (BLAST-like Alignment Tool) search against the E. 340 

affinis genome confirmed their origin as Eurytemora (99-100% nucleotide match to E. affinis 341 

genome; data not shown).  342 

E. affinis gene expression profiling via qPCR 343 

Eight genes with predicted innate immune function were selected for further qPCR 344 

profiling. Six of these genes were differentially expressed within the RNA-Seq study (three C-345 

type lectin-like transcripts, a saposin-like transcript and 2 chitin-binding transcripts). The three 346 

C-type lectin-like genes selected for further study are predicted to have mannose-binding 347 

domains (Hunter et al. 2012) and two of them (comp49674, comp46353) are also predicted to 348 

have signal peptides, suggesting they may be secreted (Petersen et al. 2011).  The saposin-like 349 

gene is also predicted to have a signal peptide and to be secreted. Finally, the two chitin-binding 350 

genes selected are both predicted to have chitin-binding domains (InterPro), which are often 351 

found in genes involved in maintaining the integrity of the arthropod cuticle and gut lining to 352 

prevent against invasion of microbes and their toxins (Buchon et al. 2009; Kuraishi et al. 2011). 353 

The RNA-Seq results were strongly supported by the qPCR studies, with consistency in 354 

the magnitude and direction of induction of the target genes across the E. affinis treatments 355 
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(Table 1). The three C-type lectin-like and the saposin-like genes were similarly and highly up-356 

regulated across independent V. sp. F10-exposed samples (Fig. 5), suggesting tight regulation of 357 

these innate immune genes in response to V. sp. F10 exposure. The chitin-binding genes were 358 

more subtly and variably up-regulated in the V. sp. F10-exposed treatment (Fig. 5), implying that 359 

they may be less tightly regulated than the C-type lectin genes under V. sp. F10 exposure. Two 360 

genes that were not differentially expressed in the transcriptome analysis, prophenoloxidase 361 

(proPO) and catalase, were selected for qPCR profiling in light of their highly conserved roles in 362 

the innate immune response. In accordance with the RNA-Seq results, proPO and catalase were 363 

not differentially expressed upon Vibrio exposure via qPCR (Fig. S6).  364 

 365 

Discussion: 366 

In this study, we investigated the potential of an ecologically significant invertebrate host, 367 

the estuarine copepod E. affinis, to transcriptionally respond to Vibrio exposure. We found that 368 

distinct Vibrio species elicited discriminate and targeted transcriptional responses in the copepod 369 

host and that association with E. affinis triggered a change in the culturability of V. sp. F10.  370 

Vibrios elicit distinct transcriptional responses in E. affinis 371 

The immune response genes up-regulated by V. sp. F10 association, specifically saposin-372 

like genes and C-type lectins, belong to families that are characteristically involved in symbiont 373 

acquisition and maintenance (Bulgheresi et al. 2006; Fraune et al. 2010; Heath-Heckman et al. 374 

2014). Saposins can act as pore-forming AMPs in response to microbial infection in a diversity 375 

of invertebrates (Banyai and Patthy 1998; Aguilar et al. 2005; Roeder et al. 2010), while also 376 

functioning as selective host regulators of highly stable and specific microbiome communities of 377 
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organisms, including the freshwater cnidarian Hydra (Franzenburg et al. 2013). In turn, 378 

mannose-binding C-type lectins can function as pattern recognition proteins to initiate 379 

acquisition of bacterial symbionts from the environment (Bulgheresi et al. 2006; Kvennefors et 380 

al. 2008; Bright and Bulgheresi 2010). Additionally, C-type lectins internally inhibit the 381 

proliferation of endogenous bacteria by modulating the expression of AMPs (Wang et al. 2014) 382 

or directly binding to bacteria and acting as antimicrobial agents (Cash et al. 2006).  Components 383 

of highly conserved and systemic innate immune pathways such as the Toll and IMD signaling 384 

pathways and the proPO cascade (Franzenburg et al. 2013; Binggeli et al. 2014; Valenzuela-385 

Munoz and Gallardo-Escarate 2014) were not up-regulated by V. sp. F10 exposure, highlighting 386 

the targeted nature of the immune response elicited by V. sp. F10. 387 

The mild up-regulation of genes with chitin-binding properties upon V. sp. F10 exposure 388 

may reflect the renewal of the peritrophic membrane to restrict the bacteria from invading the 389 

host through the gut (Buchon, Broderick and Lemaitre 2013). A potentially vulnerable point of 390 

entry into the host, the gut is lined with the chitinous peritrophic matrix, which acts like a sieve 391 

that surrounds and prevents bacteria, bacterial toxins, and hard food fragments from contacting 392 

the intestinal epithelium (Lehane 1997). When the thickness and permeability of the peritrophic 393 

matrix is compromised in Drosophila, there is higher susceptibility to infection by pathogenic 394 

bacteria or mortality from bacterial toxins (Kuraishi et al. 2011). Furthermore, ingestion of 395 

bacteria elicits a stronger immune response in Drosophila with a compromised peritrophic 396 

matrix, demonstrating the important role that this barrier defense contributes to host immunity 397 

(Kuraishi et al. 2011). The renewal of the host’s chitinous surfaces under an immune response 398 

may in turn have significant effects on the physiology of the colonizing vibrios, in light of the 399 

dramatic impacts of chitin association on Vibrio genetic programs (Kirn, Jude and Taylor 2005; 400 
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Meibom et al. 2005)  Further transcriptomic studies could explore whether other naturally 401 

associating, chitinolytic vibrios (e.g., V. cholerae) trigger stronger up-regulation of chitin-402 

renewal genes in E. affinis than do non-chitinolytic zooplankton specialists (i.e., V. sp. F10).   403 

Exposure to V. ordalii induced a limited transcriptomic response in E. affinis, despite our 404 

observations that V. ordalii 12B09 can digest chitin and abundantly colonize E. affinis. One 405 

mildly down-regulated transcript was identified as a knottin-like inhibitory protein, which is 406 

commonly involved in the stress and antimicrobial responses of invertebrates (Zhang et al. 407 

2014). Two of the genes that were strongly down-regulated by V. ordalii exposure were 408 

similarly down-regulated in the V. sp. F10 treatment, suggesting that these unknown transcripts 409 

may be candidate markers of Vibrio exposure (Table S4). Characterization of the function of 410 

these two genes and examination of their expression patterns upon copepod exposure to other 411 

Vibrio species warrant further study. Further examination of the localization of V. sp. F10 and 412 

V. ordalii on E. affinis via FISH or gfp-labeling could provide important context for the 413 

observed differences in the E. affinis transcriptomic response to these species, particularly if 414 

they are differentially distributed on the internal vs. external “hot spots” of the copepod (i.e., 415 

chitin-lining of the gut and anus vs. mouthparts and carapace) (Sochard et al. 1979; Huq et al. 416 

1983). 417 

Association with copepods alters culturability of a natural zooplankton specialist 418 

A zooplankton specialist that does not degrade chitin, V. sp. F10 heavily colonizes E. 419 

affinis. Attachment to E. affinis alters the metabolism of V. sp. F10 by quickly and dramatically 420 

reducing its culturability on SWC agar to below detection. This phenomenon is not observed in 421 

the free-living V. sp. F10 collected from the ambient seawater, suggesting that this process is 422 
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specific to close association with live copepods and is not likely caused by a broadly secreted 423 

factor. The association of bacteria that are non-culturable on standard media but are detectable 424 

by immunological or PCR-based methods (i.e., viable but non-culturable, VBNC) with copepods 425 

and other zooplankton has been frequently observed in environmental samples (Huq et al. 1983; 426 

Signoretto et al. 2005; Thomas et al. 2006). The VBNC phenomenon is thought to enhance 427 

bacterial survival during unfavorable environmental conditions, including dramatic shifts in 428 

salinity and temperature (Colwell 2009).  429 

Many previous studies describe VBNC vibrios as non-culturable on TCBS agar 430 

(Chowdhury et al. 1997; Signoretto et al. 2005; Halpern et al. 2007), a highly selective medium 431 

often used for isolation and enumeration of vibrios. In contrast, we found that the V. sp. F10 432 

associated with copepods are culturable on TCBS agar but non-culturable on SWC agar. Further 433 

study is needed to identify which components unique to TCBS media, including sucrose and bile 434 

salts, lead to the observed differences in the culturability of copepod-associated V. sp. F10 on 435 

SWC and TCBS agar plates. Even upon entering the VBNC state, Vibrio species can be highly 436 

sensitive to bile salts (Su, Jane and Wong 2013), which are known to affect the physiology of 437 

many bacteria (Begley, Gahan and Hill 2005) and can serve as stimuli for biofilm formation, 438 

increased motility, and activation of virulence genes in Vibrio (Hung et al. 2006; Gotoh et al. 439 

2010; Hay and Zhu 2014). In light of V. sp. F10’s strong association with living zooplankton in 440 

the natural environment (Preheim et al. 2011), future work should also investigate whether 441 

physiological changes associated with altered culturability of copepod-associated V. sp. F10 442 

confer a fitness advantage to V. sp. F10.  443 

To conclude, our study demonstrates that the estuarine copepod E. affinis dynamically 444 

and discriminately interacts with Vibrio species. Specifically, we have shown that E. affinis can 445 
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distinctly respond to Vibrio through targeted up-regulation of immune elements that may be 446 

involved in the recognition and maintenance of symbiotic Vibrio associates. The effect of E. 447 

affinis association on V. sp. F10 culturability highlights our limited understanding of the impacts 448 

of copepod association on vibrios. We propose that continued study of the dynamics of copepod-449 

Vibrio interactions may reveal that copepod physiology is a significant influence on Vibrio 450 

activity and abundance in the natural environment.  451 
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Figure and legends: 

Fig. 1. Association with the copepod E. affinis reduces Vibrio sp. F10 culturability on 

seawater complete agar across a range of inoculation densities. V. sp. F10 (A) and V. ordalii 

(B) isolated from pools (n = 5) of homogenized adult, mature female E. affinis were either 

directly stained with DAPI (asterisks) or plated on seawater complete (SWC) agar (circles) and 

incubated at room temperature for 20 hours. Abundances are plotted as the base-10 log-

transformed means of two biological replicates. Error bars indicate standard error and frequently 

fall within the area of the symbol. Note that the symbols associated with the direct and plate 

counts for V. ordalii lie on top of one another. The direct and plate counts of the copepods from 

the control treatments are not shown because they were consistently below detection (≤ 1 

cell/field and < 30 CFU/plate, respectively). 

Fig. 2. Reduction of Vibrio sp. F10 culturability upon colonization of the E. affinis surface is 

media-specific. Equivalent bacterial concentration of antibiotic pre-treated copepods 24 hours 

after inoculation with a bacterial density of 2 x 107 CFU mL-1 V. sp. F10 (A), V. ordalii (B), or 

no bacterial inoculation control (C). Bacteria isolated from pools (n = 5) of homogenized adult, 

mature female E. affinis or from the ambient seawater were either directly stained with DAPI 

(asterisks), plated on seawater complete (SWC) agar (circles), or plated on thiosulfate-citrate-bile 

salts-sucrose (TCBS) agar (triangles) and incubated at room temperature for 20 hours.  

Equivalent concentration of copepod-associated bacteria was calculated by dividing counts per 

copepod by the approximate volume of E. affinis (~2.5 x 10-5 mL) to qualitatively compare 

ambient seawater and copepod-associated bacterial concentrations (Tang et al. 2010).  SWC 

plate counts of V. sp. F10 isolated from E. affinis were consistently below the statistical detection 

limit (< 30 CFU/plate) and therefore were not normalized to E. affinis body volume. The direct 



and plate counts of the copepods from the control treatments were consistently below detection 

(≤ 1 cell/field and < 30 CFU/plate, respectively). All counts were base-10 log-transformed and 

replicates were jittered along the x-axis to improve readability. In the control panel (C), all 

negative log-transformed values and zero counts (undefined log value) were replaced with a zero 

for ease of presentation.  

 

Fig. 3.  Vibrio species elicit distinct transcriptional profiles in E. affinis. (Left) Principal 

component analysis demonstrates strong distinction between the V. sp. F10-exposed and control 

treatments, with little distinction between the V. ordalii-exposed and control treatments.  (Right) 

A heat map representing the base-2 log-transformed FPKM expression values of the 78 

differentially expressed genes (fold change > 2, FDR > 0.05) across the three Vibrio exposure 

treatments demonstrates a similar trend. Colors to the left of the heat map represent clades of 

transcripts with similar expression patterns Horizontal groupings indicate hierarchical clustering 

of biological replicates by global transcript expression patterns.   

 

Fig. 4. Vibrio exposure alters expression of genes putatively involved in invertebrate host 

response to microbiota. (Left) Functional gene ontology terms associated with the 78 

differentially expressed genes identified by Illumina sequencing. The total gene number in each 

category is indicated on the pie chart. (Right) Highlight of E. affinis genes that were most altered 

by exposure to Vibrio. Base-2 log-transformed fold changes (log2FC) in gene expression for each 

Vibrio exposure condition are relative to the control treatment. Positive and negative log2FC 

values reflect genes up-regulated and down-regulated, respectively, compared to the control 

treatment. Genes highlighted with bolder colors are more intensely altered by Vibrio exposure, 



with red hues indicating up-regulation and blue hues indicating down-regulation. Those genes 

further profiled by qPCR are in bold.  

 

Fig. 5. qPCR validation of RNA-Seq gene targets up-regulated upon V. sp. F10 exposure. 

Gene expression was measured in pooled samples of adult female E. affinis (n = 10-20 

individuals), and results from three independent Vibrio exposure experiments were pooled for a 

for a total of n = 10, 9, 8 biological replicates in the control, V. ordalii, and V. sp. F10 

treatments, respectively. Expression values were normalized to housekeeping genes and base-2 

log-transformed. The F-statistics (‘F(W)’) and p-values from Welch ANOVAs are listed for 

each profiled gene. Tukey’s post-hoc comparisons demonstrated that the V. sp. F10 treatment, 

labelled and indicated in red, was significantly different from the V. ordalii and control 

treatments in each of the genes profiled here.  

 

  



Table 1: Abundance of bacteria associated with the estuarine copepod Eurytemora affinis after 24 hours of exposure.  
After 24 h of antibiotic pre-treatment, inoculation with Vibrio culture or seawater (control), and 24 h of incubation (18 °C, 15 PSU), 
whole live copepods (5 per replicate) were rinsed with artificial seawater, homogenized, and stained with DAPI or plated on seawater 
complete agar (15 PSU) to obtain direct and plate (culturable) counts, respectively. Counts are listed as means ± standard error of two 
biological replicates. ‘Density of total bacteria’ attached to control copepods are not listed because the direct counts of these samples 
were consistently below detection (≤ 1 cell/field). aIndicates the culturable bacteria counts are approximate because they are below the 
statistical detection limit (< 30 CFU/plate). bIndicates there is one biological replicate.    
 

 

Vibrio strain 
Inoculation 
density 
(CFU mL-1) 

Density of culturable 
bacteria attached to 
copepods 
(CFU/copepod) 

Density of total 
bacteria attached 
to copepods 
(direct cell 
counts/copepod) 

Density of 
culturable 
bacteria on 
controls      
(CFU/copepod) 

Sex of copepods in 
experiment 

V. sp. F10 9ZB36 1.0 x 107 0 ± 0 a 2.3x106 ± 4.0x105 0.6 ± 0.6  Males and females (>400 μm) 
V. sp. F10 9ZB36 2.0 x 107 18.5 ± 1.5 a 2.0 x106 ± 5.0x105 2.5 ± 1 Mature, adult  females 
V. sp. F10 9ZB36 2.0 x 107 4.9 ± 1.1 a 7.4 x105 ± 2.7x105 8.5 ± 1 Mature, adult  females 
V. sp. F10 9ZB36 2.0 x 107 15.6 ± 9.9 a 5.0 x106 ± 1.1x106 0.75 ± 0.25 Mature, adult  females 
V. sp. F10 9ZB36 2.5 x 107 0 ± 0 a 1.2 x106 b  0 ± 0  Males and females (>400 μm ) 
V. sp. F10 9ZB36 6.0 x 107 6.0 ± 2.0 a - 0.75 ± 0.75 Mature, adult  females 
V. ordalii 12B09  6.0  x 106 2.1x103 ± 6.0x102 - 0.2 ± 0.2  Males and females (>400  μm) 
V. ordalii 12B09  7.0  x 106 7.0x103 b  - 2.8 ± 0.4 Males and females (>400  μm) 
V. ordalii 12B09  2.0  x 107 2.7x104 ± 9.0x103 3.1x104 ± 4.5x103 2.5 ± 1 Mature, adult  females 
V. ordalii 12B09  2.0  x 107 3.2x104  ± 1.4x104 4.9x104  ± 3.5x103 8.5 ± 1 Mature, adult  females 
V. ordalii 12B09  2.0  x 107 9.0x104  a, b 3.1x104  b 0 ± 0 Mature, adult  females 
V. ordalii 12B09  2.0  x 107 1.4x104  ± 6.0x103 1.6x105  ± 1.5x104 0.75 ± 0.25 Mature, adult  females 
V. ordalii 12B09  3.0  x 107 2.0x104 ±  1.0x104 3.3x104 ±  8.5x103 1.25 ± 0.75 Males and females (>400  μm) 
V. ordalii 12B09 6.0  x 107 3.4x104  ± 2.0x103  2.0 x105 ± 2.0x104 0.2 ± 0.2  Males and females (>400  μm) 
V. ordalii 12B09 6.0  x 107 4.4x104  ± 1.0x103 - 0.75 ± 0.75 Mature, adult  females 
V. ordalii 12B09 6.0  x 107 5.4x104  ± 2.5x103 - 0 ± 0  Mature, adult  females 
V. ordalii 12B09 7.0  x 107 1.2x105 ± 6.1x104 2.0 x104 ±  2.5x104 2.8 ± 0.4 Males and females (>400  μm) 
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Figure S1: Growth curves of Vibrio ordalii 12B09 (A) and Vibrio sp. F10 9ZB36 (B)  in seawater complete media (SWC) at
different salinities (15 and 30 PSU) and temperatures (15 °C, 18 °C, 30 °C). The conditions represented in bold font and by black 
circles (18 °C, 15 PSU) were those used in the E. affinis-Vibrio exposure experiments. The results represent the mean ± SE of two 
experiments run in triplicate wells. 
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Figure S2: Validation of an antibiotic cocktail used to reduce the natural microbiota of Eurytemora affinis. Copepods were
treated with a mixture of ampicillin (0.3 mg mL-1), streptomycin (0.1 mg mL-1), and chloramphenicol (0.05 mg mL-1) for 24 hours. 
A) Individual whole copepods, homogenized copepods, or 400 μL of seawater from flasks containing either antibiotic treated or untreated 
copepods were placed into 2 mL of marine broth and the absorbance was measured after 48 hours of incubation at 22 °C. These 
boxplots represent 10 independent experiments. B) Plate count results of antiobiotic-treated, control, uninoculated copepod treatments 
at the end of the 24 hr Vibrio exposure experiments. Pools of copepods (n = 5 per replicate) were rinsed with artificial seawater, homogenized, 
and were either plated on seawater complete agar (15 PSU) or stained with DAPI. Direct counts were consistently so low as to be below the
detection limit (<1 cell/field) and are not graphed here. Each circle represents the average number of colony forming units per copepod in 
26 independent pooled samples.
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Figure S3: Principal component analysis of FPKM- and TMM-normalized Illumina gene expression data across all Vibrio
samples suggests one biological replicate of the control treatment is an outlier.This biological replicate (plotted in black in the 
lower right hand corner) was subsequently dropped from further analysis.  
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Figure S4: Exogeneous chitinase production of Vibrio strains was tested using a Remazol Brilliant Violet-labeled colloidal
chitin agar plate. (A) The sterile plate control is purple due to the labeled chitin particles. Vibrio strains that do not produce 
exogeneous chitinase under the conditions examined will grow on the marine agar plate, but those Vibrio strains that secrete 
chitinases will grow and also produce a clear halo surrounding the colony due to the cleavage of the chitin particles and the 
Remzaol dye. Our results suggest that under the conditions examined V. ordalii 12B09 (C) produces an exogeneous chitinase,
while V. sp. F10 9ZB36 does not (B).  



Figure S5: Association with the copepod E. affinis rapidly and specifically alters the culturability of V. sp. F10.  After either 6 or 
24 hour exposure to a Vibrio species, pools of copepods (n = 5 per replicate) were rinsed with artificial seawater, homogenized, and 
were either plated on seawater complete agar (15 PSU) (solid circles) or stained with DAPI (star symbol). Abundance counts are listed 
as the log10 of means ± 95% confidence interval of two biological replicates. All treatments had two biological replicates. Direct counts 
of control, uninoculated copepods were consistently so low as to be below the detection limit (< 1 cell/field).   
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Figure S6: qPCR expression profiling of prophenoloxidase, catalse, and three housekeeping genes. Gene expression was measured in pooled 
samples of adult female E. affinis (n = 10-20 individuals) and results from three independent Vibrio exposure experiments were pooled for a total of
n = 10, 9, 8 biological replicates in the control, V. ordalii, and V. sp. F10 treatments, respectively. Prophenoloxidase and catalast expression values 
were normalized to housekeeping genes and base-2 log-transformed. The expression values of the three housekeeping genes are base-2 log-
transformed for the boxplots shown above. One-way ANOVAs were not statistically significant (p > 0.05) for any of the plots shown.



Table S1: Comparison of the present study with recent studies utilizing next-generation sequencing technologies to 
assemble de novo transcriptomes of crustacean species. 

 

 

 

 

 

 

Species Description 
Read 
length 
(bp) 

Number 
of reads 
(million) 

Contigs 'Genes' N50 
Contig 
length 
range 

Platform Assembler Investigator 

Eurytemora 
affinis 

Estuarine 
copepod 100 100 138,581 82,891 2,087 201-

23,627 Illumina Trinity 
Almada 
(current 
study) 

Calanus 
finmarchicus 

Marine 
copepod 100 80 241,778 124,618 987 201-

25,048 Illumina Trinity 
Tarrant et 
al. (2014) 
Front Zool 

Calanus 
finmarchicus 

Marine 
copepod 100 400 206,041 96,090 1,418 300- 

23,068 Illumina Trinity 
Lenz et al. 
(2014) PLoS 
ONE 

Tigriopus 
californicus 

Intertidal 
copepod 384 0.6 22,262 42,473 

(925: 
mean 
contig 
length) 

8807 
(max) 454 

CLC 
Genomics 
Workbench 

Barreto et 
al. (2011) 
Mol Ecol 

Parhyale 
hawaiensis Amphipod 400 3 89,664 25,735 1,510 ~60-

8,000 454 Newbler 
Zeng (2011) 
BMC 
Genomics 

Calanus 
sinicus 

Marine 
copepod 380 1.5 56,809 ~14,000 873 ~100-

3,500 454 Newbler 
Ning et al. 
(2013) PLoS 
ONE 



Table S2:  E. affinis mortality rates after exposure to Vibrio at 18 °C, 15 PSU for 24 or 48 hours.

Vibrio strain 
Inoculation density 

(CFU mL-1) 
Mortality 

(%) 

Length of 
Exposure 

(h) 
V. sp. F10 9ZB36 1 x 107 0 ± 0 a 24 
V. sp. F10 9ZB36 2 x 107 0 ± 0 a 24 
V. sp. F10 9ZB36 2.5 x 107 0 ± 0 a 24 
V. sp. F10 9ZB36 6 x 107 0 ± 0 a 24 
V. ordalii 12B09 6 x 106 0 ± 0 24 
V. ordalii 12B09 6 x 106 0 ± 0 48 
V. ordalii 12B09 7 x 106 5 ± 5 24 
V. ordalii 12B09 2 x107 0 ± 0 24 
V. ordalii 12B09 3 x 107 10 ± 10 a 24 
V. ordalii 12B09 6 x 107 0 ± 0 24 
V. ordalii 12B09 6 x 107 0 ± 0 24 
V. ordalii 12B09 6 x 107 5 ± 5 48 
V. ordalii 12B09 7 x 107 5 ± 5 24 

a indicates that 2 replicates of n = 5 individuals were tested. All other treatments tested 2 

replicates of n = 10 individuals 



Table S3: E. affinis genes differentially expressed in the V. sp. F10 exposure treatment, compared to the control samples. 
Abbreviations: ‘FC’ = fold change relative to the control treatment; ‘FDR’ = false discovery rate; ‘GOs’ = gene ontology terms. Blank 
entries reflect a lack of significant blast hits with associated GO terms at the set parameters (E-value < 1 x 10-4). Positive and negative 
FC values reflect genes up-regulated and down-regulated, respectively, in the V. sp. F10-exposed treatment compared to the control 
treatment. Differentially expressed genes that were further profiled via qPCR are in bold. Genes indicated with ‘#’ are those that are 
differentially expressed in both Vibrio exposure treatments in comparison to the control samples (comp51822_c0, comp40339_c0).  

Transcript 
Description 

Transcript 
ID FC FDR Top BLASTx 

Hit Species 

Top Hit 
Accession 
Number 

Min. E-
Value 

Mean 
similarity GOs InterProScan results 

CELL SIGNALLING PROCESSES 

homeobox protein nkx comp12937_c0 -3.18 3.34E-02 
Strongyloides 
ratti 
(nematode) 

CEF65008 1.50E-05 47.00% F:DNA binding 
 IPR001356 (homeobox 
domain); IPR009057 
(homeodomain-like domain) 

a disintegrin and 
metalloproteinase with 
thrombospondin motifs 
partial 

comp42146_c0 1.87 2.21E-02 
Stegodyphus 
mimosarum 
(spider) 

KFM61983 6.86E-73 72.00% 
P:proteolysis; 
F:metalloendopeptidase 
activity 

IPR001590 (peptidase_M12B 
domain); IPR024079 
(metallopeptidase catalytic 
domain) 

f-box kelch-repeat protein 
at2g44130-like comp42229_c0 1.16 3.68E-08 

Pyrus x 
bretschneideri 
(pear) 

XP_009335865 1.28E-06 46.67% - signal peptide domain; 
transmembrane domain  

cholesterol desaturase daf-
36-like comp36258_c0 1.80 4.63E-06 

Latimeria 
chalumnae 
(coelacanth) 

XP_006009329 6.46E-
104 61.33% 

F:2 iron, 2 sulfur 
cluster binding; 
F:oxidoreductase 
activity; P:oxidation-
reduction process 

IPR017941 (Rieske [2Fe-2S] 
iron-sulphur domain); 
PTHR21266 (iron-sulfur 
domain containing); 
transmembrane helix domain 

phosphatidylethanolamine-
binding protein comp48058_c1 -1.26 9.38E-05 

Danaus 
plexippus 
(butterfly) 

EHJ71177 8.45E-18 47.67% - 

IPR008914, PTHR11362 
(phosphatidylethanolamine-
binding protein PEBP family); 
cytoplasmic domain; 
transmembrane helix domain 

beta-crystallin a1 comp51193_c0 1.29 9.21E-15 
Lepeophtheirus 
salmonis 
(copepod) 

ADD38111 1.21E-35 54.33% - 

IPR001064 (Beta/gamma 
crystallin); signal peptide 
domain ; IPR011024 (Gamma-
crystallin-related domain) 

hypothetical protein comp57629_c1 1.16 2.78E-05 Daphnia pulex 
(waterflea) EFX79782 7.28E-91 39.67% 

F:serine-type 
endopeptidase inhibitor 
activity 

SSF54403 (cystatin/monellin 
family); IPR002223 
(Proteinase inhibitor I2, Kunitz 
domain);   IPR018073 
(Proteinase inhibitor I25, 
cystatin, conserved site ); 
signal peptide domain 



METABOLISM 

hypothetical protein comp45348_c0 -3.36 6.21E-09 
Ciona 
intestinalis 
(tunicate) 

XP_002121160 4.00E-42 56.33% - 

 PTHR10366 (NAD dependent 
epimerase/dehydratase);  
IPR027417 (P-loop containing 
nucleoside triphosphate 
hydrolase); transmembrane 
helix domain 

violaxanthin de-epoxidase comp42733_c0 1.38 4.73E-14 Physcomitrella 
patens (moss) XP_001773358 5.55E-13 40.00% 

F:violaxanthin de-
epoxidase activity; 
C:chloroplast; 
P:oxidation-reduction 
process 

IPR012674 (calycin domain); 
IPR010788 (violaxanthin de-
epoxidase ) ; IPR011038 
(calycin-like superfamily); 
signal peptide domain 

hypothetical protein comp53782_c0 1.12 5.86E-05 Daphnia pulex 
(waterflea) EFX83386 1.13E-92 55.00% F:hydrolase activity 

IPR002018, IPR019826 
(carboxylesterase, type B 
domain/active site); 
IPR029058 (alpha/Beta 
hydrolase fold domain);  
PTHR11559 (carboxylesterase 
family); signal peptide domain 

aldehyde dehydrogenase 
family 3 member partial comp56580_c0 -1.00 6.01E-04 

Stegodyphus 
mimosarum 
(spider) 

KFM66996 3.36E-
175 69.33% 

F:oxidoreductase 
activity; 
P:biological_process 

IPR012394, PTHR11699 
(Aldehyde dehydrogenase 
NAD(P)-dependent family); 
IPR016162 (Aldehyde 
dehydrogenase, N-terminal 
domain); IPR016163 
(Aldehyde dehydrogenase, C-
terminal domain); cytoplasmic 
domain; transmembrane 
domain 

aldehyde oxidase 2-like comp59156_c0 -1.07 3.99E-04 Daphnia pulex 
(waterflea) EFX86357 0.00E+00 60.67% F:molecular_function 

IPR005107 (CO 
dehydrogenase flavoprotein, 
C-terminal domain); 
IPR000674 (aldehyde 
oxidase/xanthine 
dehydrogenase, a/b 
hammerhead domain); 
IPR016208 (Aldehyde 
oxidase/xanthine 
dehydrogenase family); 
IPR008274 (Aldehyde 
oxidase/xanthine 
dehydrogenase, molybdopterin 
binding domain) 



RESPONSE TO STRESS 

inter-alpha-trypsin 
inhibitor heavy chain h4 comp32809_c1 1.59 1.53E-04 Crassostrea 

gigas (oyster) EKC36390 6.50E-
102 55.67% - no IPS match 

Cytochrome P450 comp55690_c0 -1.50 2.38E-03 
Tigriopus 
japonicus 
(copepod) 

AIL94133 1.16E-87 53.67% 

P:oxidation-reduction 
process; F:iron ion 
binding; 
F:oxidoreductase 
activity, acting on 
paired donors, with 
incorporation or 
reduction of molecular 
oxygen; F:heme 
binding 

IPR001128 (cytochrome P450 
family); IPR002401 
(cytochrome P450, E-class, 
group I family); signal peptide 
domain 

glutathione s-transferase 
mu 1 comp46208_c1 -1.04 4.77E-03 

Oryctolagus 
cuniculus 
(rabbit) 

NP_001075721 2.87E-37 51.33% F:protein binding 

IPR004046 (Glutathione S-
transferase, C-terminal 
domain); IPR004045 
(Glutathione S-transferase, N-
terminal domain); IPR010987 
(glutathione S-transferase, C-
terminal-like domain) 

CUTICLE INTEGRITY 

chitotriosidase comp55805_c0 1.28 6.34E-11 Daphnia pulex 
(waterflea) EFX90412 2.17E-

134 66.00% 

F:hydrolase activity, 
acting on glycosyl 
bonds; 
P:biological_process 

IPR017853 (glycoside 
hydrolase, superfamily); 
IPR011583 (chitinase II 
domain); IPR002557 (chitin-
binding domain); IPR029070 
(chitinase insertion domain); 
PTHR11177 (chitinase 
family); signal peptide domain 

chondroitin proteoglycan-
2-like comp35157_c0 1.88 4.63E-06 

Tribolium 
castaneum 
(beetle) 

XP_008192409 4.01E-08 60.33% 

C:extracellular region; 
P:chitin metabolic 
process; F:chitin 
binding 

IPR002557 (chitin-binding 
domain); PTHR23301 (chitin-
binding peritrophin A family) 

chitin-binding protein comp43891_c0 2.10 3.42E-11 Drosophila 

virilis (fly) XP_002048076 3.65E-05 57.67% 

P:chitin metabolic 
process; 
C:extracellular 
region; F:chitin 
binding 

chitin-binding domain 
(PFAM); signal peptide 
domain 

chondroitin 
proteoglycan-2-like comp47090_c0 2.03 5.71E-10 

Tribolium 

castaneum 

(beetle) 
XP_008192409 1.86E-09 60.33% 

F:chitin binding; 
P:chitin metabolic 
process; 
C:extracellular region 

IPR002557 (chitin-binding 
domain) 



IMMUNE SYSTEM PROCESSES 

C-type lectin-like comp47544_c0 4.61 2.55E-28 - - - - - 

IPR016186 (c-type lectin-like 
domain); IPR016187 (c-type 
lectin fold domain); signal 
peptide domain 

macrophage mannose 
receptor partial comp50187_c1 -1.80 8.02E-04 Chaetura 

pelagica (bird) KFU96626 1.50E-15 41.67% F:carbohydrate binding 

IPR001304 (c-type lectin 
domain);  PTHR22803 
(mannose, phospholipase, 
lectin receptor related family); 
IPR016187 (c-type lectin fold 
domain); signal peptide 
domain 

hepatic lectin-like comp49674_c0 6.93 4.15E-49 Oreochromis 

niloticus (fish) XP_005459156 3.02E-05 37 F:carbohydrate 
binding 

IPR001304 (c-type lectin 
domain); IPR016186 (c-type 
lectin-like domain); 
IPR016187 (c-type lectin 
fold); cytoplasmic domain; 
transmembrane helix 
domain 

C-type lectin-like comp46353_c0 8.21 3.99E-14 - - - - - 
IPR016186 (c-type lectin-like 
domain); IPR016187 (c-type 
lectin fold) 

C-type lectin-like comp46353_c1 7.64 6.90E-45 - - - - - 
IPR016186 (c-type lectin-like 
domain); IPR016187 (c-type 
lectin fold) 

C-type lectin-like comp40027_c0 5.99 3.99E-14 - - - - - IPR016186 (c-type lectin-like); 
IPR016187 (c-type lectin fold) 

c-type mannose receptor 
2- partial comp43463_c0 -1.16 1.41E-02 

Saccoglossus 
kowalevskii 
(worm) 

XP_006825556 2.63E-18 44.67% F:carbohydrate binding 

IPR001304 (c-type lectin); 
IPR016186 (c-type lectin-like);  
PTHR22803 (mannose, 
phospholipase, lectin receptor 
related); IPR016187 (c-type 
lectin fold); signal peptide 
domain 

Saposin-like comp58868_c1 4.52 2.49E-73 - - - - - 

IPR011001 (saposin-like 
domain); IPR008139 
(saposin B domain); signal 
peptide domain 



TRANSPORT 

sodium-dependent 
phosphate transporter 1-a-
like 

comp51144_c0 1.12 3.86E-03 
Metaseiulus 
occidentalis 
(mite) 

XP_003742817 1.38E-67 52.67% 

F:inorganic phosphate 
transmembrane 
transporter activity; 
C:membrane; 
P:phosphate ion 
transport 

 IPR001204 (phosphate 
transporter family); 
cytoplasmic domain; 
transmembrane helix domain  

peptide transporter family 
1-like comp56914_c0 1.64 2.73E-07 

Dendroctonus 
ponderosae 
(beetle) 

ENN73556 3.13E-
159 59.33% 

F:transporter activity; 
C:membrane; 
P:oligopeptide 
transport 

IPR000109 (Proton-dependent 
oligopeptide transporter 
family); PTHR11654:SF96 
(peptide transporter family 1); 
IPR018456 (PTR2 family 
proton/oligopeptide symporter, 
conserved site); IPR016196 
(Major facilitator superfamily 
domain, general substrate 
transporter domain); 
transmembrane helix domain; 
cytoplasmic domain 

hypothetical protein comp57280_c0 1.04 1.96E-05 Daphnia pulex 
(waterflea) EFX71591 1.72E-

149 52.00% - 

IPR002035 (von Willebrand 
factor, type A domain);  
IPR013642 (Chloride channel 
calcium-activated);   
PTHR10579 (calcium-
activated chlorine channel 
regulator); cytoplasmic 
domain; transmembrane 
domain 

adp-ribosylation factor comp45127_c0 2.03 2.68E-05 
Dugesia 
japonica 
(flatworm) 

P91924 1.69E-71 82.33% 

P:response to stress; 
P:catabolic process; 
P:signal transduction; 
P:vesicle-mediated 
transport; P:transport; 
C:Golgi apparatus; 
F:ion binding 

IPR006689 (Small GTPase 
superfamily, ARF/SAR type); 
IPR027417 (P-loop containing 
nucleoside triphosphate 
hydrolase domain); IPR005225 
(Small GTP-binding protein 
domain) 



UNKNOWN 

Unknown comp62318_c0 2.83 3.06E-02 - - - - - signal peptide domain 

Unknown comp16598_c0 2.65 2.13E-02 - - - - - transmembrane helix domain; 
cytoplasmic domain 

Unknown comp16910_c0 4.16 2.58E-08 - - - - - no IPS match 

Unknown comp17377_c0 2.48 1.09E-03 - - - - - 
G3DSA:3.50.4.10 (hepatocyte 
growth factor superfamily); 
signal peptide domain 

Unknown comp17945_c0 1.24 3.75E-10 - - - - - 
G3DSA:3.50.4.10 (hepatocyte 
growth factor superfamily); 
signal peptide domain 

hypothetical protein comp18829_c0 1.90 1.49E-08 Helobdella 
robusta (leech) XP_009029394 8.92E-04 44.00% - signal peptide domain 

Unknown comp58868_c2 4.00 9.54E-12 - - - - - no IPS match 

Unknown comp58868_c3 4.07 5.23E-19 - - - - - no IPS match 

Unknown comp56716_c0 1.26 2.04E-02 - - - - - no IPS match 

Unknown# comp51822_c0 -5.53 6.05E-03 - - - - - transmembrane helix domain 

Unknown comp52925_c1 2.50 4.15E-49 - - - - - 
G3DSA:3.50.4.10 (hepatocyte 
growth factor superfamily); 
signal peptide domain  

Unknown comp53341_c1 1.67 4.97E-02 - - - - - 

IPR029469 (PAN-4 domain); 
G3DSA:3.50.4.10 (hepatocyte 
growth factor superfamily); 
signal peptide domain 

Unknown comp53341_c2 1.64 3.86E-03 - - - - - 

IPR029469 (PAN-4 domain); 
G3DSA:3.50.4.10 (hepatocyte 
growth factor superfamily); 
signal peptide domain 

Unknown comp53492_c0 1.76 1.89E-02 - - - - - cytoplasmic domain; 
transmembrane helix domain  

Unknown comp49776_c0 -6.42 3.61E-03 - - - - - no IPS match 

Unknown comp50150_c0 1.08 4.43E-02 - - - - - coiled-coil domain; 
transmembrane domain  



Unknown comp46444_c2 2.83 3.53E-04 - - - - - signal peptide domain 

Unknown comp46722_c0 2.46 5.94E-04 - - - - - no transmembrane domain 

Unknown comp47218_c0 1.06 3.34E-02 - - - - - signal peptide domain; 
transmembrane helix domain 

Unknown comp46043_c0 2.93 3.99E-04 - - - - - no IPS match 

Unknown comp44011_c0 3.11 9.29E-07 - - - - - no IPS match 

Unknown# comp40339_c0 -8.35 3.53E-04 - - - - - signal peptide domain; 
transmembrane domain  

Unknown comp40368_c0 1.99 4.09E-06 - - - - - 

G3DSA:3.50.4.10 (hepatocyte 
growth factor superfamily); 
SSF57414 (hairpin loop 
containing domain-like 
superfamily) 

Unknown comp41942_c0 1.99 2.82E-12 - - - - - no IPS match 

Unknown comp42970_c0 -4.86 4.83E-02 - - - - - transmembrane domain 

Unknown comp43319_c0 2.19 1.33E-06 - - - - - 

IPR003014 (PAN-1 domain);  
IPR003609 (apple-like 
domain) SSF57414 (hairpin 
loop containing domain-like 
superfamily); signal peptide 
domain  

Unknown comp33114_c0 -4.03 2.31E-03 - - - - - no IPS match 

Unknown comp36118_c0 1.31 5.91E-06 - - - - - 
G3DSA:3.50.4.10 (hepatocyte 
growth factor superfamily); 
signal peptide domain 

Unknown comp36128_c0 1.86 6.66E-04 - - - - - transmembrane, cytoplasmic 
domain  

Unknown comp39845_c0 3.38 1.48E-02 - - - - - no IPS match 



Table S4: E. affinis genes differentially expressed in the V. ordalii exposure treatment, compared to the control samples. 
Abbreviations: ‘FC’ = fold change relative to the control treatment; ‘FDR’ = false discovery rate; ‘GOs’ = gene ontology terms. Blank 
entries reflect a lack of significant blast hits with associated GO terms at the set parameters (E-value < 1 x 10-4). Positive and negative 
FC values reflect genes up-regulated and down-regulated, respectively, in the V. ordalii-exposed treatment compared to the control 
treatment. Genes indicated with ‘#’ are those that are differentially expressed in both Vibrio exposure treatments in comparison to the 
control samples (comp51822_c0, comp40339_c0). 

Transcript 
Description 

Transcript 
ID FC FDR Top BLASTx 

Hit Species 

Top Hit 
Accession 
Number 

Min. E-
Value 

Mean 
similarity GOs InterProScan results 

RESPONSE TO STRESS 

Knottin-like inhibitory 
protein comp44575_c0 -2.81 2.86E-03 - - - - P:defense response 

IPR003614 (knottin, scorpion-
toxin-like domain); signal 
peptide domain 

UNKNOWN 

Unknown# comp40339_c0 -7.66 1.17E-02 - - - - - signal peptide domain; 
transmembrane domain  

Unknown# comp51822_c0 -5.90 1.17E-02  -  -  -  - - transmembrane helix domain 



Table S5: E. affinis genes differentially expressed in the V. ordalii exposure treatment, compared to the V. sp. F10 exposure 
treatment. Abbreviations: ‘FC’ = fold change relative to the control treatment; ‘FDR’ = false discovery rate; ‘GOs’ = gene ontology 
terms. Blank entries reflect a lack of significant blast hits with associated GO terms at the set parameters (E-value < 1 x 10-4). Positive 
and negative FC values reflect genes up-regulated and down-regulated, respectively, in the V. ordalii-exposed treatment compared to 
the V. sp. F10-exposed treatment. Genes that are uniquely differentially expressed in the comparison of the Vibrio exposure treatments 
are indicated in bold.  

Transcript 
Description 

Transcript 
ID FC FDR 

Top 
BLASTx Hit 
Species 

Top Hit 
Accession 
Number 

Min. E-
Value 

Mean 
similarity GOs InterProScan results 

CELL SIGNALLING PROCESSES 

beta-crystallin 
a1 comp45441_c0 -1.14 1.76E-02 

Lepeophtheirus 

salmonis 

(copepod) 
ADD38111 8.62E-37 54.33% - 

 G3DSA:2.60.20.10 (crystallin 
superfamily);  IPR011024 
(gamma-crystallin related 
domain); IPR001064 
(Beta/gamma crystallin domain) 

a disintegrin and 
metalloproteinase 
with 
thrombospondin 
motifs partial 

comp42146_c0 -1.36 9.78E-02 
Stegodyphus 
mimosarum 
(spider) 

KFM61983 6.86E-73 72.00% 
P:proteolysis; 
F:metalloendopeptidase 
activity 

IPR001590 (peptidase_M12B 
domain); IPR024079 
(metallopeptidase catalytic 
domain) 

f-box kelch-
repeat protein 
at2g44130-like 

comp42229_c0 -1.07 8.22E-06 
Pyrus x 
bretschneideri 
(pear) 

XP_009335865 1.28E-06 46.67% - signal peptide domain; 
transmembrane domain  

f-box kelch-
repeat protein 
at2g44130-like 

comp21522_c0 -1.30 8.33E-03 
Pyrus x 

bretschneideri 

(pear) 
XP_009335865 4.15E-07 46.33% F:protein binding 

SSF117281 (kelch motif 
superfamily); IPR006652 (kelch 
repeat type 1); IPR015915 
(kelch-type beta propeller 
domain) 

elongation 
factor 1-delta  comp45173_c0 -2.97 4.22E-02 Artemia salina 

(brine shrimp) P32192 9.88E-26 65.00% 

C:eukaryotic translation 
elongation factor 1 
complex; P:translational 
elongation; F:translation 
elongation factor activity 

IPR014038 (translation 
elongation factor EF1B, 
beta/delta subunit, guanine 
nucleotide exchange domain) 

beta-crystallin a1 comp51193_c0 -1.15 7.31E-12 
Lepeophtheirus 
salmonis 
(copepod) 

ADD38111 1.21E-35 54.33% - 

IPR001064 (Beta/gamma 
crystallin); signal peptide domain ; 
IPR011024 (Gamma-crystallin-
related domain) 



METABOLISM 

hypothetical 
protein comp45348_c0 3.10 4.76E-13 

Ciona 
intestinalis 
(tunicate) 

XP_002121160 4.00E-42 56.33% - 

 PTHR10366 (NAD dependent 
epimerase/dehydratase);  
IPR027417 (P-loop containing 
nucleoside triphosphate 
hydrolase); transmembrane helix 
domain 

violaxanthin de-
epoxidase comp42733_c0 -1.26 4.46E-10 Physcomitrella 

patens (moss) XP_001773358 5.55E-13 40.00% 

F:violaxanthin de-epoxidase 
activity; C:chloroplast; 
P:oxidation-reduction 
process 

IPR012674 (calycin domain); 
IPR010788 (violaxanthin de-
epoxidase ) ; IPR011038 (calycin-
like superfamily); signal peptide 
domain 

hypothetical 
protein comp53782_c0 -0.96 3.65E-03 Daphnia pulex 

(waterflea) EFX83386 1.13E-92 55.00% F:hydrolase activity 

IPR002018, IPR019826 
(carboxylesterase, type B 
domain/active site); IPR029058 
(alpha/Beta hydrolase fold 
domain);  PTHR11559 
(carboxylesterase family); signal 
peptide domain  

aldehyde 
dehydrogenase 
family 3 member 
partial 

comp56580_c0 0.82 9.10E-02 
Stegodyphus 
mimosarum 
(spider) 

KFM66996 3.36E-175 69.33% F:oxidoreductase activity; 
P:biological_process 

IPR012394, PTHR11699 
(Aldehyde dehydrogenase 
NAD(P)-dependent family); 
IPR016162 (Aldehyde 
dehydrogenase, N-terminal 
domain); IPR016163 (Aldehyde 
dehydrogenase, C-terminal 
domain); cytoplasmic domain; 
transmembrane domain 

aldehyde oxidase 
2-like comp59156_c0 -4.14 5.26E-25 Daphnia pulex 

(waterflea) EFX86357 0.00E+00 60.67% F:molecular_function 

IPR005107 (CO dehydrogenase 
flavoprotein, C-terminal domain); 
IPR000674 (aldehyde 
oxidase/xanthine dehydrogenase, 
a/b hammerhead domain); 
IPR016208 (Aldehyde 
oxidase/xanthine dehydrogenase 
family); IPR008274 (Aldehyde 
oxidase/xanthine dehydrogenase, 
molybdopterin binding domain) 



RESPONSE TO STRESS 

Knottin-like 
inhibitory protein comp44575_c0 -3.54 2.77E-02 - - - - P:defense response 

IPR003614 (knottin, scorpion-
toxin-like domain); signal peptide 
domain 

inter-alpha-
trypsin inhibitor 
heavy chain h4 

comp32809_c1 -1.34 1.12E-02 Crassostrea 
gigas (oyster) EKC36390 6.50E-102 55.67% - no IPS match 

Cytochrome 
P450 comp55690_c0 1.67 4.54E-05 

Tigriopus 
japonicus 
(copepod) 

AIL94133 1.16E-87 53.67% 

P:oxidation-reduction 
process; F:iron ion binding; 
F:oxidoreductase activity, 
acting on paired donors, with 
incorporation or reduction of 
molecular oxygen; F:heme 
binding 

IPR001128 (cytochrome P450 
family); IPR002401 (cytochrome 
P450, E-class, group I family); 
signal peptide domain 

glutathione s-
transferase mu 1 comp46208_c1 0.90 4.84E-02 

Oryctolagus 
cuniculus 
(rabbit) 

NP_001075721 2.87E-37 51.33% F:protein binding 

IPR004046 (Glutathione S-
transferase, C-terminal domain); 
IPR004045 (Glutathione S-
transferase, N-terminal domain); 
IPR010987 (glutathione S-
transferase, C-terminal-like 
domain) 

CUTICLE INTEGRITY 

Chitotriosidase comp33461_c0 -1.30 3.23E-04 Daphnia pulex 

(waterflea) EFX90412 8.52E-80 73.33% 

F:hydrolase activity, acting 
on glycosyl bonds; 
P:biological_process; 
P:carbohydrate metabolic 
process 

IPR017853 (Glycoside hydrolase, 
superfamily ); PTHR11177 
(chitinase family);  IPR011583 
(chitinase II domain); 
IPR001579 (Glycoside hydrolase, 
chitinase active site); signal 
peptide domain 

hypothetical 
protein comp32479_c0 -1.58 1.25E-03 Daphnia pulex 

(waterflea) EFX90414 1.20E-45 63.33% 
F:hydrolase activity, acting 
on glycosyl bonds; 
P:biological_process 

 IPR017853 (Glycoside 
hydrolase, superfamily domain); 
IPR001223 (Glycoside hydrolase, 
family 18, catalytic domain); 
IPR029070 (chitinase insertion 
domain); PTHR11177 (chitinase 
family) 

chitotriosidase comp55805_c0 -1.29 2.82E-09 Daphnia pulex 
(waterflea) EFX90412 2.17E-134 66.00% 

F:hydrolase activity, acting 
on glycosyl bonds; 
P:biological_process 

IPR017853 (glycoside hydrolase, 
superfamily); IPR011583 
(chitinase II domain); IPR002557 
(chitin-binding domain); 
IPR029070 (chitinase insertion 
domain); PTHR11177 (chitinase 
family); signal peptide domain   

chondroitin 
proteoglycan-2-
like 

comp35157_c0 -1.60 4.70E-06 
Tribolium 
castaneum 
(beetle) 

XP_008192409 4.01E-08 60.33% 
C:extracellular region; 
P:chitin metabolic process; 
F:chitin binding 

IPR002557 (chitin-binding 
domain); PTHR23301 (chitin-
binding peritrophin A family) 



chitin-binding 
protein comp43891_c0 -1.35 5.12E-06 Drosophila 

virilis (fly) XP_002048076 3.65E-05 57.67% 
P:chitin metabolic process; 
C:extracellular region; 
F:chitin binding 

chitin-binding domain (PFAM); 
signal peptide domain 

chondroitin 
proteoglycan-2-
like 

comp47090_c0 -1.96 6.08E-10 
Tribolium 
castaneum 
(beetle) 

XP_008192409 1.86E-09 60.33% 
F:chitin binding; P:chitin 
metabolic process; 
C:extracellular region 

IPR002557 (chitin-binding 
domain) 

IMMUNE SYSTEM PROCESSES 

C-type lectin-like comp47544_c0 -3.93 1.97E-20 - - - - - 

IPR016186 (c-type lectin-like 
domain); IPR016187 (c-type lectin 
fold domain); signal peptide 
domain 

macrophage 
mannose receptor 
partial 

comp50187_c1 1.99 6.07E-05 Chaetura 
pelagica (bird) KFU96626 1.50E-15 41.67% F:carbohydrate binding 

IPR001304 (c-type lectin domain);  
PTHR22803 (mannose, 
phospholipase, lectin receptor 
related family); IPR016187 (c-type 
lectin fold domain); signal peptide 
domain 

hepatic lectin-
like comp49674_c0 -4.50 9.64E-08 Oreochromis 

niloticus (fish) XP_005459156 3.02E-05 37 F:carbohydrate binding 

IPR001304 (c-type lectin domain); 
IPR016186 (c-type lectin-like 
domain); IPR016187 (c-type lectin 
fold); cytoplasmic domain; 
transmembrane helix domain 

C-type lectin-like comp46353_c0 -4.98 2.64E-17 - - - - - 
IPR016186 (c-type lectin-like 
domain); IPR016187 (c-type lectin 
fold) 

C-type lectin-like comp46353_c1 -5.04 2.82E-07 - - - - - 
IPR016186 (c-type lectin-like 
domain); IPR016187 (c-type lectin 
fold) 

C-type lectin-like comp40027_c0 -3.53 1.33E-08 - - - - - IPR016186 (c-type lectin-like); 
IPR016187 (c-type lectin fold) 

c-type mannose 
receptor 2- 
partial 

comp43463_c0 0.98 5.84E-02 
Saccoglossus 
kowalevskii 
(worm) 

XP_006825556 2.63E-18 44.67% F:carbohydrate binding 

IPR001304 (c-type lectin); 
IPR016186 (c-type lectin-like);  
PTHR22803 (mannose, 
phospholipase, lectin receptor 
related); IPR016187 (c-type lectin 
fold); signal peptide domain 

Saposin-like comp58868_c1 -3.76 1.03E-35 - - - - - 
IPR011001 (saposin-like domain); 
IPR008139 (saposin B domain); 
signal peptide domain 



TRANSPORT 

sodium-
dependent 
phosphate 
transporter 1-a-
like 

comp51144_c0 -0.83 1.47E-01 
Metaseiulus 
occidentalis 
(mite) 

XP_003742817 1.38E-67 52.67% 

F:inorganic phosphate 
transmembrane transporter 
activity; C:membrane; 
P:phosphate ion transport 

 IPR001204 (phosphate transporter 
family); cytoplasmic domain; 
transmembrane helix domain  

sodium-
dependent 
nutrient amino 
acid transporter 
1-like 

comp12362_c0 -3.61 2.30E-02 
Bombus 

terrestris 

(bumblebee) 
XP_003400703 2.47E-49 60.33% 

P:neurotransmitter 
transport; 
F:neurotransmitter:sodium 
symporter activity; 
C:integral to membrane 

IPR000175 
(Sodium:neurotransmitter 
symporter family);   SSF161070 
(SNF-like superfamily); 
transmembrane helix domain; 
cytoplasmic domaiin 

peptide 
transporter 
family 1-like 

comp56914_c0 -1.29 3.37E-04 
Dendroctonus 
ponderosae 
(beetle) 

ENN73556 3.13E-159 59.33% 
F:transporter activity; 
C:membrane; P:oligopeptide 
transport 

IPR000109 (Proton-dependent 
oligopeptide transporter family); 
PTHR11654:SF96 (peptide 
transporter family 1); IPR018456 
(PTR2 family proton/oligopeptide 
symporter, conserved site); 
IPR016196 (Major facilitator 
superfamily domain, general 
substrate transporter domain); 
transmembrane helix domain; 
cytoplasmic domain 

hypothetical 
protein comp57280_c0 -0.92 6.55E-04 Daphnia pulex 

(waterflea) EFX71591 1.72E-149 52.00% - 

IPR002035 (von Willebrand 
factor, type A domain);  
IPR013642 (Chloride channel 
calcium-activated);   PTHR10579 
(calcium-activated chlorine 
channel regulator); cytoplasmic 
domain; transmembrane domain 

UNKNOWN 

Unknown comp62318_c0 -3.06 2.01E-04 - - - - - signal peptide domain 

Unknown comp16910_c0 -3.22 3.16E-10 - - - - - no IPS match 

Unknown comp17945_c0 -1.25 3.84E-09 - - - - - 
G3DSA:3.50.4.10 (hepatocyte 
growth factor superfamily); signal 
peptide domain 

hypothetical 
protein comp18829_c0 -1.85 8.61E-11 Helobdella 

robusta (leech) XP_009029394 8.92E-04 44.00% - signal peptide domain 



Unknown comp58868_c2 -3.73 1.56E-16 - - - - - no IPS match 

Unknown comp58868_c3 -4.14 5.26E-25 - - - - - no IPS match 

Unknown comp56716_c0 -1.16 4.82E-01 - - - - - no IPS match 

Unknown comp52925_c1 -2.18 2.85E-22 - - - - - 
G3DSA:3.50.4.10 (hepatocyte 
growth factor superfamily); signal 
peptide domain  

Unknown comp53341_c1 -1.47 1.65E-01 - - - - - 

IPR029469 (PAN-4 domain); 
G3DSA:3.50.4.10 (hepatocyte 
growth factor superfamily); signal 
peptide domain 

Unknown comp53341_c2 -1.47 2.96E-03 - - - - - 

IPR029469 (PAN-4 domain); 
G3DSA:3.50.4.10 (hepatocyte 
growth factor superfamily); signal 
peptide domain 

Unknown comp53492_c0 -1.46 7.38E-02 - - - - - cytoplasmic domain; 
transmembrane helix domain  

Unknown comp46444_c2 -2.99 8.67E-13 - - - - - signal peptide domain 

Unknown comp46722_c0 -1.93 6.30E-04 - - - - - no transmembrane domain 

Unknown comp46043_c0 -3.07 5.77E-08 - - - - - no IPS match 

Unknown comp44011_c0 -2.49 2.18E-08 - - - - - no IPS match 

Unknown comp40368_c0 -1.16 1.09E-02 - - - - - 

G3DSA:3.50.4.10 (hepatocyte 
growth factor superfamily); 
SSF57414 (hairpin loop containing 
domain-like superfamily) 

Unknown comp41942_c0 -1.48 1.33E-07 - - - - - no IPS match 

Unknown comp43319_c0 -1.95 3.69E-08 - - - - - 

IPR003014 (PAN-1 domain);  
IPR003609 (apple-like domain) 
SSF57414 (hairpin loop containing 
domain-like superfamily); signal 
peptide domain  



Unknown comp36118_c0 -1.02 3.57E-03 - - - - - 
G3DSA:3.50.4.10 (hepatocyte 
growth factor superfamily); signal 
peptide domain 

Unknown comp36128_c0 -2.07 2.75E-06 - - - - - transmembrane, cytoplasmic 
domain  

Unknown comp39845_c0 -2.85 2.28E-03 - - - - - no IPS match 

Unknown comp73005_c0 -3.92 7.86E-03 - - - - - no IPS match 

Unknown comp63041_c0 3.79 2.40E-02 - - - - - coiled coil domain 

Unknown comp60209_c0 -1.39 4.23E-03 - - - - - signal peptide domain 

Unknown comp57815_c2 1.41 2.74E-02 - - - - - signal peptide domain; 
transmembrane helix domain 

Unknown comp48674_c0 -3.48 4.49E-02 - - - - - no IPS match 

hypothetical 
protein comp43699_c0 8.02 3.92E-02 

Acartia 

pacifica 

(copepod) 
AGN29688 9.37E-48 69.67% - no IPS match 

Unknown comp41891_c0 -3.40 2.30E-02 - - - - - signal peptide domain 

Unknown comp40961_c0 -2.49 2.30E-02 - - - - - transmembrane helix domain 

Unknown comp39791_c0 -2.42 3.85E-04 - - - - - coiled-coil domain 

Unknown comp16303_c0 5.03 2.46E-02 - - - - - signal peptide domain; 
transmembrane helix domain 



Table S6: Primer sequences and annealing temperatures used in cloning reactions. 

Transcript name Transcript ID Primer sequence Ta

(°C) 

Cloned 
sequence 
length (bp) 

C-type lectin-like comp47544_c0 F CGGATGTGTTTCTGTTGAGCA 63 407 
R TTGCTGCAAGTTGAGAGAGC 

C-type lectin comp49674_c0 F TCTTCATGGCCAGGAGAAGG 64 505 
R TGCTACATCATTCCAGAGTCCA 

C-type lectin-like comp46353_c1 F AGCATTGGTTCTATTTCTGGAGA 63 417 
R AGGAGCATTAATGGCCCAGT 

Chitin-binding comp47090_c0 F CATCTACACCCACCTACAATACTAC 62.2 298 
R CTACAATTCTACATTTCAGCTGG 

Chitin-binding comp43891_c0 F GCTGTTCCTCTTAGTCTCTCTC 63 205 
R GTAGAGAGGTGGAGCGCAG 

Catalase comp50873_c0 F GATGCCGCAAACTACTCACC 65.5 543 
R CTGGTTTGGTTTGGTCCTGAG 

Prophenoloxidase comp58098_c0 F CTGCAATGCGTGATCCTCTC 65 790 
R CTTCTCACTCCGCTGCTG 

Thioredoxin domain-
containing protein comp52622_c0 F CAAGTTCTACGCTCCCTGG 65 689 

R GAGTTCGTCCTTCTCTGCC 
Thyroid adenoma-
associated protein homolog comp59254_c0 F CTGCCTGAAGAAGCTCACTC 65.5 735 

R CTTGAAACCGTGTAGCCGAG 
Leucine-Rich Neuronal 
protein comp53361_c0 F CTACTGTACCTTGACCTCAGC 65.5 588 

R CGTGACGTCATTGATCCAGG 
Saposin-like comp58868_c1 F TACCCCGTCTTCCTTGAACC 60.5 590 

R TCCATGCAAAGGTACAACAGT 



 Table S7: Primer sequences and annealing temperatures used in qPCR. 

Transcript name Transcript ID   Primer sequence Ta    
(°C) 

C-type lectin-like comp47544_c0 F CGGATGTGTTTCTGTTGAGC 62 
   R CCCTCCATTCCTTCATCAGTAG   
C-type lectin  comp49674_c0 F CTGATGAAGGTATGGAGGGTC 63 
   R GCTAGCTGATATCCATGGGTG   
C-type lectin-like comp46353_c1 F AGCTGTCTGACCAACTCCTTAG 63 
   R GGTTCATCTTGTTCTGTCTTGC   
Chitin-binding comp47090_c0 F GCTACATCTACTTCACCATCCTAC 64 
   R CTGTACTTGGATGGCAAGCTAC   
Chitin-binding comp43891_c0 F GCTGTTCCTCTTAGTCTCTCTC 62 
   R ACAGTCAAATGGATGAGGAAC   
Catalase comp50873_c0 F ACAGGCTCGGACCTAACTTTG 64 
   R CTGGTTTGGTTTGGTCCTGAG   
Prophenoloxidase comp58098_c0 F CATCACCAAGTCTCCGCTTC 64 
   R GGTAGAACCATTGTCTCAGGC   
Thioredoxin domain-containing 
protein comp52622_c0 F GATTGTACCGAGCATCAGTCC 64 

   R GCTCATTCACCCAGTCCTTG   
Thyroid adenoma-associated 
protein homolog comp59254_c0 F ACCTAGGCTTGTCACTGAGC 64 

   R TGAAGAACAGTCCCTCTCCG   
Leucine-Rich Neuronal protein comp53361_c0 F TGACTGGTCCAAGCTCTCTG 64 
   R CGTGACGTCATTGATCCAGG   
Saposin-like comp58868_c1 F CGTCTTCCTTGAACCTGAGG 63 
    R CAGCTCCTGTACATTCTTCAC   
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