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Abstract We use the time delay between tidal loading and exit-fluid temperature response for hydrothermal
vents to model the poroelastic behavior and shallow upflow zone (SUZ) effective permeability structure of three
mid-ocean ridge (MOR) sites with different spreading rates. Hydrothermal vents at Lucky Strike field exhibit
relatively small phase lags corresponding to high SUZ effective permeabilities of ≥~10�10m2, with variations that
we interpret as resulting from differences in the extrusive layer thickness. By contrast, vents at East Pacific Rise site
exhibit relatively large phase lags corresponding to low SUZ effective permeabilities of ≤~10�13m2. Vents at
Main Endeavour field exhibit both high and low phase lags, suggestive of a transitional behavior. Our results
demonstrate that tidal forcing perturbs hydrothermal flow across the global MOR system, even in places where
the tidal amplitude is very low, and that the flow response can be used to constrain variations in SUZ permeability
structure beneath individual vent fields.

1. Introduction

The response of deep-sea hydrothermal systems to ocean tidal loading is governed by the equations of por-
oelasticity, which describe the response of a fluid-filled porous medium to applied stress [Biot, 1941; Rice and
Cleary, 1976; Van der Kamp and Gale, 1983; Kümpel, 1991;Wang, 2000]. When a porous medium is loaded, the
resultant stress is borne partly by the solid matrix and partly by the interstitial fluid. The cyclical pore fluid
pressure perturbation drives interstitial fluid flow at the forcing period, producing a phase lag between the
tidal loading signal and the velocity and temperature of the hydrothermal exit-fluids. The magnitude of these
phase lags depends upon the system’s poroelastic parameters and the upflow zone effective permeability
[e.g., Wang and Davis, 1996; Wilcock and McNabb, 1996; Jupp and Schultz, 2004; Crone and Wilcock, 2005;

Crone et al., 2011]. By quantifying these phase lags we can constrain the upflow zone effective permeability kupe ff
� �

of young oceanic crust at hydrothermal sites where the exit-fluid velocity and/or temperature have been
monitored over sufficiently long periods (e.g., large numbers of tidal cycles) [e.g., Barreyre et al., 2014b].

Over the past two decades, studies at hydrothermal “focus” sites as part of both national and international
MOR programs (e.g., RIDGE, Ridge2000, MoMAR, and InterRidge) have generated a large database of exit-fluid
temperature records [e.g., Fornari et al., 1998; Kinoshita et al., 1998; Tivey et al., 2002; Scheirer et al., 2006; Sohn,
2007; Larson et al., 2007, 2009; Barreyre et al., 2014a]. However, this valuable database has not been system-
atically analyzed to assess how vent fields hosted in different geological and oceanographic settings respond
to tidal loading. Initial results from the Lucky Strike Hydrothermal Field (LSHF) [Barreyre et al., 2014b] demon-
strated that tidal loading can perturb the velocity and temperature of high-temperature exit-fluids (Figure 1).
However, the applicability of the LSHF results to other vent fields located in different volcanic/tectonic
settings and subject to tidal forcing of varying amplitudes has not been established.

In this study, we analyze high-temperature (i.e., black smoker) hydrothermal time-series records from long-term
monitoring experiments at the LSHF, located on the slow-spreading Mid-Atlantic Ridge at 37°17′N, the Main
Endeavour Field (MEF), located on the intermediate-spreading Juan de Fuca Ridge at 47°57′N, and the hydrother-
mal field located on the fast-spreading East Pacific Rise (EPR) at 9°50′N (Figure 1a). We find thatmost temperature
records, regardless of geological or oceanographic setting, exhibit variability at both semidiurnal and diurnal tidal
periods, with the strongest signal at the principal semidiurnal periods (M2, S2, N2, and K2). Cross-spectral analyses
reveal robust phase relationships between exit-fluid temperature and tidal forcing for a subset of these data,
which allows us to constrain and compare the shallow upflow zone (SUZ) effective permeability of vent fields
from three different MORs, including structural variations within individual sites.
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2. Data Set

For our analyses we mined the complete set of
publicly available (Marine Geoscience Data
System, PANGAEA, European Multidisciplinary
Seafloor and water column Observatory, and
Ocean Networks Canada) exit-fluid temperature
data for vents at the LSHF, MEF, and EPR sites [e.
g., Fornari et al., 1998; Tivey et al., 2002; Scheirer
et al., 2006; Larson et al., 2009; Barreyre
et al., 2014a].

The data acquired come from four sets of
instruments, which were used to monitor
hydrothermal outflow high-temperature: the
MISO high-temperature probes (at EPR and
LSHF) [Fornari et al., 1998], the NKE S2T6000
high-temperature probes (at LSHF) [Barreyre
et al., 2014a], the resistivity-temperature
probe (at MEF-S&M) [Larson et al., 2007], and
the benthic and resistivity sensors (BARS at
MEF-Grotto) (user’s manual for Lilley [2010]).
The instrument-independent consistency of
temperature measurements (i.e., repeatabil-
ity) was assured by both factory and
laboratory calibrations.

We examined a total of 232 records, correspond-
ing to ~157 record-years of data, and performed
quality control by removing time windows with
data gaps, glitches or inconsistencies and records
exhibiting low exit-fluid temperatures (<200°C,
thought to correspond to probes with data that
are not representative of the true effluent tem-
perature because they were either dislodged or
became insulated from the flow). The remaining

Figure 1. (a) The M2 tidal constituent. Amplitude (cm)
is indicated by color, and the white lines are cotidal
differing by 1 h. The curved arrows around the amphi-
dromic points show the direction of the tides, each
indicating a synchronized 6 h period. Modified from R.
D. Ray’s GSFC-NASAmap (see references at Ray [2015]).
The main hydrothermal fields concerned in this study
are indicated by colored stars: Lucky Strike
Hydrothermal Field (LSHF), Main Endeavour Field
(MEF), and East Pacific Rise at 9°50′N (EPR 9°50′N). Note
the proximity of EPR 9°50′N field to an amphidromic
point. (b) Example of tidal signature (i.e., filtered tem-
perature signal) illustrated over a 5 day time window
on high-temperature record at EPR (red), LSHF (blue),
and MEF (green), and the corresponding variations in
modeled bottom pressure (black) and real bottom
pressure data when available (gray). (c) Rose diagram
displaying the estimated phase lag between tidal
loading and exit-fluid temperature φ̂; °ð Þ at the M2
period for 60 day windows with coherency (γ2) ≥ 0.85
for EPR (red), LSHF (blue), and MEF (green).
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total of 206 records (111 record-years of data) constitutes a high-quality catalog of “cleaned” records that are
free of known instrumentation errors. These records have highly variable lengths (days to ~2 years), sampling
frequencies (4 s to 288min), resolutions (~0.025°C to ~1.2°C), and data densities (104 records, ~49 years of
recording for EPR-9°50′N; 92 records, ~60 years of recording for LSHF; and 10 records, ~2.3 years of recording
for MEF)-Table S1 in the supporting information. Contemporaneous measurements of the tidal loading signal
at the observatory sites are limited, so for consistency we compare the exit-fluid high-temperature records to
bottom pressure time-series data generated with the GOT4.7 model [Ray, 2013]. Comparison of the model data
to bottom pressure measurements, when available (e.g., Figure 1b), validates this approach by demonstrating
that the phase of the model data is accurate to within 0.001°, which is much smaller than the accuracy of the
phase lag estimates, as we describe below.

3. Results and Discussion
3.1. Phase Lags Between Tidal Forcing and Exit-Fluid Thermal Response

We estimated the coherency and phase lag between the cleaned exit-fluid high-temperature record catalog
and the tidal loading data by applying multitaper [Thomson, 1982] cross-spectral methods with adaptive
weighting [Percival and Walden, 1993] to sliding time windows. We used a range of time windows (30, 60,
and 90 days) and time bandwidth products (NW=3, 7/2, and 4) and found that a 60 day window with
NW=4 provided the best trade-off between temporal resolution and phase estimate stability given the range
of sample intervals and record lengths found in the data. Phase lag uncertainties are estimated by jackknifing
the independent Fourier coefficients obtained for the set of orthogonal tapers generated by the multitaper
method [Efron and Stein, 1981] (average uncertainty values are given in Table 1 and more details in Tables S1
and S3). Removal of records shorter than 60 days resulted in a final data set for cross-spectral analyses
comprising 69 records (~47.8 years of recording) for the EPR-9°50′N vents, 70 records (~58.4 years of recording)
for the LSHF vents, and 5 records (~1.4 years of recording) for the MEF vents.

Exit-fluid temperature is coherent with bottom pressure in high-temperature records from all three sites at
both semidiurnal (M2, S2, N2, and K2; Figures 2 and S1) and diurnal (K1 and O1-except at LSHF) periods,
but the phase lag estimates do not stabilize until the coherency between tidal loading and exit-fluid tem-
perature is ≥~0.85. Variability in the coherency and phase lag estimates is caused by noise in the exit-fluid
temperature data and the fact that the temperature data can be also influenced by bottom currents at
tidal periods [Tivey et al., 2002]. To minimize the impact of this variability and maximize the signal-to-noise
ratio, we restricted our phase angle analysis to time windows with a coherency (γ2) ≥ 0.85 at the M2 fre-
quency. Furthermore, for data records acquired contemporaneously in the same housing (as is common
in many deployments [Fornari et al., 1994, 1996, 1998; Barreyre et al., 2014a]), we only used the record with
the highest coherency to tidal pressure (at M2 frequency). After applying these stringent criteria for phase
analysis, our final data set for poroelastic modeling consists of two records (287 60-day windows,
~2.4 years of recording) for the EPR-9°50′N, 30 records (2536 60-day windows, ~27 years of recording)
for the LSHF, and two records (60 60-day windows, ~0.8 years of recording) for the MEF (Figures 1c and
2). These highly coherent records exhibit stable phase lag estimates at the M2 frequency, ~90% of which fall
within the 135°–225° range predicted by poroelastic theory [Jupp and Schultz, 2004; Crone and Wilcock, 2005]

Table 1. Average Phase Lag φ̂að Þ and Errors eφ̂a

� �
Estimates at M2 Semidiurnal Frequency and Average Effective

Permeability of the Upflow Zone k
up
eff

� �
Constrained From 1-D Analytical Poroelastic Model for H =Depth to the Layer

2A/2B (H2A)

Hydrothermal fields φ̂a °ð Þ eφ̂a
°ð Þ H2A (m) k

up
eff m2ð Þ

LSHF(MAR) West 155 5 300/600a ~3 * 10�10/~6 * 10�10

East 173 4 600a ~3 * 10�10

MEF(JdFR) North 217 2.5 460b ~2.5 * 10�13

South 178.5 1.5 ~2 * 10�10

9°50′N(EPR) L-Vent 207 5 155c ~5 * 10�14

aArnulf et al. [2011].
bVan Ark et al. [2007].
cSohn et al. [2004].
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(gray band on Figure 2), corresponding to lower outflow temperatures during high tide and higher tempera-
tures during low tide.

We find that phase lag estimates for individual vents vary smoothly about an average value over the recording
intervals (Figure 2), and we take these average values to represent the nominal phase lag with respect to tidal
loading for each vent. The smooth, periodic (~6months) variations around these average values are identical
for all of the semidiurnal frequencies (Figure S1), indicating that they are not random. These systematic variations
are likely associated with oceanographic effects (e.g., bottom currents), and in principle they can be removed
from the data if contemporaneous bottom current measurements are available. However, currentmeasurements
are only available for a small subset of the existing data, meaning that additional research will be required to
establish systematic relationships between bottom currents and exit-fluid temperature.

We find significant differences in the average phase lag estimates from the various vent fields sampled in our
study. The largest phase lag averages are observed for L vent on the EPR (207°) and S&M vent on the JdFR
(217°). The smallest phase lags are observed at the LSHF, where there also appears to be a difference between
vents located on the west (155°) versus the east (173°) side of the field. Intrasite variability is also evident at
theMEF, where the Grotto site exhibits lags of 178°, which is ~40° less than the S&M site. These differences are
much larger than the phase lag uncertainties and intersite variability, indicating that they arise from determi-
nistic differences in the subsurface permeability structure.

Our final data set for poroelastic modeling constitutes ~19% of the available exit-fluid temperature data
from the three study sites. This small percentage is primarily due to (1) the intrinsic difficulty of obtaining
accurate fluid temperature records from deep-sea vents and (2) the relatively poor resolution (e.g., 1.2 °C at
EPR) of many of the temperature probes that have been deployed in the past. Poor measurement
resolution precludes capturing the thermal response to tidal loading when the tidal amplitude is small
(e.g., at EPR, which is near an amphidromic point). These considerations highlight the need to develop
high-resolution probes and improved deployment/measurement techniques to enhance the data quality
for instruments being used at seafloor observatory sites in the future.

Figure 2. Temporal variation of the estimated phase lag between tidal loading and exit-fluid temperature φ̂; °ð Þ at the
M2 period for EPR (first panel), LSHF (second and third panels) and MEF (fourth panel). Average values are listed and
shown by dashed horizontal black lines. Colors indicate the different vents within individual hydrothermal fields. Note
that time scales are different for the various panels, but 3-month and 1-month time scale bars are shown for com-
parative purposes.
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3.2. Constraints on Effective Permeability of the Upflow Zone

Following the same methodology described by Barreyre et al. [2014b], we use the highly coherent
(γ2 ≥ 0.85) phase lags in conjunction with the one-dimensional model of Jupp and Schultz [2004] to con-
strain poroelastic parameters (e.g., permeability) at the LSHF-E, LSHF-W, EPR-L, MEF-S&M, and MEF-
Grotto vent sites. For consistency, we use the same baseline modeling parameters (i.e., storage compressi-
bility, porosity, bulk density, grain bulk modulus, fluid bulk modulus, and matrix- drained-modulus) for all
three sites (see Table S2) [Crone and Wilcock, 2005; Barreyre et al., 2014b and references therein]. We allow
for small variations in fluid density according to the oceanographic setting (depth and temperature) of each
site, but the most important difference between the sites is their lithostratigraphy.

In a single-layer model, the depth of the boundary that arrests the downward propagation of the tidally
induced pressure gradient (i.e., the thickness of the permeable layer, H) is a key parameter. For basalt-hosted
vent fields, there are two primary lithographic interfaces where the permeability changes significantly: the
extrusive/intrusive boundary (i.e., seismic layer 2A/2B) and the intrusive/cumulate boundary (i.e., seismic
layer 2B/2C =magma chamber depth). These interface depths have been constrained by seismic studies
for the three study sites [e.g., Detrick et al., 1987; Sohn et al., 2004; Singh et al., 2006; Van Ark et al., 2007;
Arnulf et al., 2011, 2014; Crawford et al., 2013], which provides a template for our models (Tables 1 and S3).
We do not know, a priori, the propagation depth for the tidal loading pressure signal, so the model was
run with two different values for the permeable layer thickness, H, at each site: (1) H=depth to the layer
2A/2B interface and (2) H=depth to the axial magma lens. We found that these different assumptions for
H do not change the order of magnitude of the crustal upflow zone permeability required to fit the phase
lag data (Tables 1 and S3). Given that the permeability estimates required to fit the phase lag data vary by
several orders of magnitude (Figures 3 and 4), we show that the poroelastic response to tidal loading is
primarily controlled by the permeability of the upflow zone just beneath the seafloor (i.e., layer 2A).

At the EPR, where the base of layer 2A is located at the relatively shallow depth of ~155mbsf [Sohn et al., 2004],
the relatively large phase lag estimate for L vent (207° ±5°) requires a SUZ effective permeability of
~5×10�14m2. By contrast, at the LSHF the relatively small phase lags (155°±5° at LSHF-W and 173°±4° at
LSHF-E) require a much higher SUZ effective permeability for layer 2A of ~3×10�10m2. The different phase lags
estimated for the west versus east vents at the LSHF are consistent with variations in the extrusive layer thickness
observed in seismic data (300m for the west vents versus 600m for the east vents) [Arnulf et al., 2011, 2014],

Figure 3. Predicted phase lag of exit-fluid discharge temperature φ; °ð Þ behind the ocean tide as a function of effective per-
meability of the upflow zone kupeff ;m

2
� �

. For consistency, we run the different model cases using the same poroelastic and fluid
parameters (i.e., using the ones of LSHF, Table S2), but the depth of the impermeable boundary layer, H, changes according to
constraints from seismic data for each site (Tables 1 and S3). Average estimated phase lags φ̂að Þ for the different fields
(Tables 1 and S3) are shown by stars.
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although we cannot rule out permeability variations on the basis of our data alone. Transitional behaviors
are observed at the MEF where the extrusive layer thickness is ~450m [Van Ark et al., 2007]. For Grotto vent,
the phase lag of 217° ± 2.5° requires a SUZ effective permeability of ~2.5 × 10�13m2 for layer 2A, whereas
the smaller phase lag observed for S&M vent (178.5° ± 1.5°) requires a SUZ effective permeability estimate
of ~2 × 10�10m2. Since the seismic data indicate the extrusive layer thickness is the same for both of these
vents [Van Ark et al., 2007], at the MEF the phase lag difference between the two sites appears to result
from a variation in SUZ effective permeability rather than 2A layer thickness. Magnetics data indicate that
the S&M and Grotto vents, which are separated by a distance of ~150m, are fed by distinct fluid upwelling
zones [Tivey and Johnson, 2002], and our results suggest these zones have different SUZ effective perme-
abilities. However, this interpretation is tentative because the phase lag estimate for the S&M vent is based
on a fairly small data window (~69 days).

Overall, we model the shallow crust beneath vents with phase lags greater than 200° with a low-permeability
(kupeff ~ 10�13–10�14m2) layer, and the shallow crust beneath vents with phase lags less than 180° with a

relatively high-permeability (kupeff ~10
�10m2) layer. This dichotomy arises from the sensitivity of the phase

lag to the SUZ effective permeability (Figure 3). If the extrusive layer upflow zone effective permeability is
<~10�11m2, the temperature signal will lag the tidal loading signal by > 180°, but if the extrusive layer
upflow zone effective permeability is >~10�11m2, then the phase lag will be <180°. This basic result is
relatively insensitive to the permeable layer thickness, H, suggesting that phase lag estimates may provide
a simple way to discern between low- versus high-upflow zone effective permeability extrusive layers at
deep-sea hydrothermal vent fields. To test this hypothesis, however, it will be necessary to developmultilayer
poroelastic models capable of incorporating more realistic lithostratigraphies with multiple interfaces.

To first order, the upflow zone effective permeability of the extrusive layer depends on the local tectono-magmatic
history. At the slow-spreading ridges, such as the LSHF, the extrusive layer is relatively thick [Smith and Cann, 1993;
Cannat, 1996; Hooft et al., 2000; Hussenoeder et al., 2002] and is tectonized by faults and fissures formed by
spreading in-between relatively rare magmatic events, which provides permeable pathways for ascending fluids.
In contrast, at fast-spreading ridges, such as the EPR, the extrusive layer is relatively thin and the seafloor is
repaved by frequent volcanic activity [e.g., Fornari et al., 2004, 2012], which hinders the formation of high-
permeability upflow zones. This contrast in tectonomagmatic history provides the simplest explanation for the
differences in phase lag that we observe, and the SUZ effective permeability structures that we infer, between
the LSHF and the EPR vent fields. Our results from the intermediate-spreading JdFR are more enigmatic and

Figure 4. Schematic model of the shallow upflow zone permeability structure kupeff
� �

beneath the hydrothermal fields at each site required to fit the phase lag data.
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suggest that processes related to hydrothermal alteration andmineralization can affect the crustal upflow zone
permeability immediately beneath a vent field and produce strong, localized gradients in permeability.

Our permeability estimates (~10�13 to 10�10m2) are broadly consistent with estimates derived for basalt-
hosted, MOR hydrothermal fields via other methods. Our estimates fall within the range of permeabilities
estimated for upper crust from borehole flow calculations (∼10�9–10�14m2) [Becker and Davis, 2004, and
references therein], with in situ permeability tests in shallow submarine wellbores (as large as 10�11m2)
[Fisher, 1998], with permeability estimates from sedimented ridge flanks (∼10�10m2) [Davis et al., 2000], with
estimates from pressure diffusion along the borehole transects (10�9–10�10m2) [Davis et al., 2001], with
permeabilities inferred from large-scale numerical models of fluid flow and heat transport (10�11 to 10�9m2)
[e.g., Stein and Fisher, 2003], and with estimates for layer 2A of Endeavour segment inferred from seafloor fissuring
(∼10�10 to 10�11m2) [Hearn et al., 2013]. These permeability estimates are also similar to those obtained for
shallow subaerial Hawaiian basalts (10�11 to 10�9m2) [Ingebritsen and Scholl, 1993].

Another important outcome of our study is that MOR vent fields are sensitive to even small levels of ocean
tidal loading (e.g., ~40–50 cm at the EPR compared to ~200 cm at the MEF), suggesting that careful monitor-
ing (i.e., high-resolution, high-precision, and high sampling frequency) of exit-fluid temperatures over long
periods of time has the potential to constrain SUZ effective permeability at vent fields essentially anywhere
on the global MOR system. Our results emphasize the importance of obtaining long-term records from deep-
sea hydrothermal systems in order to obtain robust statistical results, given the high-levels of noise asso-
ciated with exit-fluid temperature data (e.g., previous analyses using more temporally and spatially limited
data from similar instruments failed to find a relationship between tidal pressure and high-temperature
exit-fluids at the EPR [Scheirer et al., 2006]); suggesting that contemporaneous measurements of bottom cur-
rents may be important for understanding the role that currents play in modulating fluid temperatures at
tidal periods. Finally, while our results indicate that the shallow crust exerts a primary control on the poroe-
lastic response to tidal loading, it is nevertheless clear that poroelastic models incorporating multiple perme-
able layers, supplemented by high-resolution geophysical surveys, are needed to accurately determine the
volcanic stratigraphy underlying deep-sea vent fields and model the crustal response to tidal loading.

4. Conclusions

We have estimated the phase lag between tidal pressure and exit-fluid temperature for high-temperature
(T> 200°C) vents at three deep-sea hydrothermal fields (LSHF, EPR, and MEF) and then used this information
to constrain SUZ effective permeability in a homogeneous, single-layer, analytical poroelastic model. Our
principal conclusions are as follows:

1. The various vent fields in our study exhibit statistically significant phase lags that correspond to variations
in shallow crustal permeability structure. Vent sites at the slow-spreading LSHF exhibit relatively small
phase lags corresponding to relatively high layer 2A SUZ effective permeabilities of >~10�10m2. By
contrast, vent sites at the fast-spreading EPR exhibit relatively large phase lags corresponding to relatively
low layer 2A SUZ effective permeabilities of <~10�13m2. Vent sites at the intermediate-spreading JdFR
exhibit both of these behaviors, but the available data are more limited.

2. Systematic phase lag differences are observed between vent sites hosted on the east versus west side of
the LSHF, which can be explained as a variation in layer 2A thickness. Phase lag differences between the
S&M and Grotto vent sites on the JdFR are tentatively interpreted as variations in shallow crustal perme-
ability related to hydrothermal alteration and mineralization.

3. The phase lag between tidal pressure and exit-fluid temperature is sensitive to shallow crustal permeabil-
ity (i.e., layer 2A) with a relatively sharp transition at a value of ~180° from high-permeability systems
(ϕ< 180°, kupeff >~10�11m2) to low-permeability systems (ϕ> 180°, kupeff <~10�11m2). This result needs
to be refined by developing analytical solutions for poroelastic systems with multiple permeable layers.

References
Arnulf, A. F., S. C. Singh, A. J. Harding, G. M. Kent, and W. Crawford (2011), Strong seismic heterogeneity in layer 2A near hydrothermal vents

at the Mid-Atlantic Ridge, Geophys. Res. Lett., 38, L13320, doi:10.1029/2011GL047753.
Arnulf, A. F., A. J. Harding, S. C. Singh, G. M. Kent, and W. C. Crawford (2014), Nature of upper crust beneath the Lucky Strike volcano using

elastic full waveform inversion of streamer data, Geophys. J. Int., 196(3), 1471–1491.

Geophysical Research Letters 10.1002/2015GL066479

BARREYRE AND SOHN SHALLOW UPFLOW ZONE PERMEABILITY 1666

Acknowledgments
This research was funded by Woods Hole
Oceanographic Institution (USA). Thibaut
Barreyre was supported by WHOI’s Deep
Ocean Exploration Institute (DOEI) post-
doctoral scholarship. We thank D. Fornari
for providing supplementary data from
EPR-9°50′N hydrothermal field and M.K.
Tivey and D. Fornari for their helpful dis-
cussions. Data used in this study are listed
in the supporting information Table S1
and can be found at Marine Geoscience
Data System (MGDS—http://www.marine-
geo.org/index.php), PANGAEA (http://doi.
pangaea.de/10.1594/PANGAEA.820343),
European Multidisciplinary Seafloor and
water column Observatory (EMSO—
http://www.emso-fr.org/), and Ocean
Networks Canada (ONC—http://dmas.
uvic.ca/DataSearch). We are grateful for
constructive reviews by William Wilcock
and two anonymous reviewers.

http://dx.doi.org/10.1029/2011GL047753
http://www.marine-geo.org/index.php
http://www.marine-geo.org/index.php
http://doi.pangaea.de/10.1594/PANGAEA.820343
http://doi.pangaea.de/10.1594/PANGAEA.820343
http://www.emso-fr.org/
http://dmas.uvic.ca/DataSearch
http://dmas.uvic.ca/DataSearch


Barreyre, T., J. Escartín, R. Sohn, M. Cannat, V. Ballu, and W. Crawford (2014a), Temporal variability and tidal modulation of hydrothermal exit-fluid
temperatures at the Lucky Strike deep-sea vent field, Mid-Atlantic Ridge, J. Geophys. Res. Solid Earth, 119, 2543–2566, doi:10.1002/2013JB010478.

Barreyre, T., J. Escartin, R. Sohn, and M. Cannat (2014b), Permeability of the Lucky Strike deep-sea hydrothermal system: Constraints from the
poroelastic response to ocean tidal loading, Earth Planet. Sci. Lett., 408, 146–154.

Becker, K., and E. Davis (2004), In situ determinations of the permeability of the igneous oceanic crust, in Hydrogeology of the Oceanic
Lithosphere, edited by E. E. Davis and H. Elderfield, pp. 189–224, Cambridge Univ. Press, Cambridge, U. K.

Biot, M. A. (1941), General theory of three-dimensional consolidation, J. Appl. Phys., 12, 155–164.
Cannat, M. (1996), How thick is the magmatic crust at slow-spreading oceanic ridges?, J. Geophys. Res., 101, 2847–2857.
Crawford, W. C., A. Rai, S. C. Singh, M. Cannat, J. Escartin, H. Wang, R. Daniel, and V. Combier (2013), Hydrothermal seismicity beneath the

summit of Lucky Strike volcano, Mid-Atlantic Ridge, Earth Planet. Sci. Lett., doi:10.1016/j.epsl.2013.04.028.
Crone, T. J., and S. D. Wilcock (2005), Modeling the effects of tidal loading onmid-ocean ridge hydrothermal systems, Geochem. Geophys. Geosyst.,

6, Q07001, doi:10.1029/2004GC000905.
Crone, T. J., M. Tolstoy, and D. F. Stroup (2011), Permeability structure of young ocean crust from poroelastically triggered earthquakes,

Geophys. Res. Lett., 38, L05305, doi:10.1029/2011GL046820.
Davis, E. E., K. Wang, K. Becker, and R. E. Thomson (2000), Formation-scale hydraulic and mechanical properties of oceanic crust inferred from

pore pressure response to periodic seafloor loading, J. Geophys. Res., 105, 13,423–13,435.
Davis, E. E., K. Wang, R. E. Thomson, K. Becker, and J. F. Cassidy (2001), An episode of seafloor spreading and associated plate deformation

inferred from crustal fluid pressure transients, J. Geophys. Res., 106, 21,953–21,963, doi:10.1029/2000JB000040.
Detrick, R. S., P. Buhl, E. Vera, J. Mutter, J. Orcutt, J. Madsen, and T. Brocher (1987), Multi-channel seismic imaging of a crustal magma chamber

along the East Pacific Rise, Nature, 326, 35–41.
Efron, B., and C. Stein (1981), The jackknife estimate of variance, Ann. Stat., 9(3), 586–596, doi:10.1214/aos/1176345462.
Fisher, A. T. (1998), Permeability within basaltic oceanic crust, Rev. Geophys., 36, 143–182.
Fornari, D., C. L. Van Dover, T. Shank, R. Lutz, andM. Olsson (1994), A versatile, low-cost temperature sensing device for time-seriesmeasurements at

deep sea hydrothermal vents, Bridge Newsl., 6, 37–40.
Fornari, D. J., F. Voegeli, and M. Olsson (1996), Improved low-cost, time-lapse temperature loggers for deep ocean and sea floor observatory

monitoring, Ridge Events, 7, 13–16.
Fornari, D. J., T. Shank, K. L. Von Damm, T. K. P. Gregg, M. Lilley, G. Levai, A. Bray, R. M. Haymon, M. R. Perfit, and R. Lutz (1998), Time-series

temperature measurements at high-temperature hydrothermal vents, East Pacific Rise 9°49′–51′N: Evidence for monitoring a crustal
cracking event, Earth Planet. Sci. Lett., 160, 419–431.

Fornari, D. J., et al. (2004), Submarine lava flow emplacement at the East Pacific Rise 9°50′N: Implications for uppermost ocean crust
stratigraphy and hydrothermal fluid circulation, in Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans,
Geophys. Monogr. Ser., vol. 148, edited by C. R. German, J. Lin, and L. M. Parson, pp. 187–218, AGU, Washington, D. C.

Fornari, D. J., et al. (2012), The East Pacific Rise between 9°N and 10°N: Twenty-five years of integrated, multidisciplinary oceanic spreading
center studies, Oceanography, 25(1), 18–43, doi:10.5670/oceanog.2012.02.

Hearn, C. K., K. L. Homola, and H. P. Johnson (2013), Surficial permeability of the axial valley seafloor: Endeavour Segment, Juan de Fuca Ridge,
Geochem. Geophys. Geosyst., 14, 3409–3424, doi:10.1002/ggge.20209.

Hooft, E. E., R. S. Detrick, D. R. Toomey, J. A. Collins, and J. Lin (2000), Crustal thickness and structure along three contrasting spreading
segments of the Mid-Atlantic Ridge, 33.5°–35°N, J. Geophys. Res., 105, 8205–8226.

Hussenoeder, S. A., G. M. Kent, and R. S. Detrick (2002), Upper crustal seismic structure of the slow spreading Mid-Atlantic Ridge, 35 degrees
N: Constraints on volcanic emplacement processes, J. Geophys. Res., 107(B8), 2156, doi:10.1029/2001JB001691.

Ingebritsen, S. E., and M. A. Scholl (1993), The hydrogeology of Kilauea volcano, Geothermics, 22, 255–270.
Jupp, T. E., and A. Schultz (2004), A poroelastic model for the tidal modulation of seafloor hydrothermal systems, J. Geophys. Res., 109, B03105,

doi:10.1029/2003JB002583.
Kinoshita, M., R. P. Von Herzen, O. Matsubayashi, and K. Fujioka (1998), Erratum to ‘Tidally-driven effluent detected by long-term temperature mon-

itoring at the TAG hydrothermal mound, Mid-Atlantic Ridge’ [Phys. Earth Planet. Int. 108_1998/143–154], Phys. Earth Planet. Inter., 109, 201–212.
Kümpel, H. J. (1991), Poroelasticity: Parameters reviewed, Geophys. J. Int., 105(3), 783–799.
Larson, B. I., E. J. Olson, and E. J. Lilley (2007), In situ measurement of dissolved chloride in high temperature hydrothermal fluids,

Geochim. Cosmochim. Acta, 71, 2510–2523, doi:10.1016/j.gca.2007.02.013.
Larson, B. I., M. D. Lilley, and E. J. Olson (2009), Parameters of subsurface brines and hydrothermal processes 12–15 months after the 1999

magmatic event at the Main Endeavor Field as inferred from in situ time series measurements of chloride and temperature, J. Geophys. Res.,
114, B01207, doi:10.1029/2008JB005627.

Lilley, M. D. (2010), Benthic and Resistivity Sensors (BARS) user’s manual. [Available at file:///Users/tbarreyre/Downloads/BARS-Complete%
20with%20page%20numbers.pdf.]

Percival, D., and A. Walden (1993), Spectral Analysis for Physical Applications, Cambridge Univ. Press, Cambridge, U. K.
Ray, R. D. (2013), Precise comparisons of bottom-pressure and altimetric ocean tides, J. Geophys. Res. Oceans, 118, 4570–4584, doi:10.1002/jgrc.20336.
Ray, R. D. (2015), TOPEX/Poseidon: Revealing hidden tidal energy, GSFC, NASA. [Available http://marinedataliteracy.org/grids/360_to_180.htm.]
Rice, J. R., and M. P. Cleary (1976), Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible

constituents, Rev. Geophys., 14, 227–241.
Scheirer, D. S., T. M. Shank, and D. J. Fornari (2006), Temperature variations at diffuse and focused flow hydrothermal vent sites along the

northern East Pacific Rise, Geochem. Geophys. Geosyst., 7, Q03002, doi:10.1029/2005GC001094.
Singh, S. C., W. C. Crawford, H. Carton, T. Seher, V. Combier, M. Cannat, J. P. Canales, D. Dusunur, J. Escartín, and J. M. Miranda (2006), Discovery

of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field, Nature, 442, 1029–1032, doi:10.1038/nature05105.
Smith, D. K., and J. R. Cann (1993), Building the crust at the Mid-Atlantic Ridge, Nature, 365, 707–715.
Sohn, R. A. (2007), Stochastic analysis of exit fluid temperature records from the active TAG hydrothermal mound (Mid-Atlantic Ridge, 26°N):

1. Modes of variability and implications for subsurface flow, J. Geophys. Res., 112, B07101, doi:10.1029/2006JB004435.
Sohn, R. A., S. C. Webb, and J. A. Hildebrand (2004), Fine-scale seismic structure of the shallow volcanic crust on the East Pacific Rise at 9°50′N,

J. Geophys. Res., 109, B12104, doi:10.1029/2004JB003152.
Stein, J. S., and A. T. Fisher (2003), Observations andmodels of lateral hydrothermal circulation on young ridge flank: Numerical evaluation of

thermal and chemical constraints, Geochem. Geophys. Geosyst., 4(3), 1026, doi:10.1029/2002GC000415.
Thomson, D. J. (1982), Spectrum estimation and harmonic analysis, Proc. IEEE, 70, 1055–1096.
Tivey, M. A., and H. P. Johnson (2002), Crustal magnetization reveals subsurface structure of Juan de Fuca Ridge hydrothermal vent fields,

Geology, 30(11), 979–982.

Geophysical Research Letters 10.1002/2015GL066479

BARREYRE AND SOHN SHALLOW UPFLOW ZONE PERMEABILITY 1667

http://dx.doi.org/10.1002/2013JB010478
http://dmas.uvic.ca/DataSearch
http://dx.doi.org/10.1029/2004GC000905
http://marinedataliteracy.org/grids/360_to_180.htm
http://dx.doi.org/10.1029/2000JB000040
http://dx.doi.org/10.1214/aos/1176345462
http://dx.doi.org/10.5670/oceanog.2012.02
http://dx.doi.org/10.1002/ggge.20209
http://dx.doi.org/10.1029/2001JB001691
http://dx.doi.org/10.1029/2003JB002583
http://dx.doi.org/10.1016/j.gca.2007.02.013
http://dx.doi.org/10.1029/2008JB005627
http://file:///Users/tbarreyre/Downloads/BARS-Complete%20with%20page%20numbers.pdf
http://file:///Users/tbarreyre/Downloads/BARS-Complete%20with%20page%20numbers.pdf
http://dx.doi.org/10.1002/jgrc.20336
http://marinedataliteracy.org/grids/360_to_180.htm
http://dx.doi.org/10.1029/2005GC001094
http://dx.doi.org/10.1038/nature05105
http://dx.doi.org/10.1029/2006JB004435
http://dx.doi.org/10.1029/2004JB003152
http://dx.doi.org/10.1029/2002GC000415


Tivey, M. K., A. M. Bradley, T. M. Joyce, and D. Kadko (2002), Insights into tide-related variability at seafloor hydrothermal vents from
time-series temperature measurements, Earth Planet. Sci. Lett., 202, 693–707.

Van Ark, E., R. S. Detrick, J. P. Canales, S. M. Carbotte, A. J. Harding, G. M. Kent, M. R. Nedimovic, W. S. D. Wilcock, J. B. Diebold, and J. M. Babcock
(2007), Seismic structure of the Endeavour Segment, Juan de Fuca Ridge: Correlations with seismicity and hydrothermal activity,
J. Geophys. Res., 112, B02401, doi:10.1029/2005JB004210.

Van der Kamp, G., and J. E. Gale (1983), Theory of Earth tide and barometric effects in porous formations with compressible grains,
Water Resour. Res., 19, 538–544.

Wang, H. F. (2000), Theory of Linear Poroelasticity With Applications to Geomechanics and Hydrogeology, Princeton Univ. Press, Princeton, N. J.
Wang, K., and E. Davis (1996), Theory for the propagation of tidally induced pore pressure variations in layered subseafloor formations,

J. Geophys. Res., 101, 11,483–11,495.
Wilcock, W. S. D., and A. McNabb (1996), Estimates of crustal permeability on the Endeavour segment of the Juan de Fuca mid-ocean ridge,

Earth Planet. Sci. Lett., 138, 83–91.

Geophysical Research Letters 10.1002/2015GL066479

BARREYRE AND SOHN SHALLOW UPFLOW ZONE PERMEABILITY 1668

http://dx.doi.org/10.1029/2005JB004210


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


