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ABSTRACT. Results from the comprehensive fuel testing according to American Society for 1 

Testing and Materials International (ASTM) standards of an alkenone-free and decolorized 2 

biodiesel produced from the industrially grown marine microalgae Isochrysis sp. are presented. 3 

Fatty acid methyl ester (FAME) profiles of the non-decolorized and subsequently decolorized 4 

biodiesel fuels were nearly identical, yet the fuel properties were remarkably different. 5 

Significant positive impacts on the cetane number, kinematic viscosity, and lubricity were 6 

observed, indicating a potential deleterious effect of pigments like chlorophylls and pheophytins 7 

on these fuel properties. The decolorization process using montmorillonite K10 gave on average 8 

90% mass recovery, and allowed for an otherwise unobtainable cloud point determination. 9 

Oxidative stability of the decolorized Isochrysis biodiesel remained well below the minimum 10 

prescribed in biodiesel standards due to elevated content of highly polyunsaturated fatty acids, 11 

however other values were in the range of those prescribed in the ASTM standards. Overall, 12 

decolorization improved the fuel properties of biodiesel from Isochrysis and may provide a path 13 

toward improved biodiesel fuels from other algal species.  14 

Introduction 15 

Following an approximately ten year hiatus after the United States Department of Energy’s 16 

Aquatic Species Program (U.S DOE ASP) ended in 1996 [1], there has been a great resurgence 17 

of interest in algae as a potential source of biofuel in the last decade [2, 3, 4].  Some species of 18 

algae have reportedly very high oil contents (15-300 times more oil for biodiesel production than 19 

traditional crops on an area basis) [5-7], can be grown on brackish- or wastewater and otherwise 20 

non-cultivatable land [8], and may achieve higher CO2 sequestration capabilities than terrestrial 21 

plants [9-11].  Another suggested benefit described by both critics [12] and proponents of algal 22 

biofuel programs and within the United States Department of Energy’s National Algal Biofuels 23 
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Technology Roadmap [13], is the potential for other high-value co-products that may be used to 1 

offset production costs of the fuel.  2 

However, the properties of the fuel produced must also be considered because it has been 3 

discussed that many algal biodiesel fuels may have problematic properties [14].  In order to be 4 

commercialized, biodiesel must meet a variety of specifications described in the standards 5 

ASTM D6751 and EN 14214 in the U.S and Europe, respectively. Requirements include 6 

minimum values for oxidative stability and cetane number, allowable ranges for kinematic 7 

viscosity, maximum free and total glycerol and heteroatom (Na, K, S, P, Ca, Mg) contents, while 8 

cold-flow properties are addressed by a report of the cloud point (CP) in ASTM D6751 due to 9 

different requirements dictated by time of year and geographic location. Others have noted the 10 

challenges associated with examining the fuel properties of algal biodiesel due to the small 11 

experimental quantities that are generally produced compared to the larger amounts required for 12 

each individual test [15].  For this reason, many of the reports describing algal biodiesel fuel 13 

properties are incomplete with algal biodiesel blended with petrodiesel to complete the fuel 14 

testing [16] or have relied on predictions [17] and simulations such as using a mixture of 15 

biodiesel from vegetable oil and fish oil to model algal biodiesel fuel properties [18]. 16 

Our group has been investigating biodiesel and other co-products from the marine microalgae 17 

Isochrysis sp. [19-21].  Isochrysis is one of only a few species of algae currently grown 18 

industrially, harvested for purposes of mariculture, and available internationally on multi-19 

kilogram scale from several suppliers [22].  Crude Isochrysis biodiesel, prepared from the total 20 

lipid extract of dried Isochrysis biomass, suffers from severe cold-flow issues (i.e. it is solid at 21 

room temperature) [19].  We showed that these cold-flow problems are likely associated with 22 

contamination of this material by a unique suite of lipids known as polyunsaturated long-chain 23 
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alkenones biosynthesized by a few haptophyte algae including Isochrysis (Figure 1) [23-25].  1 

Owing to their long carbon-chain length (36-40 carbons), non-methylene interrupted trans-2 

double bonds, and resulting high melting points, we demonstrated that even minor amounts of 3 

alkenones can have a deleterious impact on the CP of a B20 biodiesel blend [19]. 4 

We therefore developed a protocol for preparing an “alkenone-free” Isochrysis biodiesel based 5 

on saponification/extraction techniques, and sufficient quantities were produced to allow for a 6 

range of fuel tests according to ASTM standards [20].  Unfortunately, however, we were unable 7 

to measure a CP due to the dark color of this material and thus confirm our original hypothesis 8 

connecting alkenones to the obvious poor cold-flow properties of our crude biodiesel. Herein we 9 

report the production and comprehensive fuel testing of a decolorized alkenone-free Isochrysis 10 

biodiesel, with pigments removed using montmorillonite K10 clay. In addition to allowing for 11 

CP analysis, a comparison of other fuel property values for our decolorized vs. non-decolorized 12 

biodiesel fuels revealed important insights about the potential impact of common pigments on 13 

fuel properties, along with remaining challenges for the production of a biodiesel from Isochrysis 14 

meeting ASTM standards as well as from presumably other algal feedstocks. 15 

Materials and Methods 16 
 17 

Microalgae and sample preparation. The marine microalgae Isochrysis sp. “T-iso” used in 18 

the present study was obtained as strain CCMP1324 from Reed Mariculture (San Jose, CA) [27].  19 

Approximately eight kilograms of wet biomass (20% biomass w/w) was freeze-dried in ~100 g 20 

batches, which resulted in an Isochrysis sp. as a greenish, dark-brown solid with an earthy 21 

seaweed-like smell. The resulting dry Isochrysis was then processed batchwise (100-200 g dry 22 

biomass) into biodiesel samples (e.g. D-Iso-1, D-Iso-2, and D-Iso-3) that were analyzed 23 

separately (vide infra). 24 
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Extraction and processing of lipids to produce an alkenone-free biodiesel. The dry 1 

Isochrysis sp. biomass was extracted and the obtained lipids processed into isolated alkenones 2 

and biodiesel as previously described [19-21]. Briefly, dry biomass is extracted with hexanes in a 3 

Soxhlet extraction apparatus. Hexanes were removed with a rotary evaporator giving a dark 4 

green near-black solid. The hexanes-extractable material (“hexane algal oil”) is then saponified 5 

(KOH, MeOH, CHCl3) allowing for separation of the resulting free fatty acids (FFAs) and 6 

alkenone-containing neutral lipids. Acid-catalyzed esterification (MeOH, cat. H2SO4) of the 7 

FFAs gives alkenone-free “non-decolorized” biodiesel (i.e. fatty acid methyl esters, FAMEs). 8 

Biodiesel decolorization [26].  To the dark green colored biodiesel obtained above (15 g) at 9 

60 ºC was added montmorillonite K 10 (MK10) powder (3.0 g, 20% w/w of the biodiesel) and 10 

the mixture was stirred for 1 hr.  The solution was then filtered through celite with hexanes and 11 

the hexanes were removed on a rotary evaporator to produce an orange/red biodiesel (13 g, on 12 

average 90% w/w mass recovery). Samples were stored at 4 °C during which time some settling 13 

of insoluble material (<10% w/w) occurred. Decanting gave a clear homogeneous biodiesel that 14 

was analyzed separately.  15 

Analysis by gas chromatography with flame ionization detection (GC-FID). Fatty acid 16 

profiles were determined by gas chromatography utilizing a Perkin-Elmer Clarus 580 gas 17 

chromatograph equipped with a DB–88 [(88 % cyanopropyl) methylarylpolysiloxane] column 18 

(30 m x 0.25 mm ID x 0.20 μm film thickness) and otherwise as described in the literature [27].  19 

Common fatty acid methyl esters were verified by retention time comparison with authentic 20 

samples obtained from Nu-Chek Prep, Inc. (Elysian, MN).  Additionally, gas chromatography-21 

mass spectrometry (GC-MS; Agilent Technologies 6890N gas chromatograph coupled to an 22 

Agilent Technologies 5973 mass selective detector) was performed under identical conditions of 23 
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temperature program and column to analyze components such as C18:4 for which no authentic 1 

standards are available with the results applied to GC quantitation.   2 

Fuel Properties.  Cetane numbers were determined as derived cetane number (DCN) using an 3 

Ignition Quality TesterTM (IQTTM) as described in ASTM D6890 at Southwest Research 4 

Institute, San Antonio, TX [28]. CP was determined with a Phase Technology (Richmond, BC, 5 

Canada) cloud, pour and freeze point analyzer.  Kinematic viscosity was determined according to 6 

the procedure described in the standard ASTM D445, oxidative stability according to EN 14112 7 

using a so-called Rancimat instrument, and lubricity with a high-frequency reciprocating rig 8 

(HFRR) lubricity tester according to ASTM D6079.  Density was measured with an Anton Paar 9 

(Anton Paar USA, Richmond, VA) DMA 4500 density meter.  Free and total glycerol as well as 10 

monoglyceride content were determined according to the gas chromatographic procedure 11 

described in the standard ASTM D6584.   12 

Results and Discussion 13 
 14 

Table 1 contains information on the fatty acid methyl ester composition of the decolorized 15 

biodiesel. Table 2 lists the fuel properties of this material.   16 

Production of a purified non-decolorized Isochrysis biodiesel. Results for the extraction and 17 

subsequent separation of FFAs and neutral lipids from dry Isochrysis biomass, followed by 18 

esterification of the FFAs to biodiesel were consistent with those previously reported [19-21].  19 

The hexane algal oil obtained was a glossy, dark green/near-black grease-like material (typically 20 

20% w/w of the dry biomass). Saponification of hexane algal oil with KOH in methanol then 21 

allowed for separation of the saponified FFAs from alkenones and other non-polar compounds 22 

with yields consistently quantitative (60% FFAs + 40% neutral lipids). Acid-catalyzed 23 
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esterification of the FFAs produced a dark green colored biodiesel (“non-decolorized biodiesel”) 1 

that has previously undergone extensive analysis (see “Non-D”, Table 2) [20]. 2 

Decolorization of the biodiesel using montmorillonite K 10.  Based on the work of Dalai 3 

[26], stirring our green biodiesel over 20% (w/w) MK10 for 1 h at 60 ºC proved highly effective 4 

in removing pigments, visualized by the color change of the biodiesel and the MK10 itself going 5 

from a white powder to black (Figure 2). After decolorization, a small amount (<10% w/w) of 6 

“grainy material” previously described became evident [21].  Upon storage these compounds 7 

settled to the bottom of the vessel and could be easily removed by decanting or, if necessary, 8 

centrifugation. Mass recoveries of particulate-free biodiesel after decolorization were generally 9 

85-95% (w/w). 10 

FAME analysis of decolorized Isochrysis biodiesel. The FAME profiles of the non-11 

decolorized biodiesel and subsequently decolorized biodiesel were nearly identical as an 12 

indication of a successful decolorization process (Table 1) [20].  For each, the major fatty acid 13 

was 18:4, at approximately 21 mg/g of crude FAME. Polyunsaturated fatty acid (PuFAMEs, 14 

more than two double bonds) content was highest for the non-decolorized biodiesel (Non-D, 15 

42.4%) but in the same range for all samples (e.g. 39.7% = 10.3 (18:3) + 21.0 (18:4) + 8.4 (22:6) 16 

for D-Iso-1).  Docosahexaenoic acid (DHA; 22:6), was also present to a large extent (6.9-8.4 17 

mg/g of decolorized FAME). Other individual FAMEs for the different batches are listed in 18 

Table 1. The sample produced from a hexane algal oil that had been isolated and stored at 20 ºC 19 

for approximately two years (D-Iso-2) had a slightly higher proportion of saturated FAMEs 20 

(30.6% vs. 26.5 % for D-Iso-3) and lower unsaturated FAME content, consistent with stability 21 

trends for these compounds. For all of the samples, at least 95% of the material could be 22 

identified as a FAME.  It may be noted that the present Isochrysis-derived biodiesel would not 23 
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meet the European biodiesel standard EN 14214 concerning its specification < 1% fatty acids 1 

with more than three double bonds but the American standard ASTM D6751 does not have this 2 

restriction, so that the addition of antioxidants may overcome this issue for the North American 3 

market.   4 

Pigment removal and cloud point analysis of an Isochrysis biodiesel. Cloud point has been 5 

shown to be the most stringent specification regarding cold flow properties but can be correlated 6 

with other tests such as the cold filter plugging point [29]. Experimental CP data for a biodiesel 7 

from an algal feedstock are quite scarce with exceptions being [30, 31].  For instance, a CP value 8 

is absent from otherwise fairly extensive testing of biodiesel from the microalga Schizochytrium 9 

limacinum [32].  While these authors do not state the reason for this omission, the overall 10 

unavailability of this data may be due to the same difficulties we encountered with our initial 11 

Isochrysis-derived product being too dark in color to measure a CP.  12 

Like other land and aquatic photosynthetic organisms, Isochrysis contains chlorophylls and 13 

pheophytins that can degrade into compounds like pheophorbides [33].  It was reported that 14 

chlorophyll and its derivatives have a negative effect on the stability of vegetable oils [34].  15 

Various solid materials such as clays and activated carbon can be used to selectively remove 16 

chlorophylls and pheophytins from these mixtures [35].  For instance, Issariyakul and Dalai 17 

demonstrated the effectiveness of montmorillonite K 10 (MK10) clay for decolorizing greenseed 18 

canola oil in connection with biodiesel production [26].  Applied to our green non-decolorized 19 

Isochrysis biodiesel, we found that stirring over 20% (w/w) MK10 at 60 ºC for 1 hr resulted in a 20 

dramatic reduction in pigment content by visual inspection (ref. Figure 2). Moreover, absorbance 21 

peaks corresponding to chlorophylls and pheophytins were no longer observed in the now 22 

orange/red biodiesel [See Supplementary Material]. Presumably it is the Lewis basic porphyrin 23 
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structures within these compounds interacting strongly with the acidic MK10 clay that accounts 1 

for the selectivity of this process [36], giving on average 90% mass recoveries for now 2 

decolorized biodiesel. 3 

The measured CP values for our decolorized biodiesel samples were as expected low, however 4 

the values obtained (-6.0 and -6.0, duplicate analysis for D-Iso-1; -5.8 and -5.6 ºC duplicate 5 

analysis for D-Iso-2) were lower than what would be predicted based on the FAME profile [37]. 6 

The pour points (PP) were also exceptionally low (-8.6 and -8.4, duplicate analysis for D-Iso-1; -7 

6.0 and -6.0 ºC, duplicate analysis for D-Iso-2) given the fairly large amounts of saturated 8 

FAMEs (e.g. ~15% C16:0) in the material. For comparison, soybean biodiesel (SME) contains 9 

roughly 10% methyl palmitate (C16:0) and has CP and PP values of 1 ºC and 0 ºC respectively 10 

[38].  SME, however, also contains approximately 5% of even higher melting methyl stearate 11 

(C18:0) of which there are only traces in Isochrysis. CP is sensitive to minor amounts of higher 12 

melting components [19, 39] so that the different methyl stearate contents may at least partially 13 

explain the large disparity in CP between SME and our decolorized Isochrysis biodiesel. Efforts 14 

are ongoing to better understand the cold-flow properties of our Isochrysis biodiesel toward 15 

further refined predictive CP models. 16 

Cetane number (CN). The ASTM D6751 and EN 14214 standards prescribe minimum CN 17 

values of 47 and 51 respectively for commercial biodiesel. For our non-decolorized biodiesel, we 18 

had previously measured a CN of 36.5 (Table 2) [20].  After decolorization, both samples 19 

exhibited a higher CN and with one meeting the ASTM standard (42.3 and 48.4). Care must be 20 

taken, however, when calculating and comparing CN values as these numbers are not absolute 21 

and the results often variable [40].  In a recent comprehensive evaluation of this parameter for 22 

biodiesel, the CN of methyl oleate was at best estimated to be in the range of 56-58 using data 23 
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from 23 different measurements [40]. Nonetheless, pigment removal improved the CN. While 1 

too much emphasis cannot be placed on the actual value for reasons stated above, the CN of our 2 

decolorized Isochrysis biodiesel is likely close to the ASTM standard (avg. for samples = 45).  3 

Kinematic Viscosity. Algal biodiesel fuels with high PUFAME content would be expected to 4 

have lower kinematic viscosity than vegetable oil-derived biodiesel, although some higher 5 

viscosities have also been reported for simulated algal FAME mixtures [41].  Previously we 6 

reported a kinematic viscosity of 2.46 mm2/s at 40 ºC for our non-decolorized biodiesel [20], 7 

which was lower than the 3.2 mm2/s that would be estimated based on the FAME profile [20].  8 

Attempts to check the accuracy of this result failed, however, as the samples consistently 9 

plugged viscometer tubes due to the presence of some insoluble material. Our final decolorized 10 

biodiesel product was free of these particulates and the kinematic viscosity measured (3.38 and 11 

3.76 mm2/s) was similar to the predicted value (3.2 mm2/s). The measured kinematic viscosities 12 

are on the low end of the range prescribed ASTM D6751 standards and close to the minimum 13 

specified in EN 14214. However the technical justification for the higher minimum viscosity 14 

specification of 3.5 mm2/s in EN 14214 is not clear as conventional petrodiesel fuels generally 15 

exhibit viscosity values below 3.5 mm2/s.   16 

Oxidative Stability. All non-decolorized and decolorized Isochrysis biodiesel fuels exhibited 17 

poor oxidative stability, well below the ASTM minimum specification. This is due to the high 18 

PuFAME contents of these fuels (approximately 40%, ref. Table 1) as increased unsaturation 19 

within a fatty acid carbon-chain results in decreasing oxidative stability [42].  The highest 20 

oxidative stability among the samples tested might therefore be expected for D-Iso-2 with a 21 

higher proportion of saturated FAMEs and lack of pigments that have been reported to adversely 22 

affect biodiesel oxidative stability [26].  The oxidative stability of D-Iso-2 was in fact lower than 23 
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for the decolorized D-Iso-1 (0.05 h vs. 0.35 h) and essentially the same as the non-decolorized 1 

biodiesel (0.06 h). However, the oxidative stability of all samples is very low so that the 2 

differences would likely not have any major effect under practical aspects.  Furthermore, the 3 

percentage of identified FAMEs was lowest for the decolorized D-Iso-2 (88.5%). Minor 4 

components of undetermined nature within this sample may affect the oxidative stability more 5 

than their minor amounts would indicate. 6 

Lubricity and Density. Lubricity for diesel fuels is becoming an increasingly recognized 7 

property with more stringent limitations on sulfur content for environmental reasons. The HFRR 8 

wear scars of the decolorized Isochrysis biodiesel samples were well below the maximum wear 9 

scars of 460 μm and 520 μm prescribed in the standards EN 590 and ASTM D975, respectively. 10 

These values (131 and 125 μm, duplicate analysis for D-Iso-1; 136 and 133 μm, duplicate 11 

analysis for D-Iso-2) represent an improvement from the non-decolorized biodiesel (260 μm), 12 

and are now more in line with measured lubricities for biodiesel from other feedstocks (e.g. soy-13 

derived biodiesel  around 130 μm) [43]. 14 

Fuel density relates to fuel performance (e.g. within the injection system). Differences in 15 

density between biodiesel and petrodiesel creates some concern about potential mismatching of 16 

engine parameters when using this type of fuel in engines optimized for petrodiesel [44].  For 17 

this reason, the European standard EN-590 establishes a density range for diesel fuels of 820 - 18 

845 kg/m3 at 15 ºC. Biodiesel tends to have a higher density than petrodiesel [45], and accurate 19 

density data are needed to calculate appropriate blend ratios that will meet this specification. 20 

The availability of experimental density data for algal biodiesel fuels is limited [16, 46,47], but 21 

can be predicted from FAME profiles using linear mixing rules and the known densities of neat 22 

FAMEs [17]. The measured density for our non-decolorized Isochrysis biodiesel at 15 °C was 23 
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934.92 kg/m3, higher than the maximum (900 kg/m3) prescribed in EN 14214 [24]. Post-1 

decolorization, the densities measured were 895.5 and 898.5 kg/m3 for D-Iso-1 and D-Iso-2 2 

respectively, which now just fall within the EN 14214 range (max. = 900 kg/m3). Because the 3 

FAME profiles and contents of the non-decolorized and decolorized biodiesel fuels were very 4 

similar (ref. Table 1), the data suggests that the presence of pigments results in a higher density. 5 

However, the extent of their impact has yet to be rigorously investigated and it remains to be 6 

determined if such low levels of these compounds (max. = 5% w/w) could account for the 7 

observed differences of our decolorized and non-decolorized biodiesel fuels. 8 

Glycerol and FFA and moisture Content. Our processing consistently produces a biodiesel 9 

that meets the free and total glycerol amounts as well as moisture content (345 ppm for D-Iso-1) 10 

according to ASTM D6751 and EN-14214. The acid values, however, exceeded the limitations 11 

according to these specifications. Problems associated with acidity for diesel fuels center on the 12 

possibility of corrosion and potential formation of engine deposits. For biodiesel, the acid value 13 

indicates FFA content [48].  Because our processing involves first converting all acylglycerols to 14 

FFAs for the purpose of separating alkenones and other neutral lipids, the acid value essentially 15 

represents the percent yield for our esterification step, or 98.6% (Acid Value = 3.029 = 1.383% 16 

FFAs) and 97.7% (Acid Value = 5.139 = 2.347% FFAs) for D-Iso-1 and D-Iso-2, respectively. 17 

The ASTM D6751 and EN-14214 acid value limit of 0.50 corresponds to an exceedingly low FA 18 

content of approximately 0.25%, meaning we would need to achieve an esterification yield of 19 

99.75% or reduce the acid value of the final product by other means [49]. Future work will 20 

therefore include an optimization of this parameter toward the production of a commercially 21 

viable Isochrysis biodiesel. 22 

  23 
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Conclusion 1 

Pigments such as chlorophylls and other derivatives can be efficiently removed from 2 

Isochrysis biodiesel using montmorillonite K10 clay. The process was performed on sufficient 3 

scale to allow for comprehensive fuel testing of the resulting decolorized biodiesel. This was 4 

made possible in part due to the commercial availability of Isochrysis in multi-kilogram 5 

quantities from several suppliers. Results from the fuel tests provided important experimental 6 

data that can be used to validate and refine often used predictive models for algal biodiesel fuel 7 

properties. For instance, oxidative stability remains an issue for our Isochrysis (and presumably 8 

other algal) biodiesel, and appears highly sensitive to even minor amounts of PUFAMEs. 9 

Through the decolorization process we were now able to obtain a CP, with the measured CP for 10 

our decolorized biodiesel lower than what would be predicted based on the FAME profile. A 11 

comparison of the fuel testing results for our decolorized sample to that previously obtained for a 12 

non-decolorized Isochrysis biodiesel also revealed certain impacts of pigments on fuel 13 

properties. Specifically, pigment removal resulted in a 24% increase in CN (from 36.5 to 45.4 14 

(avg.)), 40% increase in kinematic viscosity (from 2.5 to 3.5 mm2/s), a 50% decrease in lubricity 15 

(from 260 to 131 μm), and 4% decrease in density (from 935 to 897 kg/m3).  There remains, 16 

however, approximately 5% unaccounted for material in the samples tested making any absolute 17 

claims about the role of pigments on fuel properties difficult. Work is therefore ongoing to fully 18 

characterize these mixtures, along with continued studies toward the production of an ASTM-19 

certified Isochrysis biodiesel. 20 
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Table 1. FAME Composition of Non-Decolorized (Non-D),23 and Decolorized Isochrysis 1 
Biodiesel (D-Iso) Samples. 2 

FAMES Non-DA  D-Iso-1 D-Iso-2D D-Iso-3 

14:0 13.9 14.3 17.1 16.4 

15:0 0.2 ND 0.4 trace 

16:0 11.0 10.1 12.4 10.1 

16:1 Δ9 5.9 7.0 6.6 7.6 

16:2 0.6 NDF trace ND 

16:3 0.7 ND ND ND 

18:0 Trace ND 1.1 Trace 

18:1 11.4B 10.8B 11.0B 12.1 

18:2 7.4 9.9 6.5 8.1 

18:3 6.8C 10.3C 6.9C 8.5 

18:4 20.7 21.0 18.3 19.8 

18:5 1.6 ND ND ND 

20:5 1.6 ND ND ND 

22:5 1.1 ND ND ND 

22:6 10.6 8.4 8.2 6.9 

Σ 94.9 91.8E 88.5E 89.8E 

AAverage values from three separate samples. BCombined 18:1 Δ9 + 18:1 Δ11. CCombined 3 
Δ6,9,12 and Δ9,12,15 isomers. DPrepared from an older hexane algal oil that was stored at ~20 4 
°C for two years before being used for this study. EThe remaining material is roughly 50:50 other 5 
FAMEs and non-FAME components (Total ~95% FAME).FND = Not detected. 6 

7 
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Table 2. Fuel Properties of Non-decolorized (Non-D)23 and Decolorized Isochrysis (D-Iso) 1 
Biodiesel Fuels.  2 

Property Non-D D-Iso-1 D-Iso-2d ASTM D6751 EN 14214 

Cetane number 36.53 42.3 48.4 47 min 51 min 

Kinematic 
viscosity (40°C, 
mm2/s)a 

2.46 3.38 3.76 1.9-6.0 3.5-5.0 

Oxidative 
stability (110°C; 
h) 

0.06 0.35 0.05 3 min 6 min 

Cloud Point (°C) ND -6.0, -6.0c -5.8, -5.6c Report  

Pour Point (°C) ND -8.6, -8.4c -6.0, -6.0c Report  

Density (15°C, 
kg/m3) 

934.92 895.52 898.54 --- 860-900 

Lubricity (μm; 
60°C; HFRR) 

260 131, 125c 136, 133c 520 max 
( ASTM D975) 

460 max 
(EN 590) 

Free glycerol 
(mass %) 

0 0.004 0.0045 0.020 max 0.02 max 

Total glycerol 
(mass %) 

0.029 0.025 0.033 0.240 max 0.25 max 

Monoglycerides 
(mass %) 

0.034 0.029 0.020 0.40 max 0.70 max 

Acid Value (mg 
KOH·g-1) 

ND 3.029 5.139  0.50 max 0.50 max 

Moisture  ND 345 ppm ND 0.05% max 
(v/v) 

500 max 
mg/kg 

aDetermined on an individual batch (~10 g) prior to blending. bLimits listed as given in the 3 
standards. cDuplicate measurements.dPrepared from an older algal oil, stored at ~20 °C for two 4 
years (ref. Table 1). eND = Not determined. 5 
 6 

 7 

  8 



 21 

O
37:3 methyl alkenone

 1 
Figure 1. Structure of a common alkenone produced by Isochyrsis sp. Nomenclature is # of 2 
carbons:# of double bonds, where methyl refers to a methyl ketone. 3 

 4 

 5 

Figure 2. Comparison of non-decolorized (left) and decolorized (right) Isochrysis biodiesel 6 
fuels. 7 


