
Exploring Practical Estimates of the Ensemble Size Necessary for
Particle Filters

LAURA SLIVINSKI*

Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

CHRIS SNYDER

National Center for Atmospheric Research,1 Boulder, Colorado

(Manuscript received 22 September 2014, in final form 22 October 2015)

ABSTRACT

Particle filtering methods for data assimilation may suffer from the ‘‘curse of dimensionality,’’ where the

required ensemble size grows rapidly as the dimension increases. It would, therefore, be useful to know a priori

whether a particle filter is feasible to implement in a given system. Previouswork provides an asymptotic relation

between the necessary ensemble size and an exponential function of t2, a statistic that depends on observation-

space quantities and that is related to the system dimension when the number of observations is large; for linear,

Gaussian systems, the statistic t2 can be computed from eigenvalues of an appropriately normalized covariance

matrix. Tests with a low-dimensional system show that these asymptotic results remain useful when the system is

nonlinear, with either the standard or optimal proposal implementation of the particle filter. This study explores

approximations to the covariance matrices that facilitate computation in high-dimensional systems, as well as

differentmethods to estimate the accumulated systemnoise covariance for the optimal proposal. Since t2 may be

approximated using an ensemble from a simpler data assimilation scheme, such as the ensemble Kalman filter,

the asymptotic relations thus allow an estimate of the ensemble size required for a particle filter before its

implementation. Finally, the improved performance of particle filters with the optimal proposal, relative to those

using the standard proposal, in the same low-dimensional system is demonstrated.

1. Introduction

Ensemble methods have been used in a variety of

geophysical estimation problems, including atmospheric

applications, oceanography, and land surface systems.

Recently there has been growing interest in particle fil-

tering methods in particular, as these methods are better

able to capture the nonlinearity inherent in many geo-

physical systems [e.g., the merging particle filter of

Nakano et al. (2007), the equivalent-weights filter of

Ades and van Leeuwen (2013), and the implicit particle

filter (Morzfeld et al. 2012)]. At the same time, particle

filters also tend to suffer from the ‘‘curse of dimen-

sionality’’ where the required ensemble size grows very

rapidly as the dimension increases. Thus, it would be

useful to know a priori whether a particle filter is feasible

to implement in a given system.

The curse of dimensionality is a well-known problem

in density estimation, as Monte Carlo estimation of

high-dimensional probability densities demands noto-

riously large sample sizes (Silverman 1986). In a series of

related papers, Bengtsson et al. (2008), Bickel et al.

(2008), and Snyder et al. (2008) show that the curse of

dimensionality is also manifest in the simplest particle

filter. They demonstrate that the required ensemble size

scales exponentially with a statistic related, in part, to

the system dimension and that may be considered as an

effective dimension. More general particle filters em-

ploy sequential importance sampling and allow a choice

of proposal distribution from which particles are drawn.
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Snyder et al. (2015) [see also Snyder (2012)] showed that

the exponential increase of the ensemble size with ef-

fective dimension also holds for particle filters using the

optimal proposal distribution (Doucet et al. 2001),

which we will introduce in more detail in section 5.

We will consider particle filters based on both of the

proposals above. In the case examined by Bengtsson et al.

(2008), Bickel et al. (2008), and Snyder et al. (2008), the

proposal is the transition distribution for the system dy-

namics, where new particles are generated by evolving

particles from the previous time under the system dy-

namics. It yields the bootstrap filter ofGordon et al. (1993)

and was termed the ‘‘standard’’ proposal by Snyder (2012)

and Snyder et al. (2015). The optimal proposal is of interest

both because of its relation to the implicit and equivalent-

weights particle filters and because it minimizes the de-

generacy of weights, as shown in Snyder et al. (2015), and

thereby provides a bound on the performance of other

particle filters that use sequential importance sampling.

Our ultimate goal is to be able to determine whether a

particle filter would be feasible to implement, given that we

have statistics from, say, a working ensemble Kalman filter

(EnKF). For the standard proposal, this is straightforward:

the forecast stepof ensemble forecasts provides adraw from

the proposal and we simply need to compute weights based

on the observation likelihood for eachmember.However, it

is harder to use an existing ensemble to assess the feasibility

of the particle filter based on the optimal proposal, since it is

nontrivial to develop an algorithm to sample from this

proposal (cf. Morzfeld et al. 2012). An alternative is to

utilize the results of Bengtsson et al. (2008), Bickel et al.

(2008), and Snyder et al. (2008, 2015), which relate the be-

havior of the weights in the linear, Gaussian case to eigen-

values of certain covariancematrices that may be estimated

from an existing ensemble. We aim to evaluate the use of

these results in a more general nonlinear, non-Gaussian

setting, by using ensembles from a working sequential

EnKF to calculate the relevant statistics (without im-

plementing the particle filter directly.) As a specific test

case, we employ the Lorenz-96 system and demonstrate

the nonlinearity present in this example. Note that sam-

pling error also presents an issue in applying these results;

we investigate these effects and possible methods for

overcoming them in this paper as well.

In addition, it is nontrivial to implement the truly optimal

particle filter in nonlinear settings when the observations

are not available every model time step. We investigate

several approximations to the implementation of the ‘‘op-

timal’’ particle filter and utilize these approximations in

sections 5 and 6. However, we emphasize that these ap-

proximations are no longer guaranteed to be optimal.

We note here that Chorin and Morzfeld (2013) have

investigated a different, but related, effective dimension

of a Gaussian data assimilation problem. In particular,

they define a ‘‘feasibility criterion’’ to be the Frobenius

norm of the steady-state posterior covariance matrix

(which can be exactly calculated in the linear, Gaussian

regime.) While both studies explore potential limita-

tions of particle filtering in high-dimensional systems,

their criterion is based on bounding the total posterior

error variance as a function of an effective dimension,

whereas the studies of Snyder et al. (2008) and Snyder

et al. (2015) quantify the relation between degeneracy of

the particle-filter weights and an effective dimension.

The remainder of this paper is organized as follows. In

section 2, we review the ensemble Kalman filter and the

particle filter and their respective implementations.

Section 3 reviews the previous results of Snyder et al.

(2008) regarding the limits of particle filters in high-

dimensional linear systems. Section 4 verifies the ap-

plicability of the results for linear, Gaussian systems and

the standard proposal to nonlinear systems by testing

the results on the Lorenz-96 system; this is specifically

useful for understanding the similar extension needed

for the optimal proposal. In section 5, we consider ap-

proximations of the optimal proposal in a nonlinear

system and discuss some of the difficulties that arise, in

particular regarding additive model noise in nonlinear

systems. Section 6 includes comparisons of performance

of the standard proposal and approximation to the op-

timal proposal in a nonlinear system. Finally, section 7

summarizes the results and draws conclusions.

2. Review of ensemble methods and previous
results

Ensemble data assimilation methods approximate

probability distributions using an ensemble of states,

either weighted or unweighted. Two common ensemble

methods are the EnKF and the particle filter. Generally,

the traditional EnKF algorithm uses unweighted en-

semble members, which are themselves updated when

an observation becomes available. On the other hand,

the particle filter uses a weighted ensemble. When an

observation is available, the particles are drawn from a

proposal distribution and then reweighted according to

the observation.

In this section, we will first describe the setup and

some notation, and then briefly review the standard and

optimal proposal implementations of the particle filter

as well as the ensemble Kalman filter.

a. Setup and notation

Assume that our state of interest is given by xk 2 R
Nx ,

where k indexes time and Nx is the dimension of the

state. We will additionally assume that model noise is
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added at integration time steps (of size dt) indexed by l

below, while observations are available every Nt in-

tegration steps, indexed by k. Let the time between

observations be denoted by Dt5Nt 3dt. The model

evolution can be described as

x
k,l
5m(x

k,l21
)1h

l21
, l5 1, . . . ,N

t
, (1)

where xk,Nt
5 xk11,0 :5 xk11 and observations are avail-

able for xk, k5 1, . . . , Nobs. The hj, whose dependence

on k is suppressed for notational convenience, are i.i.d.

random variables that represent the system noise and

have a distribution to be specified later. Further define

Mstoch to be the operator that takes xk,0 to xk,Nt
. That is,

Mstoch includes the nonlinear convolution of the noise

between observation times:

x
k
5M

stoch
(x

k21
,h

0
, . . . ,h

Nt21
) . (2)

In particular, the effect of the model noise over the time

window between observations is not simply additive when

m is nonlinear, since the noise is convolved into the state

at the intermediate integration times l. Next assume that

we have linear, noisy observations of the state given by

y
k
5Hx

k
1 �

k
, (3)

where yk 2 R
Ny is the observation of dimension Ny and

�k ;N (0, R) is the observation error. For the following

methods, we denote unweighted ensembles (where curly

brackets are used to indicate ensembles) of size Ne as

fxikgNe

i51 and weighted ensembles as fxik, wi
kg. Finally,

yk1:k2 will denote the concatenation of the observations

from time tk1 to time tk2 .

b. Particle filter

The particle filter estimates the true Bayesian proba-

bility distribution using a weighted ensemble of states.

When an observation is available at time tk, we are in-

terested in p(xk j y0:k)’�Ne

i51w
i
kd(xk 2 xik). We assume

that we are unable to sample from the distribution of in-

terest directly; instead, we will sample from a ‘‘proposal’’

distribution, which we can choose, and then assign ap-

propriate weights to each member of the sample. We will

briefly review the derivation of theweight update based on

sequential importance sampling (SIS; Doucet et al. 2000;

Snyder 2012; Snyder et al. 2015). To this end, suppose we

wish to sample fromp(x0:k j y0:k) andwe are given a sample

fxi0:k21g from a proposal distributionp(x0:k21 j y0:k21) with

weights wi
k21 } p(xi0:k21 j y0:k21)/p(x

i
0:k21 j y0:k21). Assume

that the proposal distribution factors as

p(x
0:k

j y
0:k
)5p(x

k
j x

k21
, y

k
)p(x

0:k21
j y

0:k21
) . (4)

If a sample fxikg is then drawn from p(xk j xik21, yk), the

appropriate importance weights are

wi
k } ~wi

kw
i
k21 , (5)

where

~wi
k 5

p(xik j xik21)p(yk j xik)
p(xik j xik21, yk)

(6)

and the wi
k are normalized to sum to 1. A draw from the

filtering distribution p(xk j y0:k) is then obtained by re-

taining fxik, wi
kg and ignoring fxi0:k21g.

The simplest choice for a proposal density is the

standard proposal, in which p(xk j xk21, yk) is chosen to

be p(xk j xk21). Then the weight update is given by

~wi
k 5p(y

k
j xik) . (7)

Doucet et al. (2000) discuss the so-called optimal

proposal, which includes information about the pre-

vious state as well as the current observation:

p(xk j xk21, yk)5 p(xk j xk21, yk). In this case, the weights

are updated according to

~wi
k 5 p(y

k
j xik21) . (8)

Sampling from this proposal is discussed in more detail

in the appendix, but note that drawing from the optimal

proposal and updating the weights are both more com-

plicated in the case of the optimal proposal than the

standard proposal. Despite this added computational

effort, there are cases in which the optimal proposal has

significant performance gain over the standard proposal,

with the same number of particles (see section 6 below.)

Thus, the optimal proposal may be more computation-

ally tractable than the standard proposal in terms of the

number of particles needed for an acceptable error level.

c. Ensemble Kalman filter

Evensen (1994) introduced the ensemble Kalman fil-

ter as an approximation of the Kalman filter that, like

the particle filter, uses an ensemble of realizations of the

system state to represent probability distributions. Un-

like the particle filter, the ensemble Kalman filter uses

an unweighted (or equally weighted) ensemble of states.

Suppose the ensemble at time tk is given by fxf ,ik gNe

i51,

where f stands for ‘‘forecast,’’ and a will represent

‘‘analysis.’’ If an observation is also available at time tk,

each ensemble member is updated according to

xa,ik 5 xf ,ik 2K(y
k
2 xf ,ik 1 �ik) and (9)

K5PfHT(HPfHT 1R)21 , (10)
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where �ik ;N (0, R) andPf is the ensemble covariance of

the forecast:

Pf 5
1

N
e
2 1

�
Ne

i51

(xf ,ik 2 xfk) and (11)

xf 5
1

N
e

�
Ne

i51

xf ,ik . (12)

This is the so-called perturbed-observation formulation

of the EnKF (Evensen 2003), in which each observation

is viewed as a random variable. In the update step, we

replace yk with yk 1 �k, where �k has the same statistics as

the observation error noise. This formulation is shown to

give the correct posterior covariance; otherwise, the

covariance is overly tightened (see Burgers et al. 1998;

Houtekamer and Mitchell 1998).

The EnKF is a linear method, and thus will be sub-

optimal for problems that are significantly non-Gaussian

even if Ne is large. However, for distributions that are

close to Gaussian, the EnKF works well with relatively

few ensemble members, though often it requires locali-

zation and inflation (seeHoutekamer andMitchell 1998,

2001; Anderson and Anderson 1999; Hamill et al. 2001).

In the experiments in this paper, we use the perturbed-

observation formulation of the EnKF with covariance

localization using the compactly supported correlation

function of Gaspari and Cohn (1999) and a small but

fixed inflation.

d. Review of previous asymptotic results

Snyder et al. (2008) prove, in certain regimes, an

exponential relationship between the variance of the

observation log-likelihood and the inverse of the

maximum weight. In the linear Gaussian case, this

variance can be calculated as a sum of eigenvalues of

an explicit function of covariances. First, we give some

definitions.

Define the weight update factor ~wi
k as in (6). Next

define t2 to be the variance of the log of these factors

conditioned on the observations:

t2 5 var[log( ~wi
k) j yk] . (13)

Let wmax denote the maximum weight over the ensem-

ble. Snyder et al. (2008) show that

E(1/w
max

)2 1’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logN

e

p
t

, (14)

under the following assumptions: first, that the obser-

vation errors are spatially and temporally independent;

second, that Ny and Nx are large; third, that Ne and

t/
ffiffiffiffiffiffiffiffiffiffiffiffi
logNe

p
are large, in the sense that t/

ffiffiffiffiffiffiffiffiffiffiffiffi
logNe

p
/‘ as

Ne /‘; and finally, that the distribution of log(ewi
k) over

draws of xi from the proposal is sufficiently close to

Gaussian. The first three assumptions are easily verified

and generally hold in the systems of interest to this work.

The final assumption is less obvious, and below we in-

vestigate situations in which this assumption may not

hold true.

Snyder et al. (2008) apply these asymptotic results to

the particle filter with the standard proposal, where

~wi
k 5 p(yk j xik). Snyder (2012) and Snyder et al. (2015)

note that similar arguments apply to the optimal pro-

posal, where ~wi
k 5 p(yk j xik21). Snyder et al. (2015) also

show that the optimal proposal minimizes the de-

generacy of the ~wi
k over draws of both xik and xik21, and

thus provide a bound on the performance of other par-

ticle filters that use sequential importance sampling,

including the implicit particle filter (Morzfeld et al.

2012) and the equivalent-weights particle filter (Ades

and van Leeuwen 2013). Although we will consider

nonlinear, non-Gaussian systems, the asymptotics de-

veloped in the linear, Gaussian case are of interest here

because they provide an explicit expression for t2. Ad-

ditionally, in the linear, Gaussian case, the conditions for

log(ewi
k) to be Gaussian (and thus for validity of the as-

ymptotic theory) are straightforward.

We take the linear, Gaussian system to be

x
k
5Mx

k21
1 g

k
, (15)

where gk ;N (0, Q) and the observations are as defined

in (3). Note that, for the linear Gaussian case, the dy-

namics are only written for observation times tk, in

contrast to (1).

With the standard proposal, we first need to calculate

the eigenvalues l2
j of the matrix:

C
s
5R21/2H cov(x

k
)HTR21/2 . (16)

Here we have omitted the notation for conditioning on

y0:k21; thus, cov(xk) _5cov(xk j y0:k21). Snyder et al. (2008)

and references therein derive the following relation:

E(t2)5 �
Ny

j51

l2
j

�
11

3

2
l2
j

�
, (17)

where the expectation is taken over yk. Moreover,

Bickel et al. (2008) show that log( ~wi
k) is asymptotically

Gaussian (over draws from the proposal), and the re-

lation in (14) is valid, as long as no eigenvalue(s) dom-

inate the sum of squares above. In the case of the

optimal proposal, the same expression in (17) and the

same conditions for validity hold, but using the eigen-

values of
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C
o
5 (R1HQHT)21/2HM cov(x

k21
)MTHT(R1HQHT)21/2 .

(18)

In a system where each degree of freedom is in-

dependent and independently observed, these expres-

sions simplify and show that t2 will be proportional to

the number of observations. A similar but more in-

formal derivation of this result also appears in Ades and

van Leeuwen (2013).

3. Model and experimental setup

In all experiments in this paper, we will restrict our

attention to the nonlinear dynamical system of Lorenz

(1996). The deterministic form of these equations is

given by

dx
( j)

dt
5 (x

( j11)
2 x

( j22)
)x

( j21)
2 x

( j)
1F , (19)

for j5 1, . . . , Nx and F5 8 here. The subscripts ( j) in-

dicate the spatial location in a one-dimensional, periodic

domain and should be understood modNx.

We solve a discrete-time, stochastic version of this

equation, cast in the form (1). Fixing an integration time

step dt and an observation time step Dt5Ntdt, we

compute m(xk,l21) by integrating (19) over a single time

step dt using a fourth-order Runge–Kutta scheme and

draw hl21 from N (0, dts2
sysI). Except where noted be-

low, all results employ dt5 0:01. Alternatively, we could

have started from a continuous time stochastic differ-

ential equation by including noise directly in (19); this

distinction is not crucial to any of the results we present.

The observing network in the experiments will consist of

full observations, so thatH5 I, and the observation error

covariance is R5s2
obsI.

We will need an example ensemble data assimilation

(DA) scheme to calculate the statistics necessary to test

the asymptotic theory. Since our goal is to demonstrate

that these statistics may be used in practice to determine

the applicability of the particle filter, we will use the

EnKF, a common method for high-dimensional prob-

lems, to calculate the statistics. While the EnKF is sub-

optimal in the nonlinear case, we wish to show that the

method is reasonably effective across a wide range of

parameters for this system. The spread–skill relation

(Table 1) indicates that this is true. For this experiment,

we fix Nx 5 100, Ne 5 1000, let the system noise be fixed

with ssys 5 0:01, and vary the observation error noise

s2
obs. For each value of observation error, we run the

EnKF for 200 sequential observations. Table 1 shows

the forecast mean squared error and forecast variance

over the last 190 observations, for each value of

observation error. For these results, Dt5 0:1. As the

results show, the EnKF is working well with the chosen

values of inflation and localization (1.05 and 5, re-

spectively), since the forecast mean squared error (MSE)

and variance are comparable and neither blows up.

In section 6, we will run a sequential particle filter for

many observations to compare the overall performance

of different proposal algorithms. In this case, we will

need to resample in order to prevent weight collapse:

here, we test two different resampling thresholds. The

first is the resampling threshold defined in Kong et al.

(1994), in which the filter is set to resample when the

effective sample size Neff 5 1/�Ne

i51(w
i)2 falls below a

fixed ensemble size. This is the threshold suggested by

Arulampalam et al. (2002). The second threshold is

based on the maximum weight, in which the filter re-

samples when wmax exceeds a certain value (here we use

0.5.) We then use a Monte Carlo Metropolis–Hastings

resampling technique [see Hastings (1970); Robert and

Casella (2004) for an introduction and van Leeuwen

(2009) for a description applied to particle filters], fol-

lowed by resetting the weights to be equal.

4. Extension to nonlinear case: Standard proposal

Our goal is to show how to use an existing DA en-

semble to determine whether it would be feasible to

use a particle filter for a given nonlinear system, and if

so, howmany particles would be necessary to avoid filter

collapse. In the case of the standard proposal, it is

straightforward to directly calculate the weights without

implementing the particle filter and quantify the statis-

tics of the maximumweight directly. Alternatively, if we

knowR and cov(xk), we could use (17) to estimate t2 and

then predict E(1/wmax) from (14). This alternative ap-

proach to predict the behavior of wmax is especially useful

in the case of the optimal proposal, where computing the

TABLE 1. Forecast error and variance of the working EnKF, with

varying values of observation noise.

s2
obs Forecast MSE Avg forecast variance

0.0001 0.0021 0.0011

0.0005 0.0024 0.0014

0.001 0.0027 0.0018

0.003 0.0037 0.0027

0.005 0.0044 0.0035

0.007 0.0052 0.0041

0.009 0.0057 0.0048

0.02 0.0082 0.0075

0.05 0.0145 0.0142

0.1 0.0236 0.0243

0.5 0.0736 0.0830

1 0.1448 0.1695
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weights directly requires sampling from the optimal pro-

posal, which can be difficult. Thus, we first numerically

demonstrate the theory in the simpler case with the

standard proposal, but with a nonlinear model, before

moving on to considering the optimal proposal. Note that

the asymptotics have been verified numerically for linear,

Gaussian systems in Snyder et al. (2008).

We consider the Lorenz (1996) equations with

Nx 5 100, fix the system noise as ssys 5 0:01, and vary the

observation error variance s2
obs. The existing DA

scheme we use is the EnKF as described in section 3.

First, to demonstrate the degree of nonlinearity in this

system of equations, we study the difference in pertur-

bations after evolving two initial points forward under the

fully nonlinear Lorenz equations as well as a linearized

system. Specifically, we choose a random observation

time in the EnKF experiment, choose two random en-

semble members as our initial perturbation, and linearize

the system about one of them. We evolve each ensemble

member under the linearized dynamics to get fxilingi51,2

and under the full dynamics to get fxifullgi51,2; we then

measure the linearity of the system with

err5
jjx1full 2 x2fullj2 jx1lin 2 x2linjj

jx1full 2 x2fullj
, (20)

where jx1 2 x2j5 ½�Nx

j51(x
1
(j) 2 x2(j))

2�1/2. This will be close

to 0 if the full system is close to linear. Additionally, note

that this traditional version of the Lorenz (1996) equa-

tions with F5 8 has a doubling time of 2.1 days, where

one model time unit corresponds to 5 days (Lorenz

1996); thus, the doubling time is 0.42 model time units.

(While system dimension and system noise can each

have an effect on doubling time, we found that the

doubling time of the version implemented here does not

differ significantly from the original 40-variable de-

terministic system.) Table 2 shows results with a fixed

dt5 0:005, and variable integration time Dt, averaged
over 100 randomly chosen observation times. Note that

in the experiments in this paper, we vary the time be-

tween observations as Dt5 0:1 (standard proposal ex-

periment) or Dt5 0:4 (optimal proposal experiment, as

in the following section.)

The results in Table 2 show that the measure of non-

linearity is very close to 0 for a single integration step,

but quickly increases for longer time windows. This

implies that the system is well approximated by a linear

model after just one integration step, but the nonline-

arity increases as the length of integration increases. We

have, therefore, chosen observation frequencies for the

following experiments that guarantee nonlinear behavior

of the model between observations in order to test the

theory. Additionally, note that although we are operating

in a regime where the system is fully observed, based on

theory, we expect the same results to hold in the more

realistic situation of inhomogeneous spatial observation

coverage. In particular, fewer observations will lead to

more strongly non-Gaussian probability distributions;

however, we are testing the effects of non-Gaussian dis-

tributions by ensuring the time between observations is

long enough to display nonlinear behavior.

Next, to test the asymptotic theory on the calculation

of t2 and its relationship towmax, we run the EnKFwith a

localization radius of 5 and a covariance inflation of 1.05

on the Lorenz equations with 100 variables for 3000

sequential observations; at each observation time, be-

fore the EnKF analysis, we calculate what the true

maximum weight would be if we were implementing the

particle filter. We also calculate t2 using the approxi-

mation defined in the linear case. We emphasize that we

are not running a sequential particle filter here, merely

using the ensemble from a sequential EnKF to calculate

the relevant statistics. To have an accurate estimation of

the covariance matrices, we run the EnKF with a large

number of ensemble members (Ne,cov 5 1000) to per-

form this estimation, then draw a smaller ensemble

(Ne 5 100) to calculate the weights directly. The en-

semble sizeNe is then used in the term [2 log(Ne)]
1/2/t in

the numerics. In this experiment, we fix Dt5 0:1,

Nx 5 100, and system noise ssys 5 0:01, and vary the

observation error s2
obs from 5 3 1025 to 0.05. Note that

varying the observation error leads to different values of

t, and thus different data points, since the estimate of t2

involves the eigenvalues of amatrix proportional toR21.

Thus, small values of s2
obs lead to larger values of t and

will result in ensembles that are close to collapse. In-

tuitively, this can be understood by thinking about a

one-dimensional case: if the variance of the observation

likelihood is very small, then the support of the proba-

bility distribution is very narrow, and all particles except

the one closest to the observation will have very

small weight.

TABLE 2. Measure of nonlinearity of the Lorenz-96 system, for

varying lengths of time.

Dt

s2
obs 0.005 0.05 0.1 0.2 0.4 0.8 1.0

5 3 1025 0.011 0.009 0.018 0.002 0.028 0.298 0.755

1 3 1024 0.006 0.012 0.011 0.003 0.009 0.346 0.336

5 3 1024 0.006 0.019 0.004 0.019 0.007 0.362 1.419

1 3 1023 0.001 0.001 0.006 0.025 0.012 0.305 0.526

3 3 1023 0.002 0.007 0.006 0.002 0.011 0.381 1.279

5 3 1023 0.003 0.001 0.011 0.013 0.067 0.433 0.815

7 3 1023 0.0002 0.005 0.009 0.0002 0.035 0.460 0.950

9 3 1023 0.003 0.011 0.007 0.003 0.044 0.469 0.812

0.02 0.001 0.005 0.001 0.012 0.070 0.442 1.305

0.05 0.001 0.004 0.001 0.023 0.103 0.656 1.244
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Figure 1 shows the results of the asymptotic theory of

collapse, where each data point is averaged over the last

2990 steps of the filter and the error bars represent 95%

confidence intervals. Note that the observation error is

increasing as we move in the positive x-axis direction.

Results using the full covariance to calculate the eigen-

values are given in blue. They agree well with the theory

in the regime near the origin, where the theory is for-

mally valid, but deviations from the theory increase as

(logNe)
1/2/t increases.

There are several additional reasons for deviation

from the theory within the asymptotic regime as well. In

particular, the theory relies on the assumption that

flog ~wi
kg is an approximate sample from a Gaussian

distribution. This assumption is satisfied provided log ~wi
k

is a sum of a large number of sufficiently independent

random variables. However, evolving the ensemble

under the state dynamics generally concentrates the

state variance into a few growing structures, which in-

creases spatial correlations and makes observation-

space quantities more dependent. This leads to log ~wi
k

effectively being a sum over fewer independent random

variables, which (all else being equal) in turn leads to

log ~wi
k being less Gaussian.

To test whether the non-Gaussian nature of log ~wi
k

may be a factor in the deviation of the numerics from the

theory, we also investigate the degree to which log ~wi
k

may be skewed in this system. In particular, we look at

the skewness of the ensembles of log ~wi
k for the standard

proposal experiment in this section; results are given in

Table 3. If the skewness is far from 0, then the sample

distribution is far from Gaussian. The skewnesses are

averaged over the last 2990 observations. As the results

in Table 3 show, larger observation error generally leads

to higher skewness values; since large observation error

corresponds to larger 2 logNe/t
2, this may explain why

the data points do not follow the theory as well further

from the asymptotic regime.

To additionally give a visual approximation of the

distribution of log ~wi
k, we run the same experiment with

larger ensembles (Ne 5 10 000) and plot the histograms

of log ~wi
k for several levels of observation error at one

fixed time step. These plots are given in Fig. 2, with the

skewness at that time step included in each plot. Al-

though the increased ensemble size can have an effect

on the nature of this distribution, the observed skewness

values are relatively close to those for the above experi-

ment with Ne 5 100. That is, the differences in skewness

do not have a visible effect on these histograms. In fact,

these histograms all look quite close toGaussian, which is

supported by the fairly weak skewness values. Thus, in-

creasing skewness may not be the only cause of the de-

viation between numerics and theory. However, the

frequent changes of variables needed to derive t2

prevent a more detailed analysis of this deviation.

In practice, there are difficulties using (17) to estimate

t2. First, computing a covariance matrix from a small

sample typically yields an eigenvalue spectrum that is

artificially steep, with too much variance in leading di-

rections. The corresponding calculation of t2 will then

be too large, since it is a sum of higher powers of the

eigenvalues. We have, therefore, chosen a large ensemble

(Ne $Nx) in this experiment in order to estimate the co-

variances accurately and avoid this effect. Second, for

large numbers of observations and large ensembles,

FIG. 1. Numerical estimation of [2 log(Ne)]
1/2/t vs the time av-

erage and 95% confidence interval of E(1/wmax)2 1 calculated

using the standard proposal. Blue represents calculating t from the

true eigenvalues, and red represents calculations based on the di-

agonal entries of the matrix. The black line represents the theo-

retical relationship between [2 log(Ne)]
1/2/t and E(1/wmax)2 1.

TABLE 3. Skewness of the ensembles of logewi
k after one evolu-

tion under the Lorenz-96 model for varying magnitude of obser-

vation error; standard proposal experiment. Mean and 95%

confidence intervals over the final 2990 time steps.

s2
obs Mean skewness

5 3 1025 0:2516 0:009

1 3 1024 0:2526 0:009

5 3 1024 0:2716 0:009

1 3 1023 0:2706 0:009

3 3 1023 0:2816 0:009

5 3 1023 0:2906 0:009

7 3 1023 0:3026 0:009

9 3 1023 0:3006 0:009

0.02 0:3206 0:009
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calculating eigenvalues of these matrices may be compu-

tationally prohibitive. Specifically, in order to avoid se-

verely overestimating the leading eigenvalues, the sample

covariances are generally localized before the eigenvalues

are computed. This computation is nontrivial.

Thus, we also tested this theory using a computa-

tionally feasible approximation for the eigenvalues of

R21/2H cov(xk)H
TR21/2: we assume R and H cov(xk)H

T

are diagonal, so that the eigenvalues are simply the

product of the corresponding diagonal elements of R21

and H cov(xk)H
T. This diagonal approximation is, in

some sense, the most extreme localization, and in this

limit the eigenvalues of the matrices are easy to obtain.

Results with t2 approximated in this way are also shown

in Fig. 1. The approximation systematically underesti-

mates t2; thus, data points with the approximation al-

ways lie to the right of those using eigenvalues of the full

matrix in (16).1 Nevertheless, using the approximation

of t2 in the asymptotic relation gives reasonable pre-

dictions of E(1/wmax), often better than with the un-

approximated t2, because the underestimation by the

diagonal approximation compensates for the over-

estimation of E(1/wmax) that is, empirically, a property

of the asymptotic relation when (2 logNe)
1/2/t is not

small. It is not clear whether this compensation will be

equally effective in other problems.

5. Optimal proposal

Next, we follow the approach of the previous section,

but apply the asymptotic theory to our approximation of

the optimal proposal. Specifically, we wish to use an

existing ensemble to evaluate the feasibility of a particle

filter using the optimal proposal. As in the case of the

standard proposal above, the evaluation will be limited

by the fact that it applies results from linear, Gaussian

systems in a nonlinear, non-Gaussian setting, and by

sampling errors in estimating the necessary covariance

matrices from a finite ensemble. We will check these

limitations with numerical simulations using the Lorenz

(1996) system.

There are two additional issues that must be

addressed when evaluating the feasibility of the optimal

proposal. First, the assumption that p(yk j xk21), which

FIG. 2. Histograms of log ~wi
k calculated using the standard proposal at a single observation time for an ensemble of size Ne 5 10 000 and

varying observation error s2
obs as noted. The skewness for each histogram is noted on each plot.

1 Since t2 is a sum of squares of the eigenvalues of (16) [see (17)]

and because the sum of the eigenvalues equals the sum of the di-

agonal elements, t2 will be underestimated by the diagonal ap-

proximation whenever the eigenvalue spectrum is steeper than the

sorted list of diagonal elements. We expect this to be true in many

problems involving spatial correlations, with spatially correlated but

nearly spatially homogeneous processes being a prime example.
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defines the weight update, is a normal distribution with

meanHxk and covarianceR1HQHT (see the appendix),

is not true in the case we consider (a nonlinear model in

which observations are not taken at every model step.)

We will consider weight updates of this form, but we

emphasize again that this is an approximation to the

correct weight update for the optimal proposal and is

necessary if we are to avoid the difficulties involved in

implementing the optimal proposal. The second issue,

which we turn to below, is that some of the covariance

matrices involved in the definition in (18) of Co do not

appear explicitly in the nonlinear problem.

a. Model noise in nonlinear systems

The matrix Co, whose eigenvalues determine t2 for

the optimal proposal via (17) in the linear, Gaussian case,

involves the covariance matrices HM cov(xk21)M
THT and

HQHT. Since (1)–(3) for the nonlinear system do not

specify these quantities, we take the approach of defining

them through more general expressions that reduce to

the correct result for the linear, Gaussian case.

To compute the covariance involving the linear dy-

namics M, we first define Mdet(x)5Mstoch(x, 0, . . . , 0)

[recalling that Mstoch in (2) is a function of the state x as

well as the realizations of the noise at each integration

step h0, . . . , hNt21]. In the linear case,Mdet(x)5Mx and a

more general definition for the desired covariance is

HM cov(x
k21

)MTHT 5 cov[HM
det
(x

k21
)] . (21)

We estimate the right-hand side for the nonlinear system

by evolving an ensemble of initial conditions from tk21

using Mdet, applying H, and computing the sample

covariance.

For the covariance HQHT, there are at least two pos-

sible definitions that generalize to the nonlinear system.

The first uses

HQHT 5 cov(Hx
k
j x

k21
) , (22)

which is an identity in the linear case and gives a quan-

tity that, in the nonlinear case, will depend on xk21. We

can estimate the covariance on the right-hand side by

starting from a given xik21 and computing an ensemble

Mstoch(x
i
k21, h0, . . . , hNt21) over realizations h0, . . . , hNt21

of the system noise. Let Qi be the state-space covariance

estimated in this way. (Recall from section 3 that H5 I in

our experiments.) A further step would be to compute �Q

by averaging the Qi over an ensemble of xik21.

The second possible definition relies on

HQHT5cov[HM
stoch

(x
k21

,h
0
, . . . ,h

Nt21
)2HM

det
(x

k21
)] .

(23)

This expression is again an identity in the linear case—Q

can be written as the sum over contributions from the

noise in (1) at each of the Nt model time steps between

tk21 and tk. Beginning from an ensemble of realizations

of xk21, we estimate the covariance on the right-hand

side above by evolving each member from tk21 to tk with

both Mdet and Mstoch, with independent realizations of

the system noise in Mstoch, and then taking the sample

covariance of the differences in xk. We denote this es-

timate ~Q.

It is not immediately obvious whether one of these

definitions is to be preferred. They will agree in the limit

of linear dynamics and may differ as nonlinearity in-

creases. We have, therefore, explored the behavior of

both approaches in the case withNx 5 100, Dt5 0:1, and

with varying model noise ssys and initial ensemble

spread sens. The test consists of evolving the particles

forward from time 0 to time Dt and estimating Q in the

three ways described above. First, we calculate Qi for

each particle; second, we take the average �Q of these Qi

values; finally, we estimate ~Q as above. We found that

the variations of Qi about �Q were negligible relative to

the magnitude of elements of �Q. Similarly we found

good agreement between �Q and ~Q in these cases. Thus,

the effects of nonlinearity in estimating the effective

model noise covariance are small in these experiments;

in particular, they are much smaller than sampling error

in estimates of Q with ensembles of size 1000, which we

use in the following experiments.

The two definitions do, however, differ substantially

in their computational demands, as the computation of

the Qi and �Q requires an ensemble of integrations for

each xik21, while a single integration for each xik21 suf-

fices for ~Q. In all following experiments, therefore, we

use ~Q to estimate the model noise covariance, as it is the

most computationally efficient.

b. Numerical results

Snyder et al. (2015) have rigorously shown that the

asymptotics developed in Bengtsson et al. (2008) and

Snyder et al. (2008) also hold for the optimal proposal.

Here, we numerically show how these results extend to

the nonlinear system of Lorenz (1996), with our ap-

proximation of the optimal proposal. As in the experi-

ment with the standard proposal, we run the EnKF

with a localization radius of 5 and a covariance inflation

of 1.05 on the Lorenz equations with 100 variables for

3000 sequential observations. We fix Dt5 0:4 and the

system noise ssys 5 0:01, and vary the observation error

s2
obs from 5 3 1023 to 1. In this experiment, we use the

approximation ~Q described above when calculating both

t and the exact weights. The size of the ensemble used to

calculate ~Q is Ne,cov 5 1000, but we take a subsample of
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size Ne 5 100 when calculating the weights themselves

fand, as above, use Ne 5 100 in the theoretical value

[2 log(Ne)]
1/2/tg. We approximate sampling from the

optimal proposal by sampling from the distribution de-

rived for the linear, Gaussian case given in (A3), re-

placing all Q s with ~Q.

The results are given in Fig. 3. Clearly, the data points

do not agree with the theory as well as in the experiment

with the standard proposal. This is likely due to the

parameter choices in this experiment. When using this

approximation of the optimal proposal, we empirically

found that we needed to increase the time between

observations in order to satisfy the assumption that the

filter is close to collapse [i.e., that 2 log(Ne)/t
2 is close to

0]. However, as mentioned previously, this also leads

to a steep spectrum of the covariance matrices, which in

turn leads to violation of the assumption that log ~wi
k is

approximately Gaussian. We again investigate the

values of skewness for this experiment; these results are

given in Table 4. Note that the longer observation time

window in this experiment leads to higher values of

skewness than for the shorter time window standard

proposal experiment in the previous section.

As in the previous section, we also perform this ex-

periment with the larger ensemble size of Ne 5 10 000

and plot the histograms of log ~wi
k for a fixed time step and

increasing observation error in Fig. 4. The values of

skewness for that particular step are also included in the

figure. As before, although the ensemble size differs

from the above experiment, the instantaneous values of

skewness for Ne 5 10 000 are comparable to the time

averages for Ne 5 100. In particular, note that the in-

creasing observation error generally leads to more

skewed, non-Gaussian distributions of log ~wi
k.

Thus, we would expect worse agreement with the as-

ymptotics in these experiments, because log ~wi
k is less

Gaussian than in the standard proposal experiments.

The data points for which the full covariances were used

(in blue) fall almost entirely above the theoretical line in

solid black. On the other hand, since approximating the

eigenvalues by the diagonal elements leads to under-

estimating t, the data points for which this approximation

was used (in red) are much closer to the theoretical line.

That is, the underestimation of t by the diagonal approx-

imation compensates for the overestimation of t by the

theory due to the steep spectrum. But, as in the case of the

standard proposal, these approximations are more accu-

rate in the asymptotic regime (close to the origin)while the

data deviate from the theory away from this regime.

6. Performance of standard and optimal proposals

Recently, there has been a focus in the particle fil-

tering community on the optimal proposal as an im-

provement over the standard proposal (Doucet et al.

2000; Arulampalam et al. 2002; Bocquet et al. 2010;

Snyder 2012; Snyder et al. 2015). Intuitively, sampling

from a distribution conditioned on the new observations

should perform better than a distribution conditioned

on the previous observations. The form of the weight

update should also provide intuition behind the perfor-

mance gain: the standard proposal weight update in-

volves the distribution of the observations conditioned

on the state at the current time p(yk j xk), whereas the
optimal proposal weight update is conditioned on the

FIG. 3. Numerical estimation of [2 log(Ne)]
1/2/t vs the time av-

erage and 95% confidence interval of E(1/wmax)2 1 calculated

using the optimal proposal, with approximations as described in the

text. Blue represents calculating t from the true eigenvalues, and

red represents calculations based on the diagonal entries of the

matrix. The black line represents the theoretical relationship be-

tween [2 log(Ne)]
1/2/t and E(1/wmax)2 1.

TABLE 4. Skewness of the ensembles of log ~wi
k after one evolu-

tion under the Lorenz-96 model for varying magnitude of obser-

vation error; optimal proposal experiment. Mean and 95%

confidence intervals over the final 2990 time steps.

s2
obs Mean skewness

5 3 1023 0:4236 0:010

0.01 0:4856 0:011

0.05 0:7066 0:014

0.1 0:7816 0:016

0.3 0:7916 0:016

0.5 0:7186 0:014

1 0:5776 0:013
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state at the previous time: p(yk j xk21). Since uncertainty

generally increases with a longer prediction window, the

likelihood p(yk j xk21) will tend to be broader than

p(yk j xk), and thus there will be less variance across the

weights for the optimal proposal update.

In a review of non-Gaussian data assimilationmethods,

Bocquet et al. (2010) performed a simple comparison

between the standard and optimal proposal imple-

mentation of the particle filter and found that the optimal

proposal results in lower mean squared errors for smaller

ensemble sizes, and has comparable performance to the

standard proposal for large ensemble sizes. Here, we

perform experiments that not only compare the mean

squared errors of these methods, but we also consider the

frequency at which resampling occurs as well as the

maximum weight of each method after a single step.

To test the usefulness of the optimal proposal, ex-

periments were run with the Lorenz (1996) system

with 5, 10, and 20 variables, with full observations

once per time step for 300 time steps, using both the

standard proposal and our approximate implementa-

tion of the optimal proposal as described in section 5.

The observation error variance, system noise vari-

ance, and initial ensemble variance are fixed at

s2
obs 5 0:5, s2

sys 5 0:01, and s2
ens 5 1:0 respectively.

We test two resampling thresholds: first, when the ef-

fective sample size falls below 0:1Ne; and second, when

the maximum weight exceeds 0.5. After resampling,

the weights are reset to 1/Ne and a small amount of

jitter (with a variance of 0.01) is added to each particle.

This extra noise is added to avoid degeneracy, and

is also known as regularization (see e.g., van Leeuwen

2009; Doucet and Johansen 2011; Chopin 2004).

The errors are averaged over the last 200 time steps,

but the resample counts are over the entire 300-

step window.

Figure 5 shows the root mean squared error of the

posterior mean as a function of ensemble size. For the

system with the smallest state dimension (Nx 5 5) and

increasing ensemble size, results for the standard pro-

posal converge quickly toward those from our approxi-

mation to the optimal proposal. When Nx is larger,

however, the results for the standard proposal do not

appear to converge over the range of ensemble sizes

considered, and the root mean squared errors remain

much larger than from our approximation of the optimal

proposal even at the largest ensemble size. Note also

that the standard proposal improves slightly over the

approximation to the optimal proposal for Nx 5 5 and

large ensembles. We believe this reflects the approxi-

mations in our implementation of the optimal proposal.

Similar errors result from both resampling thresh-

olds, with the exception of small ensemble sizes for

small state dimension (Nx 5 5), in which case the

FIG. 4. Histograms of log ~wi
k calculated using the optimal proposal implementation at a single observation time for an ensemble of size

Ne 5 10 000 and varying observation error s2
obs as noted. The skewness for each histogram is noted on each plot.
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threshold determined by effective sample size results

in smaller errors.

A further difference is that the filter using the stan-

dard proposal resamples much more often than that of

our approximation to the optimal proposal, with both

resampling thresholds (see Table 5). This may help ex-

plain why our approximation of the optimal proposal

has better error values: since resampling introduces

additional sampling noise into the algorithm, resampling

less frequently should be preferable to resampling often.

Note that under the effective sampling size threshold,

the number of times the filter resampled increases with

ensemble size for a fixed state dimension. This may be

due to the dependence of the threshold on the ensemble

size, leading to increased resampling frequency with Ne.

Alternatively, our approximation of the optimal proposal

density may be too narrow in relation to the posterior

density, resulting in particles in the tail of the proposal

with high posterior probability, and thus a low effective

sample size. To test this, we also tried inflating the pro-

posal variance as in Del Moral and Murray (2015). For

these results, the resampling frequency still increased

with increasing Ne, though not as drastically. Addition-

ally, the errors were not affected by inflation, and so we

have not included the results here. On the other hand, the

threshold determined by the maximum weight results in

decreasing resampling frequency as Ne grows for a fixed

Nx, without inflating the proposal variance. This would

suggest that even if the effective sample size is small, the

weights are well distributed across these particles. Then,

even though the effective sample size may be increasing

at a slower rate than Ne, resulting in higher resampling

frequency with larger Ne, the weights are still distributed

acrossmore particles.While resamplingmethods compose

a rich area of research, they are not the focus of this work,

and will not be investigated further here.

In addition to having smaller errors over time, the

optimal proposal is less likely to experience collapse

than the standard proposal. A hint to this behavior is

given by the lower number of necessary resampling steps

for our approximation to the optimal proposal than the

standard proposal; however, this effect can be studied

directly by comparing the maximum weight after one

step for each proposal. Results are shown in Fig. 6. All

parameters are fixed at the same value for each pro-

posal, except the state dimension, which varies as shown.

The ensemble size is fixed at Ne 5 1000, the data are

averaged over 100 trials, and the error bars show 95%

FIG. 5. Average errors for standard proposal (solid line) and

optimal proposal (dashed line), as a function of ensemble size

and for varying state dimensions: Nx 5 5 (blue), Nx 5 10 (red),

and Nx 5 20 (black). Thick lines represent the resampling

threshold determined by effective ensemble size (Neff , 0:1Ne)

and thin lines represent the resampling threshold determined by

maximum weight wmax . 0:5.

TABLE 5. Number of times each method was resampled in a window of 300 assimilation steps, for varying ensemble sizes and state

dimensions. (top) Resample when effective sample size Neff falls below 0:1Ne. (bottom) Resample when maximum weight wmax

exceeds 0.5.

Ne Nx 5 5 standard Nx 5 5 optimal Nx 5 10 standard Nx 5 10 optimal Nx 5 20 standard Nx 5 20 optimal

Neff

20 254 81 297 150 298 237

50 264 103 299 190 299 272

100 269 113 299 195 299 277

500 266 115 299 208 299 289

1000 276 127 299 209 299 287

wmax

20 272 112 297 197 297 197

50 239 85 297 154 297 154

100 202 76 291 129 291 129

500 127 49 284 98 284 98

1000 125 41 265 89 265 89
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confidence intervals based on this sample. These results

demonstrate that, for fixed ensemble size and state di-

mension, our approximation to the optimal proposal

consistently provides a lower maximumweight, and thus

less variance across the weights. In this experiment, the

improvement is especially clear in the regime where the

state dimension is between 10 and 50.

WhenQ is small compared to the prior covariance and

the observation error covariance, the optimal and stan-

dard proposals are nearly identical. Without system

noise, xk becomes a deterministic function of xk21 and

both p(xk j xk21, yk) and p(xk j xk21) are delta functions

at Mdet(xk21). This can also be seen in the system in

(A1)–(A2) discussed in the appendix: when Q is very

small, so is K in (A6) and the mean and covariance of

p(xk j xk21, yk) approach Mdet(xk21) and Q, respectively,

which are the same as the standard proposal mean and

covariance. Thus, the gain that the optimal proposal

affords over the standard proposal will be dependent on

the size of the system noise. Table 6 includes results for

the Lorenz system with 5 variables and 500 particles,

with varying system noise. The resampling threshold is

determined by the effective sample size (specifically,

whenNeff falls below 0.1Ne.) The particle filter with each

proposal distribution was run over 300 time steps, with

observations at each time step; the table includes the ratio

of the means of the errors over the last 200 time steps as

well as the number of times the resampling threshold was

reached out of the 300 time steps.

As Table 6 shows, the difference in errors between the

standard and approximation of the optimal proposal

increases as the system noise increases. For the smallest

system noise, the ratio of the error from the approxi-

mation to the optimal proposal to the standard error is

very close to 1, but for larger noise, our approximation

of the optimal proposal yields a significant decrease in

error over the standard proposal. Since the optimal

proposal (or an approximation thereof) requires more

computational effort than the standard proposal, if the

problem of interest has very small system noise, then the

standard proposal should be used. Lin et al. (2013)

present the optimal proposal particle filter as one

method in a class of ‘‘look ahead’’ algorithms, and in-

vestigate other such algorithms in the context of com-

putational expense for various types of problems.

7. Discussion and conclusions

In this work, we attempted to answer the question of

whether one could predict the collapse of the optimal

particle filter without building a scheme to sample from

the optimal proposal. We have shown that this is possi-

ble in the Lorenz (1996) system, using results from

Snyder et al. (2008) and their extension to the optimal

proposal in Snyder et al. (2015). The results of the for-

mer demonstrate how to use eigenvalues of matrices

from a linear, Gaussian system to calculate the effective

dimension t2, which can then be used to assess the feasi-

bility of the particle filter in that system. One key issue is

determining the extent to which these results are valid in

more general settings (e.g., nonlinear systems.) To this end,

we have numerically shown that the asymptotic approxi-

mations and results found in Snyder et al. (2008, 2015) are

also useful in the nonlinear regime of the Lorenz (1996)

system with both the standard proposal and the above

approximate implementation of the optimal proposal.

In extending the asymptotic results to nonlinear sys-

tems and the optimal proposal, another important issue

FIG. 6. Comparison of maximum weight after one assimilation

step as a function of state dimension, using the standard proposal

(blue) and the optimal proposal (red).

TABLE 6. Comparison of the performance of standard and optimal proposals, varying the size of model system noise.

ssys (Optimal error)/(standard error) No. of resampling steps; standard proposal No. of resampling steps; optimal proposal

1 3 1023 0.916 59 62

5 3 1023 0.6877 105 94

1 3 1022 0.630 93 69

5 3 1022 0.473 127 48

0.1 0.473 160 39

0.5 0.374 258 11
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is to estimate an ‘‘effective’’ system-noise covariance

corresponding to the additive Gaussian noise at obser-

vation times assumed in Snyder et al. (2008, 2015). We

have discussed several different approximations of this

covariance, and shown that the asymptotic results are

also valid with our implementation of the optimal pro-

posal when these approximate system-noise covariances

are used. We emphasize that this implementation is an

approximation to the truly ‘‘optimal’’ proposal, and thus

the theory guaranteeing optimality of this proposal al-

gorithm no longer holds in this setting.

Additionally, the eigenvalue decompositions neces-

sary to estimate the effective dimension will be costly for

large systems (and large ensembles.) Thus, in practice,

we will need to find computationally feasible approxi-

mations. In this work, we have chosen to approximate

the matrices as diagonal to simplify these eigenvalue

calculations. This approximation appears to be effective

in the idealized system considered here, though it also

tends to overestimate the degree of collapse. Themargin

of this overestimation decreases as the system gets closer

to collapse.

Finally, motivated by the results of Snyder (2012),

which demonstrate the benefits of the optimal proposal

implementation over the standard proposal in a simple

example, we investigated the performance gain of an

approximate implementation of the optimal proposal

over the standard proposal in a nonlinear system. We

have shown that the approximation of the optimal

proposal implementation not only collapses less fre-

quently than the standard proposal in the same re-

gimes, but also results in quicker error convergence

as a function of increasing particles. Thus, for systems

in which the particle filter may work, utilizing the

optimal proposal can provide increased performance

with fewer particles than the standard proposal. The

optimal proposal, however, is not trivial to implement

and its benefits disappear in the limit of small

system noise.

There are several remaining challenges regarding

particle filters in nonlinear systems. Experiments still

need to be done to determine how the filters behave

when applied sequentially; the experiments in sections 4

and 5 of this paper study the degree of collapse after one

assimilation step. However, this does not preclude the

possibility of the particle filter collapsing after two or

more steps. Second, while we have presented a general

methodology, we have only tested it on one system;

further testing in a wider variety of systems would be of

interest. In addition, it could be useful to know whether

the numerical results in this paper have an analytical

analog, as in the linear Gaussian case. Finally, further

work should be done to investigate the optimal

proposal, particularly in regards to approximations of

the model noise covariance.
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APPENDIX

Sampling from Optimal Proposal

Recall that the optimal proposal requires conditioning

on the current observation: p(xk j xk21, yk) (Doucet et al.

2000; Snyder 2012). Consider the case of additive

Gaussian noise and a linear observation operator, where

the system is given by

x
k
5M(x

k21
)1h

k
and (A1)

y
k
5Hx

k
1 �

k
, (A2)

with hk ;N (0, Q) and �k ;N (0, R). Then

x
k
j x

k21
, y

k
;N (x

k
,P) , (A3)

x
k
5 (I2KH)M(x

k21
)1Ky

k
, (A4)

P5 (I2KH)Q, and (A5)

K5QHT(HQHT 1R)21 . (A6)

In this case, the weights have an analytic update ex-

pression, since

y
k
j x

k21
;N [HM(x

k21
),HQHT 1R] . (A7)

Thus, the particles at time tk are first sampled from (A3),

and then their weights are updated according to

wi
k } exp

�
2
1

2
J(xik21, yk)

�
wi

k21 and (A8)

J(xik21, yk)

5 [y
k
2HM(xik21)]

T � (HQHT 1R)21[y
k
2HM(xik21)] .

(A9)
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