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Abstract 31 

Understanding the temporal patterns of leaf traits is critical in determining the seasonality 32 

and magnitude of terrestrial carbon and water fluxes. However, robust and efficient ways 33 

to monitor the temporal dynamics of leaf traits are lacking. Here we assessed the 34 

potential of using leaf spectroscopy to predict leaf traits across their entire life cycle, 35 

forest sites, and light environments (sunlit vs. shaded) using a weekly sampled dataset 36 

across the entire growing season at two temperate deciduous forests. The dataset includes 37 

field measured leaf-level directional-hemispherical reflectance/transmittance together 38 

with seven important leaf traits [total chlorophyll (chlorophyll a and b), carotenoids, 39 

mass-based nitrogen concentration (Nmass), mass-based carbon concentration (Cmass), and 40 

leaf mass per area (LMA)]. All leaf properties, including leaf traits and spectra, varied 41 

significantly throughout the growing season, and displayed trait-specific temporal 42 

patterns. We used a Partial Least Square Regression (PLSR) analysis to estimate leaf 43 

traits from spectra, and found a significant capability of PLSR to capture the variability 44 

across time, sites, and light environment of all leaf traits investigated (R
2
=0.6~0.8 for 45 

temporal variability; R
2
=0.3~0.7 for cross-site variability; R

2
=0.4~0.8 for variability from 46 

light environments). We also tested alternative field sampling designs and found that for 47 

most leaf traits, biweekly leaf sampling throughout the growing season enabled accurate 48 

characterization of the leaf trait seasonal patterns. Increasing the sampling frequency 49 

improved in the estimation of Nmass, Cmass and LMA comparing with foliar pigments. Our 50 

results, based on the comprehensive analysis of spectra-trait relationships across time, 51 

sites and light environments, highlight the capacity and potential limitations to use leaf 52 
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spectra to estimate leaf traits with strong seasonal variability, as an alternative to time-53 

consuming traditional wet lab approaches.  54 
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1. Introduction 55 

Leaf traits are important indicators of plant physiology (Wright et al. 2004), and 56 

critical components in numerous ecological processes (Kattge et al. 2011). For example, 57 

Leaf chlorophyll concentration represents the light harvesting potential and is related to 58 

photosynthetic activity (Niinemets 2007; Laisk et al. 2009), while accessory pigments 59 

such as carotenoids protect leaves from damage when exposed to excessive sunlight 60 

(Demmig-Adams and Adams 2000). Leaf mass per area (LMA) describes plants’ 61 

investment to leaves in terms of carbon and nutrients to optimize sunlight interception 62 

(Poorter et al., 2009). Carbon is one of the major elements in cellulose and lignin, which 63 

are used to build the cell walls of various leaf tissues (Kokaly et al. 2009). Nitrogen is the 64 

key element in both carbon fixation enzyme RuBisCO and chlorophyll (Evans 1989), and 65 

thus plays an important role in modeling leaf and canopy photosynthesis (Bonan et al. 66 

2012). The aforementioned leaf traits strongly depend on leaf developmental stages and 67 

light environments (Yang et al. 2014; Lewandowska and Jarvis 1977; Poorter et al. 2009; 68 

Wilson et al. 2000). Thus, capturing the spatial and temporal variations of these leaf traits 69 

is necessary to understand terrestrial ecosystem functioning (Schimel et al. 2015). 70 

Despite the importance and increasing interests in the temporal and spatial 71 

variability of these (and many other) leaf traits, the capacity to monitor these traits over 72 

seasons has not progressed accordingly. Wet chemistry analysis of these leaf traits is 73 

considered to be the standard method, yet the destructive and time-consuming protocols 74 

do not allow for rapid and repeated sampling (including of the same leaves). On the other 75 

hand, field spectroscopy has shown promise in the augmentation of the traditional 76 

approaches (Asner and Martin 2008; Serbin et al. 2014). Despite this promise, many 77 

previous efforts that predict leaf traits using spectroscopy only focused on mature sunlit 78 
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leaves (e.g., Asner and Vitousek 2005; Ustin et al. 2004; Wicklein et al. 2012; but see 79 

Sims and Gamon (2002)) and have not explored the ability to track the continuous and 80 

developmental changes of leaf traits throughout the growing season. The temporal 81 

dimension of the spectra-trait relationship has mostly focused on leaf chlorophyll 82 

concentration (Belanger et al. 1995; Dillen et al. 2012; Shen et al. 2009), while it is 83 

largely unknown for other important leaf traits like nitrogen, carbon concentration and 84 

LMA. Moreover, the availability of high temporal resolution (~weekly) datasets on 85 

important leaf traits and spectra is limited. These data would be very useful for assessing 86 

the utility of leaf spectral properties (i.e. reflectance) for estimating the temporal 87 

variability of leaf traits, as well as scaling to broader regions and informing modeling 88 

activities. 89 

Leaf traits not only change with time, but also with the light environments, such 90 

as the sun-lit or shaded light condition and the accompanying changes in microclimate, 91 

affect leaf traits (Ellsworth and Reich 1993; Niinemets, 2007), as a consequence of 92 

underlying fundamental evolutionary and ecophysiological constraints (Terashima et al. 93 

2001). For example, shaded leaves display lower chlorophyll a to b ratio and higher LMA 94 

compared with sunlit leaves (Niinemets, 2007). As such, it is important to not only 95 

explore trait variation in space but also as in the vertical dimension to better capture 96 

ecosystem responses to global change. 97 

Three categories of methods to estimate leaf traits from leaf spectral properties 98 

(i.e., reflectance and transmittance) are spectral vegetation indices (SVIs), statistical 99 

inversion methods exploiting the full wavelength (400 – 2500 nm), and leaf radiative 100 

transfer models like PROSPECT (Jacquemoud and Baret 1990), which are limited to a 101 
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few leaf traits and thus are not the focus of this study. SVIs are typically calculated using 102 

the reflectance from two or three wavelengths (Huete et al. 2002; Richardson et al. 2002; 103 

Sims and Gamon 2002).  With proper calibration across a diverse range of vegetation 104 

types, SVIs can yield relatively robust models (Féret et al. 2011). While statistical 105 

methods such as Partial Least Square Regression (PLSR) modeling has become more 106 

popular in recent years with the availability of high-resolution spectra and increasing 107 

computational power (Asner and Martin 2008; Couture et al. 2013; Wold et al. 2001). 108 

Although both being widely used, these methods have not been thoroughly assessed, 109 

especially with respect to the robustness of PLSR models across time and different light 110 

environments (but see Serbin et al., 2014). 111 

Here we aim to assess the ability of leaf optical properties to track temporal 112 

variability of a suite of leaf traits across sites and different light environments. We 113 

collected a dataset of ~weekly-sampled leaf traits [including total chlorophyll (and 114 

chlorophyll a and b), carotenoids, mass-based nitrogen concentration (Nmass), mass-based 115 

carbon concentration (Cmass), and LMA] along with in situ directional-hemispherical 116 

reflectance/transmittance during the growing season at two temperate deciduous forests. 117 

We first presented the temporal variations of leaf traits and spectra, and then highlight the 118 

ability of leaf spectra to track temporal variability of leaf traits. We investigate the 119 

robustness of the PLSR across season, sites, and growth environments. We further 120 

explore the optimal field sampling strategy. Finally, we conclude by discussing the broad 121 

implications of our study.   122 

 123 

2. Study area and methods 124 
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2.1. Study sites 125 

Our field sampling was conducted in two temperate deciduous forests located in 126 

the northeastern United States. The first site, on the island of Martha’s Vineyard (MV, 127 

41.362N, 70.578W), is a white oak (Quecus alba) dominated forest with a forest age of 128 

80-115 years after natural recovery from abandoned cropland and pasture (Foster et al. 129 

2002). Mean annual temperature is 10°C, and annual precipitation is about 1200 mm 130 

from 1981 to 2010 (Yang et al. 2014). Site 2, Harvard Forest (HF, 42.538N, 72.171W), 131 

has two dominating deciduous tree species: red oak (Quercus rubra) and red maple (Acer 132 

rubrum), with a few scattered yellow birch (Betula alleghaniensis). The forest age is 70-133 

100 years.  The annual mean temperature is about 7.5°C (Wofsy et al. 1993), and the 134 

annual precipitation is 1200 mm. Remote sensing studies suggested that the start of 135 

season in Martha’s Vineyard is about 10-20 days later than that of HF (Fisher and 136 

Mustard 2007; Yang et al. 2012). 137 

2.2. Measurements of leaf spectral properties and traits 138 

We conducted two field campaigns to collect leaf traits at Martha’s Vineyard and 139 

Harvard Forest. In 2011, weekly (biweekly in August) sampling of leaves throughout the 140 

growing season (June - November) was conducted at the Martha’s Vineyard on three 141 

white oak trees. For each sampling period, we cut two fully sunlit branches (each having 142 

~6 leaves) and one shaded branch using a tree pruner. The spectral properties of the 143 

leaves were immediately measured (see below). Then the leaves were placed in a plastic 144 

bag containing a moist paper towel, and all the samples were kept in a cooler filled with 145 

ice until being transferred back to the lab for further measurements. In 2012, the same 146 

weekly (biweekly from mid-July to late August) measurements in Harvard Forest were 147 
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made on five individuals (two red oaks, two red maples and one yellow birch) from May 148 

to October. For each tree, two sunlit and one shaded branch were collected each time.  149 

Directional-hemispherical leaf reflectance and transmittance were measured 150 

immediately after the sampling using a spectroradiometer (ASD FS-3, ASD Inc. Boulder, 151 

CO, USA; spectral range: 300-2500 nm, spectral resolution: 3 nm@700 nm, 10 152 

nm@1400/2100 nm) and an integrating sphere (ASD Inc.). The intensity of light source 153 

in the integrating sphere decreases sharply beyond 2200 nm, with the signal in 2200-2500 154 

nm being noisy (ASD Inc., personal communications), and thus is excluded from the 155 

spectral-leaf traits analysis below. 156 

The measured leaf traits include total chlorophyll concentration (including 157 

chlorophyll a and chlorophyll b, μg/cm
2
), carotenoids (μg/cm

2
), leaf mass per area (LMA, 158 

g/m
2
), nitrogen concentration by mass (Nmass, %), and carbon concentration by mass 159 

(Cmass, %). Each branch was divided into two subsets. One subset was used to measure 160 

pigment concentrations. To measure the chlorophyll and carotenoids concentration, three 161 

leaf discs (~0.28 cm
2
 each) were taken from each leaf using a hole puncher, and then 162 

ground in a mortar with 100% acetone solution and MgO (Asner et al. 2009). After an 8-163 

minute centrifugation, the absorbance of the supernatant was measured using a 164 

spectrophotometer (Shimadzu UV-1201, Kyoto, Japan). Chlorophyll a, b and carotenoids 165 

concentrations were calculated using the readings from 470, 520, 645, 662 and 710 nm 166 

(Lichtenthaler and Buschmann 2001). The other subset (3 leaves) was scanned using a 167 

digital scanner (EPSON V300, EPSON, Long Beach, CA, USA), and oven-dried (65° C) 168 

for at least 48 hours for quantification of leaf dry mass. LMA was calculated based on the 169 

following equations: 170 
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 /dry leafLMA W A  171 

where Wdry is leaf dry mass weight, Aleaf is the leaf area calculated from the scanned leaf 172 

using ImageJ (Schneider et al. 2012). Dried leaves were then ground and analyzed for 173 

Nmass and Cmass with a CHNS/O analyzer (FLASH 2000, Thermo Scientific, Waltham, 174 

MA, USA). 175 

2.3. Methods to estimate leaf traits using leaf spectral properties 176 

We used two categories of methods to estimate leaf traits based on leaf spectral 177 

properties: vegetation indices that utilize the reflectance from two wavelengths, and 178 

statistical methods that exploit the information from the full leaf spectrum.  179 

Based on extensive datasets from various types of biomes and plants, Féret et al. 180 

(2011) established polynomial relationships between SVIs and total chlorophyll 181 

concentration, carotenoids and LMA (Table 1). We also obtained the best estimate of a, b, 182 

and c using our own dataset (see below for the division between training and validation 183 

dataset). 184 

Table 1 Simple Vegetation Indices (SVI) used in this study. These indices were 185 

calibrated using extensive datasets (Féret et al. 2011). Leaf traits were calculated based 186 

on a polynomial relationship: leaf trait = a × index
2
 + b × index + c. 187 

Leaf traits Index 
Coefficients 

a b c 

Chl 

(μg/cm
2
) 

(R780-R712)/(R780+R712) 40.65 121.88 -0.77 

Car 

(μg/cm
2
) 

(R800-R530)/(R800+R530) 8.09 11.18 -0.38 

LMA 

(g/cm
2
) 

(R1368-R1722)/(R1368+R1722) -0.1004 0.1286 -0.0044 

 188 
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The second category of methods essentially is to build a multivariate linear 189 

regression model(s) between leaf spectra and leaf traits (Zhao et al. 2013):   190 

             191 

where y is an n-by-1 matrix of leaf traits (n equals to the number of leaf samples). X is an 192 

n-by-m matrix (m equals the number of bands from each spectrum, and thus in this study 193 

m=1800). ε is the n-by-1 estimation error that is to be minimized. PLSR modeling can be 194 

used to develop the best model for the given dataset while avoiding over-fitting (Asner 195 

and Martin 2008; Serbin et al. 2014). The numbers of independent factors used in the 196 

regression were determined by minimizing the Prediction Residual Error Sum of Squares 197 

(PRESS).  198 

The above leaf traits and spectra (reflectance or transmittance) from two sites 199 

were combined as one single dataset. To test the effectiveness of PLSR on this dataset, 200 

the whole dataset is divided into two parts (70%-30%), for the training and validation of 201 

PLSR, respectively. We used the Kennard-Stone algorithm to select the training subset 202 

that provides a uniform coverage of the whole dataset (Kennard and Stone 1969). The 203 

training dataset was used to optimize the regression model parameters (β), and then use 204 

the validation dataset was used to test and evaluate the PLSR models. Evaluation 205 

statistics include the R
2
, Root Mean Square Error (RMSE) and normalized RMSE 206 

(NRMSE), which is the RMSE divided by the range of the estimated leaf traits.  207 

The relative importance of reflectance or transmittance at each wavelength is 208 

determined by calculating the values of variable importance on projection (VIP) (Wold et 209 

al. 2001). VIP is an indicator of the importance of each wavelength for the modeling of 210 

both leaf traits (y) and spectra (X). Higher absolute values indicate greater importance of 211 
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the corresponding wavelength. Generally wavelengths with VIP value larger than 1 are 212 

considered being important (Mehmood et al. 2012). 213 

 214 

2.4. Robustness of PLSR models and scenarios for field sampling design 215 

To examine the robustness of PLSR models across time, light environment, and 216 

sites, we designed the following scenarios. In all the scenarios, we used leaf traits and 217 

spectra of a subset of the whole dataset (e.g., leaf samples that are collected during only a 218 

certain period of time, or a certain level of light environment) to build PLSR models, and 219 

test the performance of the models against the remaining dataset.  220 

For this we created five scenarios to examine how the timing of leaf sampling 221 

affects predictability of seasonality of leaf traits. Leaf traits and spectra in the first three 222 

scenarios were sampled only for the spring, summer, and fall, respectively. We defined 223 

these three seasons based on variations in total chlorophyll concentration: days before 224 

total chlorophyll reached a plateau in the mid-season were defined as spring; days when 225 

total chlorophyll started to decrease were defined as fall; days between spring and fall 226 

were defined as summer. The last two scenarios were that leaf traits and spectra were 227 

sampled monthly or biweekly (instead of weekly as in the full dataset). We then use the 228 

PLSR trained with leaf samples in the above scenarios to predict the leaf traits of the 229 

entire dataset. There are two reasons to choose the whole dataset for validation: 1) the 230 

whole dataset captures the temporal variability of leaf traits, which is the goal of this test; 231 

2) it is necessary to have the same validation dataset to test the performance of these five 232 

scenarios. Performance of these sampling strategies was measured by calculating the 233 

RMSE and R
2
. 234 
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We also explored our capacity to develop a generalized approach for capturing 235 

seasonality in leaf traits with spectral observations. Two tests were conducted to examine 236 

the robustness of PLSR models at different light environment and sites. Test 1 used sunlit 237 

leaf traits and spectra to train a PLSR model, which was then used to predict shaded leaf 238 

traits with corresponding spectra. We then switched the training and validation datasets 239 

so that shaded leaves were used to train PLSR model which sunlit leaves were used to 240 

validate. Test 2 divided the entire dataset into two subsets by geographic location: we 241 

used Martha’s Vineyard dataset to calibrate the model, and Harvard Forest dataset to 242 

validate, and vice versa. 243 

3. Results 244 

3.1. Temporal and spatial variability of leaf traits 245 

All leaf traits displayed significant temporal variations throughout the growing 246 

season (Fig.1 and 2). Overall, pigments from both sites have similar bell-shaped 247 

trajectories, despite being sampled from different species and locations within the 248 

canopy. Chlorophyll and carotenoids concentration rapidly increased from ~10 μg/cm
2
 at 249 

the beginning of the season, and then stabilized around ~50 μg/cm
2
 and ~40 μg/cm

2
 in 250 

Martha’s Vineyard and Harvard Forest respectively during the summer followed by a 251 

decline in the fall to 10 μg/cm
2
 before leaf shedding. The Harvard Forest samples were 252 

from three different species, and showed much larger variability compared with Martha’s 253 

Vineyard, especially for the shaded leaves (Fig.1 e-h). The carotenoids concentration was 254 

~3 μg/cm
2
 at the beginning/end of the season and ~10 μg/cm

2
 at the peak season. The 255 

total chlorophyll concentration relative to the carotenoids concentration (Chl/Car) 256 

increased during the early seasons. In the fall, though both chlorophyll and carotenoids 257 
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decreased, Chl/Car decreased steadily, as a result of faster decline of chlorophyll relative 258 

to the carotenoids (Fig. S1a). 259 

 260 

 261 

Figure 1 Seasonal patterns of pigments of sunlit (diamonds) and shaded (open triangles)  262 

leaves from two deciduous forests. Martha’s Vineyard, year 2011: (a) Total chlorophyll; 263 
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(b) chlorophyll a; (c) chlorophyll b; (d) carotenoids. Harvard Forest year 2012: (e) Total 264 

chlorophyll; (f) chlorophyll a; (g) chlorophyll b; (h) carotenoids. Each dot is the mean 265 

value of all the samples collected that day. Error bars are standard deviations. 266 

 267 

 268 

Figure 2 Seasonal patterns of biochemical and biophysical properties of sunlit (closed 269 

symbols) and shaded (open symbols) leaves from two deciduous forest sites. Martha’s 270 

Vineyard, year 2011: (a) Leaf mass per area (LMA); (b) mass-based nitrogen 271 

concentration (Nmass); (c) mass-based carbon concentration (Cmass). Harvard Forest, year 272 

2012: (d) LMA; (e) Nmass; (f) Cmass. Each dot is the mean value of all the samples 273 

collected that day. Error bars are standard deviations. 274 

The remaining three leaf traits (LMA, Nmass, and Cmass) displayed different 275 

seasonal patterns compared with leaf pigments (Fig. 2). For example, LMA rapidly 276 

increased in the spring, but showed only a minor decline by the end of the measurement 277 
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period. Nmass was higher (~4-5%) at the start of the season, and remained stable around 2% 278 

during the summer, followed by ~1% decrease in the fall, presumably caused by nitrogen 279 

resorption (Eckstein et al. 1999). Similar to LMA, Cmass accumulated 2-4% in the spring 280 

and stabilized for the rest of the growing seasons around 50%. The rapid increase of 281 

LMA in the spring was accompanied by a similar increase of Cmass and decrease of Nmass, 282 

which all ended at the same time (DOY ~194 in Martha’s Vineyard, and DOY ~170 in 283 

Harvard Forest).  284 

Mean annual values of leaf traits from Martha’s Vineyard were significantly 285 

different from those at Harvard Forest (Table 2). For example, leaf chlorophyll in 286 

Martha’s Vineyard is 5.64 μg/cm
2
 (17.5%) higher than that from Harvard Forest (p < 287 

0.0001). LMA in Martha’s Vineyard showed much larger variation than that from 288 

Harvard Forest, and the mean LMA was 39.85 g/m
2
 (37.5%) higher than that from HF. 289 

Similar situation applies to all other leaf traits except for Cmass, for which value at HF 290 

were higher than the traits at MV. 291 

Sunlit leaves contained more total chlorophyll and carotenoids (Fig. S2) and the 292 

carotenoids to the total chlorophyll ratio was significantly higher for sun-lit leaves 293 

comparing with shaded leaves (Martha’s Vineyard, p < 0.0001; Harvard Forest, p = 294 

0.0182). Chlorophyll a/b was also significantly larger for sunlit leaves in both sites (MV, 295 

p < 0.0001; HF, p < 0.0001). Similarly, LMA and Cmass values were significantly higher 296 

in the sun-lit leaves versus shaded foliage, with the only exception of Nmass, in which both 297 

sun-lit and shaded leaves were indistinguishable throughout the two seasons (Fig. 2b). 298 



 16 

 299 

Figure 3 Correlation matrix of all the leaf traits. Histograms of each leaf traits are on the 300 

diagonal positions. Number on each subplot indicates R
2
 (Red means p<0.05). See Table 301 

2 for units. 302 

Table 2 Annual mean values and standard deviation of leaf traits at two sites (stars 303 

indicate the p-values of t-test between the values of leaf traits from two sites: ***: 304 

p<0.0001; **: p<0.01; *: p<0.05). 305 

Leaf traits Units MV HF 

Total Chl 

(μg/cm
2
)***  

μg/cm
2
 31.74 (12.17)  26.19 (9.29) 

Chl a (μg/cm
2
)** μg/cm

2
 23.19 (8.81)  18.92 (6.70) 

Chl b (μg/cm
2
)** μg/cm

2
 8.70 (3.31)  7.48 (2.73) 

Car (μg/cm
2
)** μg/cm

2
 6.16 (2.28)  5.59 (1.33) 

Nmass (%)** % (unitless) 2.17 (0.50)  2.03 (0.50) 

Cmass (%)*** % (unitless) 48.34 (1.24)  51.12 (0.87) 

LMA (g/cm
2
)*** g/m

2
 106.29 (45.04)  66.44 (15.56) 

 306 
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A linear regression analysis highlighted various levels of correlation among leaf 307 

traits (Fig. 3). Close correlation was found among leaf pigments: total chlorophyll 308 

concentration was highly correlated with carotenoids concentration (R
2
 = 0.85), 309 

suggesting a tight coupling among those pigments throughout the growing season despite 310 

the faster decrease of chlorophyll concentration during the senescence (Fig. S1). For the 311 

entire dataset (across all sunlit and shaded leaves from different species), Nmass was 312 

weakly correlated with pigments. LMA showed positive correlation with all pigments 313 

while a negative correlation was observed with Nmass and Cmass. 314 

 315 

3.2. Seasonal variability of leaf spectral properties 316 

The full leaf reflectance and transmittance spectrum showed significant variability 317 

in both amplitude and shape (Fig.4). The visible (VIS, 400 – 700 nm) and near infrared 318 

(NIR, 700-1000 nm) changed dramatically throughout the season, while shortwave 319 

infrared (SWIR, 1000-2500 nm) was relatively stable. Data from Martha’s Vineyard 320 

showed larger variability in NIR compared to Harvard Forest.  321 
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 322 

Figure 4 Examples of leaf directional-hemispherical reflectance and transmittance 323 

measured on (a, b) Martha’s Vineyard and in (c,d) Harvard Forest. 324 

Fig.S3 shows the seasonal variations of individual bands. The R, G, and B 325 

reflectance at both sites showed a U-shape pattern (Fig. S3a, S3c): all of them decreased 326 

in the beginning of the season; and increased in the end of the season after a stable 327 

summer.  The NIR from Martha’s Vineyard showed a consistent decline in the mid-328 

summer and then increased in the fall, while the NIR from Harvard Forest was relatively 329 

stable throughout the season. Leaf transmittance at each band had similar patterns as the 330 

reflectance (Fig. S3b, S3d). 331 

3.3. Comparisons of methods of leaf traits estimation 332 

We compared two categories of methods to estimate leaf traits from leaf spectra. 333 

Overall, PLSR consistently outperformed the SVIs in estimating leaf traits, showing an 334 

improved performance when the SVIs were trained by the original datasets or our own 335 

dataset (Table 3). The PLSR models using leaf reflectance (PLSRref hereafter) had 336 

slightly better performance compared with those using leaf transmittance (PLSRtra 337 
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hereafter) when assessed with the independent dataset. For different leaf traits, the 338 

performance of these methods varied, as described in details below. 339 

Leaf chlorophyll from the validation dataset was well estimated by PLSRref 340 

(Fig.5. R
2
> 0.70 and NRMSE < 10%). The SVI for chlorophyll showed slightly larger 341 

prediction error (0.5 μg/cm
2
) compared with PLSRref and PLSRtra (Table 3).  The two 342 

components of chlorophyll (chl a and b) were also well captured by the PLSRref approach 343 

with NRMSE less than 10% and R
2
 of 0.73 and 0.66 respectively. Similarly, carotenoids 344 

were estimated relatively well by PLSRref and PLSRtra (R
2
 >0.65) but the SVI for 345 

carotenoids had higher 30% higher RMSE comparing with PLSRref. 346 

Nmass was well captured by leaf spectra especially with the reflectance dataset 347 

(Fig.5. R
2
> 0.6 and NRMSE < 5%). Similarly, both PLSRref and PLSRtra explained ~60% 348 

of the variance in Cmass (R
2
> 0.6 and NRMSE < 7%). PLSR also displayed a strong 349 

capacity to predict LMA (R
2
 = ~0.80 and NRMSE < 9%), where the SVI for LMA could 350 

not capture more than 20% of the variation in LMA and more than double the RMSE of 351 

PLSRref mainly due to a saturation effect (data not shown).  352 

  353 

  354 
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Table 3 Comparisons among methods in terms of the goodness-of-fit (RMSE, NRMSE and R
2
) for the dataset at both Martha’s 355 

Vineyard and Harvard Forest. PLSRref indicates models using reflectance dataset to predict leaf traits. PLSRtra indicates models using 356 

transmittance dataset to predict leaf traits. 357 

Leaf 

traits 

RMSE 

(NRMSE) 
 R

2
 

Simple indices 

(Féret et al. 

2011) 

 
Simple indices 

(this dataset) 
PLSRref PLSRtra  

Simple indices (Féret 

et al. 2011) 

Simple indices 

(this dataset) 
PLSRref PLSRtra 

Total 

Chl 

(μg/cm
2

) 

5.93 

 

6.04 
5.48 

(0.09) 
5.62 

(0.10) 
 0.71 0.71 0.73 0.64 

Chl a 

(μg/cm
2

) 

 

 

 
3.99 

(0.09) 
4.14 

(0.09) 
   0.73 0.68 

Chl b 

(μg/cm
2

) 

 

 

 
1.62 

(0.07) 
1.82 

(0.08) 
   0.66 0.58 

Car 

(μg/cm
2

) 

1.53 

 

1.54 
1.07 

(0.08) 
1.20 
(0.09) 

 0.39 0.40 0.71 0.68 

Nmass 

(%) 
 

 
 

0.22 

(0.05) 
0.24 

(0.05) 
   0.63 0.54 

Cmass 

(%) 
 

 
 

0.93 
(0.07) 

0.95 
(0.07) 

   0.63 0.71 

LMA 

(g/cm
2
) 

40.6 
 

39.7 
18.11 
(0.08) 

19.01 
(0.09) 

 0.20 0.19 0.85 0.79 
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 358 

Figure 5 Comparisons between the observed leaf traits and predicted traits from PLSRref. 359 

For detailed statistics refer to Table 2 and 3. Observations are from the independent 360 

validation dataset selected using the Kennard-Stone method. The red dashed lines are 1:1 361 

line. 362 
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 363 

Figure 6 Relative importance of each wavelength in Variable Importance on Projection 364 

(VIP). VIP values from PLSRref and PLSRtra are on the right and left, respectively. 365 

The VIP values of PLSR show the relative importance of each wavelength in 366 

predicting leaf traits (Fig.6). Visible and near-infrared wavelengths were important to the 367 

prediction of leaf pigments; there are three peaks (400, 550 and 730 nm) that are related 368 

to the chlorophyll absorption in the red (620-750 nm) and blue (400-450 nm), and 369 

reflection in the green (495-570 nm). The two components of chlorophyll (a and b) were 370 

also mainly contributing to the red/NIR region (600-750 nm), and the main contributing 371 

bands for chl b shifted towards green comparing to those for chl a (Fig. 6b and 6c) (Ustin 372 

et al. 2009). Carotenoids have a similar VIP curve comparing with the chlorophyll, with 373 

one distinction: the VIP values for carotenoids between 650 nm and 700 nm are relatively 374 

higher to those of chlorophyll.  375 
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Comparing with the pigments, Nmass, Cmass and LMA have relatively smooth VIP 376 

curves. For Nmass, wavelengths around 700 nm and beyond 1900 nm are important to the 377 

prediction of Nmass, presumably because the visible region is controlled by pigments and 378 

nitrogen is an important component in leaf pigments, and the SWIR region near 2000 nm 379 

is controlled by protein absorption features (Kokaly et al. 2009). Both Cmass and LMA 380 

were related to the leaf structure and were largely contributing to the reflectance at NIR 381 

and SWIR. 382 

3.4. Robustness of the PLSR approach across time, sites and light environment 383 

We examined the performance of the PLSRref models under five scenarios where 384 

different sampling strategies were applied. The performance of the PLSR models 385 

generally improved in the order of spring, fall, summer, monthly, and biweekly (Table 4). 386 

As expected, more sampling throughout the season (and the increasing size and 387 

representativeness of the calibration dataset) increased R
2
 and reduced RMSE. When 388 

comparing the three seasons, summer-only sampling yielded higher model performance 389 

relative to the other two seasons, yet the improvements from scenarios 2 (summer-only) 390 

to monthly (scenario 4) were not as obvious for pigments as much as Nmass, Cmass and 391 

LMA. Sampling biweekly (scenario 5) largely improved the performance of PLSR, 392 

especially for Nmass and Cmass (R
2
 increased from <0.4 to ~0.6). 393 

Examining the seasonal patterns of predicted and observed leaf traits reveal time-394 

dependent performance of each scenario. In spring-only scenario where leaf samples only 395 

from the spring were used for PLSR calibration, all leaf traits during the first four weeks 396 

of the growing seasons were well estimated. However, fall season leaf traits were 397 

overestimated except for LMA in Martha’s Vineyard (Fig. S4m). By contrast, in the fall-398 
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only scenario, spring and summer leaf traits were underestimated except for Cmass (Fig. 399 

S5k). Our summer-only scenario showed a better ability to capture the seasonal patterns 400 

of leaf traits, only underestimated the Nmass peak in the early spring at Harvard Forest 401 

(Fig. S6j). The monthly sampling scenario improved estimation of all leaf traits, in which 402 

the improvement on estimating LMA was the most obvious (R
2
 from 0.26 in the summer 403 

case to 0.76 in the monthly sampling case, Fig. S7m, S7n). Biweekly sampling scenario 404 

appeared to produce a satisfactory result for all the leaf traits studied here (Fig. S8). 405 

PLSRref models trained using sunlit leaves explain 35%-70% of the variability in 406 

shaded leaves with highest R
2
 for pigments while lowest R

2
 for Cmass (Fig. S9, Table S1). 407 

However, PLSRref was less accurate for leaf traits like LMA in terms of RMSE (Fig. 408 

S10m), for which the difference between sun-lit and shaded leaves was significant (Fig. 409 

2). Similarly, PLSRref models trained with shaded leaves were able to predict the sunlit 410 

leaf traits, but with lower model performance compared to when trained with sunlit 411 

foliage. Depending on the leaf traits, the variability explained by PLSR ranges from 35% 412 

to 70% (Fig. S10m). 413 

PLSRref models trained using data from Harvard Forest (Test 1) were able to 414 

capture 60~70% of variability of the pigments from Martha’s Vineyard, except for Nmass 415 

and Cmass (Table 5). Similar results were obtained from PLSRref trained using Martha’s 416 

Vineyard data (Test 2) and validated with HF data. VIP values for pigments in Test 1 417 

were similar to those from Test 2. This is in stark contrast with VIP values for Nmass, 418 

Cmass, and LMA from both experiments. The locations of important wavelengths were 419 

quite different between two tests (Fig. S11). 420 
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Table 4 Performance of all scenarios (spring, summer, fall, monthly, and biweekly) in terms of the goodness-of-fit (RMSE, R
2
) 421 

422 

Leaf 

traits 

 RMSE  R
2
 

Spring Summer Fall Monthly Biweekly  Spring Summer Fall Monthly Biweekly 

Total 

Chl 

(μg/cm
2
) 

8.64 6.64 7.23 6.32 5.66  0.60 0.70 0.72 0.73 0.77 

Chl a 

(μg/cm
2
) 

5.97 4.75 5.25 4.65 4.15  0.63 0.72 0.72 0.73 0.78 

Chl b 

(μg/cm
2
) 

2.73 1.92 2.06 1.89 1.69  0.48 0.67 0.69 0.69 0.73 

Car 

(μg/cm
2
) 

1.71 1.31 1.29 1.22 1.12  0.48 0.65 0.69 0.69 0.73 

Nmass 

(%) 
1.62 0.42 0.51 0.37 0.29  0.08 0.36 0.07 0.36 0.62 

Cmass 

(%) 
1.59 1.71 1.74 1.26 1.03  0.20 0.21 0.19 0.39 0.56 

LMA 

(g/cm
2
) 

61.13 27.17 24.86 21.78 18.76  0.13 0.71 0.75 0.79 0.85 
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Table 5 Performance of PLSR reflectance models that were calibrated using data from one site and validated using data from the other 423 

site. 424 

Leaf 

traits 

RMSE  R
2
 

MVHF HFMV  MVHF HFMV 

Total Chl 

(μg/cm
2
) 

6.17 7.44  0.72 0.67 

Chl a 

(μg/cm
2
) 

4.39 5.29  0.73 0.69 

Chl b 

(μg/cm
2
) 

1.85 1.99  0.68 0.66 

Car 

(μg/cm
2
) 

1.19 1.54  0.59 0.59 

Nmass (%) 0.56 0.72  0.29 0.20 

Cmass (%) 2.89 2.90  0.10 0.23 

LMA 

(g/cm
2
) 

35.62 59.45  0.60 0.72 

 425 
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 426 

4. Discussion 427 

4.1 Can we track the seasonality of leaf traits using leaf spectroscopy? 428 

Here we show that the seasonal variability of leaf traits can be captured with leaf 429 

spectroscopy approaches (Fig.5, Table 3). All leaf properties (seven leaf traits and leaf spectra) 430 

display seasonal dynamics that are also related to the location and microclimate (i.e., sunlit vs. 431 

shaded, and the accompanying changes in humidity and temperature). The PLSR approach 432 

explained 60%~80% of variability of these leaf traits in our study, supporting the hypothesis that 433 

leaf spectra can capture the seasonal variability of leaf traits. Indeed, each leaf trait has its own 434 

spectral fingerprint, as we have seen from the VIP values of PLSR models (Fig.7). Patterns of 435 

VIP values were similar to previous studies (Asner et al. 2009; Serbin et al. 2014) and consistent 436 

with our understandings of leaf physiology (Ustin et al. 2009). This is an important result as 437 

collecting leaf spectra is much more time-efficient than traditional approaches and allows for 438 

repeat sampling of the same leaves throughout the season. SVIs can be an alternative for the 439 

estimation of total chlorophyll concentration when there are limits on available instruments or, 440 

for example, using two-band LED sensors (e.g., Garrity et al. 2010; Ryu et al. 2010). The result 441 

also has implications for the current and future use of field spectrometers that measure leaf or 442 

canopy reflectance at high temporal frequency (e.g., Hilker et al. 2009). Our well-calibrated 443 

model using PLSR can be used on leaf reflectance to track the seasonality of multiple leaf traits 444 

in temperate deciduous forests. 445 

The tests on the robustness of leaf spectra-trait relationships suggested that the overlap 446 

between the training dataset and an independent validation dataset is important for a good 447 

prediction. Summer mature leaves displayed higher pigments concentration and LMA, while 448 
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lower Nmass compared with young leaves (Fig. 1, Fig. 2). In addition, the corresponding leaf 449 

spectra were significantly different (Fig. 4). Traditionally, the development of the leaf traits-450 

spectra relationship has been focused on a single time point, typically mid-season mature leaves. 451 

We have shown here that if we apply an empirical relationship between spectra and traits derived 452 

from one period (for example, summer) to another (spring or fall), leaf traits will likely be over 453 

or under-estimated (Fig. S4-S6). Thus predicting leaf traits like Nmass, which has an obvious 454 

seasonality, will not be well represented. However, we have also illustrated that with proper 455 

calibration, we can adequately characterize the seasonality of a range of leaf traits, which is 456 

critical for ecosystem monitoring and informing process modeling activities (Table 5). 457 

VIP values as indictors of band importance can help to explain the prediction power of 458 

PLSR models. For example, in the case of using PLSR trained use data from one site to predict 459 

another (Test 1 & 2), VIP values of leaf pigments overlap well, indicating both sites share similar 460 

wavelength regions (Fig. S11). As a result, cross-site prediction of leaf pigments showed 461 

reasonable accuracy (Table 5). It also has important implications for the design of multi-band 462 

sensors and imagers as it can select the wavelengths that are most useful for the leaf traits of 463 

interest (Nijland et al. 2014; Ryu et al. 2010). 464 

The variability of our seven leaf traits was not equally captured (Table 3). The absorption 465 

features of pigments are well understood and clearly represented in the VIP value plots (Fig. 6). 466 

While for Cmass and Nmass, although there have been studies on the possible linkage between 467 

certain components in the leaves (e.g., protein, cellulose) and leaves’ optical properties, the 468 

impact on leaf spectra is less obvious comparing with that from the pigments (Kokaly et al., 469 

2009). This may partly explain the less accurate PLSR models for the Cmass and Nmass.  470 
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As expected, the PLSR approach, which can exploit the full spectrum information to 471 

estimate leaf traits performed better than traditional SVIs (Table 3). While SVIs that calibrated 472 

with extensive datasets displayed a similar performance to PLSR in estimating total chlorophyll 473 

concentration, we observed significant difference for the carotenoids and LMA. Recalibrate SVIs 474 

using our own datasets did not improve their performance. This suggests that the leaf traits 475 

variability in our dataset was not fully captured by the SVIs, despite that our large dataset covers 476 

ranges observed by others (Féret et al. 2011). Incorporating more datasets to the calibration of 477 

simple indices could potentially improve the performance of these methods, but will not alleviate 478 

the saturation issue that is pervasive when using simple SVIs, especially for LMA.  479 

As the applications of leaf spectra-traits relationship become more common, we argue 480 

that a standardized protocol to calibrate and validate PLSR-type models is needed. This includes 481 

an independent validation dataset to avoid validating against the calibration dataset itself and a 482 

method to choose the optimal number of PLSR components to prevent overfitting (Serbin et al. 483 

2014). A globally relevant algorithm for leaf traits that can be used by ground spectral 484 

observations (Hilker et al. 2010) or existing or planned satellite missions like HyspIRI (such as 485 

https://hyspiri.jpl.nasa.gov/) hinges on a rigorously-tested method and on datasets covering a 486 

wide range of variations in leaf traits. 487 

  488 

4.2 The implications for field sampling strategy 489 

The leaf traits time-series we presented showed the critical time windows to capture their 490 

seasonality. Extensive field sampling is laborious and expensive and the continual question in 491 

plant ecology is “how much is good enough?” Since the measurements of leaf spectral properties 492 

are less labor-intensive (and non-destructive) compared with the measurements of most leaf traits, 493 
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we explored how many destructive measurements of leaf traits were needed to calibrate the 494 

models using full leaf spectra. For example, LMA showed dramatic changes in the early season, 495 

thus the sampling and calibration processes need to include the data at this stage. Similarly, Nmass 496 

was relatively stable in the mid season, and most of the variations occurred in the early and end 497 

of season, which makes the sampling at these time frames important. This explains why our 498 

comparisons that only considered the variability of leaf traits in the summer showed much poorer 499 

performance. Monthly and even biweekly sampling should be considered, at least for the four 500 

temperate deciduous species examined in this study. 501 

 502 

4.3 Broad implications of using leaf spectroscopy for ecological studies 503 

Understanding the seasonality of leaf traits has recently gained attention as an effort to 504 

improve our modeling of terrestrial carbon and water cycles (Bauerle et al. 2012; Grassi et al. 505 

2005; Medvigy et al. 2013). For example, in the Community Land Model, Nmass and LMA 506 

control the maximum rate of carboxylation, Vcmax, which is highly variable temporally and 507 

across different species and light environments (Oleson et al., 2010). Our time-series of Nmass 508 

capture two important features: (1) the seasonal peak at the beginning of the spring, suggesting 509 

that nitrogen was allocated to the leaves early in the season. As leaves matured, other types of 510 

elements such as carbon accumulated at a faster rate, resulting in an increase of Cmass relative to 511 

Nmass ratio. (2) A decline of Nmass by the end of the season. Nmass and LMA was relatively stable 512 

at both sites during the summer (Fig. 2a and 2b), thus leaf age does not appear to be affecting the 513 

nitrogen concentration during the peak season (Field and Mooney 1983). This finding highlights 514 

the importance of tracking the seasonality of leaf traits (Wilson et al. 2000), and our work 515 

demonstrates that leaf spectroscopy can provide a rapid means to routinely measure leaf traits. 516 



 31 

Importantly, these results highlight that spectroscopy observations can provide key information 517 

on the individual differences in multiple leaf traits that can feed into ecosystem models (Medvigy 518 

et al., 2009) or be used to test key ecological questions (Rowland et al., 2015). In addition, this 519 

emphasizes the important capability of monitoring ecosystem dynamics across a range of spatial 520 

and temporal scales with hyperspectral observations from leaves, towers, as well as with new 521 

instruments mounted on Unmanned Aerial Systems (UASs) and existing and future instruments 522 

on piloted aircraft and satellite platforms (Yang et al., 2014; Yang et al., 2015; Asner and Martin, 523 

2008; Hilker et al., 2010). 524 

 525 

5. Conclusion 526 

This paper presents a comprehensive study of the relationship between leaf spectra and 527 

foliar traits across varying leaf developmental stages, sites, and light environment using a near 528 

weekly dataset of seven leaf traits and spectra at two sites. A Partial Least Square Regression 529 

(PLSR) modeling approach, after proper calibration with leaf traits from different times of the 530 

season, showed a strong capacity to quantify the seasonal variation of leaf traits within and 531 

across sites. The robustness of a PLSR model largely depends on the overlap of leaf trait ranges 532 

between the calibration dataset and the dataset to be estimated, and extrapolation outside the 533 

ranges of the calibration dataset can result in a significant error. We found that biweekly 534 

sampling of leaf traits and spectra would provide a robust PLSR model to estimate the seasonal 535 

variations of leaf traits. This work demonstrated the capability of leaf spectra to track seasonally-536 

variable leaf traits, and thus supports the use of automated field spectrometers, airborne and 537 

satellite hyperspectral sensors to track leaf traits repeatedly throughout the season and across 538 

broad regions (Roberts et al. 2012; Singh et al., 2015; Yang et al. 2015). 539 
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