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Abstract

The evolution of the primary sex ratio, the proportion of male births in an

individual’s offspring production strategy, is a frequency-dependent process that

selects against the more common sex. Because reproduction is shaped by the

entire life cycle, sex ratio theory would benefit from explicitly two-sex models

that include some form of life cycle structure. We present a demographic

approach to sex ratio evolution that combines adaptive dynamics with nonlin-

ear matrix population models. We also determine the evolutionary and conver-

gence stability of singular strategies using matrix calculus. These methods allow

the incorporation of any population structure, including multiple sexes and

stages, into evolutionary projections. Using this framework, we compare how

four different interpretations of sex-biased offspring costs affect sex ratio evolu-

tion. We find that demographic differences affect evolutionary outcomes and

that, contrary to prior belief, sex-biased mortality after parental investment can

bias the primary sex ratio (but not the corresponding reproductive value ratio).

These results differ qualitatively from the widely held conclusions of previous

models that neglect demographic structure.

Introduction

Sex ratio evolution is the one of the oldest life-history

questions and a well-known example of frequency-depen-

dent selection. Although the primary sex ratio s1 (propor-

tion of offspring that are born male) is nearly equal in

many mammals, including humans, sex ratio biases have

been observed in countless other species (Karlin and Les-

sard 1986). Explanations for biased sex ratios often focus

on demographic differences (e.g., costs of offspring, mor-

tality of specific life cycle stages); however, much sex ratio

theory is based on purely verbal arguments or models

with minimal demographic structure.

Early explanations of sex ratio evolution, for instance,

relied on occasionally confused or vague verbal reasoning.

Darwin (1871) wrote that parents producing more of the

rarer sex would have fewer superfluous offspring and thus

be more “productive,” but later admitted the problem was

too intricate for him to reason through (Darwin 1874).

Fisher (1930) tackled this challenge with a famously succinct,

and infamously cryptic, verbal argument based on reproduc-

tive value (the present value of an individual’s future off-

spring). Because every individual has a male and female

parent, Fisher stated that the “total reproductive value” of

each sex in a given generation (i.e., their genetic contribu-

tions to all future generations, West 2009) must be equal.
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If males and females are equally costly to produce, the

sex ratio should evolve to equality, as any sex produced

in excess will have fewer mating opportunities, less repro-

ductive success, and thus smaller returns on reproductive

value; parents who are genetically predisposed to produc-

ing the rarer sex thus have more grandchildren to propa-

gate their genes, making the once rarer sex more

common over time (Hamilton 1967; West 2009). If, how-

ever, males and females are differentially costly (e.g.,

require different amounts of resources to produce), Fisher

claimed the sex ratio will evolve so that there is equal

“expenditure” in, rather than equal numbers of, both

sexes.

Trivers (1972) more precisely defined this expenditure as

“parental investment” – any investment a parent makes

(time, energy, resources, protection, etc.) to increase an off-

spring’s survival and reproductive success, at the cost of

investing in other children. If a son, for example, requires

less parental investment than a daughter, a parent can pro-

duce more successful sons (and, to a point, more reproduc-

tive value) per unit investment. Selection thus biases the

sex ratio toward sons until there is equal parental invest-

ment in sons and daughters. The optimal primary sex ratio

s�1 is given by the “equal investment principle”:

Cms
�
1 ¼ Cf ð1� s�1Þ
s�1 ¼

Cf

Cm þ Cf

(1)

where Cm and Cf are some form of male and female

investment costs (Charnov 1982; Hardy 2002). Others

(e.g., Charnov 1982; Bull and Charnov 1988; Frank 1990)

have shown that the equal investment principle (1)

requires several implicit assumptions, including random

mating, fixed resource allocation, and additive offspring

costs with linear returns (e.g., doubling your investment

in sons doubles the grandchildren or genetic returns that

your sons produce).

Early mathematical treatments of Darwin and Fisher’s

arguments by D€using (1883, translated in Edwards 2000)

and Shaw and Mohler (1953) are the basis for many other

sex ratio analyses. They consider how an individual’s sex

ratio affects their fitness, through their relative number of

(or genetic contribution to) grandchildren. The fitness w

of a given parent has the form:

w ¼ n

4N

s1
S1

þ 1� s1
1� S1

� �
(2)

when that parent produces n offspring at a primary sex

ratio s1, and the population at large produces N offspring

at a primary sex ratio S1. This formulation does not con-

sider stage structure within the sexes, nor does it account

for offspring production over more than two generations.

The fitness of a given sex ratio phenotype s1 is fre-

quency-dependent, in that it depends on the population

sex ratio S1. When the population sex ratio S1 = 0.5, (2)

is always w ¼ n
2N, regardless of the individual sex ratio s1

(Shaw and Mohler 1953); this means that all sex ratios,

including the resident and any mutants, will have the

same fitness. Thus, when S1 = 0.5, no individual sex ratio

can have greater fitness than the resident, so no alterna-

tives sex ratios can increase under selection. The equal sex

ratio S1 = 0.5 is thus an “unbeatable” evolutionarily stable

strategy (ESS) (Maynard Smith and Price 1973). Subse-

quent studies have identified numerous factors that can

bias the ESS sex ratio from 0.5, including local mate com-

petition (Hamilton 1967), maternal condition (Trivers

and Willard 1973), parent–offspring conflict (Trivers

1974; Trivers and Hare 1976), and other unusual life his-

tory strategies or sex determination systems (Hardy

2002).

The ESS sex ratios can be affected by sex-biased off-

spring costs, especially in terms of parental investment

and the timing of sex-biased mortality (Hardy 2002; West

2009). Shaw and Mohler (1953) noted that sex-specific

survival probabilities cancel out of (2) and are thus irrele-

vant to selection, although they did not consider parental

investment. Fisher (1930) himself argued that only sex-

biased mortality during the period of parental investment

affects the sex ratio, and later analyses have largely ruled

in favor of his conjecture. Similar to Shaw and Mohler,

some frame sex ratio fitness in terms of a genetic contri-

bution to grandchildren (Kolman 1960). Others use a

population genetics approach to track the allele frequen-

cies of different sex ratios (Leigh 1970). The general con-

sensus is that sex-biased mortality after parental

investment cannot bias the ESS sex ratio, because

increased mortality is then compensated for by increased

reproductive opportunities (West 2009).

However, few of the models underlying sex ratio evolu-

tion theory explicitly consider stage structure, even

though the effect of mortality at different life cycle stages

is an inherently demographic issue. While some models

include age structure (e.g., Emlen 1968a,b; Charnov 1975;

Charlesworth 1977), only a handful are capable of includ-

ing more general stage structure, such as size, develop-

mental stage, or parental quality (e.g., Leimar 1996;

Schindler et al. 2015). Our models can incorporate all

three levels of structure, with age structure appearing as a

special case of stage structure.

The interaction between the sexes, and the effects of

distorted adult sex ratios on the mating success of males

and females, requires nonlinear models. Most models in

the literature, even those that incorporate population

structure (e.g., Pen et al. 1999; Fawcett et al. 2011),

assume that reproduction is unaffected by adult sex ratio.
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This removes one of the ways in which changes to the

primary sex ratio may affect invasion fitness.

Many sex ratio models also only consider offspring

production over two generations, rather than over an

entire lifetime. Models that incorporate both age structure

and lifetime offspring production are rarer and have pro-

duced more mixed results. In some age-structured models

(Charnov 1975), sex-biased survival cancels out of the fit-

ness expression, while in others (Emlen 1968a,b), mortal-

ity at all reproducing ages affects the sex ratio. These

discrepancies suggest that stage-specific, demographic fac-

tors deserve additional consideration in sex ratio theory.

Here, we use matrix population models to incorporate

multiple sexes, stages, and life cycle events into our evolu-

tionary projections. Furthermore, although previous stud-

ies of sex ratio evolution (e.g., Charnov 1979a, 1982;

Hardy 2002; Otto and Day 2007) have focused on finding

ESSs, additional methods are needed to determine

whether the population will actually converge to the ESS

in the long run. Here, we apply adaptive dynamics to

identify potential evolutionary outcomes and characterize

both their evolutionary and convergence stability.

Model and Methods

There are two main approaches for studying sex ratio

evolution (West 2009). One approach uses population or

quantitative genetics to track the dynamics of allele fre-

quencies (e.g., Eshel 1975; Charlesworth 1977; Uyenoyama

and Bengtsson 1979; Karlin and Lessard 1986) . The other

approach, which includes ESS theory and adaptive

dynamics, ignores the often complex underlying genetics

and instead focuses on trait phenotypes (e.g., Charnov

1982; Hardy 2002; Otto and Day 2007). We will use the

latter approach by considering population-level effects of

the sex ratio phenotype.

Following the two-sex modeling framework introduced

in E. Shyu and H. Caswell (in review a) , we construct a ser-

ies of continuous-time rate matrices that incorporate multi-

ple sexes, stages, and life cycle events. Because these models

are frequency-dependent, their long-term population

growth rates are given by the dominant eigenvalue of the

projection matrix at the equilibrium stage distribution

(Caswell and Weeks 1986; Pollak 1986; Hadeler et al. 1988;

Iannelli et al. 2005) . By applying adaptive dynamics theory,

we use these models to identify and characterize long-term

evolutionary outcomes for the primary sex ratio – namely,

singular strategies including, but not limited, to ESSs.

The two-sex matrix model

Consider a population with five stages: juvenile males m1

and juvenile females f1, adult males m2 and adult females

f2, and reproducing unions u (mated couples with one

male and one female each). Single adults interact to form

unions, which then produce new juvenile offspring

(Fig. 1). A summary of the variables, parameters, and

matrices in this model is provided in Table 1.

The population vector at time t is:

nðtÞ ¼

m1

m2

f1
f2
u

0
BBBB@

1
CCCCA (3)

The total unions (pairs) formed per time is given by

the nonlinear harmonic mean mating function:

MðnÞ ¼ 2m2f2
m2 þ f2

(4)

which has frequency-dependent male and female per cap-

ita mating rates:

UmðnÞ ¼ MðnÞ
m2

¼ 2f2
m2 þ f2

Uf ðnÞ ¼ MðnÞ
f2

¼ 2m2

m2 þ f2

(5)

Mating, birth, and life cycle transition processes are

divided into three rate matrices (U, B, and T) as follows.

1 The union formation matrix U contains the per capita

mating rates (5):

UðnÞ ¼

0 0 0 0 0
0 �UmðpÞ 0 0 0
0 0 0 0 0
0 0 0 �Uf ðpÞ 0
0 1

2UmðpÞ 0 1
2Uf ðpÞ 0

0
BBBB@

1
CCCCA (6)

f1 f2 m2 m1

u
R(1-s1)/Ca Rs1/Ca

Uf Um

μf1 μf2 μm1μm2

αf αm

μm2+d μf2+d

Figure 1. Life cycle diagram for a 5-stage population with juvenile

males m1 and juvenile females f1, adult males m2 and adult females

f2, and reproducing unions u. The functions and parameters shown

here appear in the union formation matrix U (6) (red), birth matrix B

(7) (green), or transition matrix T (8) (blue) (from E. Shyu and H.

Caswell in review a).
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2 The birth matrix B contains the rates of male and

female offspring production by unions:

B ¼

0 0 0 0 Rs1
Ca

0 0 0 0 0
0 0 0 0 Rð1�s1Þ

Ca

0 0 0 0 0
0 0 0 0 0

0
BBBB@

1
CCCCA (7)

where s1 is the (evolving) primary sex ratio, R is the total

resource investment rate, Ca is the average offspring

resource cost per birth. The quantity R/Ca is the union

reproductive rate (offspring produced per time).

3 The life cycle transition matrix T contains the rates of

mortality and transitions between stages:

T¼

�ðlm1þamÞ 0 0 0 0
am �lm2 0 0 lf 2þd
0 0 �ðlf 1þaf Þ 0 0
0 0 af �lf 2 lm2þd
0 0 0 0 �ðlm2þlf 2þdÞ

0
BBBB@

1
CCCCA

(8)

where lm1 and lm2 are the juvenile and adult male mor-

tality rates, lf1 and lf2 are the juvenile and adult female

mortality rates, am and af are the male and female matu-

ration rates, and d is the union divorce rate.

The average of these three rate matrices is the continu-

ous-time projection matrix

AðnÞ ¼ 1

3
Tþ Bþ UðnÞ½ � (9)

where

dn

dt
¼ AðnÞnðtÞ (10)

In our model, the nonlinear mating rates (5) are

homogeneous of degree 0 with respect to n. This allows

all entries aij in A to depend on relative stage frequencies

rather than absolute abundances, that is:

aijðcnÞ ¼ aijðnÞ (11)

for any positive constant c. As a result, population growth

is frequency dependent, in that it is a function of the

population frequency vector:

p ¼ n

jjnjj (12)

where ‖n‖ is the 1-norm of n.

Frequency-dependent models like these ultimately con-

verge to an equilibrium stage distribution p̂. The popula-

tion then grows or decays exponentially at a rate given by

the dominant eigenvalue k of Aðp̂Þ. For calculating k, it is
sufficient to consider the dynamics of p (E. Shyu and

H. Caswell in review a):

dp

dt
¼ Is � p1|ð ÞAðpÞp (13)

To find p̂, integrate (13) with the MATLAB ODE45

differential equation solver until p converges to p̂ (e.g.,

until vector entries do not change significantly over con-

secutive integration intervals). We then calculate the pop-

ulation’s long-term growth rate k, the dominant

eigenvalue of Aðp̂Þ, and its corresponding right and left

eigenvectors w and v. Note that the dominant right eigen-

vector of Aðp̂Þ equals the stable stage distribution; that is,

w ¼ p̂.

Table 1. A summary of the variables, parameters, matrices, and pop-

ulation properties in the two-sex matrix model. Mutant parameters

(not shown) are denoted by an apostrophe; for example, A0 is the

mutant projection matrix.

Matrices and Vectors

A projection matrix (9)

B birth matrix (7)

U union formation matrix (6)

T transition matrix (8)

n population density vector (3)

p population frequency vector (12)

p̂ or w equilibrium stage structure

v reproductive value vector

Population Properties

k long-term population growth rate, dominant eigenvalue

of Aðp̂Þ
m1, m2 juvenile, adult male stages

f1, f2 juvenile, adult female stages

u union (pair) stage

s1 primary sex ratio (proportion of offspring that are born

male)

s�1 singular strategy (SS) value of s1
s2 secondary sex ratio (proportion of adults that are male)

s�2 resulting s2 when s1 ¼ s�1
vi reproductive value of stage i

Life Cycle Parameters

am, af male, female maturation rates

d divorce rate (rate at which a male-female pair bond

breaks)

lf1, lf2 juvenile, adult female mortality rates

lm1, lm2 juvenile, adult male mortality rates

R resource investment rate

M mating function (4) (total unions formed per time)

Um, Uf per capita mating rates (5)

Fm, Ff per capita fertility rates (63)

Offspring Cost Parameters

Cm, Cf male, female offspring resource costs

Ca average offspring resource cost (35)

a age of independence

I offspring investment rate

Dm, Df male, female parental mortality costs

Em, Ef male, female parent costs of reproduction (42)

lm2c, lf2c mated male, female mortality rates (44)
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Evolutionary analysis with adaptive
dynamics

Adaptive dynamics treats evolution as a series of “inva-

sions” by mutant phenotypes. Mutations are assumed to

occur infrequently, so that each mutation is either fixed

or lost before the next mutation arises (Geritz et al.

1998). Because each mutant is initially rare, its effects on

the existing resident population are considered negligible

(Metz 2006).

Consider a stable, monomorphic resident population

with phenotype x, projection matrix A, and growth rate

k. An invading mutant with phenotype y, projection

matrix A0, and growth rate k0 (which depends on the

environmental conditions set by the resident) has two

possible fates. If k0 < k, the mutant will ultimately die

out. But if k0 > k, the mutant can replace the resident

and induce evolutionary change (Metz et al. 1992).

The mutant projection matrix

Analogous to the resident projection matrix A in (9), the

mutant projection matrix A0 is the average of the mutant

rate matrices:

A0ðp̂Þ ¼ 1

3
T0 þ B0 þ U0ðp̂Þ½ � (14)

The only phenotypic difference between mutants and

residents is the primary sex ratio they use. Just as the resi-

dent birth matrix B in (7) depends on the resident sex

ratio s1, the mutant birth matrix B0 depends on mutant

sex ratio s01:

B0 ¼

0 0 0 0
Rs01
Ca

0 0 0 0 0
0 0 0 0

Rð1�s01Þ
Ca

0 0 0 0 0
0 0 0 0 0

0
BBBB@

1
CCCCA (15)

Because mutants are so rare, we assume they mate only

with residents. As a result, the equilibrium resident popu-

lation sets the overall mating rate according to (5), and

the mutant mating matrix U0 is the resident mating

matrix U in (6) evaluated at the resident stable stage dis-

tribution p̂:

U0ðp̂Þ ¼

0 0 0 0 0
0 �Umðp̂Þ 0 0 0
0 0 0 0 0
0 0 0 �Uf ðp̂Þ 0
0 1

2Umðp̂Þ 0 1
2Uf ðp̂Þ 0

0
BBBB@

1
CCCCA (16)

Unless certain transition rates also depend on the pri-

mary sex ratio (e.g., parental survival in “Case 4: parental

mortality”, which has transition matrix (43)), the mutant

transition matrix T0 is the same as the resident transition

matrix T in (8).

Invasion fitness and the selection gradient

We define the invasion fitness sx(y) as the long-term

growth rate of a mutant with phenotype y, relative to the

growth rate of a resident with phenotype x, in the equi-

librium resident environment (as set by the resident’s

stable stage distribution p̂). In our two-sex matrix model,

the invasion fitness is the difference in the dominant

eigenvalues of the mutant and resident projection matri-

ces (k and k0, respectively), where k0 is evaluated at the

resident’s stable stage distribution p̂.

sxðyÞ ¼ k0ðp̂Þ � k (17)

Only mutants with a positive invasion fitness can dis-

place the resident and cause evolutionary change.

The first derivative of the invasion fitness (17), with

respect to the mutant phenotype y, is the selection gradi-

ent D(x), which indicates the direction of selection at a

given resident phenotype x. In our model, the selection

gradient is the sensitivity of mutant eigenvalue k0 (Caswell
2010). In general, the resident and mutant phenotypes

can be written as vectors of trait values, h and h0, respec-
tively. The selection gradient is then:

DðxÞ ¼ @sxðyÞ
@y

����
y¼x

¼ @k0

@h0|

����
h0¼h

¼
�
ðw0| � v0|Þ dvecA

0

dh0|

�����
h0¼h

(18)

where w0 and v0 are the dominant right and left

eigenvectors of the mutant matrix A0ðp̂Þ, scaled so that

v0|w0 ¼ 1.

Here, we consider the case where the only evolving trait

is the primary sex ratio. Thus, the trait vectors h and h0

simplify to the scalar resident and mutant sex ratios s1
and s01. The selection gradient at s1 is thus:

@k0

@s01

����
s01¼s1

¼ ðw0| � v0|Þ dvecA
0

ds01

� �����
s01¼s1

(19)

The selection gradient (19) can lend insight into both

the transient and equilibrium evolutionary dynamics of

s1. Although we will focus on equilibrium results here,

transient evolutionary dynamics can also be explored

using the canonical equation (as discussed in E. Shyu and

H. Caswell in review b).

Singular strategies

When the selection gradient (19) is 0, there is no direc-

tional selection on s1. The corresponding resident strategy
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s�1 is called a singular strategy (SS). MATLAB’s fsolve

or fmincon functions can be used determine the values

of s1 where the selection gradient vanishes, which corre-

spond to s�1.
Singular strategies are potential long-term evolutionary

outcomes that can be characterized by several criteria

(Geritz et al. 1998). One can, instance, determine whether

each SS is evolutionarily stable (an ESS that is resistant to

further invasion) or evolutionarily unstable (a branching

point that leads to phenotypic divergence), as well as

whether each SS is convergence stable (an evolutionary

attractor that the population will converge to through

small mutations) or convergence unstable (an evolution-

ary repeller).

For a one-dimensional phenotype, 2D visualizations of

the invasion fitness landscape called pairwise invasion

plots (PIPs) graphically indicate evolutionary and conver-

gence stability. A PIP shows where invasion fitness is pos-

itive or negative, depending on the resident phenotype x

and the mutant phenotype y (Fig. 2).

Singular strategies occur at intersections of the bound-

aries between negative and positive regions. If mutations

are small (do not differ drastically from the resident phe-

notype), the behavior of the PIP around a SS indicates

several properties (Fig. 3). If, for example, the vertical line

through the SS is entirely in the negative region (as in

Fig. 2), the SS is evolutionarily stable, that is, an ESS

resistant to further invasion.

Second derivatives of invasion fitness

Evolutionary and convergence stability can be determined

more generally using the local second derivatives of the

invasion fitness sx(y) (17) to the mutant phenotype y and

the resident phenotype x (Fig. 3). In our two-sex model,

these are the second derivatives of the mutant and resi-

dent eigenvalues, k0 and k, with respect to the vectors

describing mutant and resident phenotypes, h0 and h.

Again, we will only consider the primary sex ratio pheno-

type, so h and h0 simplify to s1 and s01, respectively.
The pure second derivative with respect to the mutant

phenotype is:

@2sxðyÞ
@2y

¼ @2ðk0 � kÞ
@h0@h0|

¼ @2k0

@2s01
(20)

because k does not depend on the mutant sex ratio s01.
The pure second derivative with respect to the resident

phenotype is:

@2sxðyÞ
@2x

¼ @2ðk0 � kÞ
@h@h|

¼ @2ðk0 � kÞ
@2s1

(21)

because both k0 and k depend on the resident sex ratio s1.

Figure 2. A 3D visualization of an invasion

fitness landscape and the corresponding 2D

pairwise invasion plot (PIP). The + on the PIP

indicates where the invasion fitness is positive;

the – indicates where the invasion fitness is

negative.

Figure 3. Second derivative properties and the

corresponding pairwise invasion plots (PIPs) for

the eight types of singular strategies (adapted

from Geritz et al. 1998).
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The evolutionary stability of a singular strategy x*
depends on (20) (Geritz et al. 1998):

@2sxðyÞ
@2y

����
x¼y¼x�

\0 evolutionarily stable (ESS)
¼0 may be selectively neutral (weak formESS)
[0 evolutionarily unstable (branch point)

8<
:

(22)

The convergence stability of a singular strategy x*
depends on both (20) and (21) (Eshel 1983; Geritz et al.

1996):

@2sxðyÞ
@2x

� @2sxðyÞ
@2y

� �����
x¼y¼x�

[0 convergence stable (attracting)
\0 convergence unstable (repelling)

�

(23)

In next two sections, we will present matrix calculus

equations for the pure second derivatives (20) and (21)

that determine evolutionary and convergence stability.

These expressions will rely on the equations (24) and

(32) respectively.

Second derivatives with respect to the mutant sex
ratio (20)

Calculating (20) requires the second derivatives of the

mutant eigenvalue k0 with respect to the mutant trait s01.
The corresponding mutant matrix A0 is a function of the

mutant trait s01 and the resident’s stable stage structure

p̂ðs1Þ (as mutants are rare, their environment is com-

pletely determined by the resident). Because p̂ is constant,

A0ðs01; p̂Þ is a constant matrix.

As shown in Shyu and Caswell (2014, (38)), the second

derivatives of k0 can be found using matrix calculus:

@2k0

@2s01
¼ ðw0| � v0| � IsÞH vecA0; s01

� �

þ dvecA0

ds01

� �|
H k0; vecA0½ � dvecA

0

ds01
(24)

where ⊗ is the Kronecker product, vec is the vec opera-

tor, and Is is a s 9 s identity matrix.

This expression depends on the Hessian (matrix of sec-

ond derivatives) of k0 with respect to A0:

H k0; vecA0½ � ¼ 1

2
ðH1 þH|

1Þ (25a)

where

H1 ¼ ðIn � v0Þ dw0

dvec|A0 þ ðw0 � InÞ dv0

dvec|A0 (25b)

and the first derivatives of w0 and v0 are

dw0

dvec|A0 ¼ k0In � A0 þ w0e|A0ð Þ�1
w0| � In � w0e|ð Þ½ �

(26)

dv0

dvec|A0 ¼ k0In � A0| þ k0v0w0|ð Þ�1

� In � v0w0|ð Þ � v0| � k0ðv0 � v0|Þ dw0

dvec|A0

� �
:

(27)
where e⊺ is a 1 9 s vector of ones.

The expression (24) also depends on the first and sec-

ond derivatives of A0 with respect to s01, which are given

by dvecA0

ds01
and H½vecA0; s01� respectively. Recall from (9)

that:

A0 ¼ 1

3
T0 þ B0 þ U0ð Þ (28)

The first derivatives of A0 to s01 are:

dvecA0

ds01
¼ 1

3

dvecT0

ds01
þ dvecB0

ds01
þ dvecU0

ds01

� �
(29)

The second derivatives of A0 to s01 are:

H vecA0;s01
� �¼1

3
H vecT0;s01
� �þH vecB0;s01

� �þH vecU0;s01
� �� 	

(30)

These derivatives can be evaluated by hand or with a

symbolic math program. Because not all of the matrices

depend on s01 (U0, for example, never does), both (29)

and (30) may simplify considerably.

Second derivatives with respect to the resident
sex ratio (21)

Calculating (21) requires the second derivatives of the

mutant eigenvalue k0 and resident eigenvalue k with

respect to the resident trait s1. The resident matrix A is a

function of the resident trait s1 and the resident stable

stage distribution p̂ðs1Þ (as mutants are rare, they do not

affect resident dynamics). Because the resident’s dynamics

depend on its own stage distribution, Aðp̂Þ is a nonlinear,

frequency-dependent matrix.

Frequency dependence makes the second derivatives of

k difficult to calculate directly. But once (20) is found

using (24), (21) can be calculated using the relationship:

@2k0

@2s01
þ 2

@2k0

@s1@s
0
1

þ @2ðk0 � kÞ
@2s1

� �����
s01¼s1¼s�1

¼ 0 (31)

which holds at any singular strategy s�1 (Appendix A).

The first term in (31) is given by (20). The second

term in (31) is the mixed second derivatives of k0 to s01
and s1. This is shown in Appendix B to be:

@2k0

@s1@s
0
1

¼ ðw0| � v0| � IsÞKn2;s
dvecC

dw|
dw

ds1

þ C| ðIn � v0Þ dw
0

ds1
þ ðw0 � InÞ dv

0

ds1


 �
(32)
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where

C ¼ dvecA0

ds01
(33)

Thus, at any singular strategy, (21) can be found by

substituting the pure second derivative (20) and mixed

second derivative (32) into the relationship (31). The

convergence stability condition (23) thus becomes:

@2k0

@2s01
þ @2k0

@s1@s
0
1

����
x¼y¼x�

\0 convergence stable (attracting)
[0 convergence unstable (repelling)

�
(34)

Case Studies: Sex-Biased Offspring
Costs

If the sexes are differentially costly, Fisher (1930) predicts

that the sex ratio will evolve to favor the cheaper sex.

However, there are many potential interpretations of off-

spring costs. One sex may be costlier because it requires

more resources, has greater mortality, or more severely

reduces parental survival or reproduction (Charnov 1982;

Trivers 1985). Furthermore, these costs may occur at dif-

ferent points in an individual’s lifetime (Fig. 4).

We consider four alternative interpretations of off-

spring costs (summarized in Table 2). For each of these

four cases, we will determine how the primary sex ratio s1
evolves with respect to singular strategy location, evolu-

tionary stability, and convergence stability.

1 Offspring resource cost: Different amounts or rates of

resources are required to birth male and female off-

spring (Fig. 4, Point 1). Fisher’s sex ratio theory

implicitly assumes that parents have a fixed amount of

resources for producing offspring (Bull and Charnov

1988). Here, we will assume that total resource invest-

ment is always constrained to a constant rate.

2 Offspring mortality cost (during investment): Male and

female offspring mortality rates differ during the period of

parental investment (Fig. 4, Point 1–2); that is, while the
offspring is still consuming parental resources. We assume

that offspring death during this period frees up resources

that can be reallocated to other offspring (Charnov 1982).

3 Offspring mortality cost (after investment): Male and

female mortality rates differ after the period of parental

investment, once the individual is no longer consuming

parental resources. We will consider sex-biased mortal-

ity rates for both juveniles (Fig. 4, Point 2–3) and

adults (Fig. 4, Point 3–4).
4 Parent mortality cost: Male and female offspring increase

the mortality rates of their adult parents (Fig. 4, Point

3–4). For offspring of a given sex, both male and female

parents suffer the same mortality increase.

In each case, we will consider a two-sex, 5-stage popu-

lation with the life cycle in Fig. 1. We construct projec-

tion matrices of the form (9), adapting the functions and

parameters in rate matrices U (6), B (7), and T (8) as

necessary to reflect the offspring costs under considera-

tion. The corresponding resident and mutant matrices

will be used to calculate the selection gradient (19), from

which we can find the SS primary sex ratio s�1. We will

determine the location and stability properties of s�1 in

each case. We will also examine the secondary sex ratio s2
(proportion of adults that are male), focusing specifically

on s�2 as the value of s2 when the primary sex ratio s1 is at

its SS value s�1.
We make the following assumptions for the underlying

two-sex model:

• Males and females have identical vital rates, save for

the offspring cost of interest.

• Only the union stage can produce new offspring.

Unmated males and females mate to form unions, but

do not reproduce independently.

• Males are always the more “disadvantaged” sex, which

is often true in mammals and birds (Table 2). In Case

1, males have higher resource costs. In Cases 2 and 3,

male offspring have higher mortality. In Case 4, males

impose greater parental mortality. An increase in s1
thus represents greater production of the disadvantaged

sex, while a decrease in s1 represents increased produc-

tion of the advantaged sex.

We also make these assumptions for our evolutionary

analyses:

• The only evolving trait is the primary sex ratio s1. Thus,

new mutants only differ from established residents in

terms of their sex ratio phenotype.

• Mutations are small and do not differ drastically from

the resident. They are also rare enough not to affect the

1

Birth DeathIndependence Maturity

Parental investment After parental investment

2 3 4

Juvenile Adult

Figure 4. A timeline of key points in an individual’s lifetime. The individual is a juvenile from Point 1 to 3, and an adult from Point 3 to 4. The

period during parental investment is between Points 1 and 2; the period after parental investment is between Points 2 and 4.

8 ª 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Demographic sex ratio evolution E. Shyu & H. Caswell



resident population, and infrequent enough to either

die out or reach fixation before the next mutation

arises (Geritz 1996, Metz 2006).

• The mutant phenotype is genetically dominant. Any

offspring with a mutant parent also has the mutant

phenotype.

Unless otherwise indicated, model parameters are fixed

at the values in Table 3. We will consider example param-

eter sets for two types of unions, “productive” and “poor,”

in particular. Productive unions are more persistent (low

divorce rate d) and can allocate more resources to off-

spring production (high resource investment rate R). Poor

unions, in contrast, are more transient (high d) and allo-

cate fewer resources to offspring production (low R).

Case 0: identically costly sexes

If the sexes are identically costly, selection should favor

equal production of males and females. The equal sex

ratio is thus an “unbeatable” ESS resistant to invasion

by alternative sex ratios (Hamilton 1967; Maynard Smith

and Price 1973). Consistent with this classic prediction,

our model has a convergent singular strategy at s�1 ¼ 0:5

(example in Fig. 5). This result is robust to other vari-

ants of our model, including the various cases of off-

Table 2. Summary of four cases where male and female offspring are differentially costly.

Cases Sons have. . . Previous predictions Model results Example species

0. identical

sexes

same costs

and vital

rates as

daughters

� s1 = 0.5 is a selectively neutral

ESS (Fisher 1930; Uyenoyama

and Bengtsson 1982; Bull and

Charnov 1988)

� s1 = 0.5 is a selectively neutral

ESS (Fig. 5)

� explains the prevalence of near 1:1

sex ratios in most species (Hardy

2002)

1. offspring

resource

cost

greater

resource

consumption

� s1 favors the sex that costs

fewer resources to produce

� s1 is given by the equal

investment principle (1) (Fisher

1930; Charnov 1982; Frank

1990; Hardy 2002)

� s1 favors the sex that costs fewer

resources to produce

� but s1 is more biased to the

cheaper (more common) sex if

couples are poor (Fig. 6)

� in wasps, female larvae require larger

nest cells (Trivers 1985) or larger hosts

(Charnov 1979a) and more food

� in red deer and elephant seals,

males require more milk to wean

(Trivers 1985; Frank 1990)

2. offspring

mortality

cost (during

investment)

greater

mortality

and resource

consumption

� s1 favors the higher mortality

sex (Fisher 1930; Bodmer and

Edwards 1960)

� s2 will be equal or favor the

lower mortality sex (Bodmer

and Edwards 1960, Merrell

1981; Charnov 1982; West

2009)

� s1 favors the higher mortality sex

(Fig. 8A)

� but s2 also favors the higher

mortality sex (Fig. 8B)

� in many mammals, including humans,

males have greater mortality in utero

(Trivers 1985)

� rook birds have higher male nestling

mortality (Slagsvold et al. 1986)

3. offspring

mortality

cost (after

investment)

greater

mortality

� s1 is unaffected by mortality

(Fisher 1930; Kolman 1960;

Leigh 1970, Charnov 1975;

West 2009)

� s1 is biased toward the lower

mortality sex with juvenile

mortality (Fig. 9A and B)

� s1 is biased toward the higher

mortality sex with adult mortality

(Fig. 9C and D)

� adult survival is lower for males in

both humans (Wisser and Vaupel

2014) and penguins (Jenouvrier et al.

2010)

4. parent

mortality

cost

greater

parental

mortality

� s1 favors the sex that

reduces parental survival the

least (Charnov 1982)

� s1 favors the sex that reduces

parental survival the least

(Fig. 10)

� in albatross, male parents with female

offspring and low quality female

parents with male offspring die more

frequently (Weimerskirch et al. 2005)

� in humans, sons reduce maternal

longevity more than daughters (Helle

et al. 2002)

Table 3. Two-sex matrix model parameters for productive and poor

unions.

Parameter Description

Value

(Productive)

Value

(Poor)

lm1, lf1 male, female juvenile mortality

rates

0.1 0.1

lm2, lf2 male, female adult mortality rates 0.1 0.1

am, af male, female maturation rates 0.5 0.5

R total resource investment rate 20 10

d union divorce rate 0 1
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spring costs, additional stages, different mating functions,

etc.

In all cases, the singular strategy intersects with a verti-

cal isocline where mutant and resident growth rates are

equal. This is because any mutant that arises when the

resident is at the equal sex ratio has an invasion fitness

(17) of 0. When s�1 ¼ 0:5, resident males and females are

equally abundant at equilibrium. Rare mutants thus have

equal mating opportunities with residents regardless of

their sex, so all invading sex ratios equally fit. As a result,

the equal sex ratio is called a “selectively neutral” strategy

(Bull and Charnov 1988) or a “weak form ESS” (Uye-

noyama and Bengtsson 1982).

As we shall see in “Evolutionary and convergence sta-

bility of the SS sex ratio”, convergence stable, selectively

neutral sex ratios like these are the predominant singular

strategies in our model.

Case 1: offspring resource costs

Consider the case where the production of male and

female offspring requires different amounts of resources.

These production costs are upfront, immediate invest-

ments made per birth or conception, and are thus unaf-

fected by later offspring mortality. Parents have a fixed

total rate R at which they invest resources (energy, food,

etc.) into offspring production, so the primary sex ratio

s1 determines how resources are allocated between the

sexes.

In this case, we will vary the relative production costs

of male and female offspring and determine the ESS sex

ratios that result. Assume that producing male offspring

requires Cm units of resources per time, while producing

female offspring requires Cf units of resources per time.

The average resource cost per offspring birth is thus:

Ca ¼ s1Cm þ ð1� s1ÞCf (35)

This average offspring cost appears in the birth matrix

B, as given by (7), and determines how many offspring

can be born per time. The union formation matrix U and

transition matrix T are given by (6) and (8).

If demographic structure is ignored, the equal invest-

ment principle implies that the primary sex ratio will

evolve to favor the cheaper sex. Assume, for example, that

Cm + Cf = 1; that is, there is some sort of offspring pro-

duction trade-off, so that as males become less costly,

females become more costly, and vice versa. Then by (1):

s�1 ¼
Cf

Cm þ Cf
¼ Cf (36)

The SS sex ratio s�1 increases, becoming more male-

biased, as the female cost Cf increases. Similarly, s�1
decreases, becoming more female-biased, as the male cost

Cm = 1 � Cf increases.

Consistent with the predictions of the equal invest-

ment principle (36), the evolutionarily singular sex ratios

in our demographic model are biased toward the

cheaper sex (Fig. 6A). For poor unions, however, s�1
deviates from the predictions of the equal investment

principle in even greater favor of the cheaper sex. This

is because the optimal sex ratio depends on a trade-off

between the cost of offspring production (where the

cheaper sex is favored because more of it can be pro-

duced) and the benefit of offspring reproductive success

(where the rarer sex is favored because it has more mat-

ing opportunities). However, an increase in mating

opportunities is not necessarily proportional to an

increase in later births, especially when unions have low

reproductive output. When unions are poor, the mating

advantage of the rarer, costlier sex is diminished, allow-

ing the trade-off to skew in favor of the more common,

cheaper sex.

Recall that s�2 is the secondary sex ratios when s1 ¼ s�1.
In this case, males and females have the same maturation

and mortality rates; thus, both s�2 and s�1 have the same

values (Fig. 6B).

Case 2: offspring mortality during parental
investment

Rather than paying a single upfront production cost per

birth, like in Case 1, parents now pour investments into

Resident sex ratio s
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Figure 5. A PIP for sex ratio evolution when males and females are

identical. With the parameters in Table 3 (Case 1, productive unions),

(22) is 0 and (34) is �0.92 at s�1 ¼ 0:5, confirming that the equal sex

ratio is a selectively neutral, convergence stable ESS.
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their offspring over an extended period of time (the per-

iod of parental investment shown in Fig. 4, Points 1–2).
An offspring’s cost (how much parental investment they

have consumed) thus accumulates over time, and the

cumulative cost of each offspring depends on how long

they receive parental investment.

An offspring stops receiving parental investment only

when it has reached the age of independence or died.

As a result, the expected cost per offspring born depends

on the juvenile mortality rates. If more male offspring

die before reaching independence, for example, the aver-

age cost per male born will be less than that of a

female. The average cost per male reared to indepen-

dence, however, will be higher than that of a female

(Fisher 1930).

We will now vary the relative mortality rates of male

and female offspring, during the period of parental

investment, and determine the resulting ESS sex ratios.

Assume that males and females have different juvenile

mortality rates and will thus have different expected costs

per birth. Again, parents invest in offspring at a fixed

resource rate R. If male offspring have higher mortality

rates, the average male born will consume fewer parental

resources (and have a lower expected cost) than the aver-

age female born.

First, we will determine the expected offspring costs,

per male or female born, as a function of the male and

female juvenile mortality rates. As in Slagsvold et al.

(1986), let I(x) be the instantaneous parental investment

rate in an offspring at age x. A parent’s cumulative invest-

ment J(x) in that offspring up to age x is:

JðxÞ ¼
Z x

0

IðzÞdz (37)

Let a be the age of independence, after which parental

investment ceases. If the investment rate is constant so

that I(x) = I, (37) becomes:

JðxÞ ¼ Ix; if x\a
Ia; if x� a

�
(38)

Define f(x) as the probability that an offspring dies at

age x. If l(x) is the mortality rate at age x, it can be

shown that (Caswell 2001, Chapter 2):

f ðxÞ ¼ lðxÞe�
R x

0
lðzÞdz

¼ le�lx if l is constant for all x
(39)

The expected cumulative investment in an offspring,

accounting for its mortality rate during the investment

period, is:

E½JðxÞ� ¼
Z 1

0

JðxÞf ðxÞdx

¼
Z 1

0

JðxÞle�lxdx

¼
Z a

0

JðxÞle�lxdx þ
Z 1

a

JðxÞle�lxdx

¼
Z a

0

Ixle�lxdx þ
Z 1

a

Iale�lxdx

¼ I

l
1� e�lað Þ

(40)
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Figure 6. Case 1 singular strategy (SS) sex ratios, as a function of the male offspring cost Cm in (35). In this example, the female offspring cost

Cf = 1 � Cm. (A) The primary sex ratio s�1 for both productive (blue) and poor unions (red). The values of s�1 predicted by the equal investment

principle (36) are indicated in black. (B) The corresponding secondary sex ratio s�2 (green) in the poor unions case.
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Equation (40) is the expected cost per offspring birth

with an offspring mortality rate of l. Male offspring will

have a mortality rate lm1, while female offspring have a

mortality rate lf1. If males and females receive parental

investment at the same constant rate I, and have ages of

independence am = 1/am and af = 1/af respectively, the

expected male and female offspring costs per birth are

thus:

Cm ¼ I

lm1

1� e�
lm1
am

� 

Cf ¼ I

lf 1
1� e

�lf 1
af

� � (41)

Substitute (41) into (35) to obtain Ca, the average off-

spring cost per birth. Again, the union formation matrix

U, birth matrix B, and transition matrix T are given by

(6), (7), (8) respectively.

Figure 7 shows that the resource cost for a given sex

declines as its mortality rate increases, as more and

more offspring die before significant parental investment

is made. Consider, for example, the case where sons

experience greater juvenile mortality than daughters. The

average resource cost (41) of each son born is less than

that of a daughter, because sons are more likely to die

before consuming the full amount of resources needed

to reach independence (Bodmer and Edwards 1960,

West 2009; Kahn et al. 2015). Based on the equal invest-

ment principle (1), we would expect the primary sex

ratio to evolve in favor of the higher mortality (lower

cost) sex.

In our model, s�1 is indeed biased toward the higher

mortality (lower cost) males. As in Case 1, deviations

from the equal investment principle increase when unions

are poor (Fig. 8A) — again, because the mating advan-

tage of the rarer, costlier sex is seemingly insufficient to

compensate for its greater cost. The corresponding sec-

ondary sex ratio s�2 is less biased than the primary sex

ratio, because the cheaper, higher mortality males pro-

duced in excess at birth are more likely to die before

reaching maturity (Fig. 8B). These results are consistent

with the predictions of Fisher (1930), which state that,

when the average expenditure is less for each boy born,

boys will be more numerous at birth, but less numerous

by the end of parental expenditure.

Offspring mortality rate
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Figure 7. The offspring resource cost (41) as a function of the

juvenile mortality rate l (I = 1, a = 0.5).
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Figure 8. Case 2 singular strategy (SS) sex ratios, as a function of the juvenile male mortality rate lm1 in (41). We will set the juvenile female

mortality rate lf1 = 1 � lm1, so that increasing male mortality decreases female mortality and vice versa. (A) The primary sex ratio s�1 for both

productive (blue) and poor unions (red). The values of s�1 predicted by the equal investment principle (1) are indicated in black. (B) The

corresponding secondary sex ratio s�2 (green) in the poor unions case.
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Although s�2 is less biased than s�1, however, both sex

ratios are still biased toward the higher mortality sex. This

contradicts previous arguments that the sex ratio should

equalize to 0.5 by the age of independence (Bodmer and

Edwards 1960) or reproduction (Merrell 1981), or that

the sex ratio should favor the lower mortality daughters

by the end of parental investment (Charnov 1982).

Although the higher mortality sex does become less

numerous by maturity (as Fisher originally stated),

whether the sex ratio bias equalizes or even reverses is

not absolute and likely depends on other factors (e.g.,

Kahn et al. 2015).

Case 3: offspring mortality after parental
investment

Suppose that male and female mortality rates differ after

the period of parental investment (Fig. 4, Points 2–4).
Because sex-biased risks for disease, competition, selective

harvest pressure, etc. can act at any point in the life cycle,

we will consider both sex-biased juvenile mortality

(lm1 6¼ lf1) and sex-biased adult mortality (lm2 6¼ lf2).
As in Case 2, we will vary the relative mortality rates of

male and female offspring, now after the period of paren-

tal investment, and determine the resulting ESS sex ratios.

Assume that male and female offspring have the same

resource costs Cm = Cf, which we shall normalize to 1.

Then, the average offspring cost Ca in (35) is also always

1, and the union reproductive rate R/Ca depends only on

the (constant) resource investment rate R. As offspring

mortality does not affect the offspring resource costs, all

mortality must occur after the period of investment.

Thus, any juvenile mortality in Case 3 occurs in the per-

iod between independence and sexual maturity (Fig. 4,

Points 2 to 3).

Again, the union formation matrix U, birth matrix B,

and transition matrix T given by (6), (7), and (8)

respectively. We will fix the stage-specific mortality rates

in T at different levels and analyze the sex ratios that

evolve.

Juvenile mortality

Consider the case of sex-biased juvenile mortality after

parental investment. When unions are productive

(Fig. 9A, blue), s�1 varies slightly as a function of juvenile

mortality. This contradicts the predictions of Fisher and

many others, who maintain that sex-biased mortality after

parental investment does not affect sex ratio.

When unions are poor (Fig. 9A, red), s�1 favors the

lower mortality sex even more. This bias occurs for rea-

sons similar to those in Cases 1 and 2. When unions are

less productive, the increased mortality of a given sex is

not compensated for by its increased mating rates, caus-

ing the sex ratio to favor the lower mortality sex.

The secondary sex ratio s�2 is even more biased toward

the lower mortality sex than the primary sex ratio

(Fig. 9B). This is the opposite of Case 2 (mortality occurs

during parental investment), where the secondary sex ratio

was less biased, but both sex ratios still favored the higher

mortality sex. This difference can be explained as follows.

When mortality occurs during parental investment

(Case 2), the primary sex ratio favors the higher mortality

sex. But although more of the higher mortality sex is pro-

duced at birth, that sex is also more likely to die before

reaching maturity. As a result, both the primary and sec-

ondary sex ratios may favor the higher mortality sex, but

the secondary sex ratio somewhat less so. When mortality

occurs after parental investment (Case 3, juvenile mortal-

ity), the primary sex ratio favors the lower mortality sex.

Not only is the lower mortality sex more likely to be pro-

duced at birth, but it also has less mortality later on.

Thus, both the primary and secondary sex ratios favor

the lower mortality sex, the secondary sex ratio somewhat

more so.

Adult mortality

Unlike juvenile mortality, adult mortality expedites union

dissolution through the death of mating partners. The

return of widows and widowers to the available singles

pool subsequently increases mating opportunities for the

rarer sex. As a result, s�1 actually favors the rarer, higher

mortality sex (Fig. 9C), the opposite of the bias in the

juvenile mortality case (Fig. 9A).

Once again, these results contradict the Fisherian notion

that mortality after parental investment cannot bias the pri-

mary sex ratio. As in the case of juvenile mortality, the

magnitude of the sex ratio bias is modulated by union pro-

ductivity. Productive unions have less sex ratio bias, possi-

bly because their larger resource investment rate R

compensates for unions dissolving due to adult mortality.

However, increasing the divorce rate d may also reduce sex

ratio bias, as the mating advantage of the higher mortality

sex is reduced when unions dissolve more easily.

Although the primary sex ratio now favors the higher

mortality sex, adult mortality is high enough to skew the

secondary sex ratio s�2 toward the lower mortality sex

(Fig. 9D).

Case 4: parental mortality

Consider the case where male and female offspring

impose different costs on the survival of their parents. As

in Case 3, we will assume equal male and female offspring

resource costs, so that Cm = Cf = Ca = 1. In Case 4, how-
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ever, males and females have the same mortality rates and

differ instead in the extra mortality costs, Dm and Df, that

they impose on their parents.

We now vary the relative mortality costs of male and

female offspring, on their adult parents, and determine

the resulting ESS sex ratios. We will assume there is a

trade-off between reproduction and survival, so that par-

ents with a greater total cost of reproduction have greater

mortality rates. Reproduction costs depend on the per

capita mating function Um from (5), the resource invest-

ment rate R, the primary sex ratio s1, and the male and

female parental mortality costs Dm and Df.

Let Em and Ef be the expected cost of reproduction per

male parent and per female parent respectively. Then:

Em ¼ UmR s1Dm þ ð1� s1ÞDf

� �
Ef ¼ Uf R s1Dm þ ð1� s1ÞDf

� � (42)

Note the parental mortality cost imposed per offspring

is fixed at birth as Dm or Df, regardless of later offspring

mortality. Alternatively, parents could continue incurring

mortality costs until their offspring have either died or

fully matured.

Because only adults in the union stage u produce off-

spring, adults in the single unmated stages m2 and f2 do
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Figure 9. Case 3 singular strategy (SS) sex ratios, as a function of the juvenile male mortality rate lm1 or adult male mortality rate lm2 in (8). In

the juvenile mortality case, the juvenile female mortality rate lf1 = 1 - lm1. In the adult mortality case, the adult female mortality rate

lf2 = 1 � lm2. (A) The primary sex ratio s�1 for both productive (blue) and poor unions (red) in the juvenile mortality case. The values of s�1
predicted by the equal investment principle (36) are indicated in black. (B) The corresponding secondary sex ratio s�2 (green) in the poor unions,

juvenile mortality case. (C) Primary sex ratios for the adult mortality case. (D) Secondary sex ratios for the poor unions, adult mortality case.

14 ª 2016 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Demographic sex ratio evolution E. Shyu & H. Caswell



not experience this extra offspring-induced mortality. The

transition matrix T (8) must now distinguish between

unmated adult mortality rates (lm2 and lf2) and mated

adult mortality rates (lm2c and lf2c).

T¼

�ðlm1þamÞ 0 0 0 0
am �lm2 0 0 lf 2cþd
0 0 �ðlf 1þaf Þ 0 0
0 0 af �lf 2 lm2cþd
0 0 0 0 �ðlm2cþlf 2cþdÞ

0
BBBB@

1
CCCCA

(43)

Only the mated adult mortality rates lm2c and lf2c are
increased by the costs of reproduction. Let this increase

be linearly proportional to the reproductive costs Em and

Ef, so that the mortality rates of mated adults are:

lm2c ¼ lm2 þ cEm

lf 2c ¼ lf 2 þ cEf
(44)

where c is a nonnegative constant. We will assume that

the baseline male and female mortality rates are equal –
that is, lm1 = lf1 and lm2 = lf2 – so the sexes only differ

in how they affect parental survival through Dm and Df.

Charnov (1982, Chapter 6) considers a case where

mothers experience higher annual mortality rates when

having sons instead of daughters. He states that the sex

ratio will be biased toward sons so that:

s1
1� s1

¼ maternal mortality for rearing a daughter

maternal mortality for rearing a son
(45)

This is equivalent to (1), when offspring costs are

framed in terms of a parental mortality expense.

In qualitative agreement with Charvnov’s predictions,

s�1 in our model favors the sex that induces less parental

mortality (Fig. 10A). This implies that evolution may

favor the preservation of already breeding adults, rather

than having them die producing new offspring. Favoring

the sex that induces less parental mortality also reduces

union dissolution due to partner death.

In contrast to Cases 1–3, productive unions (Fig. 10A,

blue) have more sex ratio bias than poor unions – likely

because adults with greater reproductive output also have

greater parental mortality. However, “strong juveniles”

with lower juvenile mortality and higher maturation rates

(Fig. 10A, black) reduce the sex ratio bias. In this case,

newborn juveniles are faster, more viable replacements for

their parents, thereby alleviating the costs of parental death.

Because parental mortality only affects adults, it occurs

after the period of parental investment. Thus, as in Case

3, the secondary sex ratio is even more biased toward the

cheaper sex than the primary sex ratio is (Fig. 10B).

Evolutionary and convergence stability of
the SS sex ratio

The evolutionary and convergence stability properties of

the SS sex ratio s�1 are identical in Cases 1–4. In all four

cases, the second derivative expression (22) is approxi-

mately zero and (34) is negative (examples in Fig. 11).
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Figure 10. Case 4 singular strategy (SS) sex ratios, as a function of male cost on parental survival Dm in (42), with c = 0.1. Wet set the female

cost Df = 1 � Dm (if male offspring impose more parental mortality, female offspring impose less parental mortality, and vice versa). (A) The

primary sex ratio s�1 for productive unions (blue), poor unions (red), and poor unions with strong juveniles (black). Strong juveniles have lower

mortality rates (lm1 = lf1 = 0.01) and faster maturation rates (am = af = 5). (B) The corresponding secondary sex ratio s�2 (green) in the poor

unions case.
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Thus, all the singular strategies we have observed are con-

vergence stable “weak form” ESSs, as we previously encoun-

tered when male and female offspring were identically

costly (Case 0).

As a result, s�1 is an evolutionary attractor to which

populations will ultimately converge through a series of

small mutations. Once the resident population is at s�1,
any mutant sex ratio will have the same fitness as the res-

ident. However, as the invasion fitness (17) is zero rather

than positive, it will not displace the resident through

natural selection. Although there is no selection for a new

phenotype at a neutral ESS, different rare sex ratios could

potentially arise via neutral drift (which may be a mecha-

nism for generating genetic diversity), and even small

deviations might shift selective pressures (Bull and Char-

nov 1988).

The selective neutrality of certain sex ratios has also

been noted in models without demographic structure. In

Shaw-Mohler fitness formulation (2), for instance, all

individual sex ratios have the same fitness when the pop-

ulation sex ratio is 0.5. Our results suggest that selectively

neutral, convergence stable SS sex ratios may be integral

features of two-sex systems in general, as they are main-

tained even in models with more complex population

structure, and consistently appear over a wide range of

offspring cost interpretations and values.

Primary reproductive value ratios

Instead of considering the relative abundances of each

sex, as given by the sex ratio, one can also consider their

relative reproductive values.

Fisher (1930) originally stated that the total reproduc-

tive value of each sex in a given generation must be equal.

This notion of reproductive value has been invoked in

various ways in studies of sex ratio. Some (e.g., Bodmer

and Edwards 1960) specifically consider genetic contribu-

tions to grandchildren, so that an individual’s reproduc-

tive value is inversely proportional to the total surviving

individuals of their sex. Others (e.g., Grafen 2014) define

an individual’s reproductive value as the probability that

a random future gene can be traced back to that individ-

ual.

We will consider the lifetime reproductive value for

each population stage as follows. In a matrix model, the

dominant left eigenvector v of the projection matrix A is

a vector of stage-specific reproductive values (shown in

age-structured models by Goodman 1968; extended to

stage-structured models by Taylor 1990).

Recall that the selection gradient (19) depends on v0 as
follows:

dk0

ds01
¼ w0| � v0|ð ÞdvecA

0

ds01
(46)

For a s 9 1 population vector, the Kronecker product

in (46) is the 1 9 s2 vector:

w0|�v0|¼ w1v1 w1v2 . . . w1vs j. . .j wsv1 wsv2 . . . wsvsð Þ
(47)

where wi is the ith entry of w0 (stable stage frequency of

stage i), and vi is the ith entry of v0 (reproductive value of

stage i).

At any singular strategy sex ratio s�1, the selection gradi-

ent (46) is equal to 0. Substituting (47) into (46) and

evaluating at s�1, we obtain:

w0| � v0| ¼ dvecA0

ds01

� �����
s01¼s1¼s�1

¼ 0 (48)

where

dvecA0

ds01
¼ 1

3

dvecT0

ds01
þ dvecB0

ds01
þ dvecU0

ds01

� �
(49)
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Figure 11. Values of the evolutionary stability condition (22) and convergence stability condition (34) over a range of offspring costs. (A) Case 1,

productive unions. (B) Case 3 (adult mortality), poor unions.
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Cases 1 and 2

In Case 1 (offspring resource costs, B0 is a function of s01,
but U0 and T0 are not. Thus, (49) simplifies to:

dvecA0

ds01
¼ 1

3

dvecB0

ds01
(50)

The matrix B is given by (7) so that:

vecB0 ¼ 0 . . .
Rs01
Ca

0
Rð1�s01Þ

C0
a

0 0
� |

dvecB0

ds01
¼ 0 . . .

RCf

C2
a

0 �RCm

C02
a

0 0
� | (51)

where Ca is given by (35).

Substituting (51) into (50), then into (48), we obtain:

Cf R

C2
a

wsv1 � CmR

C2
a

wsv3 ¼ 0 (52)

Canceling out terms and rearranging, we obtain the

simple expression:
Cf v1 ¼ Cmv3 (53)

Again, vi corresponds to the reproductive value of stage

i. In our population vector (3), stage 1 is m1 (juvenile

males), and stage 3 is f1 (juvenile females). Thus, (53)

becomes:
vm1

vf 1
¼ Cm

Cf
(54)

The expression (54) shows that, at s�1, the primary

reproductive value ratio vm1

vf 1
(ratio of juvenile male to

juvenile female reproductive values) equals the ratio of

the sex-specific resource costs. This expression is analo-

gous to the inverse of the equal investment principle (1),

but is written in terms of the reproductive value ratio

rather than the sex ratio.

The same result (54) holds for Case 2 (offspring mor-

tality during parental investment, if Cm and Cf are given

by (41).

Case 3

In Case 3 (offspring mortality after parental investment,

(49) once again simplifies to (50). The matrix B is given

by (7) so that:

vecB0 ¼ 0 . . . Rs01 0 Rð1� s01Þ 0 0ð Þ|
dvecB0

ds01
¼ 0 . . . R 0 �R 0 0ð Þ| (55)

Substituting (55) into (50), then into (48), we obtain:

Rwsv1 � Rwsv3 ¼ 0 (56)

which reduces to
vm1 ¼ vf 1 (57)

In other words, the reproductive values of juvenile

males vm1 and juvenile females vf1 are equal at s�1. The
corresponding primary reproductive value ratio vm1

vf 1
is thus

0.5 regardless of sex-specific mortality.

Case 4

In Case 4 (parental mortality cost, both B0 (15) and T0

(43) are functions of s01, so (49) becomes:

dvecA0

ds01
¼ 1

3

dvecB0

ds01
þ dvecT0

ds01

� �
(58)

After differentiating and performing several algebraic

manipulations, (48) yields the expression:

vm1 ¼ vf 1 þ c ðDf � DmÞðUf vm2 þ Umvf 2 � ðUf þ UmÞvuÞ
� �

(59)

In this case, the relationship between reproductive val-

ues is more complex. The amount by which vm1 deviates

from vf1 is determined by the mortality effect c. In the

limit as c ? 0, vm1 ? vf1, as in Case 3.

Discussion

Because reproduction is shaped by the entire life cycle,

and stage-specific offspring costs are often speculated to

affect sex ratios, demographic population models lend

additional insight into sex ratio theory. We have shown

how to formulate flexible demographic two-sex models,

and how to perform evolutionary analyses of these mod-

els using adaptive dynamics. Our analyses include calcula-

tions and characterizations of singular strategies that

depend on sex and stage differences, demonstrating how

demographic considerations affect evolution.

Using this approach, we found that four alternative

interpretations of sex-biased offspring costs may modify

the primary sex ratio (Table 2). In some cases, our results

contradict the widely held conclusions of models that

neglect demographic population structure, most notably

the classic belief that mortality after the period of parental

investment cannot affect the primary sex ratio.

The importance of union formation

Our results may arise our incorporation of a union stage.

Two-sex models that do not include unions allow adults

to reproduce directly and thus do not distinguish between

the “mating advantage” and “offspring production advan-

tage” of the rarer (e.g., higher mortality) sex.

Figure 12 compares the general structure of models

with and without unions. A “mating advantage” increases

the rate at which singles form unions (highlighted red
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arrow), while a “offspring production advantage” (high-

lighted blue arrow) increases the rate at which singles

ultimately produce offspring.

In models without unions, single males and females

produce offspring directly. In these models, the birth rate

is often proportional to the mating function (e.g., Caswell

and Weeks 1986; Hardy 2002), so the rarer (higher mor-

tality) sex will have greater fertility and produce more off-

spring. The directly increased “offspring production

advantage” of this higher mortality sex appears to coun-

terbalance its mortality and maintain s�1 at equality.

In models with unions, singles must first enter the

union stage to produce offspring. Single adults enter

unions at rates given by the mating functions and may

return to the singles stages due to union dissolution from

divorce or partner mortality. In this case, the rare, higher

mortality sex will have greater mating rates, which may

increase its offspring production indirectly. However, this

“mating advantage” of the rarer sex is not always propor-

tional to its ultimate “offspring production advantage”. If

unions are poor, due to low resource investment rate R

or high divorce d, they ultimately may not produce many

offspring. The “offspring production advantage” of the

rarer (higher mortality) sex may thus be reduced, causing

s�1 to favor the more common (lower mortality) sex.

As an illustrative example of a model without unions,

consider a 4-stage model that allows all adults to produce

offspring directly. This population contains nonbreeding

(juvenile) males m1 and females f1 that mature into

breeding (adult) males m2 and females f2, which then

produce new offspring (Fig. 13).

The 4-stage population vector is:

nðtÞ ¼
m1

m2

f1
f2

0
BB@

1
CCA (60)

We now use birth rates rather than mating rates.

Assume, as in Case 3, that all offspring resource costs are

normalized to 1 (Cm = Cf = Ca = 1). The total birth rate

B(n) is the product of the resource investment rate R and

the total mating function M(n) from (4):

BðnÞ ¼ RMðnÞ (61)

The corresponding per capita male and female fertility

rates are:

FmðnÞ ¼ BðnÞ
2m

(62)

Ff ðnÞ ¼ BðnÞ
2f

(63)

where the factor of 1
2 prevents double-counting offspring

from both males and females.

Because we have eliminated the mating process, the

mating matrix U is simply a matrix of zeros. The birth

and transition rate matrices are now:

BðnÞ ¼
0 s1Fm 0 s1Ff
0 0 0 0
0 ð1� s1ÞFm 0 ð1� s1ÞFf
0 0 0 0

0
BB@

1
CCA (64)

T¼
�ðlm1þamÞ 0 0 0

am �lm2 0 0
0 0 �ðlf 1þaf Þ 0
0 0 af �lf 2

0
BB@

1
CCA (65)

As in Case 3, we will consider sex-biased mortality after

parental investment. As shown in Figure 14, the equal sex

ratio s�1 ¼ 0:5 is now preserved for both juvenile and

adult mortality. In the 4-stage model without unions,

Singles Offspring

Unions

Model with unions

Model without unions

Mating Um, Uf

Dissolution 
d, μm2c , μf2c

Reproduction R/Ca

Fertility Fm, Ff

Figure 12. A comparison of two-sex models with unions (top, red

arrows) and without unions (bottom, blue arrow). Parameters used as

indicators of union productivity (the divorce rate d and resource

investment rate R) are highlighted in yellow. The highlighted arrows

indicate the transitions increased by the “mating advantage” (red

highlighted arrow) and “offspring production advantage” (blue

highlighted arrow) of the rarer sex.

f1 f2 m2 m1

s1FfFm(1-s1)

μf1 μf2 μm1μm2

αf αm

s1FmFf(1-s1)

Figure 13. Life cycle diagram for a 4-stage population with juvenile

males m1 and juvenile females f1, and adult males m2 and adult

females f2. The functions and parameters shown here appear in the

birth matrix bfB (64) (green), or transition matrix T (65) (blue).
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higher mortality in one sex appears to be fully compen-

sated for by its higher fertility.

Kahn et al. (2013), who compared models with overlap-

ping generations (like ours) to more typical nonoverlap-

ping generation models, found that sex-specific adult

mortality in the presence of generational overlap can also

produce sex ratio biases. In our demographic analyses,

however, both models with and without unions have over-

lapping generations. Because the effect of sex-biased mor-

tality after parental investment disappears in the no-union

case (Fig. 14), generational overlap alone cannot explain

the patterns of sex ratio biases that we have observed.

The role of reproductive value

We have found that several well-known predictions about

the primary sex ratio are actually more applicable to the

primary reproductive value ratio. This includes the equal

investment principle (1), and the claim that mortality

after parental investment cannot bias the sex ratio.

Although we found deviations from the sex ratios pre-

dicted by the equal investment principle in Case 1 (off-

spring resource costs) and Case 2 (offspring mortality

during parental investment), (54) shows that an analogous

principle still holds for the reproductive value ratio

instead (Fig. 15A and B). We also found that mortality

after parental investment can bias the SS sex ratio (Case

3, offspring mortality after parental investment), but it

cannot bias the corresponding reproductive value ratio by

(57) (Fig. 15C and D).

Consequently, we would only expect the primary sex

ratio to follow an equal investment principle and be unaf-

fected by mortality after investment if it were equal to the

primary reproductive value ratio – that is, if the lifetime

contribution of each sex to future generations was directly

proportional to its relative abundance at birth.

However, the primary sex ratio and reproductive value

ratios appear to deviate in our 5-stage model, especially

when unions are poor. If unions are unproductive, sex-

specific reproductive values may be differentially reduced,

with the rarer sex having much less of a reproductive

advantage. The rarer sex must thus become even rarer to

raise its reproductive value to the same level as the more

common sex, biasing the primary sex ratio in favor of the

more common sex.

Extensions and caveats

We have focused on four common interpretations of

sex-biased offspring costs, but there are many additional

sex-specific differences that can affect the sex ratio,

which could studied by the appropriate addition of

population stages or rate matrices to our demographic

model. For example, male and female offspring may

differ not only in how they affect parental survival, but

also in how they affect future parental reproduction.

Female red deer, for instance, settle closer to their par-

ents than males do, increasing mate competition (Tri-

vers 1985).

Offspring may also benefit their parents through sex-

specific cooperation. In some cooperatively breeding

birds, for instance, young males stay with their parents

for several years to help rear new broods. This may cause

the sex ratio to favor the more “helpful” sex, as evidenced
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Figure 14. Singular strategy (SS) sex ratios for the 4-stage (no unions) model, as a function of the (A) juvenile male mortality rate lm1, with

juvenile female mortality lf1 = 1 - lm1, or the (B) adult male mortality rate lm2, with adult female mortality lf2 = 1 - lm2.
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by male-biased fledgling ratios in woodpeckers (Frank

1990).

We also note that there is often not a single, fixed lim-

iting resource for offspring production (Frank 1990), as

we have assumed in Cases 1 and 2. The offspring costs or

gains per unit of parental investment are not always fixed

as well and may vary according to a nonlinear returns

model (Charnov 1979b). These factors may cause addi-

tional sex ratio biases that were not noted here. The evo-

lutionary effects of these other considerations, or multiple

costs acting simultaneously, could likely be modeled using

a similar approach.
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Appendix A: Relationship between
second derivatives at singular
strategies

Following Geritz et al. (1998), we note that sx(y) = 0 at

any singular strategy y = x = x* – that is, if the mutant

and resident phenotypes are identical, the invasion fitness

is 0. The directional derivative of sx(y) along y = x,

Dy=x[sx(y)], is thus also 0:

Dy¼x sxðyÞ½ � ¼ @sxðyÞ
dx

þ @sxðyÞ
dy

¼ 0 when y ¼ x ¼ x�
(A.1)

Similarly, the second-order directional derivative of

sx(y) along y = x must also be 0:

Dy¼x Dy¼x½sxðyÞ�
� 	����

y¼x¼x�
¼ @

@x

@sxðyÞ
dx

þ @sxðyÞ
dy

� �

þ @

@y

@sxðyÞ
dx

þ @sxðyÞ
dy

� �
¼ @2sxðyÞ

@y2
þ 2

@2sxðyÞ
@x@y

þ @2sxðyÞ
@2x

¼ 0 when y ¼ x ¼ x�

(A.2)

Assuming that sx(y) is twice continuously differentiable,

the following relationship holds at any singular strategy

x*:

@2sxðyÞ
@y2

þ 2
@2sxðyÞ
@x@y

þ @2sxðyÞ
@2x

� �����
y¼x¼x�

¼ 0 (A.3)

In the two-sex matrix model, (A.3) becomes (31).

Appendix B: Calculating mixed
second derivatives

As in Shyu and Caswell (2014), the pure second deriva-

tives of k0 with respect to h0 are:
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@2k0

@h0@h0|
¼ d

dh0|
vec

dk0

dh0|

� �|
 �
(B.1)

The mixed second derivatives of k0 with respect to h0

and h are similarly:

@2k0

@h@h0|
¼ d

dh|
vec

dk0

dh0|

� �|
 �
(B.2)

It can be shown (Caswell 2010) that:

dk0

dh0|
¼ ðw0 � v0Þ| dvecA

0

dh0|
(B.3)

Substituting (B.3) into (B.2), we obtain:

@2k0

@h@h0|
¼ d

dh|
vec

dvecA0

dh0|

� �|
ðw0 � v0Þ


 �
(B.4)

To evaluate (B.4), we will use the following rule (Mag-

nus 2010) for derivatives of matrix products. Given

matrices Y (n 9 v) and X (m 9 n), the derivative of

their product with respect to a third matrix Z (p 9 q) is

dvecðXYÞ
dðvecZÞ| ¼ ðY| � ImÞ dvecX

dðvecZÞ| þ ðIv � XÞ dvecY

dðvecZÞ| :
(B.5)

Using (B.5), we can rewrite (B.4) as:

@2k0

@h@h0|
¼ ðw0| � v0| � IsÞ d

dh|
vec

dvecA0

dh0|

� �|
 �

þ dvecA0

dh0|

� �|
dvecðw0 � v0Þ

dh|

¼ ðw0| � v0| � IsÞdvecðC
|Þ

dh|
þ C| dvecðw0 � v0Þ

dh|

(B.6)

where

C ¼ dvecA0

dh0|
(B.7)

To evaluate the derivative in the first term of (B.6),

recall A0 is a matrix function of w(h).

Thus, to find the matrix derivative of C with respect to

h, apply the commutation matrix and chain rule for

matrix derivatives:

dvecðC|Þ
dh|

¼ Kn2;s
dvecðCÞ
dh|

¼ Kn2;s
dvecðC½wðhÞ�Þ

dh|

¼ Kn2;s
dvecC

dw|
dw

dh|

(B.8)

where it can be shown (Caswell 2008) that

dw

dh|
¼ kIs � Aþ we|A� ½w| � ðIs � we|Þ� dvecA

dw|


 ��1

� ½w| � ðIs � we|Þ� dvecA
dh|

(B.9)

To evaluate the derivative in the second term of (B.6),

we will use the following rule (Magnus and Neudecker

1999, p. 227) for the derivatives of Kronecker products.

Given matrices Y (u 9 v) and X (m 9 n), the derivative

of their Kronecker product with respect to a third matrix

Z (p 9 q) is

dvecðX� YÞ
dðvecZÞ| ¼ ðIn � Kvm � IuÞ � ðImn � vecYÞ dvecX

dðvecZÞ|



þ ðvecX� IuvÞ dvecY

dðvecZÞ|� (B.10)

Using (B.10), the derivative in the second term of (B.6)

becomes:

dvecðw0 � v0Þ
dh|

¼ ðIn � v0Þ dw
0

dh|
þ ðw0 � InÞ dv

0

dh|
(B.11)

By chain rule,

dw0

dh|
¼ dw0

dvecA0|
dvecA0

dw|
dw

dh|
(B.12)

where dw0

dvecA0| is given by (26). Similarly,

dv0

dh|
¼ dv0

dvecA0|
dvecA0

dw|
dw

dh|
(B.13)

where dv0
dvecA0| is given by (27).

Substituting (B.8) and (B.11) into (B.6), we obtain:

@2k0

@h@h0|
¼ ðw0| � v0| � IsÞKn2;s

dvecC

dw|
dw

dh|

þ C| ðIn � v0Þdw
0

dh|
þ ðw0 � InÞ dv

0

dh|


 �
(B.14)

This expression is equivalent to (32) when the only

evolving trait is the primary sex ratio, so that h = s1.
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