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The reduction of information capacity of the ocean sound channel due to scattering by internal

waves is a potential problem for acoustic communication, navigation, and remote sensing over long

ranges. In spite of recent progress in research on acoustic signal scattering by random internal

waves and the fact that random internal waves are ubiquitous in the world oceans, there is no clear

understanding of how these waves influence data communication performance. The entropy

decrease resulting from scattering by internal waves is an important measure of information loss.

Here a rigorous calculation of the entropy is carried out using second moment transport theory

equations with random sound-speed perturbations obeying the Garrett–Munk internal-wave model.

It is shown that full-wave rate of entropy is of the same order of magnitude as the

Kolmogorov–Sinai entropy and Lyapunov exponents for the relevant ray trajectories. The corre-

spondence between full-wave and ray entropies suggests a correspondence between full-wave scat-

tering and ray chaos near statistical saturation. The relatively small level of entropy rate during

propagation through the random internal-wave field shows that scattering by internal waves is likely

not an essential limitation for data rate and channel capacity.
VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4928617]
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I. SCIENTIFIC OBJECTIVE DETERMINATION, MAIN
RESULTS

Scattering by small-scale ocean processes such as inter-

nal waves can impose limitations on ocean acoustic commu-

nications, navigation, remote sensing, and matched-field

processing. The stochastic properties of the sound field scat-

tered by internal waves are poorly understood in long-range

propagation as conditions of saturation are established.1–9

Early studies utilizing ray methods to understand scattering

processes in long-range acoustic propagation suggested there

is an exponential sensitivity to initial conditions and a rapid

growth of acoustic field complexity within a scale of a few

hundred kilometers.1,2 Later examination of the phenomenon

of ocean acoustic ray chaos with its manifestations in the

wave field has shown that in the presence of a waveguide

and realistic ocean sound-speed fluctuations the complexity

of ocean acoustical beams do not expand exponentially or

explosively but rather they expand diffusively.10 Shannon

entropy is a natural measure of acoustical beam complexity,

informational losses in long-range propagation, and estima-

tion of communications channel capacity. Entropy evolution

in a random ocean using Monte Carlo simulation within the

parabolic equation approximation of sound propagation has

been studied.10 As result of that simulation, for the first time,

a close connection was found between Shannon entropy of a

wave field and the Lyapunov exponent of ray chaos. The

present work continues that investigation on a more rigorous

theoretical foundation. The problem is solved using stochas-

tic differential equations for the second-order statistical

moments of the acoustic field7,8,11 and an equation for a

Shannon entropy evolution is derived. The scattering of a

narrow weakly divergent sound beam12 by random ocean

structure is considered in the coupled-mode approxima-

tion.11 The random index of refraction is described using the

Garrett–Munk internal-wave spectrum.3 The results are

obtained in good agreement with the original research.10 We

consider the Shannon entropy of vertical profiles of the

beam complex envelope as a function of range in a close

connection between the instability of the ray equations (i.e.,

Lyapunov exponent) and the Kolmogorov–Sinai (K-S) en-

tropy.2 The results show that the rate of change of Shannon

entropy, for some idealized dynamical systems, is closely

related to the K-S entropy over an intermediate regime of

time. Thus the rate of Shannon entropy for our finite-

frequency numerical simulations can be directly compared

to ray simulation results of average finite-range Lyapunov

exponents as a measure of K-S entropy.

In this study, it is found that acoustic beams in an ocean

waveguide with realistic sound-speed perturbations caused

by internal waves after a startup transient process expand

diffusively with the entropy growing linearly with range.

The entropy rate obtained in the simulation depends upon
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the emitting angle and has an order of magnitude Lyapunov

exponent. This Shannon entropy rate is decreasing and con-

verging to the value of Lyapunov exponent with frequency

increasing. Specifically, the rate of change of Shannon en-

tropy in this linear regime for frequency higher 300 Hz at the

channel axis is computed to be approximately 0.02 bit/km

and at the higher angle beam emitted from the depth 2000 m

to be around 0.01 bit/km. These values are shown to be close

to K-S entropy, computed for the same conditions in ray

approximation and related to ray chaos. Clearly, the wave

field entropy cannot grow indefinitely as this system is

bounded by the ocean surface and bottom. If the waveguide

is lossless, the entropy should stabilize to a level equivalent

to equipartition, a maximum entropy state. The entropy will

grow until acoustic energy fills the entire water column at

which time the entropy should stabilize. The diffusive beam

spreading and the linear rate of Shannon entropy is decreas-

ing and converging to K-S entropy when frequency is

increasing. These results suggest a finite-frequency manifes-

tation of ray chaos after the establishment of saturation. In

conclusion, it will be shown that the small level of entropy

rate caused by scattering by internal waves is not an essential

limitation for data rate and channel capacity.

II. STOCHASTIC DIFFERENTIAL EQUATIONS FOR
SECOND ORDER MOMENTUMS OF RANDOM FIELD

The following is a brief description of stochastic differ-

ential equations basics that have been previously published

but are included here for completeness11 (see the Appendix).

Let us assume that the ocean sound speed Cðx; zÞ con-

sists of an average sound-speed profile �Cðx; zÞ, dependent

only on the depth coordinate z, and a perturbation fluctuation

dcðx; zÞ. Considering the acoustical pressure in a form,

pðx; zÞ ¼ Wðx; zÞ exp½iðj0x� xtÞ�:

The parabolic differential equation for the wave function

Wðx; zÞ has the form [Eq. (1)]

�2ij0

@W
@x
¼ � @

2W
@z2
þ j2

0 � j2 x; zð Þ
� �

W; (1)

where

j ¼ x=cðx; zÞ; j0 ¼ x=c0:

Expansion of the wave-function in terms of the unperturbed

modes unðzÞ has the form,

Wðx; zÞ ¼
XN

m¼1

AmðxÞunðzÞ; (2)

where

d2

dz2
þ �j2 zð Þ � j2

n

� �
un ¼ 0; W 0; zð Þ ¼ W0 zð Þ: (3)

The stochastic amplitudes obey the system of ordinary dif-

ferential equations

@An

@x
¼ i

j2
n � j2

0

2j0

An � i
XN

m¼1

qmnA; (4)

with the stochastic stationary mode coupling matrix

qmn xð Þ ¼ k0

ðD

0

dc x; zð Þ
c0

un zð Þum zð Þdz; (5)

where D is the ocean depth; j0 ¼ x=c0.

After removing deterministic oscillations, the interac-

tion representation of the equation takes the form,

@un

@x
¼ �i

XN

m¼1

exp �ikmxð Þqmn exp iknxð Þum; (6)

where

un ¼ An exp �iknxð Þ; kn ¼
j2

n � j2
0

2k0

; (7)

or in a matrix form,

@U

@x
¼ iMU; (8)

where

U ¼ fAn expð�iknxÞg;

Uðx ¼ 0Þ ¼ U0; MðxÞ ¼ f�e�ikmxqmnðxÞeiknxg: (9)

M is a random square symmetrical matrix. The stochastic

properties of M are completely defined by statistics of its

random coefficients �e�ikmxqmnðxÞeiknx related to random

sound velocity fluctuations dcðx; zÞ.
The stochastic equation13 for the correlation matrix

hci ¼ hUU�Ti, derived in the Appendix has a form,

@hci
@x
¼ �

ð1
0

hM xð ÞM x� nð Þidnhci

� hci
ð1

0

hM� xð ÞM� x� nð ÞiTdn

þ
ð1

0

hM x� nð Þhci xð ÞM�T xð Þidn

þ
ð1

0

hM xð Þhci xð ÞM�T x� nð Þidn: (10)

We are considering a stationary stochastic mode cou-

pling coefficients with the cross-correlation function, which

in accordance with a corollary of the Wiener–Khintchin the-

orem, is the inverse Fourier transformation of the cross-

power spectral density function,

hqmnðxÞq�klðx� nÞi ¼
ð1
�1

dkhq̂mnðkÞq̂�klðkÞie�ikn: (11)
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The correlation matrix hq̂mnðkÞq̂�klðkÞi defines the statistics

of random matrix MðxÞ ¼ f�e�ikmxqmnðxÞeiknxg and can be

calculated from internal wave model (Colosi and Brown3).

The specific model parameters are: number of internal wave

modes—NJ ¼ 50, 10 ¼ 7:3 m,

hq̂mnðkxÞq̂�klðkxÞi ¼
XNJ

J¼1

hjaJj2ihjbJj2iGmnðJÞGklðJÞ;

(12)

where (see Appendix)

hjaJj2i ¼
1

MJ

1

J2 þ j2�
; j� ¼ 3; MJ ¼

X1
J¼1

1

J2 þ j2�
� � ;

(13)

hjbJ kxð Þj2i ¼
8

p2

"
kJ

k2
x þ k2

J

þ 1

2

k2
J

k2
x þ k2

J

� �3=2

� log

 
k2

x þ k2
J

� �1=2 þ kJ

k2
x þ k2

J

� �1=2 � kJ

!#

� 8

p2

kJ

kJ
2 þ 0:5kx

2
; (14)

Gmn Jð Þ ¼ j0f0

lcN
1=2
0

g

ðH

0

dzN zð Þ3=2

� sin pJn zð Þ½ �um zð Þun zð Þ: (15)

The Lorenzian approximation suggested in Eq. (14) has been

used in the past.7,8 The approximation gives very good

agreement with the precise equation [Eq. (14), left part] and

essentially simplifies the form of final equations. Note that

for spectral density approximation Eq. (14), the following

statement [Eq. (16)] is correct,

hqmnðxÞqklðx� nÞi ¼ hqmnðx� nÞqklðxÞi: (16)

III. COMPUTATIONAL ALGORITHM FOR ENTROPY
EVOLUTION

The resultant algorithm ready for computational imple-

mentation has the following form:

@hci
@x
¼ �Xhci � hciX�T þ Y1 hcið Þ þ Y2 hcið Þ; (17)

where

X ¼
ð1

0

hM xð ÞM x� nð Þidn

¼
XNa

n¼1

ð1
0

e�ikixhqmn xð Þqnk x� nð Þiei kn�kkð Þneikkxdn

¼
XNJ

J¼1

8
ffiffiffi
2
p

p
1

MJ

1

J2 þ j2�
E A Jð ÞB Jð Þ
	 


E; (18)

where the terms are defined by

A Jð Þ ¼ Amn Jð Þ
	 


¼
(

j0f0

lcN
1=2
0

g

ðH

0

N zð Þ3=2

� sin pJn zð Þ½ �un zð Þum zð Þdz

)
(19)

and

B Jð Þ ¼ Bmn Jð Þ
	 


¼
(

j0f0

lcN
1=2
0

g

ðH

0

N zð Þ3=2

� sin pJn zð Þ½ �un zð Þum zð Þffiffiffi
2
p

kJ � i km � knð Þ
� � dz

)
: (20)

The diagonal matrix E is defined as

E ¼ feiknnxg: (21)

The third and fourth terms are very similar to the first two,

Y1ðhciÞ ¼
ð1

0

hMðx� nÞhciðxÞM�ðxÞTidn

¼
ð1

0

hMðx� nÞhciðxÞMðxÞidn

¼
XNa

n¼1

XNa

k¼1

e�iðkm�knÞx
ð1

0

hqmnðx� nÞqklðxÞi

� eiðkm�knÞndnhcnkie�iðkk�klÞx

¼
XNJ

J¼1

8
ffiffiffi
2
p

p
1

MJ

1

J2 þ j2
�

EB Jð ÞE
	 


hci EA Jð ÞE
	 


;

(22)

Y2 hcið Þ ¼
ð1

0

hM xð Þhci xð ÞM�T x� nð Þidn

¼
ð1

0

hM xð Þhci xð ÞM x� nð Þidn

¼
XNJ

J¼1

8
ffiffiffi
2
p

p
1

MJ

1

J2 þ j2�
EA Jð ÞE
	 


hci EB Jð ÞE
	 


:

(23)

The knowledge of mode amplitude correlation hci
¼ hUU�Ti will provide an estimate of a variety of acoustic

field parameters such as spatial correlations, mean intensity

as function of range and depth, and entropy as function of

range. For example, the equation for a spatial distribution of

mean intensity of random acoustic fields with correlated

modes is written

hjpðx; zÞj2i ¼
XN

m

XN

n

hcmni exp ðiðkm � knÞrÞumðzÞunðzÞ:

(24)

The estimation of entropy, when random process is

close to Gaussian, can be calculated in a similar way.

Everything in the universe eventually moves from order

to disorder, and entropy is the measurement of that change.
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Entropy is measure of randomness or the quality of having

no apparent order. The word entropy (root from the Greek

“entropia”) describes the measurement of disorder, chaos, or

uncertainty in a system. Specifically, entropy is a logarithmic

measure of the number of states with significant probability

of being occupied. In information theory,14,15 (communica-

tions), it is a numerical measure of the uncertainty of an out-

come, or measure of information that is missing before

reception.14,15 It shows the contribution of the scattering by

internal waves to signal fluctuations in a long-range propaga-

tion. The entropy can be considered as a measure of chaos or

complexity of the random process. The complexity of a ran-

dom process depends on the number of independent compo-

nents, which in a Gaussian case can be a number of essential

non-correlated components in Karhunen–Loeve (K-L)

expansion.10 The complex envelope of the sound-pressure

field at each range step can be represented by a stochastic se-

ries with NðrÞ significant contributions that has been called

the dimension of the random process. In more specific form,

by the definition, entropy can be calculated through negative

Shannon information IðrÞ of a random process pðr; zÞ or any

of its one to one conversion (for example: pðr; zÞ () UðrÞ),

IðxÞ ¼ �
ð

log2Prðpðx; zÞÞdPrðpðx; zÞÞ

¼ �
ð

log2PrðUðxÞÞdPrðUðxÞÞ: (25)

The correlation matrix of a Gaussian process defines

the entropy. The probability density of a vector U
¼ ðu1; u2; :::; uNÞ of N Gaussian complex random values with

nonsingular correlation matrix KU has the following form:

Pdf ¼
exp � U �MUð ÞHK�1

U U �MUð Þ
� �

pNdet KUð Þ ;

KU ¼ h U �MUð Þ U �MUð ÞHi; (26)

where KU is the complex correlation matrix of the complex

random vector U, MU is the mean vector, and the superscript

H means Hermitian transpose (complex conjugate and

matrix transpose). The entropy, H, in the case of a scattering,

when random process is close to Gaussian, can be defined in

a form,10

HðxÞ ¼ �IðxÞ ¼ N log2ðeÞ þ log2ðpNdetðhcmniÞ

¼ N log2ðepÞ þ
XN

j¼1

log2kjðxÞ; (27)

where kjðxÞ are the eigenvalues of correlation matrix hcmni;
N is the number of acoustical modes as in Eq. (2).

For an independent and equal partition of mode energy,

kjðxÞ ¼ k (modal spectrum “white”) the entropy is maxi-

mum, but for any other spectrum, the entropy is less than

this maximum value. Note that this simple definition of en-

tropy is based on the assumption that the Gaussian random

process is nonsingular; otherwise, a more rigorous definition

must be applied in terms of absolute continuity of probability

measures and the Radon–Nikodim derivative.16 If the modal

intensity is approximately uniform for all significant modes,

the entropy will be approximately proportional to the modal

spectrum bandwidth. That spectrum will expand with the

range and its bandwidth will increase. That is why the en-

tropy rate is related to the divergence or defocusing of very

narrow acoustical beam.

In a broadband case, which is more practical case for

underwater communication, the same derivation can be pro-

vided for a random spectrum of sound pressure Pðf ; x; zÞ, or

a corresponding vector with mode amplitudes Uspecðf ; xÞ,

Uspecðf ; xÞ ¼
ð1
�1

Uðx; tÞ expðik2pftÞdt

¼ fAnðf Þ expð�iknxÞg; (28)

where X ¼ 1=T. Note that for the stationary Gaussian pro-

cess Uðt; xÞ, the spectrum harmonics Uspecðf ; xÞ are uncor-

related and independent. The joint entropy of a set of

variables is less than or equal to the sum of the individual

entropies of the variables in the set (sub-additive). This in-

equality will become an equality if and only if the varia-

bles are statistically independent. The entropy rate does

not depend strongly on frequency, and it can be assumed

that in a narrow communications frequency range the en-

tropy of all independent frequency components are the

same as for the central frequency. As result, the joint en-

tropy rate for a broadband sound waveform will be a prod-

uct of the entropy rate at the central frequency to the signal

base DFT,

Roe ¼ ðDFTÞ�Reðf0Þ; (29)

where DF is the frequency bandwidth, T is the duration of

the signal, DFT is the complexity of the signal, f0 is the

central frequency, Reðf0Þ is the entropy rate bit/km for the

central frequency of the bandwidth, and Roe is the joint

entropy.

IV. COMPUTATIONAL EXAMPLE

A weakly divergent beam (WDB) scattered by a random

internal-wave field can be considered as an analog to a Dirac

function in channel response estimation theory. The concen-

trated narrow-angle beam is a simple subject for simulation of

acoustic energy scattering. The existence of weakly divergent

bundles of rays was discovered and described by

Brekhovskikh,12 Goncharov,17 and Petukhov.18 The rigorous

necessary condition for the formation of a strictly non-

divergent beam in a full wave approach is equivalent to the

local linearity of the mode wave number as a function of

mode order.10,11 An underwater wave-guide with a canonical

Munk sound speed profile does not exactly satisfy that condi-

tion, but beam divergence is very weak. The mode shapes

for the canonical Munk sound speed profile are shown in the

Fig. 1. A beam generated in the Munk sound waveguide, from

the depth 2000 m at the frequency 250 Hz, calculated by a

normal mode expansion after scattering by internal waves is
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shown in the Fig. 2. The vertical dimension of the Gaussian

starting aperture is roughly 150 m (25 wavelengths),

p ¼
ffiffiffiffiffiffiffiffiffiffiffi
j0=D

p
exp f–ðj0=DÞ2ðz–zsÞ2g; (30)

where j0 ¼ 2pf=c0; c0 ¼ 1500 m=s, zs is the sound source

depth, and the width factor D was adjusted to value 60 to

achieve narrow beams. Here and in the subsequent analysis

all cylindrical spreading factors were removed.

A. Internal waves model parameters

The random internal wave model is based on a two-

dimensional approximation of the Garrett–Munk spectrum in

FIG. 1. Mode shapes for the canonical Munk sound speed profile.

FIG. 2. Intensity of scattered beam from the depth 1300 m, depth of underwater acoustic channel.
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accordance with Colosi and Brown3 with internal wave

index: J ¼ 1 : NJ ;NJ ¼ 50.

The mean intensity of a narrow beam emitted from the

depth of the underwater sound channel 1300 m at the fre-

quency of 250 Hz and scattered by random internal wave

field is shown in Fig. 2. The mean intensity of a narrow

beam emitted from the depth 1600 and 2000 m and the fre-

quency of 250 Hz are shown in Figs. 3 and 4, respectively.

The calculation used formula (28) after the differential Eq.

(21) were solved.

The complexity of the acoustical scattered field directly

depends on the number of independent components in its

structure or on the number of eigen functions of its correla-

tion function. The number of eigen functions as a function of

range for the three considered cases is shown in Fig. 5. In

that example, the frequency of the acoustic signal was

FIG. 3. Intensity of scattered beam from the depth 1600 m.

FIG. 4. Intensity of scattered beam from the depth 2000 m.
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250 Hz and the sound source depth was varied among 1300,

1600, and 2000m. The eigenvalues were considered signifi-

cant if they were 75% of the maximum value or greater. It

can be noticed that for acoustical beams close to the channel

axis (1300 m), the number of significant eigenvalues grows

linearly with the range.

Entropy levels calculated directly by formula (31) for

different frequencies and different sound source depths are

presented in the Figs. 6 and 7. It can be noticed that for all

considered examples after 1500 km range, the entropy is

increasing with a slowly declining rate. The physical mean-

ing of entropy rate is the information (coherency) loss during

propagation in the random ocean at the range 1 km. Those

entropy rates for different frequencies and different depths

of sound source are presented in the Figs. 8 and 9. The en-

tropy rates as a function of range at the frequency 250 Hz for

three different of sound source depths, 1300, 1600, and

2000 m, are shown in Fig. 10. It is interesting that although

entropies are monotonically growing, the rate at the begin-

ning of the process is not stable. The rate is oscillating

FIG. 5. Eigen-function number evolution.

FIG. 6. Entropy evolution over range 2000 km, sound source at the depth of underwater acoustic channel—1300 m.
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because of the diffraction of the narrow beams. At that part

of the curve, the process cannot be considered as entirely

chaotic or random; what is seen is ordinary wave diffraction.

At the end of the range, the entropy rate is stabilized to some

constant value, depending from beam angle. These rates are

the same order of magnitude as the Lyapunov exponents for

ray chaos. Specifically, at the axis of the underwater channel

(1300 m), entropy rate at the distance 2000 km is decreasing

with the frequency from the level of 0.7 at 100 Hz to 0.2 at

300 Hz. For the larger propagation angle beams with a

1600 m source depth (or larger), the entropy rate is decreas-

ing from value 0.06 at 100 Hz to the value 0.01 at 300 Hz.

These asymptotical values will be compared with K-S en-

tropy, which is a specific measure of ray chaos instability.

V. RAY CHAOS AND K-S ENTROPY

There is a strong connection between wave and ray dy-

namics in underwater sound scattering. Shannon entropy in a

coupled mode approach is directly related to the acoustical

FIG. 7. Entropy evolution over range 2000 km, sound source depth—1600 m.

FIG. 8. Entropy rate as function of range, sound source depth 1300—m.
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ray stability and ray chaos theory. Ray trajectories in ocean

acoustic propagation through internal waves are chaotic or

unstable to perturbations in the medium and in the initial

conditions.1,2 The chaotic nature of ray propagation in the

ocean is quantified using the Lyapunov exponent �L, which

is derived from a stability analysis of the ray path.1 The

instability can be expressed in terms of information

theory19,20 by K-S entropy hKS,

lim
jsj!1

IðsÞ=s ¼ hKS; (31)

where information IðsÞ is associated with a segment of ray

trajectory of length s. The K-S entropy can be considered to

be entropy per unit length of propagation trajectory. For

bounded dynamical systems like underwater sound

�L ¼ hKS,21 a consequence of the chaotic nature of ray paths

is that the number of eigen-rays connecting a source and a

receiver will grow exponentially with range, leading to an

exponential increase in wave field complexity.22 Thus the

exponential increase in wave field complexity is examined

using the Lyapunov exponent (a measure of the K-S

FIG. 9. Entropy rate as function of range, sound source depth 1600—m.

FIG. 10. Entropy rate as function of range, frequency—250 Hz.
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entropy), which is to be compared to the computed rate of

Shannon entropy. The Lyapunov exponent is derived from

the stability equations, and is given by

�L ¼ lim
x!1

log jTrðJÞj=x; (32)

where TrðJÞ is the trace or sum over the diagonal elements

of the stability matrix J.1,23 A finite range stability exponent

can be estimated by � ¼ log jTrðJÞj=x. This finite range sta-

bility exponent has the property23 that �L ¼ h�i � hKS,

where the expectation values imply averaging over realiza-

tions of the ocean internal-wave field. The Lyapunov expo-

nent was calculated numerically10 for the ray initial

condition zð0Þ ¼ 1300 m; pð0Þ ¼ 0. An explicit adaptive

Runge–Kutta algorithm was used to calculate 200 realization

of ray trajectories with the preceding initial conditions. The

calculation yields an estimate hKS of 0.02 bit/km for the axial

ray, decreasing linearly to 0.012 bit/km for the 2000-m

source depth ray. These values are comparable to other cal-

culations of the Lyapunov exponent for ray propagation

through ocean internal waves.1,2 The value of 0.02 bit/km for

the entropy rate hKS is exactly equal to the long range value

of the Shannon entropy rate for the 300 Hz axial beam case.

For the source depths of 1600 and 2000 m, the long range en-

tropy rate at 300 Hz is 0.01 bit/km. For the deeper source

depths, the entropy rate is smaller because a limited number

of acoustical modes were used in the simulation.

Comparison of the physical wave chaos entropy rate to the

K-S entropy under the same propagation conditions shows

that the levels are converging at long range and high fre-

quency. This condition occurs because diffraction effects

become less and less important. However, in comparing

these entropy values to the computed gradients of Shannon

entropy for the complex envelope, it must be noted that the

complex envelope includes information about both phase

and amplitude, while hKS is only a measure of the sound-

field energy characteristics, such as intensity and angular

power density. It must be emphasized here that the compari-

son between K-S entropy and full-wave Shannon entropy

rate is crude as we have only compared the K-S entropy of

one ray, while the Shannon entropy involves a bundle of

rays with a range (albeit small) of initial conditions. It is

known, for example, that there can be significant variability

of Lyapunov exponent as a function of initial conditions due

to the structure of the background sound-speed profile.1,2 So

the information gradient of the full-field entropy cannot be

exactly equal to the K-S entropy.

The comparison of Shannon or physical entropies curves

HðxÞ of the complex envelope of the full-field simulation

with hKS shows that the evolution of narrow-beam entropy

has two stages (see Figs. 5–10). In the first stage, the beam-

width and spatial spectrum are growing rapidly due to the

wave diffraction (Figs. 5–10 for range x smaller than

1500 km). The second stage occurs approximately near satu-

ration (x> 1500 km); the entropy gradient slows down and

tends to a level that at high frequencies is approximately

equal the K-S entropy of the corresponding chaotic ray tra-

jectories. This second stage can be called chaotic from both

a full-wave and ray perspective because entropy is monot-

onically growing with the gradient determined by the aver-

aged Lyapunov exponent. Simultaneously the beam width,

the spatial spectrum width, and the dimension of the random

process are all approximately linearly increasing. The linear

entropy gradient shows that near saturation of fluctuations,

ray chaos phenomenon becomes the main factor determining

the properties of scattering processes.

VI. CONCLUSION

The derived transport theory equations for the second

order moments of an acoustic field in an ocean with a ran-

dom internal wave field give rigorous predictions of the en-

tropy rate and informational losses. The equations were used

for our entropy range evolution study in an ocean consisting

of Garrett–Munk internal waves. At long range, near-

saturation finite-frequency narrow beams show a slowly

decreasing entropy rate that does not depend strongly on fre-

quency. This full-wave rate of entropy is of the same order of

magnitude as the K-S entropy and finite-range Lyapunov

exponents for the ray trajectories associated with this beam.

Comparison of Shannon entropy rate and K-S entropy has

shown that some differences between them can be explained

by the different physical nature of the information carriers.

Parameters of wave scattering and ray chaos are well matched.

The correspondence between full-wave and ray entropies sug-

gests a correspondence between full-wave scattering and ray

chaos near statistical saturation. However, the roots of that cor-

respondence are not obvious and should be considered for fur-

ther investigation. The analysis shows that in a random

internal-wave field with the Garrett–Munk spectrum close to

the axis of the canonical Munk underwater wave-guide, the en-

tropy decreases at the rate as 0.01–0.05 bit/km per one degree

of diversity. Such small level of entropy rate during propaga-

tion through random internal-wave field shows that scattering

by internal waves should not be considered as an essential li-

mitation for data rate and channel capacity.
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APPENDIX

The following stochastic differential equations basics

have been gathered and briefly presented in the Appendix

for the convenience of the reader. The original theory can be

found in details in the papers.11

Let us consider the system of stochastic differential

equations in a form in a matrix form,

@U

@x
¼ iMU; (A1)

where U is the stochastic vector process. Particularly, in that

paper, it is related to acoustic mode coefficients and random

matrix of mode coupling coefficients by equations described

in the paper as follows:
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U ¼ fAn expð�iknxÞg; Uðx ¼ 0Þ ¼ U0;

MðxÞ ¼ f�e�ikmxqmnðxÞeiknxg; (A2)

M is a square symmetrical matrix. The formal general solu-

tion of Eq. (A1) has a form of a time ordering (“o”)

exponent,

U ¼ expo i

ðx

0

Mðx0Þdx0
� �

U0; (A3)

expo

�
i

ðx

0

Mðx0Þdx0
�

¼
�X1

m¼1

im
ðx

0

ðx1

0

…

ðxm�1

0

Mðx1Þ:::Mðxm�1Þdx1:::dxm�1

�
o

:

(A4)

It is important to note that (A3) is a formal solution, which can

be verified by substitution and being very careful about collect-

ing terms of the sum in the time ordering, see the Ref. 11.

If a random process MðxÞ and ð
Ð x

0
Mðx0Þdx0Þ are

Gaussian, then all its cumulants13 with order more than 2 are

equal to zero and cumulant hhMðx1ÞMðx2Þii ¼ hMðx1Þ
Mðx2Þi, where hh:ii is the cumulant operator; h:i is the aver-

age operator. The components hhMnðxiÞdxnMðxjÞdxj:::ii in a

general cumulate exponent form vanish for all orders n > 1,

when dx� > 0, and we obtain the simple cumulant integral

in the exponent index.13 It allows us to write equation for the

averaged exponent,



expo i

ðx

0

Mðx0Þdx0
� ��

¼ expo

 X1
m¼1

im
ðx

0

dx1:::

ðxm

0

dxmhhMðx1Þ

�Mðx2Þ:::MðxmÞiidx1:::dxmÞ

¼ expo �
ðx

0

dx1

ðx1

0

dx2hMðx1ÞMðx2Þi
� �

: (A5)

After taking derivative from Eq. (A5), in a lowest order

approximation assuming, that M-operators are commuting,

and we can disregard range ordering. In that form, the equa-

tions are approximation of a precise solution. The M-

operators commute condition for example (sufficient but not

necessary), when process is delta-correlated or in a case of

small scattering on one step propagation process but not

small on a large scale.

d

dx
hUi ¼ �

ðx

0

hM xð ÞM x� nð ÞidnhUi: (A6)

Numerical estimations show that with a very small

error at the beginning of process, we can replace the inte-

gral on range independent equal to the value with infinity

limits

d

dx
hUi ¼ �

ð1
0

hM xð ÞM x� nð ÞidnhUi: (A7)

The second order moment equation follows from the equa-

tion for random variable c ¼ UU�T , where * is the conjugate

operator and T is the transposition. Let us return back to Eq.

(A1) and multiply it from the right side by matrix U�T , then

conjugate Eq. (A1) and multiply it from the left side by U.

Summing up these two result equations gives the differential

equation for matrix UU�T [Eq. (A8)],

@UU�T

@x
¼ i MUU�T �UU�TM�Tð Þ; @c

@x
¼ i Mc� cM�T
� �

:

(A8)

The mean evolution equation corresponding to the matrix

Eq. (17) can be obtained by transforming equation into the

form equivalent to Eq. (A1). The transformation is based on

reshaping N � N matrix c ¼ fcmng ¼ UU�T into N2 � 1

vector-column ~c ¼ fcig formed by consecutively stacking

the columns of c in accordance with rule: i ¼ mþ ðn� 1Þ
�N. The same transformation sets up a correspondence

between a square matrix ðMc� cM�TÞ and vector-column

ðI �M �M� � IÞ~c and finally between Eq. (A13) and its

tensor form Eq. (A14),

@~c
@x
¼ ~M~c; (A9)

where ~M ¼ ðI �M �M� � IÞ; � is the Kronecker tensor

product with the following properties:

C ¼ A� B : cpq ¼ faklBg ¼ faklbmng;
p ¼ mþ ðk � 1ÞN; q ¼ nþ ðl� 1ÞN; (A10)

ðA� BÞðC� DÞ ¼ ðAC� BDÞ; (A11)

ðA� BÞ~c ! BccT ; (A12)

where A and B are arbitrary N � N matrixes and N2 � 1

vector-column ~c related with c by inverse transformation of

dimensions N2 � 1! N � N, shown here and in Eq. (A12)

by arrow “!.” The correlation evolution equation can be

readily obtained in a form,

dh~ci
dx
¼ �

ð1
0

h ~M xð Þ ~M x� nð Þidnh~ci: (A13)

Next transformation is based on the abovementioned prop-

erty [Eq. (A11)] of tensor product

@h~ci
@x
¼
"
�I �

� ð1
0



ðM xð ÞM x� nð Þ

�
dn

�

�
� ð1

0

hðM� xð ÞM� x� nð Þidn

�
� I

þ
ð1

0

hM� xð Þ �M x� nð Þidn

þ
ð1

0

hM� x� nð Þ �M xð Þidn

#
h~ci: (A14)
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Moreover, we can avoid a large dimension N2 � N2 matrix
~M and return back to matrix M (with initial dimension

N � N) and equation for correlation matrix hci, if we apply

Eq. (A12),10

@hci
@x
¼ �

ð1
0

hM xð ÞM x� nð Þidnhci

� hci
ð1

0

hM� xð ÞM� x� nð ÞiTdn

þ
ð1

0

hM x� nð Þhci xð ÞM�T xð Þidn

þ
ð1

0

hM xð Þhci xð ÞM�T x� nð Þidn: (A15)

The matrix MðxÞ is determined by internal-waves model

(Colosi and Brown3), as it follows.

The internal-waves random field fðx; zÞ mode series pre-

sentation has a form:

f x;zð Þ¼f0

N0

N zð Þ

� �1=2X1
J¼1

aJ sin pJn zð Þ½ �
ð1
�1

dkxbJ kxð Þeikxx;

(A16)

f kx; zð Þ ¼ f0

N0

N zð Þ

� �1=2X1
J¼1

aJ sin pJn zð Þ½ �bJ kxð Þ;

(A17)

where nðzÞ ¼ 1=N0B
ÐD

z Nðz0Þdz0 is WKBJ stretched vertical

coordinate, B ¼ N0=
ÐD

0
Nðz0Þdz0, NðzÞ is buoyancy frequency,

N0 ¼ p=600 is the surface extrapolated buoyancy frequency,3

and the internal-wave mode coefficient aJ is a complex

Gaussian random variable. Using the paper definition Eq. (5),

we have

q̂mnðkxÞ ¼ j0f0

X1
J¼1

aJbJ kxð Þ
ðD

0

dz
1

c0

@c

@z

� �
p

zð Þ

� N0

N zð Þ

� �1=2

sin pJn zð Þ½ �um zð Þun zð Þ

¼ j0f0

lcN
1=2
0

g

X1
J¼1

aJbJ kxð Þ
ðD

0

dzN zð Þ3=2

� sin pJn zð Þ½ �um zð Þun zð Þ; (A18)

where J is index for internal waves,3 J ¼ 1 : NJ; lc ¼ 24:5
(dimensionless); 10 ¼ 7:3 m; g ¼ 9:8 m=s2,

qmn xð Þ ¼
ð1
�1

dkq̂mn kð Þe�ikx;

q̂mn kð Þ ¼ 1

2p

ð1
�1

dxqmn xð Þeikx: (A19)

The paper Eq. (12) for coupled mode correlation matrix

hq̂mnðkxÞq̂�klðkxÞi follows directly from that simplified inter-

nal wave analytic model. That matrix determines statistics of

random matrix MðxÞ and finally the form of the Eq. (17) for

correlation matrix.
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