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Abstract Breaking the core assumption of ecological
equivalence in Hubbell’s “neutral theory of biodiversity”
requires a theory of species differences. In one framework
for characterizing differences between competing species,
non-neutral interactions are said to involve both niche dif-
ferences, which promote stable coexistence, and relative
fitness differences, which promote competitive exclusion.
We include both in a stochastic community model in order
to determine if relative fitness differences compensate for
changes in community structure and dynamics induced
by niche differences, possibly explaining neutral theory’s
apparent success. We show that species abundance dis-
tributions are sensitive to both niche and relative fitness
differences, but that certain combinations of differences
result in abundance distributions that are indistinguish-
able from the neutral case. In contrast, the distribution
of species’ lifetimes, or the time between speciation and
extinction, differs under all combinations of niche and rel-
ative fitness differences. The results from our model exper-
iment are inconsistent with the hypothesis of “emergent
neutrality” and support instead a hypothesis that relative
fitness differences counteract effects of niche differences
on distributions of abundance. However, an even more
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developed theory of interspecific variation appears neces-
sary to explain the diversity and structure of non-neutral
communities.
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Introduction

Empirical studies of resource competition routinely show
that niche differences promote coexistence in nature (e.g.,
Tilman 1977; Silvertown et al. 1999; Adler et al. 2010;
Harms et al. 2000; Narwani et al. 2013). Mathematical mod-
els of competition with just one possible niche could there-
fore be expected to perform badly. Models of this type are
called neutral community models (NCMs) and, contrary to
expectation, actually do reproduce several observed species
abundance distributions (SADs; Bell 2001; Hubbell 2001;
McGill 2003; Volkov 2003; Etienne 2005). But SADs can
be remarkably similar under both neutral and non-neutral
assumptions (Volkov et al. 2005; Ruokolainen et al. 2009;
Haegeman and Loreau 2011; Noble et al. 2011; Chisholm
and Pacala 2010; Zillio and Condit 2007). To help under-
stand the conditions allowing neutral and non-neutral com-
munities to appear similar, we develop theory distinguishing
between two different pathways to degeneracy that have
garnered attention: so-called “emergent neutrality” (Holt
2006) and compensation for niche differentiation through
“destabilizing” mechanisms (Chave 2004). To help establish
patterns more indicative of non-neutrality in competitive
communities, we also investigate how species lifetime dis-
tributions respond to the addition of both niche differences
and destabilizing mechanisms.
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The argument behind emergent neutrality is that neutral,
or at least nearly neutral, communities arise from ecological
or evolutionary processes that promote similarity between
species (Holt 2006). The concept principally applies to
speciation events driven by minor genetic mutations; new
species persist because they scarcely differ (Scheffer and
van Nes 2006). More broadly, emergent neutrality may
describe any situation where trade-offs between traits allow
species to achieve equivalent fitness (Ostling 2012). The
resulting community dynamics are considered nearly neu-
tral whenever the vital rates of individuals become roughly
equivalent, potentially allowing communities with heteroge-
neous traits to obtain neutral patterns of abundance. It is not
guaranteed, however, that nearly neutral models will behave
much like exactly neutral models (Zhou and Zhang 2008;
Ostling 2012).

In contrast to emergent neutrality, Chave (2004) hypothe-
sized that neutral-like patterns occur when niche differences
are accompanied by some destabilizing mechanism. Du
et al. (2011) give a concrete example of contrasting ecolog-
ical mechanisms that supports Chave’s hypothesis. Niche
differences, modeled as frequency-dependent survivorship,
are included along with interspecific variation in fecundity,
which Du et al. (2011) incorporate as a destabilizing pro-
cess. As predicted, neutral-like SADs do indeed occur when
differences in fecundity are tuned to a level that offsets the
stabilizing effect of frequency-dependent survivorship (Du
etal. 2011).

Emergent neutrality and Chave’s hypothesis both violate
the neutral assumption of strict ecological equivalence at the
individual level, so a formal comparison requires a quanti-
tative treatment of departures from neutrality. A framework
for such a treatment exists in the review of coexistence
mechanisms by Chesson (2000), which mirrors the hypoth-
esis of Chave (2004) in recognizing two, opposing ways of
breaking the assumption of neutrality (Adler et al. 2007).
Ecological trade-offs classically associated with niche dif-
ferentiation create a kind of non-neutral interaction that
stabilizes species coexistence (Chesson 2000). A destabiliz-
ing process implies a kind of departure from neutrality that
increases “relative fitness differences” between species and
thereby promotes competitive exclusion: it is the reverse of
an equalizing mechanism of coexistence (Chesson 2000).

When mapped onto the niche vs. relative fitness differ-
ences framework, the two proposed scenarios under which
non-neutral communities may appear neutral become qual-
itatively distinct. To attribute any degeneracy to emergent
neutrality, the community in question should exhibit both
strong equalizing mechanisms (which eliminate relative
fitness differences) and weak stabilizing mechanisms (pre-
cluding niche differences). Under this hypothesis, depar-
tures from neutrality along either axis would reduce the
similarity of non-neutral communities to neutral ones.
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Alternatively, the ratio of stabilizing to equalizing mech-
anisms, rather than the magnitude of the departure from
neutrality, may determine whether non-neutral communi-
ties exhibit neutral-like patterns. Even large deviations from
neutrality, so long as they maintain a more or less careful
balance between the two types of species difference, allow
the similarity between neutral and non-neutral communities
to persist under this alternative hypothesis. Unlike the first
scenario, this one raises the question of whether observed
similarities between neutral and non-neutral communities is
a quirk peculiar to SADs alone. Confirmation of the second
scenario should embolden attempts to identify ecological
patterns that are not degenerate in the presence of strong
niche and relative fitness differences (McGill et al. 2007).
Here, we relate the magnitude of niche differences (ND)
and of relative fitness differences (RFD) to the appearance
of neutral-like patterns of diversity in a stochastic Lotka-
Volterra competition model, one similar to the model of
Haegeman and Loreau (2011). To quantify species’ dif-
ferences in a reproducible way, we extend the approach
of Carroll et al. (2011), which is shown to give precisely
the same measures of ND and RFD identified by Chesson
(2013) in a deterministic, two-species version of the model.
Our objective is to determine whether the combination of
niche and relative fitness differences controls whether the
community exhibits properties also observed under the neu-
tral parameterization of the model. In addition to comparing
SADs, we also examine the effect of departures from neu-
trality on the distribution of species’ lifetimes. In this way,
our study contributes to the objective of identifying types
of observational or monitoring data that would reliably
characterize ecological interactions in an empirical setting.

Departures from neutrality

The dynamic signature of increasing ND is the simultane-
ous increase of multiple species’ invasion fitness (Metz et al.
1992; Metz 2008) or their population growth rates when rare
(Chesson 2000; Carroll et al. 2011). Reducing overlap in the
resources consumed by two species, the classic example of
ND, will hasten recovery of both species from low densities.
In contrast, the consequence of RFD is an increase in the
invasion fitness of one species that comes at some cost to
the invasion fitness of another (Chesson 2000; Carroll et al.
2011). Variation in fecundity, for example, can bring about
a RFD when it leads to competitive exclusion in the absence
of a sufficient stabilizing mechanism (Adler et al. 2010).
Considering these effects of interspecific competition on
community-wide trends in invasion fitness led Carroll et al.
(2011) to propose community-level indices of niche and rel-
ative fitness differences. In short, the index of ND tracks
the geometric mean effect of competition on low-density
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population growth rates, while RFD is measured by the
geometric standard deviation of these effects. As detailed
next, this approach to quantifying ND and RFD indepen-
dently arrives at the established result for a two-species
Lotka-Volterra (LV) model (Chesson 2013).

The first step is to calculate the “sensitivity to competi-
tion” for each of n species, denoted by S; foriin {1, ... ,n},
and defined to be the relative change in the species’ popula-
tion growth rate when invading an equilibrium community
of heterospecific competitors (Carroll et al. 2011). To write
down an explicit formula for S; in a LV competition model,
let the competition coefficients be «; ; and let y;‘.‘) ; be the
abundance, relative to the carrying capacity, of species j at
equilibrium in the absence of species i (Appendix A). With

just two species, for example, y; | = y}, = 1. For the LV
model,
o
$i=2 o i M
#

The equation assigns zero sensitivity to a species unaf-
fected by competition and increasing sensitivity with either
larger competition coefficients or greater abundance of
competitors. A sensitivity that exceeds one corresponds to
a negative invasion fitness, or the inability of species i to
invade an established community of competitors.

The set {S1, S2, ..., S, } is subsequently used to calculate
ND,, and RFD,, the subscripted abbreviations indicating
these specific metrics for ND and RFD among n species.
We equate ND,, to one minus the geometric mean of the
sensitivities, which reflects an average effect of competition
on invasion fitness. Likewise, RFD,, is the geometric stan-
dard deviation of the sensitivities, which reflects variability
in competition’s effect on different species. In the LV model
with two competitors,

ND, = 1 — [4L2%2L )

—_

which Chesson (2013) denotes by 1 — p while describing p
as a measure of niche overlap. Likewise, assuming without
loss of generality that ey 1 /1,1 > a12/02,2,
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RFD; =

The assumption makes RFD, > 1, as required of a
geometric standard deviation. This is the “average fitness
ratio” that Chesson (2013) denotes by 1 /«>. An increase in
ND,, means the average sensitivity to competition has been
reduced, which corresponds to a stabilizing mechanism of
coexistence; a process that brings RFD,, closer to one is an
equalizing mechanism because it makes stable coexistence
possible with a smaller ND,, (Carroll et al. 2011).

The preceding steps are directly applicable to determin-
istic models with a fixed community composition. NCMs
and their non-neutral alternatives typically do not have a
static set of species: extinctions and introductions change
the number and identity of extant species over time, and
the entire community is modeled as a stochastic process.
Neither do such models have a perfect analog for the pop-
ulation growth rate that Carroll et al. (2011) used to define
S;. For a given richness, however, the model presented next
is routinely approximated by the LV model just described.
A straightforward approach to quantifying ND and RFD in
this stochastic setting is to independently sample commu-
nities from the process, calculate ND,, and RFD,, values
according to an LV model parameterized as in each sam-
pled community, and average these values across samples.
For large samples, we obtain estimates of the expected val-
ues denoted by (ND) and (RFD). We drop » in this notation
because all richness levels contribute to the expectation.

Model

We examine the consequence of (ND) and (RFD) varia-
tion in a Lotka- Volterra-like model that admits demographic
stochasticity. The model is similar to one studied by Haege-
man and Loreau (2011), except that it describes a closed
“metacommunity” (sensu Hubbell 2001). Including disper-
sal can improve the fit of NCMs to empirical SADs (Etienne
2005), but our narrower purpose of comparing models only
to each other justifies the simplifying assumption of a well-
mixed community, closed to immigration, that only gains
new species through unique speciation events. Hewing close
to the model of Hubbell (2001), we also ignore the reali-
ties of population age or size structure and inhomogeneous
environments. As in the deterministic LV model, we depict
competition as the linear dependence of each individual’s
per capita mortality rate on the population density of its
competitors. We admit demographic stochasticity by mod-
eling the community as a continuous-time Markov chain, or
more precisely as a multivariate birth-death process (Nisbet
and Gurney 1982; Gardiner 2009). Introductions of novel
species are incorporated into the model as a Poisson process.

The state of the community is denoted by a random vec-
tor N whose ith element is an integer abundance, changing
by plus or minus one with each birth or death in the ith
species. During any short time interval of duration dz, the
probability of a birth of one individual into the ith species
is B;(N)dt. Likewise, a death of one individual in the ith
species has probability D;(N)ds. We assign the same per
capita birth rate, A, to all individuals, giving

Bi(N) = AN;. )
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Density dependence is incorporated in the species-specific
death rates

N‘
Di(N) = | n+8) oij—o | Ni ©)
J

where 2 is the area or volume of the system, w is the
density-independent mortality rate, «;; is fixed at one so
6 becomes the amount of density dependence each species
would experience in isolation, and the competition coef-
ficient, «; j, modulates the impact of the jth species on
density dependence within the ith species. All parameters
are non-negative. Taking dr infinitesimally small guarantees
that at most one birth or death can occur at any moment
within the entire community and provides, in the usual way,
a system of ordinary differential equations whose solution
is the probability distribution on N over time (Appendix A).

Every species in the model eventually goes extinct. The
transition from a positive population size to zero cannot
be reversed because there is no immigration into the meta-
community. Introductions of novel species, i.e., “speciation”
events, prevent eventual extinction of the entire community.
We parody the drawn-out processes of macroevolution by
allowing a single individual of a novel species to appear
with probability vd¢ at any point in time. This is almost the
“point mutation mode” of speciation described by Hubbell
(2001), but the speciation rate here is not per capita. How
novel species are assigned competition coefficients will
be explained after distinguishing neutral from non-neutral
parameterizations of the model.

Neutral parameterization

Setting every competition coefficient (i.e., every «; ;) equal
to one corresponds to the definition given by Hubbell (2001)
of neutrality at the level of the individual. The per capita
mortality rate in Eq. 5 becomes the same for every indi-
vidual in the community. Even though the rate increases
with community size, or the total number of individuals
of all species, every individual is identically affected. The
per capita birth rate is the constant A in Eq. 4, so every
individual also has the same chance of reproducing. This
parameterization makes individuals demographically indis-
tinguishable and causes the model to behave similarly to
previously published NCMs.

Although community size is not fixed, the model’s sta-
tionary SAD is consistent with the sampling formula that
Hubbell (2001) and many others have established under the
“zero-sum” assumption of a fixed community size. Caswell
(1976) and Etienne et al. (2007) both present NCMs with a
variable community size whose SAD is distributed accord-
ing to the sampling formula of Ewens (1972) when condi-
tioned on a given number of individuals. Our model differs
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from these NCMs in two ways: (1) species abundances are
not independent and (2) the birth rate for species with zero
individuals is zero, making the speciation process distinct
from recovery of extirpated species. These features also dis-
tinguish our model from the type presented by Volkov et al.
(2003), in which a fixed number of species independently
repeat a random walk away from zero and then back to
it. In our model, the probability distribution on the total
community size is sharply peaked near Q (A — w)/8, while
the relative abundances of component species are variable
and negatively correlated. With density-dependent mortal-
ity regulating community size without holding it constant,
the model is intermediate between a zero-sum model and a
model with independent and interchangeable species.

Despite these differences, we can follow the approach of
Kelly (1976) to show that relative abundances remain driven
by Ewens’s sampling formula. Let the SAD be a random
vector denoted by ®, in which ® is the number of species
with k individuals. The total number of individuals is equal
to Y pok®y and is given the label J. In a closely related
neutral model, Kelly (1976) observed that ® itself evolves
as a Markov chain and found its stationary probability distri-
bution, denoted by Pg. From this solution, the distribution
P; may be calculated by marginalizing out the relative
abundances of each species, and these together define the
conditional distribution satisfying P = Pg|s P;. As shown
in Appendix B, the probability distribution on SADs for
communities of size J, our Pg)s, is exactly Ewens’s sam-
pling formula. In addition, P; is the stationary distribution
for a birth-death process with birth rate v + AJ and death
rate (,u +46J Q_l) J. The total number of individuals fol-
lows a stochastic logistic process with immigration, while
the relative abundance of species has the same distribution
found in prior NCMs.

Non-neutral parameterization

Changing the competition coefficients so o; ; # 1 for j # i
breaks the neutral assumption. Obtaining values of ND,, >
0 and RFD,, > 1 can be achieved with a minimal number of
parameters by setting «; ; = n fori < j, and setting o;, j =
B > nfori > j. The competition matrix in a community
of, for example, three species then becomes

1
B ©)
B

= - 3
—_— 3

At every speciation or extinction event, the competition
matrix increases or decreases, respectively, by one row and
column. This highly structured matrix constrains the gener-
ality of the model but provides simple control parameters
for our modeling experiment.
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For a given richness, but otherwise regardless of the
number of preceding speciation and extinction events, the
competition matrix is invariant. Applying this matrix to
Eq. 1, the value of ND,, and RFD,, becomes unique for a
given n. The expected niche and fitness difference in the
stochastic model can therefore be written as a combination
of known ND,, and RFD,, values with an unknown distri-
bution on species richness. In communities composed of n
species with probability P,, we can now write

({ND), (RFD)) =  "(ND,, RFD,) P,, (7)
n=0

noting that an arbitrary specification of NDy = 1 and
RFD( = 1 has little impact given the negligible probability
of zero species. While changing n or 8 has an exactly cal-
culable impact on ND,, and RFD,,, the values of (ND) and
(RFD) cannot be determined without obtaining the steady
state distribution on species richness.

The final element of the model is the assignment of com-
petition coefficients to each new species. Given the above
competition matrix, the model need only specify how many
extant species any new species will outrank in competitive
ability. When § > n, competition is asymmetric and favors
species with smaller indices in the vector NV of abundances.
Each new species’ insertion point in N establishes its rank
in the hierarchy of competitive dominance. We assume a
uniform distribution on this insertion point, so a speciation
event among n species requires sampling a rank from n + 1
integers with equal probability.

Analytic solutions pertaining to the evolution of N could
not be obtained outside the neutral case (8 = n = 1).
Instead, we generated realizations at particular values of
B and n (Table 1) using the Gillespie algorithm (Gillespie
1977). We characterize different communities in terms of
the compound parameters ND, = 1 — /1B and RFD, =
+/B/n in order to clarify the parameter ranges chosen for
study. We used values that take ND; from its minimum
value of O up to 0.2 and take RFD; between its minimum of
1 and, for a given value of ND», a maximum of (1 —ND2)_1.

Table 1 Parameter values, displayed as (n, 8) and rounded to
two decimals, that differed between simulations. The value of ND;
increases towards the right, and the value of RFD; increase towards the

This maximum RFD; is the greatest value that, with the cor-
responding ND,, allows stable coexistence of two species
in the LV model. Preliminary simulations showed that set-
ting RFD, above this threshold is of little interest because
the resulting community usually consists of a single species.
We set the remaining parameters to balance computational
demands against the aim of simulating communities with
large numbers of individuals and species. Holding v con-
stant while changing values of 8 and n was computationally
manageable for simulations having around 10* individuals
and with v just large enough to avoid monocultures under
the neutral parameterization. At the maximum value of ND;
used, exploratory simulations showed that up to 30 species
could result with A = 1, u = 0.2, § = 0.08, 2 = 1000, and
v = 1, and these parameter choices apply to all simulations
unless otherwise noted. We initiated each realization with
10* individuals of a single founder species and ran time for-
ward through two full community replacements (i.e., until
every species that originated before the founder became
extinct had itself also gone extinct). For each parameter-
ization, we archived output on (i) the final state of 100
independent realizations for SAD estimation and (ii) the
time between speciation and extinction for 10* species in
each of three additional realizations, giving three samples of
the species’ lifetime distribution. Expected SADs were esti-
mated as the average number of species at each abundance
in the final state of each realization.

Approximation in the non-neutral case

Models of non-neutral competition often ignore demo-
graphic stochasticity, on the assumption that deterministic
approximations capture the important dynamics. Mathe-
matical justification for this assumption can proceed from
a linear noise approximation (LNA) to the exact Markov
chain model (van Kampen 2007). The standard result is that
fluctuations fade out as system size increases; for example,
the coefficient of variation on the population density of each
of n species in the present model becomes proportional to
Q7172 as @ — oo (Appendix A). By increasing 2, the

top. Panels in Figs. 3 and 5 use the parameterization from the corre-
sponding location in this table. The labels *, 1 and ¥ indicate quantities
in Fig. 4

1.25 (0.64, 1.00)
= |18 (0.72, 1.00) | (0.68, 0.94)x
& 1.11 (0.81, 1.00) | (0.77, 0.94) | (0.72, 0.89)%
1.05 || (0.95,1.05) | (0.90, 1.00) | (0.86,0.95) | (0.81,0.89) | (0.76, 0.84)}
1.00 || (1.00, 1.00) | (0.95,0.95) | (0.90,0.90) | (0.85, 0.85) | (0.80, 0.80)
0.00 0.05 0.10 0.15 0.20
1—vnB
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effect of demographic stochasticity on a community with
pre-defined richness can always be erased in the non-neutral
case.

In the full model, however, non-zero speciation and
extinction probabilities have the potential to make popula-
tion fluctuations a driver of community structure. The LNA
only proceeds in the usual way when the number of species
is held constant. With richness itself a stochastic process
parameterized by €2, we can no longer guarantee that fluc-
tuations decline like Q~!/? with increasing system size.
Indeed, for the community to achieve a stochastic equilib-
rium, fluctuations must be large enough to cause extinctions
at the same frequency as speciation events. Moreover, the
LNA yields an incomplete deterministic approximation to
our model because it does not give an expected richness.

We attempt to specify a complete, deterministic approxi-
mation in the non-neutral case along with a fast, numerical
approximation to the effects of stochasticity. In brief, our
approach is to couple the LNA for a system with given
richness to a new approximation for the stationary distribu-
tion on species richness (Appendix C). We first apply an
asymptotic method (Kessler and Shnerb 2007; Gottes-
man and Meerson 2012; Ovaskainen and Meerson 2010)
to the problem of estimating the probability of success-
ful establishment, i.e., the frequency of speciation events
not immediately followed by extinction (Grimm and Wis-
sel 2004). Next, we assume a separation of time scales
between population dynamics and the speciation process,
which should only be expected with v much smaller than
the average birth and death rates, and seek a stationary
solution to the resulting Markov chain on species rich-
ness. We use the mode of this distribution to estimate the
most likely species richness, which becomes the dimen-
sion of the system of ordinary differential equations given
by the LNA and completes the deterministic approxima-
tion. Combining the Gaussian process also generated by
the LNA with our distribution on species richness gives a
numerical approximation for SADs that includes stochas-
ticity. The covariance matrix of the Gaussian process is
the solution of a Lyapunov equation, which presents the
main impediment to providing an analytical approximation.
See (Rossberg 2013, ch. 14) for an alternative approach to
approximating SADs in a LV model using stochastic species
packing.

Results

The main results from our model experiment are as follows:

1. The observed magnitudes of (ND) and (RFD) cover a
gradient of departures from neutrality but maintain a
fixed ratio between the two kinds of species’ differ-
ences.
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2.  Community dynamics respond dramatically when com-
petition coefficients deviate slightly from the neutral
parameterization.

3. Expected species abundance distributions (SADs) are
sometimes, but not always, indistinguishable between
neutral and non-neutral communities.

4. Deterministic approximations partly explain the SADs,
but fail to describe the abundance of rare species or their
impact on diversity.

5. Lifetime distributions in non-neutral communities con-
sistently deviate from neutral ones.

We quantified niche and fitness differences in simu-
lated communities by calculating (ND) and (RFD) (Fig. 1).
In two species communities, the model parameters ND;
and RFD» have a precise interpretation, but one we could
not assume to be accurate more generally. Increasing the
parameter RFD, always increased the value of (RFD),
demonstrating a straightforward effect of asymmetric com-
petition coefficients on relative fitness differences. Increas-
ing the parameter ND, had either positive or negligible
effects on the value of (ND), but the magnitude of niche
differences was also affected by RFD,. This result demon-
strates that parameters appearing to have a straightforward

1.25F

1.20}

115}

110}

ORFD,, O(RFD)

1.05)

L0lg——e0————@ @ @
0.00 0.05 0.10 0.15 0.20

® ND,, O (ND)

Fig. 1 The departure from neutrality, as niche and relative fitness dif-
ferences, for different parameterizations of our stochastic community
model. For each pair of points connected by a line, the filled circle indi-
cates the parameters (by reference to the compound parameters ND;
and RFD») while the open circle is the resulting (ND) and (RFD). The
location of the filled circles matches the location of sub-plots in Figs. 3
and 5, connecting the SADs and lifetime distributions to correspond-
ing (ND) and (RFD). The position of the open circles is calculated
by averaging the value of ND,, and RFD,, over the frequency distri-
bution of n, the final species richness in realizations having a given
parameterization (7)
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relationship to niche and fitness differences may have sur-
reptitious effects on invasion fitness.

The parameter ranges employed did translate to a gra-
dient from neutral to non-neutral interactions, but we con-
sistently saw convergence to similar ratios between (ND)
and (RFD) (Fig. 1). Both (ND) and (RFD) fall below ND;
and RFD;, respectively, with (ND) showing less sensitiv-
ity to ND; than anticipated. We numerically confirmed that
ND,+1 < ND,, in our parameter range, which implies that
(ND) will decrease in communities tending to have more
species since it is a weighted average of ND,,. The resistance
of (ND) to changes in ND, arises because the reduction in
the strength of competition with any one heterospecific indi-
vidual is offset by the increased diversity and abundance
of heterospecifics. It remains surprising that the two kinds
of species’ differences tended towards one particular ratio.
That is, across parameterizations with a particular value of
RFD», the distribution on species richness adjusted until the
values of (ND) roughly converged. Overall, our simulations
do include variability in the magnitude of both departures
from neutrality but are also constrained to a narrow band
within the (ND) and (RFD) plane.

Deviations from neutrality obtained by perturbing 8 and
n slightly away from one had large effects on community
dynamics. In each of three non-neutral parameterizations
that could all be considered nearly neutral, time series plots

Fig. 2 Time series from one A
realization of the model from
each of four different 9
parameterizations of 8 and 7. 6
Each color trajectory follows a 3+
0

I
AN

Mo a2

from individual simulations do not show random walks, or
“drift,” without a deterministic trend towards extinction or
coexistence (Fig. 2). Drift, a characteristic feature of NCMs,
is a meandering fluctuation over large ranges in abundance,
limited only by the size of the entire community (Fig. 2a).
Setting B equal to n but slightly less than one, which only
moves (ND) slightly away from zero, drastically reduces
the range of fluctuations (Fig. 2b). Rather than drifting to
large abundances, species invade and persist with several
competitors about a mean abundance (around 10° individ-
uals per species) until particularly large fluctuations cause
an extinction (Fig. 2e). Holding n equal to 1/8 but slightly
increasing RFD» brings on a parade of “selective sweeps”
in which newly created species rapidly replace the currently
dominant one (Fig. 2c). Finally, reducing g alone, which
makes both (ND) and (RFD) slightly greater than zero and
one, respectively, appears very similar to the previous case
(compare Fig. 2¢, d). None of these nearly neutral (Fig. 2b-
d) communities exhibit time series that lack deterministic
tendencies as in the exactly neutral communities (Fig. 2a).
Expected SADs are neither diagnostic of neutral ver-
sus non-neutral parameterizations nor are SADs robust to
all departures from neutrality (Fig. 3). With RFD; equal
to the maximum value that allows deterministic coexis-
tence of two species for a given NDy, the resulting SADs
appeared indistinguishable from those produced under the

single population, and only
populations with more than 100 0 5000
individuals are shown for clarity. B
a The neutral case with

n = B = 1. b Niche differences
only, withn = 8 =0.95. ¢
Relative fitness differences only,
withn =0.95,8=1.05.d
Both kinds of differences, with
n=0.9, B = 1. e A haphazard
selection of trajectories from
panel b on a more revealing
scale. Panel a shows a longer
time scale to capture the slow
“random walk” that drives the
neutral community dynamics.
The remaining parameters are
v=1LA=1Lu=0246=
0.08, 2 = 1000

abundance x 103

10000
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neutral parameterization (plots on the diagonal of Fig. 3).
The log-linear expectation for the cumulative SAD in the
neutral case is particular to the value of v/, which corre-
sponds to the “fundamental biodiversity number” used when
fitting the neutral SADs to empirical observations. In con-
trast, when ND; was increased without adding a relative
fitness difference, the non-neutral SAD grew distinct from
the neutral SAD and indicated a more uniform distribution
of individuals among a greater number of species (plots
along the bottom row of Fig. 3). Parameterizations falling
between these extremes demonstrated a smooth transition
in the shape of the SAD (remaining off-diagonal plots in
Fig. 3), demonstrating that non-neutral SADs are likely to
be at least as flexible as neutral ones, as expected of a model
with two additional parameters.

The behavior of non-neutral SADs may be partly
explained by our deterministic approximation to equilib-
rium population densities (Appendix A). Whenn < 8 < 1,
there is a unique interior equilibrium among n species with
the density of species i proportional to

in the deterministic approximation. On a logarithmic abun-
dance scale, density decreases linearly with i, which cor-
responds to the species’ competitive rank. The value of
n used approximates the mode of the true distribution on
species richness. Plotted as a cumulative SAD, the result is
n equally spaced steps covering a broader range of abun-
dances for larger RFD, (off diagonal plots in Fig. 3). Like
the simulation results, this stepwise function varies from
log-linear to sigmoid across the range of ND, and RFD;
values employed. Quantitative disagreement with the sim-
ulation results are particularly pronounced for rare species,
which are both mistakenly absent (bottom row in Fig. 3)
or too abundant (diagonal in Fig. 3) in the deterministic
approximation.

The SADs described so far come from simulations
with unrealistically frequent speciation events; we need the
numerical approximation to extend our scope to arbitrar-
ily low speciation rates. Large values of v were needed to
maintain multiple species in the neutral case while reducing
computational demands. For communities of the same size
(i.e., same £2), but with much smaller values of v, the neu-
tral community reduces to a monoculture and the effect of

a-pia—-p (8)  fluctuations among abundant species on non-neutral SADs
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Fig. 3 Expected species abundance distributions (SADs) for the com-
binations of niche and relative fitness differences given in Table 1. The
figure shows a cumulative distribution on abundance or the number of
species with abundance less than or equal to the value given on the hor-
izontal axis. The distribution stops at the highest abundance recorded
for at least one species, and the total number of individuals in the
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community is printed in the corner of each panel. Abundance is shown
on a logarithmic scale in the style of Preston plots, but with base ten
for ease of interpretation. The result for the neutral case is repeated in
each panel (dark gray line) for comparison. Details on the determin-
isitc approximation (light gray line) can be found in Appendix C. All
parameters aside from g and 7 are as in Fig. 2
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Cumulative No. of Species

Cumulative No. of Species

Cumulative No. of Species
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100 1000 104
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Fig. 4 The cumulative expected SAD from the numerical approxima-
tion (solid) compared to results from stochastic simulations (dashed).
The top, middle, and bottom panels correspond to diminishing values
of v: 1072, 1073, and 10~*. The three pairs of lines in each panel
have B and n values marked in Table 1 by * (thin), T (thicker) and %
(thickest)

becomes minimal. The numerical approximation to the
expected SADs shows a smoothed version of the stepwise
function (Fig. 4). In two of the three choices for n and
B tested, the underlying distribution on richness spiked at
a single value of n and the numerical approximation per-
formed well. Demographic stochasticity adds noise to the
precise location of each step, but the spacing between steps
is as given by expression (8). In the third case, multiple
richness levels had non-trivial probabilities that were not as

accurately approximated, a problem likely to worsen as the
average number of species increases. Multiple smoothed-
step functions are averaged in this case and, in comparison
to results from stochastic simulations, the number of rare
species gets overestimated.

Unlike SADs, the distribution of species’ lifetimes,
i.e., the time between the origination and extinction of
a species, under non-neutral parameterizations is never
neutral-like. Figure 5 displays the upper tail of the cumu-
lative distribution of species’ lifetimes. Only values above
the 95th percentile are shown because short-lived species
had similar lifetimes across all parameterizations. In neu-
tral communities, this upper tail is a smooth continuation
of the distribution on short-lived species. This contrasts
with the non-neutral communities, in which the upper tail
is no longer concave and shows that stronger departures
from neutrality produce a second mode in the lifetime
distribution.

Species’ lifetimes in non-neutral communities appear to
arise from a mixture distribution in which species that fail
to invade form one mixture component and species that suc-
cessfully establish form a second. In the neutral case, every
species follows the same random walk, so its lifetime is
drawn from a single distribution whether or not the species
persists very long. Deviating from neutrality along the ND;
and RFD; axes in Fig. 5 influences (i) the probability that
a new species will establish and thereby achieve a longer
lifetime and (ii) the variance of lifetimes among species
that do become established. Increasing ND; predominantly
increases the probability that a new species becomes estab-
lished, as evidenced by the larger fraction of populations
in the upper tail of the lifetime distribution (Fig. 5; bottom
row). Increasing RFD; also raises the probability of a suc-
cessful invasion, but it decreases the variance around the
long-lived mixture component, dramatically shortening the
tail of the distribution. For the maximum ND; tested, shift-
ing 4/B/n from 1.0 to 1.25 drops the maximum lifetime
by nearly two orders of magnitude, sharply truncating the
distribution. The clearest separation between a short-lived
mixture component and a long-lived one (i.e., a flat tran-
sition between steep climbs in Fig. 5) occurs when a large
ND; is coupled to an intermediate value of RFD».

Discussion

In this study of a stochastic, Lotka-Volterra-like model
of competition, we describe a framework for quantifying
departures from neutrality that distinguishes between two
competing theories on the remarkable similarities encoun-
tered in neutral and non-neutral communities. We found
that neutral-like SADs arise in non-neutral communities
even when the concept of emergent neutrality does not
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Fig. 5 The upper tail of the cumulative distribution for species’ life-
times within a model realization. For each realization, following a
period of transient dynamics, 10* sequential extinction events were
recorded and the durations of all those above the 95th percentile dis-
played. Each panel shows the results from three realizations, between

apply. A key feature of emergent neutrality is small depar-
tures from neutrality, including both (ND), which relates
to the expected invasion fitness of species experiencing
competition, and (RFD), which is governed by the vari-
ability of invasion fitness within the stochastic community
model. In our simulations, it was not necessary to sup-
pose that some evolutionary or ecological mechanism had
mostly eliminated both niche and relative fitness differ-
ences in the community, making it nearly neutral, in order
to obtain matching neutral and non-neutral SADs. Instead,
we observe near perfect alignment to a neutral SAD across
a gradient in the magnitude of departures from neutrality, as
quantified by the values of (ND) and (RFD).

We found mixed results in support of an alternative to
the concept of emergent neutrality, which is that a partic-
ular balance of stabilizing and equalizing mechanisms is
necessary to make non-neutral communities appear neu-
tral. Non-neutral communities did obtain a neutral-like SAD
in multiple cases where (ND) and (RFD) reached dif-
ferent magnitudes while maintaining roughly equivalent
ratios. However, the same ratio of niche to relative fit-
ness differences was also achieved in simulations where
the non-neutral SAD deviated strongly from the neutral
one. In other words, communities that obtained roughly the
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which there is little variation. The lifetimes are on a log scale on the
horizontal axis and the vertical axis shows the percentile. The average
of the three neutral realizations is printed in each panel for compari-
son (gray line). The parameters, aside from 8 and n which are given in
Table 1, are as in Fig. 2

same (ND) to (RFD) ratio only aligned with the neutral
SAD in a subset of parameterizations. Either the hypothesis
that destabilizing species’ differences will counteract niche
difference requires refinement, or our method for quanti-
fying the magnitudes of the two departures from neutrality
is invalid. Only a one-to-one correspondence between the
shape of the SAD and a combination of niche and rela-
tive fitness differences would convincingly demonstrate that
departures from neutrality are controlled by just these two
variables.

The most surprising result is that communities with
different settings for ND;, roughly corresponding to the
average interspecific competition coefficient, converge on
the same (ND) for a given (RFD). In n species communities,
the value of ND,, is a community-wide average invasion fit-
ness (Metz 2008), the growth rate of one invading species
against n— 1 residents. For a given ND», this invasion fitness
decreases in more diverse communities, so the expected
niche difference, (ND), decreases as more weight is given to
ND,, values with greater n. To achieve stationarity, richness
must adjust until the probability of a successful invasion bal-
ances the probability of an extinction. What we observed
in our model is that communities with smaller competi-
tion coefficients require more species to achieve the ND,,
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that meets this threshold, and this threshold is itself deter-
mined by the relative fitness difference. Greater richness,
and hence total community size, compensated for weaker
competition coefficients to keep (ND) constant over a range
of ND, settings. Interestingly, when there is no variability
between species in their invasion fitness, the threshold value
for ND,, appears to become so close to zero that these com-
munities might all be described as nearly neutral. Emergent
neutrality would seem to be an appropriate label for such
small departures from neutrality, but SADs for these com-
munities are the least neutral-like of all.

When modeling non-neutral communities, rigorously
accounting for demographic stochasticity offers few
rewards in describing any one species’ dynamics, but
it cannot be ignored as a determinant of species rich-
ness. A generations-old adage in population dynamics says
that demographic stochasticity is negligible for sufficiently
abundant species. For any given number of species, every
one of them could reach this sufficient abundance in a suit-
ably large system, i.e., for a big enough 2. For a given
2, however, so long as 0 < n < B < 1, increasing
n reduces each species’ average abundance. Similar to the
classic and much debated species-packing argument of May
and MacArthur 1972, stochasticity induces a limit to niche
differences, although emerging here from intrinsic rather
than environmental randomness (which is not included).
The limit is clearly not a hard limit (sensu Nisbet 1978), as
it is sensitive to RFD, and our stylized competition matrix,
among other structural constraints. Nonetheless, while we
can assemble a deterministic approximation reflecting the
most likely richness of the stochastic community, that model
does not ignore stochasticity. Were stochasticity completely
ignored, there would be no limit to the number of coexist-
ing species in our non-neutral communities. Perhaps more
importantly, no remotely similar ODE model would cap-
ture a feature of the stochastic simulations discussed next:
species turnover.

Comparing distributions of species’ lifetimes, or the time
between speciation and extinction, also demonstrates that
disparate dynamics can give indistinguishable SADs. As
(RFD) increases, the lifetime distributions become increas-
ingly distinct from the neutral case (Fig. 5). The differences
remain even for the parameterizations shown on the diago-
nal which produce neutral-like SADs. In comparison to the
neutral case, replacement of dominant species occurs much
more rapidly in the presence of relative fitness differences.
The effect of variation in ND, on lifetime distributions is
less pronounced, which may be due to the convergence of
(ND) values for a given fitness difference. Nonetheless,
in contrast to the behavior of SADs, consistent differ-
ences between neutral and non-neutral parameterizations
are apparent in the lifetimes of long-lived species. In partic-
ular, eliminating equalizing mechanisms drastically reduces

the longest lifetimes seen in our model, and this effect is not
compensated for by the presence of stabilizing mechanisms.

Species’ lifetimes have previously entered the debate
over neutral theory. An early concern was that average
extinction times predicted by NCMs are too short under
the point mutation mode (Ricklefs 2003). In our model,
and not only under the neutral parameterization, introduc-
ing a single, founding individual for each new species leads
to many rapid extinctions. These failed introductions can
drive the average species’ lifetime to just a few genera-
tions, but adjustments to the speciation mode, independent
of the assumption of neutrality, can provide more reason-
able expectations (Rosindell et al. 2010). Excessively long
lifetimes are a more pernicious issue for NCMs (Ricklefs
2006; Nee 2005) and are on display here as the long tail
of the neutral lifetime distribution (Fig. 5). Our results are
consistent with the power-law behavior of the right-hand
tail that (Pigolotti et al. 2005) identified in a similar NCM.
Neutral theory predicts implausibly large extinction times
because the decline of abundant species occurs too slowly
under ecological drift alone (Ricklefs 2006, 2012).

Our simulations of a non-neutral model show that overly
long lifetimes can be eliminated without deforming the SAD
from a superficially neutral, and thus apparently plausible,
shape. Ricklefs (2003) argues that truncating the lifespan
of long-lived species “would require the appearance of
competitively superior species that occasionally swept com-
munities and caused the extinction of other species.” This
feature is present in our non-neutral model: when a newly
introduced species achieves the highest position in the com-
petitive hierarchy, it will, with high probability, sweep to
dominance and displace the most abundant species in the
community. Under the various parameterizations of our
model, we see that this effect grows stronger as the RFD
increases (i.e., the tails in Fig. 5 are shortest in the top
panel) in line with Ricklefs’ 2003 intuition. For every mag-
nitude of (RFD), however, there always remains a setting
for ND; for which the SAD becomes neutral-like. In prin-
ciple, simultaneously fitting the model to data on current
species abundances and historical extinction times would
eliminate the potential for ambiguity arising from fitting
them to SADs alone. Although dynamic models have been
fit to extinction time distributions (e.g., Suweis et al. 2012),
we are unaware of any analysis that has included both kinds
of data simultaneously. Jabot and Chave (2009) demon-
strate a computational approach for fitting NCMs to SADs
and phylogenetic relatedness simultaneously, and it is likely
possible to transform such phylogenetic data into an age dis-
tribution among extant species, a small step away from the
lifetime distributions of extinct species discussed here.

Neutral theory was partly motivated by an appeal to
simplicity in model construction (Hubbell 2005), prompt-
ing several authors (Volkov et al. 2005; Ruokolainen et al.
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2009; Haegeman and Loreau 2011; Noble et al. 2011;
Zhou and Zhang 2008; Chisholm and Pacala 2010; Zillio
and Condit 2007; Du et al. 2011) to respond in the same
spirit by adding complexity gradually. While an infinite
variety of ecological trade-offs and life history variation
could provide this complexity, the framework of Chesson
(2000) offers the tantalizing possibility that departures from
neutrality can be conceptually organized into two cate-
gories. Alternatives to neutral theory’s null model may, if
our model has any generality, in fact require no more than
two kinds of species’ differences to maintain accuracy. Rel-
ative fitness differences are needed to incur replacement
of numerically dominant species, and niche differences
must be present to maintain species diversity. Unfortunately,
computationally demanding simulations hinder progress in
determining how departures from neutrality affect com-
munity structure and make data fitting exercises all but
impossible. The alternative to “brute force” simulations is
to find approximations that rely on asymptotic methods
(Ovaskainen and Meerson 2010; Eriksson et al. 2013), for
which our treatment of the present model brings into focus
several topics for further study. The simplifying assump-
tions of neutral community models have bought remarkable
theoretical advances (e.g., Etienne and OIff 2005; O’Dwyer
and Green 2010), and a simplifying framework for describ-
ing departures from neutrality shows potential for similarly
advancing theory for non-neutral communities.
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Appendix A: Linear noise approximation

Multivariate birth-death processes are sometimes very well
described by a set of solvable equations that arise when the
size, either area or volume, of the system under considera-
tion is large (Gardiner 2009). These equations are obtained
by a routine procedure called the “system size expansion,’
which we briefly step through here using the birth and
death rates from the main text (following van Kampen 2007,
ch. X). The procedure gives both a deterministic approx-
imation of the mean population densities, as a system of
ordinary differential equations (ODEs), as well as a lin-
ear Fokker-Planck equation approximating the fluctuations
due to demographic stochasticity. The procedure is straight-
forward when the deterministic system approaches a stable
interior equilibrium, so the method is well suited for the
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non-neutral parameterizations of our model. Unfortunately,
we could not adapt it to directly include transitions due to
speciation, in which a new species is admitted according to
a Poisson process with rate parameter v. We take up changes
in species richness in Appendix C and restrict our atten-
tion here to the multivariate birth-death process with a fixed
number of species.

Note that in what follows, we distinguish time-dependent
probability distributions, e.g., Pns, from their stationary
solutions, PI"\‘” 7» with an asterisk, but we do not employ this
notation in the main text or Appendix B, where all distribu-
tions are stationary. Random vectors (scalars) are written in
bold uppercase (normal uppercase), e.g., N (J), while corre-
sponding arguments to a probability distribution are written
in lowercase, e.g., Py|y(n, j). Defining Py|s(n, t; s) as the
probability that the vector of population abundances is n
at time 7, conditioned on having started with s species of
known abundance at time 0, the master equation (Gardiner
2009) for the multivariate birth-death process is

N

LPyis(n, t;s) = Zl {E; — DB;(n)Pyis(n, 1 5) ©

+ (B —1)Di(n) Pyis(n, t; 9)}
where B; and D; are defined in Eqs. 4 and 5 and the shift
operator IEJZjE takes n; to n; = 1. To carry out the system
size expansion, assume there is a smooth probability density
Pzs(z, t; s) that will be equated to Py |s(n, t; Q2 upon
applying the change of variables

n— Qx()
1=t (10)
Note that this substitution is time-dependent, but we put
off defining the function x (¢). Now, assume that the smooth
density is proportional to the distribution Py s at every n:

n—Qx() ) (11

Pyis(n, t; 5)QY% = Pgs <W s

Differentiating both sides with respect to time brings
in the right-hand side of the master equation, in which n
is again replaced using Eq. 10. Because Pz|s is smooth,
we can substitute a Taylor series for the shift operator.
Altogether, dropping the arguments to Pz|s for clarity, the
substitutions yield

s -

> i (0 g5 Prs — g Pzis 2 =
i=1

s ~ -
> A(Biw®) - Diw@)) 2 Pas
i=1

+ Ve (Bix(0) = Dix(1)) - gz Pyys 12

~3(Bix )+ Dy (x(t)))%Pmsz—l/z}w (@),

12)

where the tilde over the birth and death functions indicates
the substitution Fj(x) = Q1 F;(Qx), and the operator Vy
is the gradient of the birth and death rates with respect to
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the vector x evaluated at x (#). Note the expansion has been
truncated to leave off terms smaller than O (Q_l/ 2), which
become trivial as 2 — 00, i.e., as the system’s size expands.
The time-dependent vector x(¢) is now defined with the
express purpose of eliminating the O (1) terms:

%i(t) = Bj(x(t)) — Di(x(t)) fori=1...s. (13)

What emerges, however, is the analogous deterministic
model for the density of each population in the community.
Using the birth and death rates from the main text gives

50 = (= (1 - X e (r)) X0 g
fori =1...5,

which are just the Lotka-Volterra competition equations. A
dimensionless variable called the relative yield of the pop-
ulation, denoted y;, is obtained by dividing every x; by its
own equilibrium in the absence of competitors. With this
change of variables,

N
SO=r [1=3"20y 0 | vy fori=1...5, (15)
Iy
where we have also equated A — u to r to match the nota-
tion of Chesson (2013). The y;"i of Eq. 1 is the equilibrium
solution to Eq. 15 with y; = 0 and the other variables non-
zero, which is unique when ; ; < o ; foralli # j. Except
that we have not yet chosen n, this ODE system is called the
“deterministic approximation” in the main text.

Matching the 0(271/2) terms in Eq. 12 leaves a linear
Fokker-Planck equation:

fPas == X { Ve (Bix) = Ditxan) - fePas

-1 (B,- (x (1)) + D; (x(t))) %Pzw} .
(16)

The equation is uniquely satisfied by a zero-mean multidi-
mensional Ornstein-Uhlenbeck process. For our purpose, it
is sufficient to follow instructions for calculating the covari-
ance matrix of its stationary, Gaussian solution (Section
VIIL.6 van Kampen 2007). That is, we seek the stationary
solution to Eq. 16 where each x;(¢) is replaced with an
equilibrium solution to Eq. 13, denoted x*. The covariance
matrix, X, of this stationary solution, P;l g» 1s calculated by
numerically solving the Lyapunov equation

0=Ax+2AT 4+ C, (17)

in which C is diagonal with entries C; ; = 2Ax;‘ and A; ; =
—dxa;, j. Back substituting for N, the distribution sought
is approximated by

Pyis(n;s)  ~ N(n; 2x*, 2X%), (18)

where N (+) is the multinormal probability density function.
In Appendix C, we use this result to complete a numerical
approximation to the effect of demographic stochasticity on
SADs. Note that x* and X do not depend on €2, so the coef-
ficient of variation for N; is asymptotically proportional to
Q12

Appendix B: Pg, the probability on species
abundance distributions in the neutral case

Analytical solutions for the stationary probability of a
species abundance distribution (SAD) have previously been
reported for neutral models similar, but not identical, to
our own. Unlike Hubbell (2001) but like Volkov et al.
(2003), the model we present does not assume ‘“zero-
sum” dynamics. But unlike Volkov et al. (2003), the death
rate in our model increases with total community size.
This form of density dependence makes the abundance
of every species inter-dependent, and describing the SAD
requires a different approach. Kelly (1976) points to a
general class of NCMs where the time trajectory of the
SAD is itself a Markov chain. We replay Kelly’s obser-
vations here, only to recover the same result after intro-
ducing our fixed, rather than community size dependent,
speciation rate.

The transition probabilities of a Markov chain must be
functions of the current state, in our case the random vector
®. In the neutral case (o;,; = 1), the probability of a death
in any one population with k individuals is

ZSNi,kDi (N)dr = kdy (u + 5%) dr, (19)
i€Z

using the Kronecker symbol, 8y, x, to sum over the @y
species that have k individuals. A death in any popula-
tion with k individuals shifts @ to IE,:E,‘:_ | ®, where the
shift operator ]E,jf takes ®; to ®; £ 1. Similarly, the
transition from @ to E/:El—c: | @ that occurs when any pop-
ulation with k individuals produces a new individual has
probability

ZSN,J(B[- (N)dt = kdadr  fork > 0. 20)
i€Z
A speciation event occurs with probability vds and shifts &
to ET P.
Denoting the stationary probability on ® by Pg, detailed
balance (Gardiner 2009) is satisfied if

VPg () = (o1 + 1) <u+5%> Po(Ef¢) and (21)

kpihPo(®) = (+ D@ +1) (1 + 375 POEE, 0) o)
fork > 0,
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where j = >, k¢y. Direct substitution confirms that

(Qr/8)/
PG +Qu/s+1),

= (/)
" k% gy

Py (¢p) = (23)

is the desired solution, where b is a constant with respect to
9.

To interpret the solution for Py, we distinguish two
factors on the right-hand side,

B Q@8 /)y oy /)%
Pa(9) = FrG+Qu/s+1) ! (u/x),-lgl kPrgy!’ 24
P Py (¢)

where (v/A); uses the Pochhammer notation for the ris-
ing factorial. The conditional distribution, Pg,s, is equiv-
alent to Ewens’s sampling formula (Etienne and Alonso
2005, Eq. 2) with 6, the “fundamental biodiversity number,”
substituted for v/A. The community size distribution, Py,
satisfies a different detailed balance condition,

i+ 1
W)PIG) = G+1) (u +8%> Pi(j+1), (25)

which arises from a logistic-like birth-death process with
immigration. Fluctuations in total community size do not
affect the species’ relative abundance, which still follows
from Ewens’s sampling formula.

Appendix C: Approximate solution for the
expected non-neutral SAD

Define Py,|s to be the marginal distribution for the ith
species obtained from the distribution Py|s discussed in
Appendix A. The expected value of the species abundance
distribution is (cf. Volkov et al. 2003 Eq. 4):

=Y Pyisk, 13 9). (26)

i=1

(@i (r)]s)

We suppose that extinction and speciation events are infre-
quent, which requires us to have set v very small and permits
us to use the linear noise approximation

A ZN(k; Qux/', Q% ), (27

i=1

(Pr()ls)

so long as ¢, chosen so that the last speciation event occurred
att = 0, is sufficiently large. In our model, because of the
highly structured competition matrix (6), the values of x
and X;; are the same for every community with s species,
so the identical SAD is expected at any time there are s
species (except for immediately after a speciation or extinc-
tion event, but these are rare). This is one component of our
estimate of the stationary solution for (® (7)), which must
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be completed by averaging (P (¢)|s) over the distribution
on richness, denoted by Ps.

Continuing to ignore the transient dynamics surround-
ing changes in s, we approximate the distribution on S by
solving the detailed balance equation

W(s,s —1)Ps(s —1) = W(s — 1, 5)Ps(s), (28)

where W (s, s")dr is the probability of transitioning from
s’ — s species during a short time interval. The formal
solution is

w
PS(O)H o 29)

Ps(s) =
in which the value of Pg(0) can be determined by the
required normalization. The extinction rate is just the prob-
ability that the last member of a rare species dies, for which
we have the approximation

A Z > DN @) Qx*, QF). (30)

i=1 p(~i)

W(s—1,5)

The second summation is over all possible vectors with n;
equal to 1, denoted n™) which are all the states from
which there is a non-zero probability that the next event
will be an extinction. The transition rate W (s + 1, s), given
that we want to ignore transient dynamics, has to corre-
spond not just to speciation events but to speciation events
that lead to the establishment of a new species. To approx-
imate the probability of a successful introduction, we look
to the left eigenvector of the generator of the multivariate
birth-death process associated with the smallest non-zero
eigenvalue (Grimm and Wissel 2004). The left eigenvector
problem for the multivariate birth-death process, denoting
the eigenvector by s (r) and the corresponding eigenvalue
by €, is

emy(n) =) {Bi(m)(E; —1)+D;(n)(E; —
i=1

D} ms(m). (31)

Applications of WKB theory to birth-death processes
(Ovaskainen and Meerson 2010) have been used to give
excellent approximations to right eigenvectors with van-
ishingly small eigenvalues (Assaf and Meerson 2010). We
employ the following ansatz to make an approximation to
the left eigenvector:

w5 (n) = 1 — ¢~ @/SH), (32)

We only need to evaluate the eigenvector at states imme-
diately following the introduction of a species. If species i
is the new species, and x™) is a vector with the density of



Theor Ecol (2015) 8:449-465

463

i at zero and the other s — 1 species at equilibrium, we want
the value of

Eimo(n) =B ', (@ “”)

~ ] U= =Us(x7)+o@ )

(33)

making the substitution n/ 2 — x. With this target in mind,
we proceed from Eq. 32 in the usual way, substituting e — 0
and arriving at the leading order equation

i=1

where the tilde over the birth and death functions indicates
the substitution F;(x) = Q7' F;(Qx) as in Appendix A.
Now let the RHS define a surface, typically denoted
H(gq, p), in the coordinate system with ¢ = x and p =
—VU(x). A parameterized curve will follow the zero
contour on this surface if it satisfies the equations of motion,

. _c)H_"', -
C]J_dpj— i (q)eli

pr=—fp = X o (B@ @ =) = Duig) (e 1)

Di(q)e P
(35)

for j € {1,2,...,s} and is initialized with H = 0. The
system has an equilibrium solution at the value of interest
g = xD if p satisfies pj =0for j #i and

=In (ibi (x<“f>)> —1In (iéi (x<“">)> . (36)
9qi agi

Fixing the boundary values of Ug(x) at zero in Eq. 33,
we apply this equilibrium solution to achieve

TR ) Bt U Y) S ANT

Eimy(n) ~ 1— .

. (37)

recognizing that x~? does depend on s despite it having
fallen out from our notation. The estimate for W(s, s — 1) is
the probability of a speciation event times the average over i
of the value just calculated as an estimate for the probability
of successful invasion:

1y R )BT ) S e
W(s,s—l)wvsz<1 - . (38)

i=1

Comparisons of the approximate non-neutral SAD to
results from stochastic simulations with v equal to 1072,
1073, and 10™* are shown in Fig. 4 and again as Preston
plots in Fig. 6.
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Fig. 6 The same data from Fig. 4 displayed as Preston plots with the approximation in black and simulation results in gray. The fop, middle, and
bottom panels correspond to diminishing values of v: 1072, 1073, and 10~*. The values of B and n are marked in Table 1 by * (left), T (middle)

and % (right)
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