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Abstract 
 

Microorganisms are the pillars of life on Earth. Over billions of years, they have evolved 
into every conceivable niche on the planet. Microbes reshaped the oceans and atmosphere 
and gave rise to conditions conducive to multicellular organisms. Only in the past decade 
have we started to peer deeply into the microbial cosmos, and what we have found is 
amazing. Microbial ecosystems behave, in many ways, like large-scale ecosystems, 
although there are important exceptions. We review recent advances in our understanding 
of how microbial diversity is distributed across environments, how microbes influence 
the ecosystems in which they live, and how these nano-machines might be harnessed to 
advance our understanding of the natural world. 
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The turn of the 21st century saw the rise of a new kind of natural historian, focused on the 

invisible life that permeates our planet [1]. Unlike earlier naturalists, like Alexander von 

Humboldt or Alfred Russell Wallace, who documented the “…endless forms most 

beautiful…”, recognized by Darwin as the fruits of natural selection, these new explorers 

confronted a strange and unfathomably vast world of imperceptible single-celled 

organisms [2]. This world was largely inaccessible and underestimated prior to the advent 

of molecular fingerprinting and high-throughput sequencing technologies, which now 

allow us to circumvent culture-based approaches [2,3]. 

The excitement in this new era of exploration is palpable, as molecular toolsets 

help crack open the microbial “dark matter” [4] responsible for driving global 

biogeochemical cycles [5], maintaining the health of multicellular organisms [6], and 

ensuring the longevity of our ~3.8 billion-year-old biosphere [7]. At first, each sequencing 

survey seemed like another Voyage of the Beagle. However, unlike Victorian naturalists, 

microbial ecologists had the tools of modern genetics and molecular biology at their 

fingertips. Consequently, the transition from a descriptive phase to a more 

quantitative, mechanistic understanding of how diverse microbial communities assemble, 

fluctuate through time, and achieve biological and ecological functionality was rapid. 

Although microbial ecology is still a young field with many unanswered questions, we 

explore recent advances in our understanding of how natural environments shape and 

maintain microbial diversity over time and space, and how the diversity of microbial 

communities influences the environment. We briefly discuss how microbial ecology fits 

into the larger body of established theory underlying traditional ecology. Finally, we look 

toward 



the future and suggest how the study of microbial ecology will influence other disciplines 

and how it might change the course of human history. 

Quantifying Diversity 
 
What are the units of microbial diversity? The answer to this question is not as 

straightforward as for plant and animal species, though these definitions are often 

arbitrary as well. We cannot rely upon morphological or functional features, as most 

microorganisms are indistinguishable under the microscope [3], and distantly related 

organisms can fill equivalent ecological roles [8]. We are often fooled by molecular 

phylogenies because microbes can swap genes across vast phylogenetic distances [9]. 

Thus, we rely on phylogenetic inference derived from highly conserved genes that are 

vertically inherited (e.g. 16S rRNA gene sequences), or on concatenations of multiple 

housekeeping genes [10]. The most common unit of diversity in microbial ecology is 

what we call the “operational taxonomic unit” (OTU; or, equivalently, “phylotype”), 

which clusters environmentally derived sequences based upon nucleotide similarity. For 

example, 97% sequence similarity of the 16S rRNA gene is often used as a rough 

estimation of species clusters in bacteria, based on a species definition established using 

DNA-DNA hybridization [11]. However, many researchers advocate for finer-scale 

distinction of diversity using single base pair differences in marker genes [12], genomes- 

scale alignments [10,13], and/or contextual information regarding the environment (e.g. 

ecotypes) [13,14]. These higher resolution methods can reveal interesting patterns that 

would be obscured by traditional approaches [15,16]. However, higher resolution is not 

always desirable, especially when the dominant mechanisms underlying shifts in 

community composition are due to functional pathways that are deeply rooted within 



lineages (e.g. oxygenic photosynthesis in cyanobacteria; see Figure 1). In this case, 

strain-level variation could be noisy, and might wash out subtle differences that are only 

apparent when correlated organismal abundances are grouped at higher taxonomic levels 

[8,17]. Thus, we should not assume a one-size-fits-all heuristic for assessing microbial 

diversity. 

What governs the distribution of microbial diversity? 
 
For the last few decades, microbial ecologists have used a wide array of molecular tools 

to characterize microbial communities, enabling the observation of particular organismal 

assemblages or community characteristics. However, as each method has its own set of 

biases, it is often difficult to compare between studies, reducing the potential for meta- 

analysis. There have been a few within-study global surveys of microbial diversity, which 

have revealed dominant physicochemical drivers of microbial community structure using 

consistent methodologies [18-22]. However, only recently have multi-study consortia 

begun to standardize their data collection and analysis workflows to build large intra- 

comparable databases [6,23]. The largest global survey of microbial diversity to date, 

carried out by the Earth Microbiome Project  (http://www.earthmicrobiome.org/), 

revealed the existence of 5.6 million OTUs (97% similarity at the V4 region of the 16S 

gene; not including singleton OTUs) in the first 15,000 samples, which set a new lower- 

bound on the number of bacterial and archaeal phylotypes on Earth [24]. In addition, as 

sampling efforts increase, the number of novel phylotypes discovered continues to rise 

beyond prior estimates, and far beyond estimates for multicellular organismal diversity 

[25]. 

http://www.earthmicrobiome.org/


We have just begun to negotiate the complex interactions within and between 

biological and physicochemical parameters that determine how microbial communities 

assemble in natural ecosystems. An initial step in this journey has been to characterize 

the environmental  axes  that  are  important  for  filtering  diversity.  For example, we 

know that salinity is a strong driver of community structure in aquatic environments, 

pH is a dominant force in soil systems, and host-associated and environmental 

communities are very distinct  from one another  [18,22,26]. 

Microorganisms carry out a diverse array of metabolisms, using everything from sunlight, 

to organic carbon and inorganic minerals as energy sources, and are often able to switch 

between these metabolic modes. Microbes can make a living under a staggering array of 

physicochemical conditions, from boiling thermal springs to acid mine drainage [27].  In 

addition, they are able to produce and consume innumerable metabolites, including 

complex carbohydrates, antibiotics, peptides, and lipids, which allow microbes to cross-

feed one another and carve out highly specific niches and different life history 

strategies [28,29]. Furthermore, rapid evolution and speciation in microorganisms can 

contribute significantly to diversity on ecological timescales [29,30]. 

Beyond fine-scale niche partitioning, microbial  diversity  is  also  influenced  

by  stochastic  forces,  like extremely high rates of dispersal, coupled with the ability 

of many microorganisms to become dormant when conditions are not conducive to 

growth [31,32]. These processes appear to give rise to a persistent seed bank of 

scarce but viable microbes [32,33], often referred to as the “rare biosphere” [34], with 

almost endless phylogenetic and functional potential for populating emerging or 

transient niches [35]. However, despite high rates of dispersal and dormancy, there is 

evidence that microorganisms encounter barriers to dispersal that gave rise to



temporarily isolated populations, which can result in allopatric differentiation of 

ecotypes at the genomic level [15,36]. 

The balance between niche (e.g. pH or temperature driving changes in microbial 

dominance) and neutral (e.g. stochastic dispersal and dormancy) processes will 

influence the diversity of microbial ecosystems [37]. Recent work has suggested that 

increasing environmental heterogeneity or noise disrupts the deterministic coupling 

between ecosystem properties and ecological diversity, which results in neutrally 

assembled communities [37]. The magnitude of alpha diversity in neutrally assembled 

communities is partially determined by the composition of the metapopulation from 

which the local species pool is drawn [38]. If the local species pool is drawn from 

multiple source populations of varying composition at a high enough rate of dispersal, 

then the diversity of the local population will be greater than any of the individual 

source populations (i.e. the apparent meta-community will be a mixture of the source 

communities; see Figure 2). The magnitude of alpha diversity in niche-structured systems 

will depend upon the volume of niche space and how finely this space can be 

partitioned.  Over evolutionary time, as novel  ecotypes  arise,  there  will  be  a  rapid 

saturation of niche-volume, with a small number of taxa dominating most of the available 

resources. Due to the diminishing return of invading smaller and smaller pockets of 

resource-space, there will be an asymptotic approach to some maximal alpha diversity as 

low-abundance species are able to pack into ever-shrinking interstitial niches [39]. 

 
Does microbial diversity matter for the environment? 
 
From oceanic weather patterns [7], to the oxidation of Earth’s atmosphere [40], and the 

health of multi-cellular hosts [6], microbes engineer their environments [5]. In fact, 

human civilization would soon collapse in the absence of microorganisms, followed soon 



thereafter by the  remaining  life  on  Earth  [41].  The following section details  a  few 

examples of how microbial communities alter their surroundings. 

Climate scientists are beginning to recognize a sleeping giant beneath the Arctic 

tundra. Permafrost locks away around half of global soil carbon, but these regions are 

beginning to thaw due to anthropogenic climate change, which is having a 

disproportionate impact on the poles. Soil warming has been shown to alter the diversity 

and function of microbial communities [42,43]. Thawing of permafrost soils will likely 

result in large-scale losses in soil carbon in the form of methane and carbon dioxide as a 

result of microbial activity [44]. Depending on the rate of temperature increase, 

permafrost soils would account for an 8-18% increase in anthropogenic carbon emissions 

over the next 100 years [45]. This positive biological feedback on climate change could 

reshape the structure of the entire biosphere. 

Another fascinating way that  microbes  engineer  their  physical  environments 

comes from early in Earth’s history, when bacterial communities gave rise to naturally 

occurring nuclear fission reactors [46]. Certain bacteria are able to respire uranium (i.e. 

use oxidized uranium as an electron acceptor). However, the early Earth had an anoxic, 

reducing atmosphere, and uranium, which is insoluble in its reduced form, remained 

locked away in rock and sediment. The rise of cyanobacteria resulted in the steady 

production of  O2,  which  began  to  weather  the  Earth’s  crust  and  accumulate  in  the 

atmosphere over hundreds  of millions of  years  [40]. Uranium deposits were slowly 

oxidized, which allowed uranium to dissolve in water and be carried into lakes. This 

process led to the enrichment for uranium-respiring microbes in these bodies of water. 

These microbes reduced the uranium, which made it fall out of solution and settle to the 

bottom of 



the lakes. Over time, uranium was enriched and deposited on lakebeds until critical 

mass was achieved, and the lakes became natural fission reactors [46]. This process was 

only possible early in Earth’s history, when the radioactive isotope of uranium was still 

at high enough abundance. 

Gut-associated microbial communities can also influence their mammalian hosts. 

Host diet and activity can have large effects on the gut microbiome composition and 

function, even on daily timescales [47-49]. However, we also know that gut microbiota 

are integral to maintaining the health of their hosts. For example, we are accumulating a 

large body of evidence showing that microbes are crucial for our developing immune 

systems and help protect us from allergies and autoimmune disorders [50,51]. Gut 

microbes are also implicated in driving obesity and a number of metabolic disorders [52]. 

Additionally, there is a subset of the human population that, when they contract a 

streptococcal infection, develop obsessive- compulsive disorder [53]. In fact, microbial 

dysbioses have been implicated in a number of behavioral disorders [54]. 

The future of microbial ecology 
 
As our appreciation of the extent and complexity of microbial ecosystems grows, we can 

begin to extrapolate how our new understanding could shape our future. It is clear that 

microbes can alter their environments, and it is possible that they could be harnessed to 

engineer our planet and our health. While our current knowledge of the metabolic 

mechanisms and evolutionary processes that underpin most microbial ecosystem 

dynamics is extremely limited, rapid advances in technologies that help elucidate these 

processes are set to drastically increase the current rate of knowledge acquisition. 

Microbial ecology is changing the way we practice medicine, so that instead of trying to 



deal with the one-disease-one-pathogen paradigm, clinical practice is adopting ecological 

approaches to diagnose and treat complex conditions [48,52,55,56]. Similarly, industrial 

processes that once relied on biotechnology derived from a single organism are starting to 

embrace complexity and explore ways to standardize metabolic interactions within 

complex communities to elicit reproducible biochemical transformations [57]. Indeed, 

even agriculture and ecosystem restoration, which have long had a deep appreciation of 

the role of bacteria in shaping the relevant environments, are starting to use systems 

biology, molecular analysis, and modeling to elucidate the mechanism of action for 

improving crop productivity, disease suppression, and stress tolerance [58]. 

Several   research   fields   have   come   to   appreciate   how   microbial 

communities can serve as tractable models. The enormous population sizes and rapid 

growth rates of microorganisms mean that microbial ecology may transform the fields of 

ecology and evolution by providing a biological system that is easily manipulated to test 

specific hypotheses.  For example, we have seen the rise of long-term evolution 

experiments, which have captured speciation in action [59]. Also, the complex process of 

community assembly, or community response to environmental perturbations, can now 

be followed under controlled, replicated conditions in microbial meso- and microcosms 

[60-63]. Perhaps the largest contribution of microbial communities to the Darwinian 

Sciences so far is to establish stronger empirical links between ecological and evolutionary 

processes, because microbial evolution is rapid enough to quickly feedback on ecological 

phenomena [64]. This has led to experiments aimed at asking Stephen Jay Gould’s classic 

question about what would happen if we tried “replaying the tape of life” [65]. Such 

experiments have shown  us  how  ecological  communities  can  stabilize  themselves



through division of labor [29], show signs of collapse prior to a critical transition - just 

like dynamic physical phenomena [66], exhibit different eco-evolutionary dynamics 

depending on timescale [64], and that multiple ecological steady-states can evolve from 

the same initial conditions [67]. 

Together, these microbiome-enabled experimental approaches will help transform 

biology into a more quantitative discipline. With the ability to replicate and test eco- 

evolutionary processes, we can start to ask about the forces underlying these levels of 

biological organization [68]. The boundaries between physics, chemistry, and biology 

have become increasingly perforated, and new fields are emerging at the frontiers. This 

newfound potential is leading us back to the beginning, with “origins of life” research and 

astrobiology gaining traction and funding. 

In summary, we have entered an exciting era of discovery.  Our new understanding 

of microbial diversity will allow us to cure disease, engineer and conserve our environment, 

manufacture better products, grow more food, colonize other worlds, and so much more. 

In both practical and scientific terms, microbes have given us the power to ask new 

questions and solve previously intractable problems. 
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Figure Captions 

Figure 1. The hypothetical tree pictured above shows the phylogenetic distribution of 
two arbitrary functional traits across bacterial genera. The colored symbols denote the 
identity and origin of each function (see key). Both functions originated within a single 
clade. However, ‘ oxygenic photosynthesis’ remained confined to a deeply-rooted 
group, while ‘galactose metabolism’ has been passed around via horizontal gene transfer. 
If phylotypes were assigned  at  the  phylum  level  (red  inner  circle),  the  distribution  
of 



of phylotypes across light and dark environments would yield a clear pattern, with a 
single phylotype enriched by the light. However, if response to galactose 
concentration were assessed at the phylum level, the result might be unclear, as 
many phylotypes would contain a mixture of taxa with and without galactose genes. If 
phylotypes were assigned at the family level (red outer circle), the changing 
abundances of phylotypes along a galactose gradient would yield more coherent 
patterns. However, there would be a variety of behaviors in response to galactose in the 
photosynthetic clade due to horizontal gene transfer and gene loss. 

 
Figure 2. Both deterministic and stochastic processes are important for shaping microbial 
diversity. Each environment selects for a particular set of taxa (e.g., 3 ‘mesophiles’ in 
the lake and 3 ‘ thermophiles’ in the hot spring). These different sets of taxa inhabit 
incompatible ecological niches that are widely separated along an environmental gradient 
(i.e., temperature). The structure of each community (i.e., the relative abundances of 
species) is determined by competition for niche space, unless environmental noise is too 
high or ecological interactions are too weak, in which case no species will have an 
advantage (see phase diagrams, modeled after Fig. 2 in Fisher and Mehta, 2014). As 
such, niche-structured communities will tend to have a highly uneven rank-abundance 
pattern (i.e., there will be winners and losers in the competition for niche-space), while 
neutral communities should, on average, have a more even rank-abundance distribution 
(i.e., no species has an advantage). When the two communities are forced to mix along an 
environmental gradient (see the ‘stream’ above), ecological diversity is increased – both 
in terms of community richness and evenness – independent of niche/neutral dynamics. 
This maximum in diversity has been described before in many systems (e.g., the 
Intermediate Disturbance Hypothesis). The diversity maximum in the stream is a non- 
equilibrium state that would dissipate if the environmental mixing were to stop. The 
above picture can be further complicated by further dispersal from outside the system 
(i.e. meta- communities and island biogeography models), speciation, and extinction. 
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