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Metabolomics is the study of small molecules, or ‘metabolites’, that are the end products of biological processes.
While -omics technologies such as genomics, transcriptomics, and proteomicsmeasure themetabolic potential of
organisms,metabolomics provides detailed information on the organic compounds produced duringmetabolism
and found within cells and in the environment. Improvements in analytical techniques have expanded our un-
derstanding ofmetabolomics and developments in computational tools havemademetabolomics data accessible
to a broad segment of the scientific community. Yet, metabolomics methods have only been applied to a limited
number of projects in themarine environment. Here, we review analysis techniques for mass spectrometry data
and summarize the current state ofmetabolomics databases.We then describe a boutique database developed in
our laboratory for efficient data analysis and selection of mass spectral targets for metabolite identification. The
code to implement the database is freely available on GitHub (https://github.com/joefutrelle/domdb). Data
organization and analysis are critical, but oftenunder-appreciated, components ofmetabolomics research. Future
advances in environmental metabolomics will take advantage of continued development of new tools that
facilitate analysis of large metabolomics datasets.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The exchange of organic compounds such as growth substrates,
vitamins, and signaling molecules between microorganisms and their
immediate surroundings is a central component of biogeochemical
cycling in all environments. Genomics, transcriptomics, and proteomics
data provide descriptions of how organisms may interact with these
organic compounds. This information has led to key insights into the
physiology of microorganisms and biochemical pathways that are po-
tentially active in the marine environment. The field of metabolomics
complements these data because it is used to directly assess active
biochemical pathways, by measuring the end products of biological
metabolic activity, i.e., the metabolites. Metabolomics studies can be
grouped into two categories. Targeted metabolomics investigations
obtain quantitative data on a pre-defined set of compounds, while
untargeted metabolomics studies provide a broader exploration of me-
taboliteswith the goal of identifying new compounds (Patti et al., 2012).
Environmental metabolomics is defined as the use of metabolomics
techniques to characterize the metabolic response of organisms to
natural and anthropogenic stressors in the environment (Viant, 2007).
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Untargeted metabolomics datasets are large and multidimensional.
While there have been improvements in computational programs
that process mass spectrometry data files, tools are still needed to
organize metabolites and their associated metadata to facilitate inter-
experiment comparisons. Currently, two types of databases serve as re-
positories for information on organic compounds such as metabolites.
The first type of database is focused on storage of chemical information
of a compound, regardless of source. Two examples are the publically-
accessible databases PubChem (Bolton et al., 2008) and ChemSpider
(Pence and Williams, 2010) which contain vast amounts of data on or-
ganic molecules and can be searched by exact mass or compound
name. On a smaller scale, METLIN (Zhu et al., 2013) is a curated database
of biological compounds which allows searching by exact mass and by
fragmentation spectrum. None of the above databases incorporatemeta-
data and thus they do not provide an environmental context for anyme-
tabolite. In contrast, the second type of database allows contextualization
of submitted experiments by explicitly including experimental metada-
ta. The best example of such a database is the MetaboLights database
(Haug et al., 2013; Steinbeck et al., 2012) which includes environmental
data for the samples in the data repository. However, searches of
MetaboLights currently access information about known compounds
only. We are not aware of a database that allows searching of unknown
compounds while retaining contextual metadata.

A metabolomics database has additional complications compared to
other -omics databases. The structural and chemical composition of
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1.A simplified version of the informationmodel used to design the boutique database
prototype. The complete information model is given in Fig. S1. The topics within the blue
box are addressed in Kido Soule et al. (2015-this issue).

Table 1
Brief description of the sources ofmetabolomics data used to populate the boutique database. The samples span laboratory experiments (‘lab exp.’) and field expeditions, and include both
intracellular and extracellular metabolite samples.

Sample type Extract type # of
samples

# of
metabolites

Citation

Lab exp. #1 Laboratory experiment with Thalassiosira pseudonana Extracellular metabolites 17 6047 Longnecker et al. (2015)
Lab exp. #2 Laboratory experiment with Synechococcus elongatus Extracellular metabolites 16 10,158 Fiore et al. (in press)
Lab exp. #3 Laboratory experiment with Ruegeria pomeroyi Intracellular metabolites 30 17,130 Johnson et al. (unpublished)
Lab exp. #4 Laboratory experiment with Thalassiosira pseudonana Intracellular metabolites 24 4835 Kujawinski et al. (unpublished)
Lab exp. #5 Laboratory experiment with coastal seawater Intracellular and extracellular metabolites 62 19,294 Liu et al. (unpublished)
Field #1 In situ samples, Pacific Ocean Intracellular and extracellular metabolites 73 4236 (unpublished)
Field #2 Experiment with phytoplankton exudates, Atlantic Ocean Intracellular and extracellular metabolites 27 7667 (unpublished)
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genes and proteins are inherently simpler than that of metabolites
because the number and diversity of building blocks are fewer. For ex-
ample, gene sequences are comprised of only four or five possible nucle-
otides (A, G, C, T or U). Thus, a nucleic acid database such as GenBank
(Benson et al., 2013) contains little chemical complexity and errors
are primarily associated with interpretation such as gene annotation
and homology assessments. In contrast, metabolites have no common
building blocks, other than the elements of C, H, O, N, S and P; and
their molecular structures and sizes are extremely diverse. Mass
spectrometry-based metabolomics data are further complicated
because each metabolite may be present as one or more adducts
(e.g. [M + Na]+ or [M + H]+) with different mass-to-charge values.
In addition, there is instrument-specific error associated with the
mass-to-charge measurement. For liquid chromatography-based (LC)
measurements, retention time varies as a function of chromatographic
parameters such as column chemistry, mobile phase, and elution gradi-
ent. Finally, as with the gene-based databases, there is still the issue of
identifying the metabolites and placing them into an environmental
context.

An overarching goal of the research in our laboratory is the discov-
ery, and subsequent quantification, of ecologically-relevant metabolites
withinmarine ecosystems. For thedatabase,we broadly define ametab-
olite as any organic compound observed in the marine environment.
We use a combination of laboratory experiments and field sampling ex-
peditions to uncover and to identify novel metabolites associated with
important microorganisms in the marine environment. This goal re-
quires the ability to store metabolomics data, to compare these data
across different sampling scales, and to help focus time-consuming
identification efforts on a tractable number of metabolites. As noted
above, currently available databases cannot achieve these goals and
thus we developed a boutique database for our laboratory. Inherent
within this database development is a consideration of the computa-
tional challenges associated with the analysis of untargeted metabolo-
mics data, in particular those data generated by ultrahigh resolution
mass spectrometers coupled to a LC system. In this paper, we start
with a review of freely-available and open source data analysis tools
and databases for metabolomics data. We then describe our boutique
database and conclude by providing examples of advances that rely on
this joint consideration of field and laboratory samples.

2. Materials and methods

2.1. Designing a metabolomics database

Designof the boutiquemetabolomics database beganwith a series of
meetings with domain scientists (here, the chemists), information
scientists, and software developers. The purpose of these meetings
was to establish the goals for developing the database and the desired
outcome of the completed database. We employed ‘use cases’ to guide
this process, and the outcome was an informal abstract information
model and system design. Use case development is an integral method-
ology of the Tetherless World Constellation (Fox and McGuinness,
2008) and is an iterative method in which a small team of domain
scientists and informaticistswork together to rapidly develop prototype
software to achieve the use case goal. The informationmodel developed
during this process captured semantic relationships between key con-
cepts involved in the production and analysis of mass spectrometry
data, as well as relationships central to extracting new knowledge
from metabolomics experiments.

The information model and prototype system architecture were
documented to serve as the initial phase of software prototypes. The
prototype is a simple command-line interface on an object-relational
model (ORM) implemented using Python and SQLAlchemy. These tech-
nologies, while not as powerful or scalable as technologies that would
be appropriate for a larger database, have a number of features that
make them attractive for prototyping. For example, the technologies
are compatible with multiple platforms (e.g., Windows, Mac OS,
Linux), are simple to install and configure, and enable rapid develop-
ment, refinement and testing of new capabilities. The rapid prototyping



Table 2
Summary of the classification scheme presented by Sumner et al. (2007) to define four
levels of compound identification.

Classification Description

Identified compound
(Level 1)

At least two independent measurements relative to
authentic standard analyzed using the same methods

• retention time and mass spectrum
• retention time and NMR spectrum
• accurate mass and tandem MS
• accurate mass and isotope pattern
• full 1H and/or 13C NMR, 2-D NMR spectra

Putatively annotated
compounds
(Level 2)

Without chemical reference standards, based on
physicochemical properties and/or spectral similarity
with public/commercial spectral libraries

Putatively characterized
compound classes
(Level 3)

Based upon characteristic physicochemical properties
of a chemical class of compounds, or by spectral
similarity to known compounds of a chemical class

Unknown compounds
(Level 4)
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approach allowed us to converge on a stable abstract informationmodel
fromwhich future prototypes can be built without having to undertake
time-consuming redesign or development of extensive backwards-
compatibility features. All prototyping was done under open-source
licensing and code and documentation is available at https://github.
com/joefutrelle/domdb. The documentation includes a wiki that details
the use of all the commands needed to populate the database and run
queries.

The first prototype is a database that can interpret files generated
during XCMS data processing (see Section 3.2.1). These input files in-
clude the mass-to-charge values, LC retention times, and peak area for
all metabolites within a single experiment. The second input file is the
metadata associated with each of the samples listed in the processed
data file. We require both files to be present in order to prevent the ac-
cumulation of data without corresponding metadata. For the metadata
file, we allow the user to provide the variables appropriate for their
dataset. For example, the metadata variables for one set of samples
may be station locations and sample depths, while another set of
samples may include the name of an organism and the media used to
culture the organism. These metadata are included in the output from
the queries described in Section 2.3.

2.2. Environmental metabolomics data in the database

We populated the database with data from seven different sample
sets. The selected sample sets include laboratory experiments and
field expeditions (Table 1) and were processed by different users in
our research group. Each sample set contains 4000 to 11,000metabolites,
derived from between sixteen and seventy-three individual samples. To
test the prototype database, we includedmass spectrometry data collect-
ed only in positive ionmode. Positive and negative ionmode data are not
directly comparable because the metabolomics data in the database are
the charged ions (e.g., [M+H]+ or [M−H]−). A future version of the da-
tabase may convert the charged masses to neutral masses to recognize
Table 3
Select publically-accessible on-linemetabolomics databases that can be searched to provide pu

Database Citation Website

MetaboLights Haug et al. (2013) www.ebi.ac.u
METLIN Tautenhahn et al. (2012a) metlin.scripp
ChemSpider Pence and Williams (2010) chemspider.c
PubChem Bolton et al. (2008) pubchem.ncb
LIPID MAPS Sud et al. (2007) www.lipidma
MMCD Cui et al. (2008) mmcd.nmrfa
Human Metabolome Database Wishart et al. (2013) www.hmdb.c
MetaCyc Caspi et al. (2012) metacyc.org
that a single metabolite may be present as more than one measured
mass-to-charge value or occur in more than one ionization mode.

2.3. Querying the metabolomics database

We use database queries to extract a subset of metabolites from the
database.Wedesigned twoqueries to access themetabolomics data. For
both of these queries, we allow the user to set the desired retention time
window and error in the mass-to-charge measurement. The default
parameters are appropriate for our ultrahigh resolutionmass spectrom-
eter (FT-ICR MS), but they can be varied for other analytical platforms.

The queries are implemented as commands in our prototype, and
the syntax for each query type is described in the prototype's wiki.
The first query is the simplest: are there anymetabolites in the database
thatmatch a givenmass-to-charge value and retention time? This query
is useful when the parameters for a specific metabolite are known, and
the user is interested in determining the experiments in which the
metabolite has been observed. The second query is more directed at
our intended use of the database: given the metabolites within one set
of samples, how many of these metabolites are found in other sample
sets?With this query, the user is not restricted to searching for a single
metabolite. Instead, the full set of metabolites for one experiment is
queried across the entire database. The output from both of these
queries is produced as comma-separated values (CSV) to make them
readily available for analysis in R, MATLAB, or the user's desired
program.

3. Results and discussion

3.1. Information model for metabolomics data

The information model in Fig. 1 (also Fig. S1) serves as the basis for
the database prototype and is also useful to structure our review of
existing data analysis tools and metabolomics databases. Each circle in
the information model is a term used by the chemists. We define each
term in away that allows the computer scientists to use the information
to guide the development of the database. Thus, the information model
translates the language used by the chemists into terms accessible to the
software developers, and vice versa. The small white circles in the
complete information model (Fig. S1) provide additional details for
each general term shown in Fig. 1. The companion paper by Kido
Soule et al. (2015-this issue) discusses issues associatedwithmetabolite
extraction, LC–MS analysis, and processing of targetedmass spectrome-
try data. This paper focuses on data processing and analysis methods to
characterize untargeted metabolomics data.

3.2. Data analysis tools and techniques

The processing of metabolomics data occurs in four stages. Mass
spectrometry files store data in proprietary formats that can only be
accessed with vendor-specific software. Therefore, the data processing
often begins with the conversion of mass spectrometry data into open
data formats that make the data accessible to an array of analysis
tools. Second, these data files are aligned to generate concatenated
tative characterizations of metabolites from an untargetedmass spectrometry experiment.

Comment

k/metabolights Includes metadata for the samples within the database
s.edu Curated database, also includes MS2 search capability
om
i.nlm.nih.gov Also searchable via Kasuza MFsearcher Sakurai et al. (2014)
ps.org
m.wisc.edu
a
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http://chemspider.com
http://pubchem.ncbi.nlm.nih.gov
http://www.lipidmaps.org
http://mmcd.nmrfam.wisc.edu
http://www.hmdb.ca
http://metacyc.org


Fig. 3. Two-way Venn diagrams are a simple tool to compare metabolites from different
sets of samples. The figure shows the overlap in the number of metabolites between
(A) a field sampling expedition and a laboratory experiment and (B) laboratory
experiments with two different marine phytoplankton.

Fig. 2. Exact mass is not sufficient to identify an organic compound. For example, five
possible chemical structures were found in the METLIN database for a metabolite with a
mass-to-charge value = 181.0868838. Without additional information, we cannot
identify this metabolite.
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lists of metabolites with their mass-to-charge values, retention times,
and peak heights across the individual samples. Third, the concatenated
lists of metabolites can be examined using univariate and multivariate
statistical tools to assess patterns within the dataset. Fourth, the list of
metabolites with their mass-to-charge values and retention times can
be compared to on-line databases to begin the process of metabolite
annotation. We address each of these tasks in the following sections.
The first three tasks have already been described in existing scientific
literature (e.g., Johnson et al., 2014), and we provide an overview and
information about publications that include additional details. For the
final section, we consider the available metabolomics databases and
present an overview of the boutique metabolomics database now
used in our laboratory.

3.2.1. Processing mass spectrometry data to obtain a list of metabolites
The conversion of vendor-specific data files to open source formats

accessible to a range of computational platforms is often the first step
in data analysis. The ProteoWizard library (Kessner et al., 2008) includes
the msConvert tool which is able to read data files from different mass
spectrometers and convert them into open data formats that can be
used to store and exchange mass spectrometry data. We have found
that the msConvert tool provides more accurate data file conversion
than the ReAdW.exe program provided by Thermo Fisher Scientific
(data not shown). The converted data files can then be viewed with
tools specifically for mass spectrometry data (e.g., MZmine or XCMS),
or with user-defined scripts written in R or MATLAB.

There are multiple open-source programs for mass spectrometry
peak picking and alignment. Here, we describe programs that typify
the range of available software. MZmine (Pluskal et al., 2010) will
identify peaks inmass spectrometry data, align the resulting peaks across
a set of samples, and export a list of metabolites for analysis in other
programs.MZmine is easy to use due to its graphical user interface. How-
ever, MZmine requiresmanual input from the user at each step and does
not retain details about the options chosen during the data analysis. In
contrast, XCMS (Smith et al., 2006) requires more programming knowl-
edge but the data analysis steps can be automated once the appropriate
parameters are chosen. XCMS providesmultiple options for peak picking
and alignment algorithms. Finally, the expansion of XCMS to XCMS On-
line (Tautenhahn et al., 2012b) provides a middle ground for users not
as comfortable with computer programming, but who desire more con-
trol in parameter selection. XCMS Online also incorporates univariate
and multivariate statistical tools that can be used to analyze metabolo-
mics data (Gowda et al., 2014). The end product of all of these programs
is a list of metabolites that forms the base of subsequent data analysis.

Quality control (QC) of metabolomics data is an important step
before further data analysis. One method to assess variability in mass
spectrometry data is repeated analysis of a pooled sample that is repre-
sentative of all samples analyzed in a single project (for details see: Kido
Soule et al., 2015-this issue). Dunn et al. (2011) describe a low-order
non-linear locally estimated smoothing function (LOESS) to estimate
shifts in peak area in the QC samples as a function of analysis order on
themass spectrometer. The peak area for eachmetabolite in each sample
is then adjusted to the fitted curve. Following this step, any metabolites
present in less than50%of theQC samples ormetaboliteswith amean rel-
ative standard deviation (RSD= standard deviation / mean ∗ 100) in the
QC samples of more than 20% are removed from the dataset (Dunn et al.,
2011). Vinaixa et al. (2012) extend this idea to sample setswhere QC data
are not available. They propose removing any metabolite in an experi-
ment that has an RSD less than 20% (Vinaixa et al., 2012). Collectively,
these data processing steps are designed to reduce the impact of instru-
ment variability on conclusions reached during subsequent data analysis.

3.2.2. Finding patterns in metabolomics data
Patterns in metabolite presence or absence as a function of changes

in abiotic or biotic parameters provide a fingerprint of the chemical di-
versity within a sample and can be explored even when metabolite
identities are not available. A simple experimental design can focus
the data analysis steps even before the metabolomics data have been
generated. For example, metabolites can bemeasured under two differ-
ent growth conditions such as nutrient-limited and nutrient-replete
growth. In this circumstance, the data can be analyzed to find metabo-
lites that are present in significantly higher (or lower) amounts under
one of the growth conditions. This question requires univariate statisti-
cal tools and the steps needed to prepare metabolomics data for
addressing univariate questions have been described by Vinaixa et al.
(2012). The vast amount of data generated by a metabolomics experi-
ment can be more easily reduced to clear conclusions when there is
only a single variable altered in an experiment.

Metabolomics data can also be considered in conjunction with mul-
tiple biotic and abiotic factors that may alter the patterns of metabolites
present in a sample set. Simultaneously considering multiple factors
requires the use of multivariate statistical tools. The goal of such analy-
ses is often to consider the patterns in overlap between metabolites
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across a sample set and to determine which combination of environ-
mental (or experimental) factors is correlatedwith specificmetabolites.
This type of metabolomics data analysis builds on the statistical tech-
niques used by community ecologists to understand the factors control-
ling the distribution of biological communities (e.g., McCune and Grace,
2002) and often includes non-parametric statistical tools. While non-
parametric tools result in a loss of statistical power, they do not require
the metabolomics data to be normally distributed.

3.3. Databases and related tools for metabolomics data analysis

Putative annotation of statistically-interestingmass spectral features
is a common goal of untargeted metabolomics studies. For example, a
Fig. 4. As an example, one metabolite in the database was found in laboratory experiments with
(D). (C) shows the intracellular (‘int’) and extracellular (‘ext’) metabolites extracted from R. pom
the Pacific Ocean samples (D), the points are color-coded to show the distance from shore wh
metabolites and the intracellular metabolites extracted from 1.6 μm or 0.2 μm filters.
metabolite might only be present under specific environmental
conditions or might be released solely by one type of microorganism.
Compounds in untargeted metabolomics experiments are initially des-
ignated ‘unknown compounds’ and there are different levels of identifi-
cation depending on the methods used to identify the metabolites. The
strength of metabolite identifications can be characterized using the
foundation described by Sumner et al. (2007)(Table 2). From strongest
to weakest, compounds are ‘identified’, ‘putatively annotated’, ‘puta-
tively characterized’, or ‘unknown compounds’. The definitive identifi-
cation of a compound requires two independent assessments of the
metabolite compared to an authentic standard. However, depending
on the research question, putative annotations or characterizations
may be sufficient for the study's goals.
three different organisms (A, B, C) and in water samples collected from the Pacific Ocean
eroyi grownwith propionate or DMSP. The dashed lines show the trends in peak areas. In
ere the samples were collected and the peak areas of the metabolite in the extracellular



Fig. 5. MS2 fragmentation spectra for the metabolite shown in Fig. 4 are available from
three different experiments. The structures above each measured mass-to-charge value
are the in silico fragments calculated by MetFrag. The feature present at 166 m/z is the
parent ion.
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One means to obtain information about a metabolite initially is to
search databases of organic compounds by exact mass. There are multi-
ple freely-accessible databases where this is an option through an on-
line interface (Table 3). While the output from these searches provides
a first glimpse into the potential identity of a metabolite, structural iso-
mers cannot be distinguished solely based on exact mass (Fig. 2) and
additional data such as fragmentation spectra are needed to provide
an identification. In our opinion, METLIN (Tautenhahn et al., 2012a) is
themost usefulmetabolomics database for compound identification be-
cause it is a curated database of compounds analyzed by the Siuzdak
laboratory, containing exact mass and fragmentation data for a wide
variety of metabolites (Zhu et al., 2013). Once a metabolite has been
identified, an investigator often wants to compare their data to similar
experiments with this metabolite. For this purpose, MetaboLights
provides the best publically-accessible database. In contrast to the
METLIN database, any registered user can submit data to MetaboLights
(Haug et al., 2013) and the submitted data receives an accession
number that can be referenced during subsequent publications.
MetaboLights is hosted by the European Bioinformatics Institute, part
of the European Molecular Biology Laboratory (EMBL-EBI) and is fully
backed by EMBL core funding, ensuring data availability and continuity
of service. The teamworking onMetaboLights actively promotes consis-
tent standards for the storage and sharing of metabolomics data (Salek
et al., 2013)which further ensures that the informationwill be available
now and in the future. Although the datawithinMetaboLights is search-
able, a compound name or ChEBI identifier (Hastings et al., 2013) must
be provided.

There are additional computational tools that can aid in putative
compound identification. These tools may help distinguish between
multiple isomers noted during searches based on exact mass. MetFrag
(Wolf et al., 2010) and its successor, MetFusion (Gerlich and
Neumann, 2013), combine database searches based on mass with in
silico fragmentation of the resulting chemical compounds. The masses
of the in silico fragments are then compared to the list of measured
masses from the fragmentation (i.e. MS2) spectra. MetFusion expands
on this technique by searching the MS2 fragments provided by the
user against theMS2 fragments available in databases such asMassBank
(Horai et al., 2010). Yet another approach is taken with computational
tools that rely on the available biochemical pathway information to
rank putative annotations based on the number of metabolites mea-
sured within a given biochemical pathway. These programs have been
established in Python (mummichog, Li et al., 2013) or in R (ProbMetab,
Silva et al., 2014). Their documentation includes the details needed
to incorporate existing knowledge about biochemical pathways to
increase the likelihood of obtaining the correct information about a
metabolite.

3.4. Boutique metabolomics database

Wedeveloped a boutique database formetabolomics data to achieve
two goals. First, we wanted a tool to store our processed metabolomics
data so it could be mined repeatedly after the initial data analysis was
completed. Metabolomics data provide a rich opportunity for explora-
tion, and each data file may ultimately provide the answer to a series
of research questions beyond was what originally intended for a given
dataset. Second, we wanted to use the database as a discovery tool to
search for overlap in metabolites across multiple laboratory experi-
ments and field expeditions. Thus, the database allows us to focus our
identification efforts on those metabolites that are most likely to be
environmentally and/or ecologically relevant.

Our boutique database relies on matches based on both mass-to-
charge values and retention times. All datasets currently within this
database have been collected with the same LC-based method for com-
pound separation in order to minimize any differences in LC conditions
that cause retention time variability and prevent a comparison of
data across experiments. Yet, we recognize that even with the same
analytical conditions, differences in extraction methods and matrix ef-
fects (Griffith et al., 2014; Matuszewski et al., 2003; Piehowski et al.,
2013) raise concerns about directly comparing data from different ex-
periments (Lange et al., 2008). The current version of our database con-
siders each combination of a mass-to-charge value and a retention time
as a unique metabolite. Therefore, if onemetabolite forms two different
adducts, there will be two different measured mass-to-charge values
and our database will consider them as two different metabolites. For
these reasons, we view the database as an option to help explore meta-
bolomics data, and not as a tool tomake definitivemetabolite identifica-
tions. Putative identifications that are suggested by overlap within the
database should be confirmed with authentic standards.

We populated the prototype database withmetabolomics data from
the sample sets described in themethods section. This resulted in a col-
lection of almost 70,000potentialmetabolites in our database. Two-way
Venn diagrams (Fig. 3) allow easy visualization of the number ofmetab-
olites found in more than one experiment. We use these diagrams to
initially consider the overlap between metabolites measured in labora-
tory experiments and field expeditions (Fig. 3A) or between two differ-
ent laboratory experiments (Fig. 3B). As shown in these examples, most
of themetabolites are unique to a given experiment or field expedition.
However, a substantial number of metabolites are found in both
laboratory experiments and field expeditions.

We thendifferentiate noteworthymetabolites based on the environ-
mental conditions under which the metabolite was observed. The re-
sults from the database query include the metadata for each sample.
For example, one of the metabolites showed increases in peak areas
over time in laboratory experiments run with three different model or-
ganisms (Fig. 4A, B, C). In the experiment with Ruegeria pomeroyi, this
metabolite had higher concentrations in the intracellular metabolites
compared to the extracellular metabolites regardless of whether
R. pomeroyi was grown on propionate or dimethylsulfoniopropionate
(DMSP) (Fig. 4C). Yet, in the field samples from the Pacific Ocean
(Fig. 4D), the opposite situationwas observed and extracellular concen-
trations exceeded intracellular concentrations of this metabolite. Thus,
this metabolite is present in multiple sample sets and it warrants
additional investigation into its identity.

Our next step in the investigation of a metabolite is to access infor-
mation such as the fragmentation spectrum. For this metabolite, we
have fragmentation spectra from three different sample sets and two



Fig. 6. Kynurenine, a tryptophan oxidation product, was initially observed in an experiment with Synechoccocus elongatus (Fiore et al., in press). Querying the boutique database, we
observed kynurenine in the intracellularmetabolites from two laboratory experiments (A, B) and in the intracellular (‘int.’) and extracellular (‘ext.’) metabolites from an experiment con-
ductedwith Atlantic Ocean seawater (C). The laboratory experiments both compared the response of microorganisms to differentmedia. In (C), the in situmicroorganismswere provided
with exudate from a phytoplankton culture.
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of the MS2 fragments were found in all three sample sets (Fig. 5). We
used MetFrag to compare the in silico fragmentation pattern from the
parent mass with the measured MS2 fragments. The in silico fragments
predicted by MetFrag are shown above each fragment in Fig. 5. There
are over a thousand possible matches between the measured mass
and the exact masses listed in the ChemSpider database. MetFrag
ranks its output, and one-third of the top 100 possibilities matched all
three of the fragments' measured mass-to-charge values. One of the
possible matches presented by MetFrag is phenylalanine, which is a
compound we measure in our targeted mass spectrometry method
(Kido Soule et al., 2015-this issue). Phenylalanine is a non-polar
amino acid present in nanomolar quantities in seawater (Yamashita
and Tanoue, 2003). Phenylalanine has been measured in a variety of
marine ecosystems and it is generally less than 3% of the amino acids re-
covered from seawater samples (Hubberten et al., 1994; Kaiser and
Benner, 2009; McCarthy et al., 1996; Yamashita and Tanoue, 2004).
This exercise is a compelling proof-of-concept example of the utility of
our database because it shows that our targeted and untargeted
methods are yielding comparable results across different sample sets
and analytical platforms. While the analysis of the MS2 fragments is
not yet automated within our data analysis pipeline, this is an obvious
next step in the development of the database.

Querying the boutique database can also reveal details about novel
metabolites. For example, Fiore et al. (in press) observed the unexpect-
ed presence of kynurenine in the extracellular metabolites from a cul-
ture experiment with Synechococcus elongatus. The identification of
kynurenine was confirmed through analysis of an authentic standard.
Yet, prior to this observation, kynurenine was not recognized as a com-
ponent of themetabolic profile of S. elongatus and we did not know if it
could be detected in the marine environment. Querying the boutique
database revealed kynurenine was present in the intracellular metabo-
lites from two additional laboratory experiments (Fig. 6A and B). In the
field samples, kynurenine was observed in the intracellular and extra-
cellularmetabolites fromAtlantic Ocean seawater thatwas used to con-
duct an experiment assessing the utilization of phytoplankton exudates
(Fig. 6C). The complete absence of kynurenine in the Pacific Ocean sam-
ples raises questions about the interactions between microorganisms
and kynurenine. For example, is kynurenine produced in the Pacific
Ocean and immediately consumed by the in situ community? What is
the role of carbon source or inorganic nutrient availability in the intra-
cellular production of kynurenine? Is kynurenine exuded from a cell
or released through mortality-related processes? We have future
plans to test these hypotheses using a combination of field and labora-
tory experiments. We expect that ongoing and future applications of
the database will highlight additional mass spectral features that are
common (or unique) acrossmetabolically diversemicrobes and distinct
environmental settings.

4. Conclusions

Metabolomics data analysis is a new field that is changing rapidly.
The tools we have reviewed here are at the forefront of environmental
metabolomics and we expect new tools to be developed as interest in
this field expands. We have made our database code readily available
at GitHub (https://github.com/joefutrelle/domdb) to allow other labo-
ratories to implement the database and use it for the organization and
analysis of their ownmetabolomics data. Yet, there are challenges asso-
ciatedwith the expansion of our boutique database to an environmental
metabolomics database that can serve as a general resource for ocean-
ography. Most important, the community as a whole must address
how to consider data collected using different extraction protocols
and analytical methods. This data integration challenge will require
input from a broad spectrum of scientists interested in marine metabo-
lomics. In the interim, our boutique database enables each lab to search
within their own datasets in order to develop new hypotheses that can
be tested in the field.With future advances in environmental metabolo-
mics, we hope that the ideas we have presented on the combination of
metabolomics data and associated metadata will provide new insights
into novel metabolites found in marine environments.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.marchem.2015.06.012.
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