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Abstract 12 

Changes in sea ice in the Arctic will have ramifications on regional and global carbon 13 

cycling. Research to date has primarily focused on the regional impacts to biological activity and 14 

global impacts on atmospheric processes. The current project considers the molecular-level 15 

composition of organic carbon within sea ice compared to the organic matter in seawater. The 16 

project revealed that the composition of organic matter within sea ice was more variable than the 17 

composition of organic matter within the surface ocean. Furthermore, sea ice samples presented 18 

two distinct patterns in the composition of organic matter with a portion of the sea ice samples 19 

containing protein-like organic matter. Yet, the samples were collected in the early winter period 20 

when little biological activity is expected. Thus, one hypothesis is that physical processes acting 21 

during the formation of sea ice selectively transferred organic matter from seawater into sea ice. 22 

The present project expands our understanding of dissolved organic matter in sea ice and surface 23 

seawater and thereby increases our knowledge of carbon cycling in polar regions. 24 

1 Introduction 25 

Sea ice in the Arctic has recently experienced a dramatic decline in spatial extent 26 

(Comiso et al., 2008; Kwok et al., 2009) which has ramifications for the entire Arctic ecosystem 27 

(McLaughlin et al., 2011; Bhatt et al., 2014). While the loss of sea ice can impact the biological 28 

community that relies on sea ice as a habitat (Arrigo, 2014), sea ice itself stores organic carbon 29 

that can serve as a carbon and energy source for the base of the Arctic food web. Furthermore, 30 

laboratory experiments (Müller et al., 2013) and field projects (Granskog et al., 2004; Stedmon et 31 

al., 2007; Underwood et al., 2010) have shown that dissolved organic matter is not transferred 32 

conservatively from the water column into sea ice during the formation of sea ice.  33 
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Dissolved organic matter in the Arctic region has several sources, including in situ 34 

primary production, river input, and transport of seawater from adjacent oceans into the Arctic 35 

(Wheeler et al., 1997; Anderson, 2002; Amon, 2004). Sinks for dissolved organic matter in the 36 

Arctic include microbial remineralization of organic matter, settling based on association with 37 

particles, outflow of surface waters into the north Atlantic Ocean, and deep-water formation in 38 

the north Atlantic Ocean (Wheeler et al., 1997; Opsahl et al., 1999; Mathis et al., 2005). Within 39 

sea ice, the dissolved organic matter is a combination of organic matter from the underlying 40 

water column and in situ production by phytoplankton (Stedmon et al., 2011; Aslam et al., 2012). 41 

As sea ice ages, the microbial community within sea ice uses the dissolved organic matter as a 42 

carbon and energy source thereby altering the composition of the dissolved organic matter 43 

(Stedmon et al., 2007). The present project focuses on newly formed sea ice in order to consider 44 

conditions with minimal biological alteration of dissolved organic matter. 45 

Previous characterizations of organic matter within sea ice have described broad classes 46 

of organic compounds such as carbohydrates, amino acids, lipids, and extracellular 47 

polysaccharides (EPS). Carbohydrate concentrations in sea ice are highly variable, with average 48 

concentrations of up to 40% of the dissolved organic carbon in sea ice (Herborg et al., 2001; 49 

Thomas et al., 2001; Dumont et al., 2009; Underwood et al., 2010). Amino acids have also been 50 

measured within sea ice, although they are generally less than 8% of the organic carbon pool 51 

(Arrigo et al., 1995; Amon et al., 2001; Dumont et al., 2009; Müller et al., 2013). The lipids in 52 

sea ice originate from microbial biomass and their abiotic degradation can serve as a model for 53 

the loss of organic matter within sea ice (Rontani et al., 2014). Finally, phytoplankton within sea 54 
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ice have been directly tied to the production of EPS within sea ice (Herborg et al., 2001; Meiners 55 

et al., 2003; Riedel et al., 2006; Underwood et al., 2010; Underwood et al., 2013).  56 

The EPS produced by phytoplankton is chemically complex (Ewert and Deming, 2013) 57 

and can alter the physical structure of sea ice (Krembs et al., 2011). Yet, EPS is generally high 58 

molecular weight organic material and thus represents only a fraction of the organic compounds 59 

potentially present in sea ice. 60 

Dissolved organic matter is a complex and heterogeneous mixture and no single 61 

analytical method is capable of defining the composition of organic matter. In the present 62 

project, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) is applied to 63 

assessing the molecular-level composition of low molecular weight organic matter. When used 64 

in conjunction with electrospray ionization (ESI), the instrument is able to measure the mass-to-65 

charge values of thousands of organic compounds without fragmenting the compounds 66 

(Kujawinski et al., 2002). The resulting data have an accuracy of less than 1 ppm which enables 67 

the calculation of elemental formulas solely based on the mass-to-charge values (Kujawinski and 68 

Behn, 2006; Koch et al., 2007). While structural isomers cannot be resolved with this 69 

instrumentation, the resulting data provide valuable information on the molecular level 70 

composition of organic matter from different ecosystems. FT-ICR MS has been used to define 71 

marine and freshwater source molecules (Kujawinski et al., 2009) and to reveal patterns in the 72 

dissolved organic matter found in terrestrial streams (Sleighter et al., 2014) and the marine 73 

environment (Dittmar and Koch, 2006; Hertkorn et al., 2013). Thus far, the molecular level 74 

composition of organic matter in sea ice is unknown, yet given the prospect for rapid changes in 75 

the region, this represents a critical area for understanding carbon cycling in the Arctic. 76 
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Assessments of the organic matter in snow and glacial ecosystems provide the closest 77 

approximations to the samples analyzed in the present project. In the northern hemisphere, 78 

ultrahigh resolution mass spectrometry has been used to describe the biological imprint on the 79 

composition of dissolved organic matter in glacial environments (Bhatia et al., 2010; Singer et 80 

al., 2012; Lawson et al., 2014). In the southern hemisphere, analysis of Antarctic snow pack 81 

revealed a terrestrial impact on the molecular-level composition of dissolved organic matter 82 

(Antony et al., 2014). Furthermore, organic matter in glaciers can be the result of autochthonous 83 

production (Bhatia et al., 2010; Singer et al., 2012) or atmospheric deposition of organic matter 84 

onto the glacial surface (Jenk et al., 2006; Jurado et al., 2008; Stubbins et al., 2012). Ultimately, 85 

these land-based glacial systems are a potentially important source of organic carbon to marine 86 

ecosystems (Hood et al., 2015). However, whether the organic matter within sea ice follows the 87 

same compositional patterns as terrestrial glacial ecosystems is unknown. 88 

The present project considers organic matter within first year sea ice and seawater 89 

samples from the underlying water column. The project used ultrahigh resolution mass 90 

spectrometry to assess the composition of the dissolved organic compounds. The resulting data 91 

provide baseline information on the dissolved organic matter in seawater and sea ice while 92 

raising interesting questions about the sources of organic matter in sea ice. 93 

2 Materials and Methods 94 

2.1 Sample collection 95 

Seawater and sea ice samples were collected in November and December of 2011 during 96 

a cruise on board the USCGC Healy. At each station, one seawater and one sea ice sample were 97 

collected. Surface water samples were collected with 30 L Niskin bottles. Sea ice samples were 98 



Page 6 

 

collected with a dip net or were recovered on top of the CTD rosette system. The thickness of the 99 

sea ice samples ranged from 8 to 15 cm (n=5); spatial variability in the thickness of the ice sheet 100 

in the vicinity of the ship is unknown. Ice samples were melted in combusted glass beakers held 101 

at room temperature in order to obtain water that could be processed with the solid phase 102 

extraction protocol. Thus, the analyses described below are homogenized sea ice samples 103 

because it was not possible to collect cores of sea ice nor was it possible to collect replicate 104 

samples at each station. Both water and ice samples were sequentially filtered through GF/F 105 

filters (Whatman) and 0.2 µm Omnipore filters (Millipore) in order to remove particulate organic 106 

matter including any microbial cells within the samples. The filtered water samples were 107 

acidified to pH ~3 with concentrated hydrochloric acid (HCl). 108 

2.2 Sample processing  109 

To obtain the concentration of total organic carbon (TOC), a 40 ml aliquot of whole 110 

water was acidified to pH~3 with concentrated HCl and stored in combusted glass vials at 4°C 111 

until analysis with a Shimadzu TOC-VCSH total organic carbon analyzer. Blanks (MilliQ water), 112 

standard curves with potassium hydrogen phthalate, and comparisons to standards provided by 113 

Prof. D. Hansell (University of Miami) were made daily. The coefficient of variability between 114 

replicate injections was < 2 %. The concentration of dissolved organic carbon (DOC) was 115 

obtained from 0.2 µm-filtered water using the same analytical method. 116 

Dissolved organic matter (DOM) was extracted from 2 L of an acidified water sample 117 

with 1g / 6 ml Bond Elut PPL cartridges (Varian) following the protocol from Dittmar et al. 118 

(2008). After filtering the acidified water through the PPL cartridge, the cartridge was rinsed 119 

with four cartridge volumes of 0.01 M HCl and the cartridge was dried. The DOM was eluted off 120 
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the cartridges using two cartridge volumes of 100% methanol and stored at -20°C. Due to 121 

excessive salt content, samples were dried down on land and resuspended in an equivalent 122 

volume of 5% methanol and 95% Milli-Q water which had been adjusted to pH~3 with 123 

concentrated HCl. Samples were then re-extracted with 50mg/1ml PPL cartridges (Varian) and 124 

the extracts were dried down until analysis by mass spectrometry.  125 

2.3 FT ICR MS data collection 126 

All samples were analyzed in negative ion mode on a 7T ESI FT-ICR mass spectrometer 127 

(LTQ-FT-MS, Thermo Fisher Scientific, Waltham MA). Sample aliquots were reconstituted in 128 

50:50 methanol:water and infused into the ESI interface at 4 μL min-1. Instrument and spray 129 

parameters were optimized for each sample. The capillary temperature was set at 250°C, and the 130 

spray voltage was between 3.7 and 4 kV. At least 200 scans were collected for each sample 131 

which is a sufficient number of scans for good peak reproducibility (Kido Soule et al., 2010). 132 

The mass range for the full-scan collection was 150 < m/z < 1000. Weekly mass calibrations 133 

were performed with an external standard (Thermo Calibration Mix) resulting in mass accuracy 134 

errors < 1.5 ppm. The target average resolving power was 400,000 at m/z 400 (where resolving 135 

power is defined as m/Δm50% where Δm50% is the width at half-height of peak m).  136 

2.4 Peak Detection 137 

We collected individual transients as well as a combined raw file using xCalibur 2.0. 138 

Transients were co-added and processed with custom-written MATLAB code provided by 139 

Southam et al. (2007). Within each sample, only those transients whose total ion current (TIC) 140 

was greater than 20% of the maximal TIC were co-added, processed with Hanning apodisation, 141 

and zero-filled once prior to fast Fourier transformation. Mass-to-charge (m/z) values with a 142 
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signal-to-noise ratio above 5 (as calculated in Southam et al., 2007) were retained. Furthermore, 143 

m/z values had to be present in at least two sea ice or two seawater samples. The impact of these 144 

parameters can been seen visually in the van Krevelen diagrams in Fig. S1. Spectra were 145 

internally re-calibrated using a short list of m/z values present in a majority of the samples. The 146 

individual sample peak lists were then aligned with an error tolerance of 1 ppm using MATLAB 147 

code provided by Mantini et al. (2007).  148 

Elemental formulas were assigned using the Compound Identification Algorithm (CIA: 149 

Kujawinski and Behn, 2006; Kujawinski et al., 2009) using a formula error of 1 ppm, and a 150 

relationship error of 20 ppm. The mass limit above which elemental formulas were assigned only 151 

by functional group relationships was 500 Da. Elements considered in CIA are C, H, O, N, S, 152 

and P.  153 

2.5 Sea ice coverage 154 

The Climate Data Record of sea ice concentration from passive microwave data (Peng et 155 

al., 2013) was used to characterize the extent of sea ice cover. The sea ice coverage is calculated 156 

(in 25 x 25 km grid cells) from gridded brightness temperatures from the Defense Meteorological 157 

Satellite Program (DMSP) F8, F11, and F13 Special Sensor Microwave Imager (SSM/I) passive 158 

microwave radiometers and the DMSP F17 Special Sensor Microwage Image/Sounder (SSMS) 159 

passive microwave radiometer. The netCDF files for each sampling day were downloaded from 160 

the National Snow and Ice Data Center (Meier et al., 2013) and plotted using MATLAB. 161 

2.6 Statistical analysis 162 

 Hierarchical cluster analysis was used to analyze inter-sample variability in ESI FT-ICR 163 

MS data. For the cluster analysis, distances between samples were calculated with the relative 164 
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Bray-Curtis distance measure using the Fathom toolbox (Jones, 2014) in order to remove the 165 

impact of differences in the number of m/z values in the sea ice compared to the seawater 166 

samples. The cluster analysis was performed using Ward’s linkage method (McCune and Grace, 167 

2002). The Wilcoxon rank sum test and Kruskal-Wallis test were used to assess the significance 168 

of differences across the samples. Post hoc tests after the Kruskal-Wallis test used a Bonferroni 169 

correction for multiple comparisons. Variability in the number of m/z values and the proportion 170 

of elemental formulas assigned within the sea ice and seawater samples was assessed by 171 

calculating the coefficient of variation (CV) for each elemental formula, where the CV is defined 172 

as the standard deviation divided by the mean value. 173 

3 Results  174 

3.1 Environmental parameters 175 

The extent of sea ice cover increased as the sampling period progressed from mid-176 

November to early December (Fig. S2). Samples were collected both within the ice pack and at 177 

the edge of the ice-water boundary. Surface water samples showed a small temperature 178 

range, -1.8 °C to -1.4 °C, and a slightly wider salinity range, 27.73 to a maximum value of 32.65 179 

(Table 1). The salinity of the melted ice was 9.8 for the SLINE sample and 8.2 for the SLIE 180 

sample. Salinity data are not available for the remaining sea ice samples. The concentrations of 181 

DOC in the sea ice samples ranged from 31 – 109 µM, while values in the corresponding 182 

seawater samples ranged from 60 – 85 µM (Table 1). In the seawater samples, most of the 183 

organic matter was present as dissolved organic carbon with the average DOC/TOC ratio equal 184 

to 1.02 (95% CI from 0.9029 to 1.1371). In the sea ice samples, DOC ranged from 35% to 100% 185 

of total organic carbon (Fig. 1). For select samples, the concentrations of DOC exceeded the 186 



Page 10 

 

TOC value due to the precision of the instrumentation used to obtain the organic carbon 187 

concentrations (Sharp et al., 2002). 188 

3.2 Patterns in organic matter based on mass-to-charge values  189 

In order to characterize the organic matter in the sea ice and seawater samples, the 190 

dissolved organic compounds have to be extracted from the water matrix. In this project, the 191 

seawater samples showed higher extraction efficiencies than the sea ice samples (Table 2). We 192 

tested the effect of pH on the extraction efficiency of the solid phase extraction cartridges (Fig. 193 

S3) and found no significant difference between acidifying the fluids to pH=3 compared to pH=2 194 

as described in the original method (Dittmar et al., 2008). The sea ice samples had significantly 195 

lower numbers of m/z values compared to the seawater samples (Table 2, Wilcoxon rank sum 196 

test, p = 0.0011). The decrease in the number of m/z values in the sea ice samples may be a 197 

function of the decrease in DOC concentrations in the extract; however, reanalysis of the extracts 198 

with differing DOC concentrations would be necessary to confirm this observation. Finally, the 199 

CV calculated for the number of m/z features in the sea ice samples was higher than for the 200 

seawater samples (36% in sea ice compared to 15% in seawater).  201 

The patterns in the m/z values found in the sea ice and seawater samples were examined 202 

using cluster analysis. This analysis does not require knowledge regarding the identity of each 203 

m/z feature, instead the analysis relies on the pattern of shared m/z values among the samples in 204 

the dataset. The sea ice and seawater samples formed distinct clusters suggesting a separation in 205 

the composition of organic compounds between the two types of samples (Fig. 2). The cluster 206 

analysis further revealed the sea ice samples were divided into two groups with three stations 207 

(HS25, WN7, and PH9) distinct from the remaining sea ice samples. For simplicity, these 208 
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stations will be referred to as the ‘ice group #1 samples’ while the remaining sea ice samples will 209 

be designated ‘ice group #2.’  210 

A simple Venn diagram can be used to define the overlap in m/z values among the 211 

seawater and two groups of sea ice samples (Fig. 3). Most of the m/z values in the ice group #2 212 

samples were also present in the seawater indicating a high degree of overlap between the 213 

organic matter in seawater and the organic matter in those ice samples. In contrast, most of the 214 

m/z values obtained in ice group #1 were unique to ice group #1 and not found in either seawater 215 

or the other sea ice samples. 216 

3.3 Composition of organic matter in sea ice and seawater 217 

Elemental formulas can be calculated for measured m/z values from ultrahigh resolution 218 

mass spectrometry datasets. In the present project, elemental formulas were assigned to more 219 

than 95% of the m/z values. CHO- and CHON-containing elemental formulas were the majority 220 

of the formulas while CHONP, CHONS, and CHOS compounds represented a smaller 221 

proportion of the calculated elemental formulas (Table 3, Table S1). Calculating the CV for each 222 

group of elemental formulas revealed that the elemental formulas assigned to the sea ice samples 223 

were more variable compared to those assigned to the seawater samples (Table 3). For example, 224 

CHO compounds averaged 39% of the elemental formulas in the sea ice samples with a CV of 225 

30% across the set of sea ice samples. In contrast, CHO compounds averaged 43% of the 226 

seawater samples, but there was less variability with a CV of 7%. Magnitude-weighted averages 227 

for the H:C and O:C molar ratios were also calculated for the m/z values with elemental formulas 228 

(Table S3). The H:Cw and N:Cw values were significantly higher in the sea ice compared to the 229 

seawater (Wilcoxon rank sum test, p<<0.0001 and p=0.0379, respectively), while the O:Cw 230 
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values were significantly lower (Wilcoxon rank sum test, p<<0.001) in the sea ice compared to 231 

the seawater.  232 

van Krevelen diagrams (Fig. 4) are one means to display the chemical complexity of 233 

organic matter (Kim et al., 2003). In a van Krevelen diagram, each point is an elemental formula 234 

calculated from a measured m/z value. Fig. 4A is the elemental formulas observed in all of the 235 

samples along with the formula classes that may be defined based on elemental ratios. The 236 

regions defining protein-like compounds and condensed hydrocarbon-like compounds contain 237 

the highest numbers of elemental formulas in both the sea ice and seawater samples (Table S2). 238 

However, the distribution of elemental formulas was not uniform across the three sample groups. 239 

The condensed hydrocarbon-like compounds (Fig. 5A) showed significant differences (Kruskal-240 

Wallis test, p = 0.0246), with a higher number of condensed hydrocarbon-like compounds in the 241 

ice group #2 samples compared to the ice group #1 samples. There were also significant 242 

differences in the number of protein-like compounds (Fig. 5B, Kruskal-Wallis test, p = 0.0024) 243 

with the ice group #1 samples showing significantly more protein-like compounds than the water 244 

samples. The remaining compound classes comprised less than 3% of the elemental formulas and 245 

are therefore not considered further. 246 

The difference between the ice group #1 and ice group #2 samples can also be viewed 247 

graphically on the van Krevelen diagram (Fig. 4B). The m/z values common to all of the ice 248 

group #1 samples have higher hydrogen:carbon molar ratios than the elemental formulas 249 

calculated for the ice group #2 samples. In contrast, the ice group #2 had m/z values spanning a 250 

broader range of molar ratios within the van Krevelen diagram. 251 
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4 Discussion 252 

4.1 Bulk characteristics of organic matter in sea ice and seawater 253 

In pelagic marine ecosystems, the majority of organic carbon in seawater is present in the 254 

dissolved phase with a correspondingly low fraction of particulate organic carbon (Carlson et al., 255 

1998; Hansell and Carlson, 1998) which matches observations in the present project for the 256 

seawater samples. In contrast, the sea ice samples had as little as 35% of the carbon present in 257 

the dissolved form. The gradient in the fraction of carbon present as DOC is also notable with the 258 

northern stations containing primarily DOC with decreasing fractions of DOC in the southern 259 

stations. In land-fast ice collected from Barrow, Alaska, Juhl et al. (2011) measured DOC values 260 

that were 66 to 80% of their TOC measurements. Dumont et al. (2009) obtained similar data with 261 

DOC representing 77% of the TOC pool in sea ice collected from Antarctica. The change in the 262 

fraction of carbon present as DOC could be salinity driven flocculation of organic carbon which 263 

shifted organic matter from the dissolved phase to the particulate phase (Sholkovitz, 1976). This 264 

process has been studied in estuaries where relatively fresh and saline waters mix and thereby 265 

reduce the amount of DOC in the water column (Asmala et al., 2014). While the formation of sea 266 

ice alters salinity, the consequences for the flocculation of organic matter is unknown. Based on 267 

the data from the present project, the melting of sea ice in the northern regions would therefore 268 

release a higher fraction of dissolved material to the water column compared to the southern 269 

samples. This difference in the form of organic matter may affect the biological utilization of the 270 

organic matter once it is released into the water column.  271 

The current project assessed the composition of dissolved organic matter and relied on 272 

solid phase extraction to extract organic compounds from seawater and sea ice. Yet, the 273 
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extraction of organic matter from water samples is not 100% efficient and is partially dependent 274 

on the organic compounds within the samples. For samples from marine and estuarine sites, 275 

Dittmar et al. (2008) reported extraction efficiencies ranging from 43 to 62% using the PPL 276 

extraction cartridges. More recently, a series of seawater samples had extraction efficiencies 277 

~40% (Arrieta et al., 2015) which is comparable to the extraction efficiencies measured in the 278 

Arctic seawater samples. In contrast, the extraction of organic carbon from sea ice was more 279 

variable with extraction efficiencies ranging from 9 to 34%. Using C18 extraction disks, Bhatia et 280 

al. (2010) observed an even larger range of extraction efficiencies from glacial samples (5 – 281 

94%) suggesting that some of the variability observed in the sea ice may be a function of organic 282 

matter found within ice samples. Since the analysis of organic matter in these samples required 283 

solid phase extraction, the conclusions are biased towards the extractable organic matter and may 284 

not represent the larger pool of organic matter in sea ice or seawater. 285 

4.2 Composition of DOM in sea ice compared to marine systems 286 

Direct comparison of ultrahigh resolution mass spectrometry data across research sites is 287 

complicated by the use of different mass spectrometers and different computational algorithms 288 

used to process the data and generate the elemental formulas. However, some broad comparisons 289 

are possible. The prevalence of m/z values with CHO and CHON containing formulas in the sea 290 

ice samples is comparable to samples from the Greenland ice sheet (Lawson et al., 2014) and in 291 

snow from the Antarctic (Antony et al., 2014). Thus, the distribution of elemental formulas is 292 

similar, although converting the percent of elemental formulas containing N, for example, into 293 

the concentration of N-containing organic matter is not possible with this type of ultrahigh 294 

resolution mass spectrometry data. The magnitude-averaged elemental ratios of H:C and O:C 295 
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observed for the sea ice samples in the present project also span the range of magnitude-averaged 296 

elemental ratios measured on the Greenland ice sheet (Bhatia et al., 2010; Lawson et al., 2014). 297 

On the other hand, the Arctic seawater samples have a higher proportion of CHON compounds 298 

compared to values obtained from more temperate oceans (Kujawinski et al., 2009). Lacking any 299 

other Arctic seawater samples for comparison, we cannot assess whether these patterns are 300 

unique to polar regions or is a function of the organic matter present in seawater samples during 301 

the polar winter.  302 

4.3 Selective transfer of organic compounds into sea ice 303 

The formation of sea ice is a dynamic process. This project focused on newly formed sea 304 

ice in order to reduce the impact of primary production and alteration of organic matter within 305 

the sea ice due to biotic processes. Yet, even in the fall to winter transition, there could be a low 306 

rate of biological activity within the sea ice with an unknown impact on the organic matter. For a 307 

subset of the sea ice samples, the total organic carbon concentration of the sea ice exceeded the 308 

value for the seawater. The source of this organic carbon could be primary production within the 309 

ice or atmospheric deposition. Alternatively, the sea ice could have been formed at a site with 310 

higher concentrations of organic carbon in the water column and subsequently transported to the 311 

location where the ice was sampled. Bulk assessments of sea ice have revealed the formation of 312 

sea ice differentially enriches dissolved organic matter (Thomas et al., 2001) in a manner that 313 

does not match the enrichment of inorganic compounds within sea ice (Giannelli et al., 2001). 314 

Here, ultrahigh resolution mass spectrometry data provides new insight into how variability in 315 

the composition of organic matter affects whether a compound is assimilated into sea ice. First, 316 

the data revealed clear distinction between the composition of organic matter in seawater and sea 317 
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ice indicating that seawater samples cannot serve as a proxy for the organic matter that may be 318 

trapped within sea ice. Yet, the sea ice further divided into two groups each with a different level 319 

of overlap with seawater. The m/z values within ice group #2 were predominantly m/z values 320 

found in seawater. In contrast, the m/z values within ice group #1 were more distinct from 321 

seawater with a particular overrepresentation of protein-like compounds.  322 

The current project is not the first to observe protein-like material within sea ice. 323 

Stedmon et al. (2011) used fluorescence measurements to identify protein-like material as one 324 

pool of compounds within sea ice dissolved organic matter. Their samples were collected in the 325 

winter to spring transition and they conclude that in situ production is the driving factor defining 326 

the presence of proteins in sea ice (Stedmon et al., 2011). On the other hand, amino acids show 327 

enrichment in sea ice compared to seawater (Müller et al., 2013), which implicates selective 328 

assimilation as an important factor dictating the composition of organic compounds found within 329 

sea ice. In the Arctic, the fall to winter transition is a period of low biological activity, thus our 330 

observation of enrichment of protein-like material within the ice group #1 samples is likely due 331 

to physical processes and not in situ production within the sea ice.  332 

The available data could not explain why there were two types of sea ice samples in the 333 

present project. All three of the stations within ice group #1 samples were from the Beaufort and 334 

Chukchi Seas. Yet, even stations that were relatively close (HS25 and BC6, or PH9 and PH3, see 335 

Fig. 1) showed different patterns in the composition of organic matter. This suggests that spatial 336 

proximity and the movement of surface water currents in the region cannot explain the 337 

differences. The conditions in the surface ocean with respect to DOC and TOC concentrations, 338 

the abundance of heterotrophic and autotrophic microorganisms, nutrient concentrations, and 339 
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surface water temperature (data not shown) also could not explain the distinction between the 340 

two groups of ice samples.  341 

The presence of two groups of sea ice samples also contributed to the increased 342 

variability in the organic matter in sea ice compared to seawater. The bulk assessments of the 343 

concentration of TOC and DOC in the sea ice and the chemical complexity of the dissolved 344 

organic matter in sea ice spanned a larger range than was observed in the seawater samples. 345 

Organic matter in sea ice is spatially heterogeneous (Underwood et al., 2010; Juhl et al., 2011) 346 

and the current project’s data emphasizes that the heterogeneity of sea ice extends to 347 

compositional differences in the organic matter. FT-ICR MS data cannot be used to assess 348 

structural isomers in the organic compounds. However, we posit that within a single m/z value, 349 

the sea ice samples would also have more structural isomers compared to what would be present 350 

in the seawater samples. Furthermore, this complexity of organic compounds in sea ice indicates 351 

that small sets of sea ice samples may not be representative of processes occurring across the 352 

Arctic region which hinders our ability to predict the role of changes in sea ice on polar 353 

ecosystems.  354 

5 Conclusions 355 

Future changes in the spatial extent and thickness of sea ice will directly impact polar 356 

ecosystems. Reductions in sea ice will also transfer organic matter into the water column. One 357 

goal of this project was to assess the potential resemblance between this sea ice-derived organic 358 

matter and the organic matter already present in seawater. While the organic matter in sea ice 359 

was distinct from that in seawater, it was not uniformly different which complicates linking 360 

future changes in sea ice with carbon cycling in polar regions. The current project has provided 361 
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baseline information about the composition of organic matter in sea ice. Future research must 362 

address the factors that control the transfer of individual organic compounds between the water 363 

column and sea ice and consider regional variability in these processes. Ultimately, 364 

compositional differences in organic matter directly impacts its availability to the biological 365 

community and thus controls the movement of carbon through the Arctic ecosystem.  366 
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Table 1. Paired sea ice and seawater samples were collected from eight stations in the Bering, Beaufort, and Chukchi Seas. Total 550 

organic carbon (TOC) and dissolved organic carbon (DOC) concentrations are given for the ice and seawater samples. For the 551 

seawater samples, additional details include sampling depth, temperature, and salinity of the water. 552 

 553 

 554 

    Water samples  Ice samples 
Station Date sampled 

(GMT) 
Latitude 
(°N) 

Longitude 
(°W) 

Sample 
depth 
(m) 

Temperature 
(°C) 

Salinity  TOC 
(µM) 

DOC 
(µM) 

TOC 
(µM) 

DOC 
(µM) 

SLIE Dec. 1, 2011 63.5 167.8 2.0 -1.6 31.68 72.3 74.9 109.2 37.4 
SLINE Dec. 2, 2011 64.6 168.5 2.0 -1.8 32.65 63.6 60.1 101.4 55.9 
PH9 Nov. 27, 2011 68.6 168.7 1.3 -1.4 32.03 66.4 65.3 68.1 38.1 
PH3 Nov. 28, 2011 68.6 167.3 5.2 -1.6 31.74 85.1 84.3 39.5 38.6 
WN7 Nov. 17, 2011 71.3 161.3 2.5 -1.6 31.88 74.5 78.3 99.2 102.4 
BC6 Nov. 21, 2011 72.1 155.3 1.2 -1.6 29.67 69.3 74.4 48.8 47.1 
HS17 Nov. 18, 2011 72.2 158 2.6 -1.7 31.66 74.3 73.0 46.5 46.5 
HS25 Nov. 20, 2011 72.6 156 2.8 -1.5 27.73 69.6 72.1 31.8 31.2 
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Table 2. Extraction efficiency and the number of m/z values from the mass spectrometry data for 555 

the organic matter extracted from seawater and sea ice. The extraction efficiency is calculated as 556 

the percentage of dissolved organic carbon captured by the PPL cartridges as a fraction of the 557 

measured dissolved organic carbon in the corresponding water sample. The number of m/z values 558 

is the number of peaks detected in the FT-ICR MS data. 559 

 
Extraction efficiency (%) # m/z values 

Station Seawater Sea ice Seawater Sea ice 

SLIE 41 28 7760 4333 
SLINE 38 10 7302 2975 
PH9 33 17 7459 2539 
PH3 32 22 5143 4673 
WN7 34 9 5674 2637 
BC6 43 22 7609 6588 
HS17 42 17 7296 3654 
HS25 39 34 7286 2665 

 560 

561 



Page 27 

 

Table 3. Elemental formulas were assigned to the measured m/z values from the dataset. The 562 

table shows the average percent of elemental formulas assigned to CHO, CHON, CHONP, 563 

CHONS, and CHOS groups in the seawater and sea ice samples from the present project. Table 564 

S1 provides the numbers for the individual samples. The values in the table are the averages for 565 

the full set of sea ice samples and for the ice group #1 and ice group #2 samples. The values in 566 

parentheses are the coefficient of variation (CV) for each group of elemental formulas. 567 

 568 

 Mean percent (and CV) of elemental formulas   

 
seawater sea ice ice group #1 ice group #2 

CHO 43 (7%) 39 (30%) 34 (33%) 42 (29%) 

CHON 30 (5%) 39 (33%) 50 (20%) 32 (33%) 

CHONP 19 (5%) 13 (21%) 11 (7%) 15 (18%) 

CHONS 2 (21%) 2 (41%) 1 (39%) 1 (28%) 

CHOS 4 (8%) 4 (52%) 2 (31%) 5 (22%) 

  569 
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Figure legends 570 

Fig. 1. Paired sea ice and seawater samples were collected from eight stations in the Bering, 571 

Beaufort, and Chukchi Seas. The color bar shows the percent of total organic carbon in the sea 572 

ice samples that is present as dissolved organic carbon (DOC divided by TOC, times 100). For 573 

the seawater samples, this value was close to 100% for all of the samples (data not plotted). The 574 

three stations marked with * are the ice group #1 stations discussed in the text. 575 

Fig. 2. Cluster analysis based on Bray-Curtis distance measures calculated for the ultrahigh 576 

resolution mass spectrometry data obtained for organic matter from sea ice and seawater. The sea 577 

ice samples clustered into two distinct groups: ‘ice group #1’ and ‘ice group #2’. 578 

Fig. 3. Three-way Venn diagram showing the overlap in m/z values observed in the negative ion 579 

mode data. The numbers within the diagram are the number of m/z values unique to each subset 580 

of samples. 581 

Fig. 4. van Krevelen diagrams plotting the oxygen:carbon and hydrogen:carbon molar ratios of 582 

the elemental formulas in the seawater and ice samples. The complete set of elemental formulas 583 

is given in gray. (A) Shows the compound classes that may be defined based on the O:C and H:C 584 

molar ratios for the elemental formulas, while (B) shows the elemental formulas in the ice group 585 

#1 and ice group #2 samples. 586 

Fig. 5. Distribution of (A) condensed hydrocarbon-like compounds and (B) protein-like 587 

compounds in the seawater samples, the ice group #1 samples, and the ice group #2 samples. The 588 

data are given as the percentage of each group as fraction of the total number of m/z values 589 

obtained from the samples. Table S2 shows the values for the individual samples. 590 
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Table S1. Elemental formulas were assigned to the measured m/z values. The table provides the 
number of elemental formulas within each group (CHO-, CHON-, CHONP-, CHONS-, and 
CHOS-containing formulas) for the seawater (upper portion of table) and sea ice (lower portion 
of table) samples. Table 3 provides the average values for the seawater and sea ice samples. 

 

 

 

 

  

Station CHO CHON CHONP CHONS CHOS 
Water      
SLIE 3170 2416 1472 149 349 
SLINE 2881 2266 1471 155 315 
PH9 2974 2301 1502 147 329 
PH3 2486 1362 940 56 192 
WN7 2591 1638 994 78 222 
BC6 3146 2283 1528 126 295 
HS17 3122 2141 1376 126 300 
HS25 3150 2160 1398 100 261 
Ice      
SLIE 1748 550 422 15 113 
SLINE 1326 1959 477 45 243 
PH9 1104 999 302 19 31 
PH3 1556 1830 674 41 265 
WN7 919 1251 269 36 35 
BC6 2309 2315 1227 67 347 
HS17 1838 921 523 24 129 
HS25 570 1542 281 46 55 
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Table S2. Elemental formulas can characterized into compound classes based on elemental 
ratios. The classes can be visualized within the van Krevelen diagrams as shown in Figure 4. 
This table lists the number of elemental formulas in each class for the water samples (upper part 
of table) and the ice samples (lower part of table). 

Station Condensed hydrocarbons Proteins Lignins Carbohydrates Lipids 

Water 

SLIE 716 721 196 77 3 
SLINE 741 646 200 69 3 
PH9 746 635 194 73 2 
PH3 438 382 140 44 0 
WN7 534 499 158 44 2 
BC6 766 824 206 59 4 
HS17 737 681 201 70 3 
HS25 720 874 211 50 4 

Ice 

SLIE 518 1098 60 22 66 
SLINE 275 324 109 9 16 
PH9 197 792 77 6 9 
PH3 600 965 96 14 67 
WN7 186 1018 62 1 9 
BC6 830 1125 159 36 45 
HS17 408 566 113 10 30 
HS25 213 1095 47 1 20 
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Table S3. Elemental ratios were calculated as magnitude-averaged values from m/z values from 
the seawater (upper portion of table) and sea ice (lower portion of table) samples.  

Station H:Cw O:Cw N:Cw 
Water    
SLIE 1.2 0.5 0.1 
SLINE 1.2 0.5 0.1 
PH9 1.2 0.5 0.1 
PH3 1.2 0.5 0.1 
WN7 1.2 0.5 0.1 
BC6 1.2 0.5 0.1 
HS17 1.2 0.5 0.1 
HS25 1.2 0.5 0.1 
Ice 

   SLIE 1.5 0.4 0.2 
SLINE 1.3 0.5 0.1 
PH9 1.4 0.4 0.1 
PH3 1.4 0.4 0.2 
WN7 1.4 0.4 0.2 
BC6 1.3 0.4 0.2 
HS17 1.3 0.4 0.1 
HS25 1.6 0.4 0.3 
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Figure S1. The figure shows the decreasing number of elemental formulas as the signal:noise 
ratio increases from 3, to 5, to 10. The subpanels on the right further restrict the m/z features by 
requiring a feature to be present in either two seawater or two sea ice samples. The colorbar 
indicates the number of samples containing each elemental formula; a total of 16 samples were 
analyzed in the current project. The final analysis was conducted with a signal:noise ratio of 5 
and required each m/z value to be present in at least two seawater or two sea ice samples.  
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Figure S2. The sea ice cover from passive microwave data plotted for each sampling day. The 
color bar shows the percentage of sea ice cover. The pink circle is the geographic location for the 
corresponding day’s sample collection. 
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Figure S3. Vineyard Sound seawater was filtered through a 0.2 µm Omnipore filter and 
separated into three aliquots which were acidified to pH=2, pH=3, or pH=4 using 12 M HCl. The 
DOC from three, 100 ml aliquots of each treatment was extracted using PPL solid phase 
extraction cartridges. The initial DOC concentration of the seawater and the DOC concentration 
of the extracts were measured using a Shimadzu TOC-VCSH total organic carbon analyzer. The 
figure shows the extraction efficiency of each replicate at the three different pH levels. While 
there was no significant difference in extraction efficiency at each pH level (one-way ANOVA, 
F(2,6) = 1.81, p-value 0.2), there was more variability in the extraction efficiency in the pH=4 
treatment. 
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