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Abstract: 

 Simple mechanical models emulating fish have been used recently to enable targeted 

study of individual factors contributing to swimming locomotion without the confounding 

complexity of the whole fish body.  Yet, unlike these uniform models, the fish body is notable 

for its non-uniform material properties.  In particular, flexural stiffness decreases along the fish’s 

anterior-posterior axis.  To identify the role of non-uniform bending stiffness during fish-like 

propulsion, we studied four foil model configurations made by adhering layers of plastic sheets 

to produce discrete regions of high (5.5x10-5 Nm2) and low (1.9x10-5 Nm2) flexural stiffness of 

biologically-relevant magnitudes.  This resulted in two uniform control foils and two foils with 

anterior regions of high stiffness and posterior regions of low stiffness.  With a mechanical 

flapping foil controller, we measured forces and torques in three directions and quantified 

swimming performance under both heaving (no pitch) and constant 0o angle of attack programs.  

Foils self-propelled at Reynolds number 21,000-115,000 and Strouhal number ~0.20-0.25, 

values characteristic of fish locomotion.  Although previous models have emphasized uniform 

distributions and heaving motions, the combination of non-uniform stiffness distributions and 0o 

angle of attack pitching program was better able to reproduce the kinematics of freely-swimming 

fish.  This combination was likewise crucial in maximizing swimming performance and resulted 

in high self-propelled speeds at low costs of transport and large thrust coefficients at relatively 

high efficiency.  Because these metrics were not all maximized together, selection of the “best” 

stiffness distribution will depend on actuation constraints and performance goals.  These 

improved models enable more detailed, accurate analyses of fish-like swimming. 
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1.  Introduction 

Swimming and flying animals feature a diverse array of structures that are used for 

propulsion, including fins, wings, tails, and bodies.  These propulsors not only vary in their 

anatomy, but also in their actuation and material composition (e.g., skin membrane, bone, 

feathers, fin rays, muscle).  Despite this diversity, propulsors bend in astonishingly similar 

patterns.  Propulsors found in animals ranging from insects to whales all flex at a point 

approximately two-thirds along the length of the propulsor, measured from its origin [1].  For 

this reason, Lucas et al. [1] suggested that each propulsor’s unique combination of material 

properties, external shape, internal anatomy, fluid interactions, and actuation traits comes 

together to achieve this stereotyped bending pattern.  Notably, where it has been quantified, 

flexural stiffness – a measure of resistance to bending that depends on both shape of the structure 

and the properties of its constituent materials – decreases along the length of many propulsors.  

These propulsors become highly flexible at nearly the same point as in the observed external 

bending pattern [2,3].  However, it is unclear what role this pattern of bending and stiffness 

distribution play in biological locomotion. 

Because the dynamics of fish locomotion have been particularly well-documented, fish 

provide a useful model system for studying the role of flexibility in propulsion.  To swim, fish 

use sequential muscle activation to pass a sinusoidal bending wave down their flexible bodies in 

the rostral-caudal direction [2,4–9].  Throughout this process, the fish’s head stays fairly steady, 

and the lateral oscillations (heaving) of the body increase in amplitude as the wave passes from 

head to tail [5,8,10–12].  Although many factors affect thrust generation and swimming 

efficiency, including body and tail shape and fin usage [5,13–22], passive flexural stiffness – 

based solely on body shape and materials – is a key variable controlling this waveform [2,5,23–
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25].  For instance, increasing the body’s bending stiffness accelerates the travel of the bending 

wave, leading to increased tail-beat frequency and an associated increase in swimming speed 

[2,5].  However, the precise ways in which stiffness is used by fish to modulate waveform and 

swimming performance are unclear.  In particular, passive flexural stiffness is non-uniform along 

the fish: it decreases dramatically in the posterior third of a fish’s body, reflecting the common 

biological bending pattern [1,2].  But, it is not possible to experimentally manipulate actuation 

characteristics and patterns of flexural stiffness in a live, free-swimming fish.  Furthermore, it is 

difficult to measure forces and torques acting on a freely swimming fish, and nearly impossible 

to isolate the effects of stiffness on its performance.  And so, the significance of this stiffness 

distribution remains elusive. 

Recently, simple mechanical models have been used to eliminate the confounding 

complexity of the fish body and to perform controlled experiments targeting the effects of 

individual factors on swimming performance [2,19,21,22,26–32].  These models consist of a 

passively-flexing foil driven by a robotic controller.  Although these models are considerably 

simplified and appear distant from a fish, they are able to generally reproduce the midline 

kinematics of a swimming fish [19,21].  Moreover, they allow for rapid alteration of 

experimental variables, direct measurements of forces and torques acting on the model, and 

detailed assessment of their effects on propulsion. 

These models have begun to elucidate the individual contributions of body length, tail 

shape, center of mass oscillation, near-wall swimming, resonance effects, actuation patterns, and 

flexural stiffness to fish swimming performance [2,19,21,22,26–32].  These studies have shown 

that the relationship between stiffness and performance is complex: under some conditions, 

increased stiffness can lead to increased swimming speeds, thrust coefficients, and efficiencies, 
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but under other conditions, being flexible was more advantageous [2,21,33].  Previous research 

has emphasized uniform stiffness distributions [21,33], but has not been compared across 

stiffness distributions [2], or has not tested swimming under biologically-relevant conditions 

[34,35]. 

Thus, our goal in this paper is to provide a detailed analysis of the effects of non-uniform 

stiffness distributions on swimming propulsion under conditions routinely experienced by the 

fish body.  We used a simple mechanical flapping foil model to isolate the effects of stiffness 

distribution.  We designed and tested four foil configurations with discrete regions of high and 

low flexural stiffness and examined their kinematics, self-propelled speeds, cost of transport, 

thrust coefficients, and propulsive efficiencies in order to compare their performance.  In 

addition, we introduce a new pitching program where the swimming foil maintains a constant 0o 

angle of attack while heaving laterally, and compare swimming performance in this program to 

that of the more commonly studied program featuring lateral heaving without any pitch. 

Based on the results of Lucas et al. [1], Riggs et al. [34], and Cleaver et al. [35], we 

hypothesized that the non-uniform stiffness models would achieve improved swimming 

performance over traditional uniform stiffness models, and that the common biological stiffness 

pattern with the flexible “tail” region would perform the best overall.  We also predicted that the 

0o angle of attack pitching program would further enhance swimming performance, based on the 

results of Quinn et al. [32], and would lead to more fish-like kinematics than seen in previous 

studies.  Finally, we discuss the significance of these improvements in the context of a whole fish 

body and propose hypotheses about the mechanisms driving the observed performances. 

 

2.  Materials and methods 
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2.1 Foil Design 

Four different foils were constructed out of “transmatte” plastic from a collection of shim 

stock (ARTUS Corp, Englewood, NJ, USA).  Each foil was comprised of a sheet of plastic 

which was sandwiched at the leading edge by two additional panels of the same material to 

create discrete regions of high stiffness (three layers of plastic) and low stiffness (one layer of 

plastic) (figure 1).  Layers of plastic were held together by transparent epoxy.  Three-point 

bending tests revealed that the flexural stiffness of the high stiffness regions (EI=5.5x10-5 Nm2) 

was approximately three times the flexural stiffness of the low stiffness regions (EI=1.9x10-5 

Nm2) (table 1), and that these flexural stiffnesses were within the range of values characteristic 

of fish [2,23,24].  So that all four foils had the same leading-edge thickness when mounted on the 

actuation rod (see experimental setup below), the leading edge of all foils was three layers of 

plastic thick (figure 1). 

The four foils consisted of two uniform-stiffness and two non-uniform stiffness models.  

The uniform-stiffness models were comparable to our previous foil models [19,21,26,29,31] and 

were used as controls.  These two models included a foil whose entire free length had low 

stiffness, as well as a foil whose entire length had high stiffness (figure 1).  The first non-uniform 

foil had high stiffness in the anterior one-third of its length and low stiffness elsewhere (figure 

1).  The other non-uniform foil had high stiffness in the anterior two-thirds of its length (figure 

1), reflecting the commonly-observed biological stiffness pattern [1].  These proportions led to 

the naming codes used to designate the foils in this paper, where [number]_3 refers to the 

proportion of the foil that was stiff (e.g., 1_3 indicated that the anterior 1/3 of the foil had high 

stiffness). Foil identification conventions are given in figure 1. 
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Additionally, a thin strip of fluorescent paint was applied at the foils’ midlines to facilitate 

imaging. 

 

2.2  Experimental setup 

Foils swam in an oncoming flow using an updated version of our mechanical flapping-foil 

system used in earlier research on aquatic propulsion [19,21,26,29–32].  Briefly, a foil was 

clamped at the leading edge by a rod fitted with an ATI Nano-17 six-axis force-torque sensor 

(ATI Industrial Automation, Apex, NC, USA) that allowed for measurements in the X 

(streamwise, thrust/drag axis), Y (lateral, direction of heaving motions), and Z (vertical, pointing 

up the shaft) directions.  A carriage suspended this rod in a recirculating flume.  The carriage 

also contained a set of heave and pitch motors that actuated the rod in motions that approximated 

the kinematics of swimming fishes [19,21].  A suite of custom LabVIEW programs (National 

Instruments Corp., Austin, TX, USA) was used to control the motors, to monitor their real-time 

positions, to collect data from the force-torque sensor, and to set the flow speed in the flume.  

Refer to Quinn et al. [32] for a schematic diagram of the system, and photographs of similar 

versions of the experimental set-up were provided by Lauder et al. [19] and Lauder et al. [33]. 

The foils were actuated in two pitch programs.  First, as in our previous foil studies, the 

foils were actuated in sinusoidal, lateral heaving motions without pitch (figure 2), which 

approximates the motions of the posterior, thrust-producing region of a fish’s body [21].  

Second, the foils were actuated in a 0o angle of attack program where each foil was heaved as in 

the heaving program, but the pitch angle was continuously changed so that the foil’s leading 

edge maintained a constant 0o geometric angle of attack relative to the oncoming flow (figure 2).  

For each combination of heave amplitude, flapping frequency, and flow speed that was 
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examined, the pitch angle waveform function (which gave pitch angle at each point in time) 

required to produce a constant 0o geometric angle of attack was calculated a priori using 

Equation 11 in Read et al. [36], where the angle of attack function was set to zero.  The 

LabVIEW suite then pitched the foil according to this waveform. 

Fx and Fy here always refer to forces in the streamwise and lateral directions.  To account 

for rotations of the force-torque sensor as the rod was pitched in the 0o angle of attack program, 

measured x- and y-forces (Fxmeas and Fymeas) were resolved into streamwise and lateral 

components using the following formulas, where θ was the instantaneous pitch angle in radians. 

(1)  𝐹𝑥 = 𝐹𝑥𝑚𝑒𝑎𝑠 cos 𝜃 + 𝐹𝑦𝑚𝑒𝑎𝑠 sin 𝜃 

(2)  𝐹𝑦 = 𝐹𝑥𝑚𝑒𝑎𝑠 sin 𝜃 + 𝐹𝑦𝑚𝑒𝑎𝑠 cos 𝜃 

 

2.3  Measurements of foil performance 

The “self-propelled” condition (sensu [17,19,31,33,37–39]) describes a state of steady 

swimming, where thrust and drag forces balance, and so the fish experiences zero net forces or 

torques.  For a swimming body, this steady-state condition is met at a characteristic swimming 

speed for each motion program type (i.e., combination of heave amplitude, flapping frequency, 

and pitch program), called the self-propelled speed (SPS).  Yet, fish experience non-self-

propelling, or non-steady, conditions during accelerations and maneuvering.  Thus, swimming 

performance of foils was quantified in both self-propelling and non-self-propelling conditions.  

In both situations, thrust coefficients and mechanical power used to actuate the foils were 

calculated following the equations in Read et al. [36]. 

To find SPS, a custom, master LabVIEW program (modified from Wen and Lauder [29]) 

automated data collection by operating the controller’s suite of programs at various combinations 
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of heave amplitude, flapping frequency, and pitch program.  We chose to move the foils with 

±1.5 cm heave amplitude, in the two pitch programs, at flapping frequencies of 0.5, 1.0, 1.5, 2.0, 

and 2.5 Hz, which encompass values characteristic of fish [5,8,10,12,19,21].  Net forces and 

torques acting on the foil were measured in each motion program over a range of flow speeds.  

Linear regressions performed in RStudio (RStudio, Inc., Boston, MA, USA) on flow speed 

versus net thrust coefficient per motion cycle were used to identify SPS – the y-intercept 

indicated the flow speed where thrust coefficient was 0, the self-propelling condition.  A 

preliminary, broad sweep of flow speeds was tested to approximate SPS, and subsequently, a 

targeted sweep over a range of 0.1 m/s, centered at the approximate SPS, was used to find SPS 

precisely.  This targeted sweep was repeated 5 times to produce 5 replicate measures of SPS. 

Linear regressions on net mechanical power consumed versus net thrust coefficient were 

also conducted in RStudio.  The y-intercept indicated the mechanical power usage corresponding 

to SPS.  Dividing this value by SPS and foil mass yielded mass-specific cost of transport (COT) 

corresponding to that SPS.  This calculation was conducted for each replicate measurement of 

SPS, providing 5 replicate measures of COT. 

Statistics were conducted in JMP Pro 11 (SAS Institute Inc., Cary, NC, USA) on SPS and 

COT data to identify the effects and interactions between foil type (stiffness distribution), pitch 

program, and flapping frequency.  The Shapiro-Wilk W test for normality and Levene’s test for 

equality of variances determined that all data were normal but heteroscedastic.  Inspection of 

residuals revealed that variances were still fairly consistent across cells, indicating that they did 

not grievously violate the assumptions of the ANOVA [40].  In addition, ANOVAs are fairly 

robust in the case of normal data with equal replications [40].  Thus, three-way ANOVAs were 

conducted despite the heteroscedasticity; however, caution was taken in interpreting border-line 
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significant results.  The following post-hoc tests were administered.  Tukey HSD tests were 

conducted to investigate the effects of flapping frequency and foil type.  Additionally, a 

Student’s t test was used to compare pitch programs, and a Means Contrasts test was used to 

compare the two uniform foils against the two non-uniform foils. 

 To examine the performance of foils over a range of non-self-propelling conditions, three-

dimensional performance surfaces were collected after Shelton et al. [21].  Briefly, another 

custom, master LabVIEW program was used to automatically actuate each foil at 49 

combinations of heave amplitude (0.5-2 cm, in 0.25-cm increments) and flapping frequency (0.5-

2 Hz, in 0.25-Hz increments) in an oncoming flow of 0.3 m/s.  The resulting values for net thrust 

coefficients and power consumed were averaged over several motion cycles.  Using these means, 

propulsive efficiencies were calculated following the equations in Read et al. [36].  This 

procedure was repeated 5 times per foil to produce replicate surfaces that were averaged 

together, and this procedure was also conducted in both pitch programs.  Note that SPS occurs in 

these surfaces where the thrust coefficient and, hence, efficiency are zero. 

 

2.4  Midline Kinematics 

Foil kinematics at SPS were captured at 1.5 Hz flapping frequency and 1.5 cm heave-

amplitude, for both heaving and 0o angle of attack programs.  Foils were filmed at 250 fps in 

ventral view using a 45o mirror and a high speed camera (Photron PCI-1024; 1 megapixel 

resolution).  A continuous Coherent 10W argon-ion laser light sheet was used to illuminate foils 

along the strip of fluorescent paint at the midline.  This produced a video where the foil was 

white, in high contrast to a black background.  An optical mirror located outside the flow tank 

was used to help illuminate the foils’ trailing edges, which often drifted out of the laser sheet in 
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the 0o angle of attack program.  A LabVIEW pulse trigger allowed simultaneous force-torque 

measurements and video collection.  Six motion cycles worth of video (1000 frames) were 

collected for each foil in each pitch program. 

A custom LabVIEW program was used to automatically filter out background particles 

and digitize the foil in each frame of the videos.  Using these digitized data, the program 

calculated maximum lateral excursion (half of peak-to-peak amplitude) for 13 equally-spaced 

points along the length of the foils (at 0 L, 1/12 L, …, 1 L) as in Jayne and Lauder [8].  

Additionally, in each frame, the program selected 204 equally-spaced points along the length of a 

digitized foil, including the leading and trailing edges.  A cubic spline was fit to these points.  A 

set of 6 splines equally spaced through time were selected to represent each motion cycle.  

Splines from corresponding time points in multiple motion cycles were averaged together to 

yield mean “snapshots” of foil motion.  The 6 mean “snapshots” were plotted together to produce 

midline envelopes. 

Due to the inability of the detection program to distinguish the black rod used to actuate 

the foils from the background, the anterior-most 1 cm of the foils were simulated as straight lines 

extending from the detected, digitized foil.  While this simulation generally showed good 

agreement with images of the rod’s location, it did introduce a small amount of error to the 

detection of leading edge (0 L) coordinates.  This error did not affect detection at any other 

location along the foil. 

Reynolds number (Re) and Strouhal number (St) were calculated for each foil in each 

pitch program based on SPS kinematics data.  Re was calculated using the equation below, 

where ρ was the density of freshwater (1000 kg/m3), v was swimming velocity (in this case, 
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SPS), L was foil chord length (0.18 m), and µ was the dynamic viscosity of freshwater (0.001 

kg/m*s). 

(3)  𝑅𝑒 =
𝜌𝑣𝐿

𝜇
 

St was calculated using the equation below, where f was flapping frequency (1.5 Hz), and A was 

the peak-to-peak trailing edge amplitude. 

(4)  𝑆𝑡 =
𝑓𝐴

𝑆𝑃𝑆
 

JMP Pro 11 was used to conduct statistics on lateral excursion data to detect differences 

in foil kinematics based on the effects and interactions of foil type (stiffness distribution), pitch 

program, and location on the foil.  Shapiro-Wilk W tests for normality and Levene’s tests for 

equal variances indicated that several cells were non-normal, and all cells were heteroscedastic.  

An examination of the residuals was unable to suggest if the data were appropriate for an 

ANOVA, so an aligned rank transform, useful for multi-factor non-parametric analyses, was 

performed with ARTool v.1.5.1 [41].  Aligned data were then analyzed using multiple three-way 

ANOVAs to examine each effect and interaction as in Wobbrock et al. [41], with a false 

detection rate correction to reduce the Type I error rate from multiple testing [42].  A standard 

three-way ANOVA ran in parallel on untransformed data led to similar results as the more 

statistically-rigorous analysis, and therefore, further interpretations of the results of statistical 

tests were made based off this standard three-way ANOVA.  Post hoc Tukey HSD, Means 

Contrasts, and Student’s t tests were used to identify differences between stiffness distributions, 

uniform versus non-uniform foils, and pitch program, respectively. 

Phase-averaged (n=6) force and torque time-traces at SPS, corresponding to these 

kinematics, were also examined over a motion cycle.  All force and torque traces contained high-

frequency noise that was filtered in IPython v.2.3 [43] using a second-order Butterworth low-
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pass filter in two passes, to eliminate phase-shifts, with a desired cutoff frequency of 10 Hz 

(adjusted to 12.47 Hz to account for multiple passes) [44]. 

 

3. Results 

3.1  Midline Kinematics 

As foils were heaved laterally, a bending wave developed and traveled from anterior to 

posterior, in the opposite direction of swimming “travel.”  Generally, this wave grew in 

amplitude as it moved posteriorly (figure 3, 4).  Each foil displayed unique kinematics; stiffness 

distribution, pitch program, and position on the foil, as well as all interactions between these 

factors, had significant effects on kinematics (all p<0.0001, table S1, figure 3, 4). 

In the heaving program, the foils experienced most of their bending in the posterior 

region (~0.5-1 L), as indicated by the increasing curvature of the snapshot lines, compared to the 

more parallel snapshot lines at the anterior region of each foil (figure 3).  This contrasts with 

curvatures observed in the 0o angle of attack program, where the foils were bending throughout 

their lengths.  Qualitatively, non-uniform foils, particularly in the 0o angle of attack program, 

tended to have more fish-like kinematics than uniform foils (figure 3). 

Each foil exhibited its own unique pattern of lateral excursion.  For example, in the 

heaving program, the uniform, high stiffness (3_3) foil’s excursion decreased in the middle of its 

length, while none of the other foils experienced this change (figure 4).  However, compared to 

the heaving program, the 0o angle of attack program led to increased lateral excursions, with the 

non-uniform foils experiencing the largest excursions overall (figure 4).  Notably, the 1_3 (stiff 

anterior one-third) foil achieved large lateral excursions more anteriorly (~0.17-0.25 L), but 

excursion plateaued in the last third of its length.  In contrast, the 2_3 foil started to achieve these 
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large excursions more posteriorly (~0.3-0.4 L), but excursion continued to increase up until the 

trailing edge without any plateaus. 

Additionally, the 0o angle of attack program magnified the peak-to-peak trailing edge 

amplitudes, compared to the trailing edge amplitudes in heaving program, and compared to the 

imposed heave amplitudes at the leading edge (figure 3, 4).  This was especially true of non-

uniform foils.  The 2_3 foil (stiff anterior two-thirds) had the largest trailing edge amplitudes in 

both pitch programs, but the trailing edge amplitude was greater in the 0o angle of attack 

program (figure 3, 4). 

 

3.2  Swimming performance 

At SPS, zero net forces and torques act on a foil over a complete motion cycle, but these 

forces and torques can vary instantaneously.  Pitch program and stiffness distributions led to 

variation amongst the instantaneous force and torque traces.  Peak streamwise forces (Fx) and 

vertical torques (Tz) were larger, and peak lateral forces (Fy) were smaller, in the 0o angle of 

attack program compared to the heaving program (figure 2).  Each stiffness distribution led to 

phase shifts in peak magnitudes, and having any high stiffness region appeared to add higher 

frequency effects to otherwise largely sinusoidal traces (figure 2).  Thrust forces displayed more 

oscillations within a flapping cycle in 0o angle of attack program compared to the heaving 

program, even though mean thrust for all foils and motions was near zero (figure 2). 

In terms of SPS itself, there were significant effects of stiffness distribution, pitch 

program, and flapping frequency, as well as all interactions of these factors (all p<0.0001, table 

S2).  Non-uniform stiffness distributions led to increases of up to 26% and 50% in self-propelled 

speed (SPS) for the 1_3 foil and 2_3 foil, respectively, relative to the stiff uniform foil, which 
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had the largest SPS of the two uniform foils (figure 5).  Although the differences between foils 

were smaller in the 0o angle of attack program, this pitch program as a whole led to increases in 

SPS of up to 54% compared to the heaving motion program (figure 5). 

The effects of flapping frequency were more complex.  Increases in flapping frequency 

led to overall increases in SPS but did so in different ways across foil types and pitch programs 

(figure 5).  The non-uniform foils usually achieved faster SPS at a given flapping frequency than 

uniform foils, with the 2_3 foil often achieving the fastest SPS overall. 

Notably, the 1_3 and 2_3 foils had equally large SPS in the 0o angle of attack motion 

program at the highest frequency tested (figure 5).  Because the 2_3 trace appeared to be 

plateauing while the 1_3 trace increased, it is possible that the 1_3 foil would achieve larger SPS 

at higher flapping frequencies than those tested here. 

Mass-specific cost of transport (COT) also experienced significant effects of stiffness 

distribution, pitch program, and flapping frequency, and all interactions of these factors (all 

p<0.0001, table S3).  Yet, as a performance metric, COT provided a complex picture.  The COT 

increased with flapping frequency for all foils, although as in SPS, it did so in different patterns 

across foil types and pitch programs (figure 6). 

In the heaving program at low swimming speeds, when the proportion of the foil that was 

stiff increased, COT decreased (figure 6). These findings are consistent with the results of 

Shelton et al. [21] and Feilich and Lauder [22], each of whom found that, in the heaving 

program, mass-specific COT varied inversely with flexural stiffness.  However, at high flapping 

frequencies and swimming speeds, the pattern changed, and the 2_3 foil, with the biological 

stiffness pattern, had the lowest COT (figure 6). 
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When the 0o angle of attack program was applied to simulate both the pitching and 

heaving of a fish’s body, all of the foils experienced a substantial decrease in COT (figure 6), as 

predicted by the optimizations performed by Quinn et al. [32].  Differences between foils were 

smaller than in the heaving program but still were significant (table S3).  At low flapping 

frequencies, the 1_3 foil’s COT was marginally smaller than the other foils (figure 6).  As 

frequency increased, a cross-over phenomenon occurred, so the 3_3 foil consistently had the 

lowest COT values (figure 6).  Yet, a given flapping frequency, the non-uniform foils always had 

faster swimming speeds than the 3_3 foil, albeit at a higher cost.  Moreover, the greatest speeds 

observed were only obtained among the non-uniform foils at low, but not minimum, COT. 

A similar story emerged under non-self-propelling conditions, where three-dimensional 

performance surfaces (figure 7) revealed performance differences between the foils.  Because 

these surfaces can be difficult to interpret as static images, transects through these surfaces are 

presented in figures 8 and 9 for clarity.  Note that propulsive efficiency is only defined at thrust 

coefficients greater than zero.  

Under non-self-propelling conditions, non-uniform stiffness distributions generally led to 

greater thrust coefficients and higher propulsive efficiencies than observed in the uniform 

stiffness control cases (figure 7, 8, and 9).  In the heaving program, the 2_3 foil, with the 

biological stiffness pattern, had the largest thrust coefficients and swimming efficiencies in any 

combination of heaving amplitude and flapping frequency (figure 7). 

Compared to the heaving program, the 0o angle of attack program further increased thrust 

coefficients and efficiencies for all four foils.  But, notably, it introduced localized peaks into the 

performance surfaces that were not observed in the smoother surfaces of heaving program 

(figure 7).  Again, cross-over phenomena were evident.  The 2_3 foil always achieved positive 
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thrust coefficients, and consequently, positive swimming efficiencies, first among the foils when 

frequency and heave amplitude were ramped up (figure 9).  Yet, as frequency and heave 

amplitude continued to increase, the 1_3 foil surpassed the 2_3 foil, the biological stiffness 

pattern, in both performance metrics (figure 9). 

 

4.  Discussion 

4.1  Effects of non-uniform stiffness 

Previous investigations have revealed that flexural stiffness has significant, albeit 

complex, impacts on swimming performance.  Together, Shelton et al. [21] and Lauder et al. [33] 

demonstrated that increased stiffness leads to increased swimming speeds, thrust coefficients, 

and efficiencies under some conditions, but more flexible models performed better in others.  

Yet, each of these studies focused solely on uniform stiffness distributions.  In contrast, 

McHenry et al. [2] and Riggs et al. [34] used models with flexural stiffness decreasing along the 

length in a manner proportional to the predicted flexural stiffness of a pumpkinseed sunfish.  As 

with Shelton et al. [21] and Lauder et al. [33], their results revealed that increased stiffness can 

be advantageous or disadvantageous depending on the operating conditions [2,34].  But, 

McHenry et al. [2] did not compare performance across stiffness distributions, and it is unclear 

how their biological stiffness pattern compares to traditional uniform stiffness models.  Notably, 

Riggs et al. [34] did make comparisons with a rigid NACA airfoil and found that the fish-like 

stiffness distribution led to increased thrust.  However, Riggs et al. [34] presented their data as 

raw thrust forces, complicating comparisons with other works like Cleaver et al. [35], which 

typically normalize these data as thrust coefficients.  Additionally, Riggs et al. [34] did not test 

biologically-relevant stiffness magnitudes.  Furthermore, like McHenry et al. [2], Riggs et al. 
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[34] actuated their models in pitching motions only, whereas fish also make lateral heaving 

motions [8,21].  Recently, Cleaver et al. [35] reached similar conclusions to Riggs et al. [34] by 

demonstrating that adding a flexible tail to a rigid hydrofoil leads to greater time-averaged thrust 

output under certain conditions, but Cleaver et al. [35] did not test biologically-relevant 

stiffnesses, distributions, or motions.  Therefore, while informative and foundational, these 

studies preclude a general interpretation of the effect of multiple stiffness distributions under 

biologically-relevant swimming conditions, and so, collectively, have been unable to 

demonstrate the contributions of the common bending pattern [1] to biological propulsion. 

These previous studies do, however, provide an experimental baseline which suggests 

several hypotheses.  Based on the results of Riggs et al. [34], Shelton et al. [21], and Cleaver et 

al. [35], we would predict that biological non-uniform stiffness distributions would increase 

thrust.  Furthermore, we would expect maximum swimming speeds and efficiencies when the 

foils are actuated in biologically-relevant motions including both heave and pitch [32,33].  Using 

a mechanical flapping foil controller, we compared the swimming performance of uniform and 

non-uniform models with biologically-relevant stiffnesses and actuation.  In accordance with the 

above predictions, we found that, with few exceptions, non-uniform models outperformed 

uniform models, regardless of the operating conditions. 

From our findings, it becomes clear that propulsor design and actuation patterns must be 

selected based on performance goals.  Although the 0o angle of attack program consistently led 

to better performance in terms of high speeds at relatively low costs, a particular combination of 

flapping frequency and stiffness distribution within this pitch program can be selected to 

maximize swimming speed or minimize cost of transport.  But, as the greatest speed and lowest 

COT are not achieved simultaneously, the “best” actuation pattern must be chosen based on the 
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goals at hand, e.g., get somewhere as fast as possible, travel the longest distance for a given cost, 

or a compromise between the two. 

Under non-self-propelling conditions, the 0o angle of attack program, again, consistently 

led to improved performance in terms of large thrust coefficients at relatively high efficiencies.  

But, because these metrics were not maximized simultaneously, non-self-propelling conditions 

led to an analogous conclusion. 

Cross-over points like those observed here appear to be a defining feature of swimming 

via flexible propulsors.  For instance, Shelton et al. [21] compared foils with different 

magnitudes of uniform stiffness actuated in a heaving motion program.  Generally, Shelton et al. 

[21] found that a stiffer foil achieved higher thrust coefficients and swimming efficiency than a 

more flexible foil.  But, as frequency increased, a cross-over point occurred, and although the 

stiffer foil still produced the most thrust, the flexible foil had higher swimming efficiency.  

Together, these findings suggest that there is no one “best” flexural stiffness distribution; rather, 

propulsor design must be selected based on how the propulsor will be actuated and on the 

performance goals. 

It is noteworthy that, under non-self-propelling conditions, the non-uniform foils nearly 

universally outperformed the uniform foils.  Particularly, our finding of relatively high thrust 

coefficients and efficiency values for non-uniform foils at large heave amplitudes under the 0o 

angle of attack program contrasts with previous work in heaving programs or with rigid 

swimming foils.  For example, at heave amplitudes of 2.0 cm and flow of 0.3 m/s, the 1_3 foil 

achieved peak efficiency of nearly 0.45 and a thrust coefficient of 0.5 (figure 9).  These values 

are substantially higher than those for foils moved in the heaving program (figure 8) and 

approximately twice the values for Shelton et al.’s [21] stiffest foil moved in the heaving 
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program.  The efficiency values for non-uniform foils approach those seen for a rigid foil [36] 

although thrust coefficients do not reach the absolute magnitudes (1.0 or greater) of coefficients 

for rigid foils. 

Although laboratory experiments emphasize steady-state locomotion of fish, in the field, 

fish rarely swim in a straight line at a constant speed for any length of time; rather, fish are more 

typically behaving under non-self-propelling conditions.  Our results, collected under 

biologically-relevant swimming conditions, lead us to propose that fish body’s non-uniform 

stiffness distribution enables effective locomotion by increasing thrust coefficients and 

swimming efficiencies, and could facilitate tradeoffs among performance goals by actively 

altering body stiffness locally. 

Fish often appear to maintain a 2_3-type bending pattern during moderate-speed steady 

swimming [1], where the tail typically moves at relatively low heave amplitudes and frequencies 

[5,8–10].  These motions correspond to the range where the 2_3 foil achieved the greatest 

performance, which may explain the conservation of the 2_3-type bending pattern observed by 

Lucas et al. [1] during steady state swimming. 

Yet, to accelerate, fish increase their tail-beat amplitudes and frequencies [5,7,8,12,45].  

Moreover, they must recruit more-anteriorly-located muscles, increasing bending along the 

middle portion of their bodies in a manner qualitatively resembling the bending kinematics of the 

1_3 foil.  Notably, this foil was able to produce the most thrust under high efficiency during 

large heave amplitudes and frequencies.  Moreover, Tytell et al. [25] found that there were 

different optimal flexural stiffnesses for acceleration (non-self-propelling thrust production) and 

steady-state swimming speed (SPS).  Thus, we hypothesize that, while fish may passively exhibit 

a 2_3-like stiffness distribution [2] during steady swimming, they may be modifying their 
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flexural stiffness distribution in an active mechanism – active lengthening of muscles [23] – to 

most effectively achieve their performance needs.  In particular, fish may be using a 2_3 stiffness 

distribution during steady locomotion, but a 1_3 distribution during accelerations. 

As discussed in the following paragraphs, it appears that the kinematics resulting from 

non-uniform stiffness distributions and biologically-relevant actuation are leading to the 

observed performance differences.  While we achieved these kinematics using passive bending 

mechanisms, which many animals use, it is important to note that active bending mechanisms 

that arrive at the same kinematics would share these performance benefits.  In short, the 

kinematics themselves, rather than how they are achieved, drives performance. 

As a whole, our findings corroborate those of Cleaver et al. [35] and Riggs et al. [34], 

who each demonstrated that non-uniform stiffness distributions can improve swimming 

performance by increasing thrust output.  Yet, for each study, these improvements were achieved 

under different swimming conditions.  Cleaver et al. [35] found that small heave amplitudes and 

large flexible components led to the greatest performance.  In contrast, Riggs et al. [34] found 

the greatest thrust production at high frequency and heave combinations.  Although our data 

were more similar to the findings of Riggs et al. [34], key differences arise in either case.  This is 

likely because neither Riggs et al. [34] nor Cleaver et al. [35] investigated biologically-relevant 

stiffness magnitudes and distributions during fish-like motions including both pitch and heave.  

For instance, our performance surfaces, particularly in the 0o angle of attack program, featured 

large, transient peaks and valleys (figure 7).  These multiple peaks are characteristic of the 

performance surfaces produced using similar foils and actuation from Quinn et al. [32], and may 

be the result of resonance effects that were not achieved with the much stiffer foils of Cleaver et 

al. [35] and Riggs et al. [34].  In sum, we expand on these previous studies by demonstrating that 
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performance benefits from non-uniform stiffness of biological magnitudes are achieved under 

biologically-relevant swimming conditions. 

An outstanding question remains: what are physical mechanisms leading to the observed 

performances?  There are at least three probable factors.  First, as a whole, the 0o angle of attack 

program has been shown to reduce leading edge separation and delay vortex breakdown in the 

wake, reducing the amount of energy lost to the wake, thereby increasing swimming efficiencies 

[32]. 

Second, during body-caudal fin swimming, the body’s sinusoidal bending wave produces 

localized peaks where a small portion of the body is essentially rotating around a point in space 

[46].  On the concave side of the body, the combination of this rotation and the body’s retreating 

movement create a local region of low pressure, and so fluid is entrained and accelerated 

downstream [46,47].  Because it results in an increase in both the size of the low pressure region 

and the difference in pressure magnitude between this region and free-stream, increasing the 

magnitude of the body’s lateral excursions increases the amount of fluid entrained and 

accelerated along the body [48].  In turn, this increases the fluid forces produced when these 

flows reach the tail tip and are shed into the wake as vortices.  Thus, we propose that the 

increased lateral excursions and tail-beat amplitudes of the non-uniform foils are improving 

thrust production, swimming efficiencies, and swimming speeds by altering the dynamics of 

pressure distribution along the body. 

Finally, the addition of a flexible margin in a jellyfish model increased the spacing 

between the areas of relatively high and low pressure around the body [48].  This prevented shed 

vortices from colliding in the wake, cancelling, and negating locomotor forces [48].  In fact, 

when the model’s flexible margin was replaced with an equivalent rigid one, the model was not 
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able to produce net thrust [48].  The distribution of flexural stiffness studied in that model – rigid 

bell with flexible margin – is loosely analogous to the patterns studied here, with rigid anterior 

regions and flexible tails, and indeed, spacing of pressure cores and vortices has been shown to 

be critical for thrust production in a fish-like body [47].  These observations suggest an 

additional mechanism by which non-uniform stiffness distributions may be improving swimming 

performance, namely, by positioning pressure cores and, hence, shed vortices, more favorably. 

 

4.2  Comparing foil and fish kinematics 

Flexible foil models have enabled targeted studies of many factors driving swimming 

propulsion that would otherwise be impossible in a living fish.  To be informative, these models 

must approximate various morphological characteristics and material properties of the fish’s 

body while faithfully reproducing its movements.  Previous research has featured models 

swimming with kinematics that bear some resemblance to those of fish, for instance, McHenry et 

al. [2], Lauder et al. [19], and Shelton et al. [21].  These kinematics have generally been achieved 

by actuating the model in either lateral heave [19,21,30,31] or pitch [2,34], but not both, with 

rare exceptions [32,33].  These models have begun to reveal fundamental mechanisms driving 

swimming propulsion.  However, further refinements to both models and actuation traits are 

necessary to achieve kinematics that are truly fish-like, thereby enabling more detailed, accurate 

analyses. 

Several modifications could be made to achieve more fish-like characteristics while 

preserving the simplicity of flexible foil models, for instance, using models with trailing edges 

cut to reproduce the shape of a fish’s caudal fins [19,22].  In this study, we added fish-inspired 

non-uniform flexural stiffness distributions and actuation patterns involving both pitch and heave 
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to standard foil models.  These refinements, while simple, were able to produce remarkably fish-

like kinematics (figure 10).  The combination of non-uniform stiffness and 0o angle of attack 

program caused lateral excursion to increase along the foils in a manner similar to the caudal 

region of a largemouth bass (Micropterus salmoides) [8].  These changes also, qualitatively, 

increased curvature along the foils (figure 3, 10), as is characteristic of the bass body [8].  In this 

way, we were able to achieve much more accurate reproductions of fish kinematics than those 

seen in traditional models – uniform foils in a heaving program. 
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Tables 

 

 

Table 1. Foil and material characteristics.  The 0_3 and 3_3 foils were composed of only single-

layer (low stiffness) material and triple-layer (high stiffness) materials, respectively.  For the 1_3 

and 2_3 foils, the anterior 1/3 and 2/3 of the foil, respectively, contained high stiffness material.  

See Figure 1 for images of the four foil types and the distribution of material stiffness. 

 

 Mass [g] 

Re range of 

swimming trials 

Flexural stiffness 

[x10-5 Nm2] 

0_3 2.8 21,000-75,000 - 

1_3 6.7 21,000-115,000 - 

2_3 8.9 24,000-114,000 - 

3_3 12.3 28,000-108,000 - 

 

Single-layer plastic 

(low stiffness) 

Mean ± S.E. - - 1.9 ± 0.07 

 

Triple-layer plastic 

(high stiffness) 

Mean ± S.E. - - 5.5 ± 0.07 

 



29 

 

Figures 

 

 

Figure 1. Foil schematics. The leading edge is on the left.  Uniform foils had uniform stiffness 

along the chord.  Non-uniform foils had discrete areas of high and low stiffness.  Low stiffness 

regions were constructed using a single layer of plastic.  High stiffness regions were achieved by 

sandwiching three layers of plastic.  A thin strip of fluorescent paint along the foils’ midlines 

facilitated imaging.  Details of foil construction can be found in the text.  In the foil naming 

scheme, “#_3” refers to the proportion of the foil with high stiffness, i.e., the anterior 1/3 of the 

1_3 foil is stiff. 
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Figure 2. Instantaneous foil position and force and torque acting on foils over a motion cycle. 

Foils were flapped at their self-propelled speeds (see figure 5) at 1.5 Hz and 1.5 cm heave 

amplitude, in two pitch programs: heaving (no pitch) and 0o angle of attack, where pitch was 

constantly updated to maintain 0o angle of attack into oncoming flow.  Fx – thrust forces, Fy – 

lateral forces, Tz – vertical torque.  Stiffness distribution and pitch program both affected the 

timing and magnitude of peak forces and torque.  
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Figure 3. Kinematics of swimming foils over a motion cycle.  The leading edge is on the left.  

Foils were flapped at their self-propelled speeds (see figure 5) at 1.5 Hz and 1.5 cm heave 

amplitude.  Reynolds (Re) and Strouhal (St) numbers are reported on the corresponding plot.  

The foils exhibited diverse kinematics which varied with both stiffness distribution and pitch 

program.  (See also figure 4 and ANOVA results in table S1.)  
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Figure 4. Maximum lateral excursion along the length of the foils (data corresponding to figure 

3).  The leading edge is on the left.  Error bars represent one standard error (n=6, except n=5 for 

0_3 in the heaving program) and are often too small to be visible.  Foils were flapped at their 

self-propelled speeds (see figure 5) at 1.5 Hz and 1.5 cm heave amplitude.  Lateral excursion at 

each point on the foil varied according to both pitch program and foil stiffness distribution but 

generally was larger in the 0o angle of attack program.  Non-uniform foils, particularly the 2_3 

foil, achieved the largest trailing edge amplitudes.  (See also figure 3 and ANOVA results in 

table S1.) 
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Figure 5. Self-propelled speeds of swimming foils.  Foils were flapped with 1.5 cm heave 

amplitude and increasing frequency in two pitch programs.  Error bars (standard error) are 

obscured by the points (n=5).  Although SPS increased with frequency, the manner in which it 

did so varied across stiffness distribution and pitching program.  Non-uniform foils often 

achieved SPSs similar to or greater than uniform foils.  (See also ANOVA results in table S2.) 

  



34 

 

 

Figure 6. Cost of transport for foils swimming at self-propelled speed.  Foils were flapped with 

1.5 cm heave amplitude and increasing frequency in two pitch programs, as in the SPS tests (see 

figure 5).  Error bars (standard error) are obscured by the points (n=5).  Non-uniform foils 

generally achieved higher self-propelled speeds at costs of transport similar to those of uniform 

foils moving at lower speeds.  (See also ANOVA results in table S3.) 
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Figure 7. Locomotor performance of foils swimming in an oncoming flow of 0.3 m/s.  Error 

bars are omitted for clarity (but see figures 8 and 9).  Transects through these surfaces are 

presented in figures 8 and 9 for clarity.  Thrust coefficients and efficiencies are dimensionless.  

Foils were flapped at 49 combinations of frequency and heave amplitude in two pitch programs.  

Each surface is the mean of n=5 trials.  Self-propulsion occurs where the thrust coefficient is 

zero. 
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Figure 8. Transect lines through the heaving performance surfaces from figure 7.  Rows 

represent increasing heave amplitude.  Error bars (standard error) are obscured by the points 

(n=5).  Non-uniform foils, particularly the 2_3 foil, often achieved greater thrust coefficients and 

efficiencies, and at lower flapping frequencies, than uniform foils. 
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Figure 9. Transect lines through the 0o angle of attack performance surfaces from figure 7.  

Rows represent increasing heave amplitude.  Error bars (standard error) are obscured by the 

points (n=5).  Non-uniform foils often achieved greater thrust coefficients and efficiencies, and 

at lower flapping frequencies, than uniform foils.  While the 2_3 foil had the greatest thrust 

coefficient and efficiency at low frequencies and heave amplitudes, the 1_3 foil outperformed 

this foil at high frequencies and heave amplitudes. 
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Figure 10. A comparison of kinematics from a largemouth bass (Micropterus salmoides), non-

uniform foils actuated in the 0o angle of attack program, and uniform foils in the heaving 

program, over half a tail-beat cycle. Midline kinematics of a largemouth bass were modified 

from Jayne and Lauder [8], and foil kinematics are reproduced from figure 3. Although uniform 

flexible foils in the heaving program have been used extensively in prior investigations of fish 

locomotion, these foils only very generally replicated the kinematics of swimming fish.  Adding 

non-uniform stiffness distributions and 0o angle of attack actuation allows much more accurate 

reproductions of the kinematics of swimming fish. 


