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Abstract The influence and fate of westward propagating eddies that impinge on the Kuroshio were
observed with pressure sensor-equipped inverted echo sounders (PIESs) deployed east of Taiwan and
northeast of Luzon. Zero lag correlations between PIES-measured acoustic travel times and satellite-measured
sea surface height anomalies (SSHa), which are normally negative, have lower magnitude toward the west,
suggesting the eddy-influence is weakened across the Kuroshio. The observational data reveal that impinging
eddies lead to seesaw-like SSHa and pycnocline depth changes across the Kuroshio east of Taiwan, whereas
analogous responses are not found in the Kuroshio northeast of Luzon. Anticyclones intensify sea surface
and pycnocline slopes across the Kuroshio, while cyclones weaken these slopes, particularly east of Taiwan.
During the 6month period of overlap between the two PIES arrays, only one anticyclone affected the
pycnocline depth first at the array northeast of Luzon and 21days later in the downstream Kuroshio east of
Taiwan.

1. Introduction

Outside of a narrow region straddling the equator, westward propagating coherent features are ubiquitous
throughout the world’s oceans. These are readily apparent in time series of mapped sea surface height
anomalies (SSHa) from satellite altimetry and have been interpreted as expressions of baroclinic linear
Rossby waves [e.g., Qiu, 2003] and nonlinear eddies [e.g., Chelton et al., 2007].

Cyclonic and anticyclonic mesoscale features from the ocean interior, collectively termed eddies here, arrive
frequently in the western North Pacific—particularly east of Luzon [Lien et al., 2014] and Taiwan [Yang et al.,
1999] where they impinge on the northward flowing Kuroshio (Figure 1) at 100 day interval [Zhang et al.,
2001; Johns et al., 2001; Yang et al., 1999]. Observational results indicate the existence of eddy-Kuroshio
interactions in which the Kuroshio affects eddies (which in altimetry appear to decay near the western
boundary) and also interactions in which eddies drive Kuroshio variability [e.g., Lien et al., 2014; Andres
et al., 2008a]. A reduced-gravity, primitive equation model [Chern and Wang, 2005; Kuo and Chern, 2011]
suggests that an idealized circular eddy deforms and decays quickly when it moves into a western boundary
current (WBC). However, these idealized simulations have yet to be evaluated against in situ observations.

Comparison of sea surface height (SSH) variability with temperature and salinity profiles from Argo floats
shows that SSH is generally well correlated with dynamic height in the interior ocean [Guinehut et al.,
2009] where positive SSH anomaly (SSHa) at eddy timescales often corresponds with a depressed pycnocline
(due to convergence in the upper layers), while negative SSHa corresponds with a heaved pycnocline (due to
divergence in the upper layers). Because the global Argo fleet undersamples WBCs and the variability of
eddies is often aliased in shipboard conductivity-temperature-depth (CTD) and expendable bathythermo-
graph observations, it is not yet well established whether these relationships at eddy timescales also hold
true near western boundaries and across strong currents.

Altimetry is not sufficient to fully characterize WBC/eddy interactions, because spacing between Jason-2 alti-
meter tracks can be greater than 300 km in the subtropics and the repeat cycle is about 10 days.
Furthermore, although SSH gradients are associated with the surface geostrophic velocities (which may be
related to deeper geostrophic velocities), they provide no direct information about the deep circulation or pyc-
nocline displacements associated with eddies.
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To understand WBC/eddy interactions, it is helpful to anchor the remote sensing measurements with in situ
observations. Two such in situ arrays were recently deployed across the Kuroshio in the western North Pacific
[Lien et al., 2014; Andres et al., unpublished data] and included observations made using pressure sensor-
equipped inverted echo sounders (PIESs) deployed at zonal transects across the Kuroshio: one PIES array
northeast of Luzon and another about 300 km downstream, east of Taiwan. Using these data augmentedwith
satellite SSHa, the primary objective of this study is to evaluate the temporal and spatial ranges of eddies’
influence on pycnocline depth variations across the Kuroshio and on the latitudinal connectivity of
Kuroshio variability.

2. Data and Methods

Two companion programs, Origins of the Kuroshio and Mindanao Current (OKMC) sponsored by the U.S.
Office of Naval Research and Observations of the Kuroshio Transports and their Variability (OKTV) sponsored
by the Ministry of Science and Technology of Taiwan, aimed at understanding Kuroshio variability [Lien et al.,
2014; Jan et al., 2015]. OKMC-OKTV field programs included 11 PIESs deployed across the Kuroshio (Table S1).
PIESs measure round-trip acoustic travel time (τ) between the instrument (moored on the seabed) and the
overlying sea surface [Watts and Rossby, 1977]. Both sound speed and specific volume anomaly (δ) depend
on temperature, salinity, and pressure, and in a given region τ can be used as a proxy for a vertical profile
of δ with the relationship between τ and δ established empirically with local hydrographic measurements
[e.g.,Meinen, 2001; He et al., 1998]. To estimate both the baroclinic (steric) component of SSHa and pycnocline
depth, dpyc, τ has been used [Andres et al., 2008b; Baker-Yeboah et al., 2009]. Here τ’, the deviation of τ from its
time mean, is used to examine the relationship between the Kuroshio variability and impinging eddies at the
two PIES arrays. Based on the global relationships between SSHa and pycnocline depth observed with Argo

Figure 1. Bathymetry around Taiwan and Luzon (shaded) with the mean position of Kuroshio maximum velocity at 15m
depth (black arrow) as derived from the surface drifter data (available at http://www.coriolis.eu.org), locations of PIESs
northeast of Luzon (blue circles), east of Taiwan (red triangles), and Haulien tide station (green star), and the 1000m,
2000m and 3000m isobaths. Historical CTD data in the two regions bounded by yellow lines are used to interpret the
PIES data and are chosen to include sufficient casts to find a robust empirical relationship without including water
masses from neighboring regions.
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floats and the temperature and salinity dependence of sound speed, a negative correlation between SSHa
and τ’ at the PIES sites is anticipated.

Under OKTV, six PIESs were deployed east of Taiwan from 14 November 2012 to 30 October 2014 (Figure 1,
red triangles), with four located along ~23.75°N between 121.85°N and 123°E at 50 km interval and two
deployed along 123°E between 22.76°N and 23.14°N. Under the companion OKMC program, five PIESs
(Figure 1, blue circles) were deployed northeast of Luzon along 18.82°N between 122.01°E and 122.95°E at
30 km interval from June 2012 to June 2013, with one instrument offset 30 km to the north.

Concurrent SSHa from the 1/4° gridded altimetry product that merges measurements from all available satel-
lites was obtained from Ssalto/Duacs and distributed by Archiving, Validation and Interpretation of Satellite
Oceanographic data (AVISO, http://www.aviso.oceanobs.com).

To quantify the influence of impinging eddies on the Kuroshio’s pycnocline, time series of dpyc at each PIES
site are inferred from hourly τmeasurements that have been 30 day low pass filtered and converted to a com-
mon reference level, 800 dbar, τ800 using the procedure described in Kennelly et al. [2007]. The relationships
between dpyc and τ800 are determined empirically for each PIES array using the sound speed equation
[Del Grosso, 1974] and regional historical hydrographic data, composed primarily of CTD casts acquired by
the R/Vs Ocean Researcher I, II, and III from 1985 to 2010 [http://www.odb.ntu.edu.tw/], supplemented
by profiles collected by Argo floats and extracted from the National Oceanographic Data Center
(http://www.nodc.noaa.gov/argo/accessData.htm). Two Seagliders operated by the Applied Physics
Laboratory, University of Washington, provide additional profiles collected between November 2012 and
May 2013. In total 118 CTD profiles are used to determine dpyc and τ800 for Taiwan and 798 for Luzon.

Pycnocline depth is defined here by the maximum density gradient (dρ/dz) below the seasonal thermocline,
calculated for each density profile located within the two regions bounded by yellow dashed lines (Figure 1),
and plotted against the corresponding τ800 (calculated for each profile from the sound speed equation).
In the mean, the pycnocline is found at sigma, σ =25.700 kgm�3 and 304m depth northeast of Luzon
and at σ = 25.696 kgm�3 and 326m depth east of Taiwan. For both the Luzon and the Taiwan regions,
dpyc and τ800 exhibit a linear relationship with correlation coefficient of 0.94 in each case (Figure S1 in
the supporting information). These linear relationships are then used to derive time series of pycnocline
depth from time series of PIES-measured τ800.

Time series of τ800 and of SSHa are band-pass filtered from 30 to 180 days to isolate Kuroshio/eddy interac-
tions. Finally, for each PIES site, lagged correlations between τ800 and SSHa (at each SSHa grid point) are cal-
culated for lags varying between 0 and 100 days. Since τ800 is an excellent proxy for dpyn (as described above),
strong lagged correlations between τ800 at a PIES site, and the SSHa field imply a dynamical link between
variations in pycnocline depth and propagating sea surface height anomalies.

3. Results

The offshoremost PIESs at both arrays record the direct influence of impinging eddies. Correlation maps
comparing τ at individual PIES sites with gridded SSHa at different lags (Figure 2) reveal eddy paths from the off-
shore edges of the PIES arrays to the interior North Pacific as regions of high negative correlation (blue shading)
whose distance from the western boundary increases with increasing lag. At zero lag, the correlations between τ
and the local SSHa are strongly negative for the farthest offshore PIESs (Figures 2a and 2k)—consistent with
pycnocline heaving beneath cyclones and depression beneath anticyclones. Significant negative correlation
can be tracked back to 128°E, 24°N at 80day lag off Taiwan (Figure 2e) and 128°E, 15°N at 20day lag off Luzon
(Figure 2m), corresponding to eddy translation speeds of 0.11–0.24ms�1 (Taiwan) and 0.07–0.20ms�1

(Luzon). For comparison, the propagation speed of Rossy waves or nonlinear mesoscale eddies is 0.08ms�1 at
~20°N [Chelton and Schlax, 1996; Chelton et al., 2011].

In contrast to these farthest offshore PIES sites, measurements from the onshoremost PIESs suggest different
behavior northeast of Luzon and east of Taiwan. Northeast of Luzon, there is strong negative correlation
between τ and local SSHa at zero lag (Figure 2p). However, this region of negative correlation is not apparent
in the lagged maps (Figures 2q–2t), suggesting that dpyc on the inshore side of the Kuroshio does not
respond to eddies impinging from the interior North Pacific.
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Off Taiwan, the inshore side of the Kuroshio exhibits a region of positive correlation at zero lag that
shifts eastward with increasing lag (Figures 2f–2j). Taken together with the pattern of negative correla-
tions at the site on the offshore side of the Kuroshio (Figures 2a–2e), this suggests that eddies impinging
east of Taiwan cause a seesaw of opposing sea level and pycnocline depth changes across the Kuroshio.
Indeed, concurrent 30–180 day band-pass-filtered coastal sea level records from the Hualien tide station
(Figure 1) from November 2012 through November 2014 show positive correlation with SSHa adjacent
to the east coast of Taiwan but negative correlation with SSHa offshore of the Kuroshio, between
123.5 and 124.5°E, providing additional evidence of a seesaw-like response of sea level across the
Kuroshio.

One possible explanation of the above mentioned responses to eddy arrivals east of Taiwan is as follows.
Approaching anticyclones (positive SSHa with a depressed pycnocline in its center) depress the pycnocline
on the Kuroshio’s offshore side, producing negative τ anomalies, but these are limited to the region offshore
of the Kuroshio’s velocity maximum. There is a barrier to further onshore propagation of the eddy influence,
presumably due to the Kuroshio-induced distortion and advection of the eddy before it can reach the
onshore side of the Kuroshio. The anticyclone accelerates the Kuroshio by the increased isopycnal and sea
surface tilts across the current. Anticyclones also drive pycnocline heaving inshore of the Kuroshio core
(implied by the positive correlations in Figures 2f–2j), further amplifying isopycnal tilt and accelerating the
flow. Impinging cyclonic eddies (negative SSHa and heaved pycnocline) have the opposite impact, decreas-
ing isopycnal tilt and decelerating the Kuroshio.

Figure 2. Maps of lagged correlations between τ at a PIES site and gridded SSHa. Columns indicate the different PIES sites, which are T4, T1, L4 and L1, respectively,
from left to right. Rows indicate different time lags, which are 0, 20, 40, 60 an 80 days, respectively, from top to bottom.
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There is no evidence of a similar “seesaw” process across the Kuroshio northeast of Luzon, possibly due to
differences in the onshore boundary condition (open at Luzon Strait versus a solid wall at Taiwan) or insuffi-
cient sampling that failed to fully resolve the response inshore of the Kuroshio core off Luzon.

The spatial range of the direct influence of westward propagating eddies on the Taiwan and Luzon arrays is
quantified by comparing the zero lag correlations at each station between τ and local SSHa (Figure 3).
Topography is not obviously related to the extent of eddy-influence, but Kuroshio position does seem to play
a role. In both regions, correlation magnitude decreases only modestly between the easternmost PIES and the
position of the Kuroshio velocity maximum (determined from surface drifter data, Jan et al. [2015]). West of
the Kuroshio velocity maximum, correlation magnitude decreases sharply (see T1 versus T2 and L1 versus L5
in Figure 3).

Supplemented with the time-varying SSHa, time series of dpyc on each array’s offshore side (sites T4 and L4)
capture the Kuroshio’s response to individual eddies (Figures 4a and 4b). Seven pycnocline displacement
“events” are identified east of Taiwan and nine northeast of Luzon. Note that eight of nine Luzon events
are the same as those detected by Lien et al. [2014] who adopted a slightly different volume transport anom-
aly as the criterion to identify eddy influence. The corresponding SSHa (measured with altimetry) indicates
that the pycnocline deepens (and τ800 decreases) as local SSHa increases and shoals as SSHa decreases
(Figures 4a and 4b). During the observation period, dpyc varies by ~125m at east of Taiwan (T4) and ~70m
northeast of Luzon (L4). For every ±10 cm of sea surface displacement due to an eddy arrival, the pycnocline’s
vertical displacement is ∓32m (∓24m) off Taiwan (Luzon).

Eddies near the arrays are identified using the Okubo-Weiss parameter [Isern-Fontanet et al., 2004; Okubo,
1970; Weiss, 1991]

W ¼ ∂u
∂x

� ∂v
∂y

� �2

þ ∂v
∂x

þ ∂u
∂y

� �2

� ∂v
∂x

� ∂u
∂y

� �2

This parameter measures the relative importance of deformation and rotation (relative vorticity). The SSHa system
is strain dominant as W> 0, while vorticity is dominant as W< 0. To calculate W, geostrophic velocities (u, v),
estimated from SSHa, are obtained from AVISO. The center of an eddy is defined at the local SSHa extrema of
the eddy that is vorticity dominant, i.e., W< 0. After determining the center of an eddy using W, its origin is

Figure 3. Bathymetry across the Kuroshio at the (a) Taiwan and (b) Luzon arrays with the zero lag correlation between τ and
local SSHa indicated for each PIES site. Note that the τ record from one PIES off Luzon (site L3) is noisy and is thus excluded
from the data analysis here. The mean position of the Kuroshio maximum velocity, derived from surface drifter data, is
marked with a cross.
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identified in earlier daily AVISO SSHa maps by finding the nearest feature in which SSHa has the same sign and
sits within 75 km (smaller than the typical radius of a mesoscale eddy ~100 km) of the present center, similar to
the method described in Lien et al. [2014] and Cheng et al. [2014]. The 75 km search radius is determined by the
spatial and temporal resolutions of the gridded AVISO SSHa, 25 km and 7days, respectively, and typical propa-
gating speeds of mesoscale eddies mentioned above. For each eddy that eventually arrives at the arrays’ off-
shore edge (indicated by TW1–TW7 for Taiwan and LZ1–LZ9 for Luzon in Figure 4), the time-varying distance
between the propagating eddy center and the PIES station is evaluated (Figures 4c and 4d), and the “significant
influence distance”—namely the distance from which the eddy begins to significantly affect dpyc at a targeted
PIES station—is determined by identifying when ddpyc/dt at the PIES station reaches maximum (or minimum)
along the eddy’s track (open squares in Figures 4a and 4d). The significant influence distance, which is a func-
tion of the radius of the impinging eddy, ranges from 100 to 450 km. The diminishing of eddy influence on dpyc
at T4 and L4, defined as the time when ddpyc/dt reaches 0, is marked with open circles in Figures 4c and 4d. The
associated interaction period of each event at T4 and L4 varies between 12days and 54days. Note that these
periods do not necessarily represent the total timescale of the Kuroshio/eddy interaction as the eddies could
be advected downstream, away from the geographically fixed PIES arrays.

Figure 4. Time series of dpyc (inferred from τ, red lines) and corresponding SSHa (measured by altimetry, black lines) at sta-
tion (a) T4 and (b) L4. The time-varying distance between a propagating eddy (red lines for anticyclones and blue lines for
cyclones) and the PIES location are plotted in Figure 4c for T4 and in Figure 4d for L4 and indicate the time when an eddy
first begins to influence the dpyc at the PIES (solid square) and when eddy influence on dpyc begins to wane (solid circle).
The color code on the right of Figures 4c and 4d indicates the mean radius of a detected eddy. (e–g) SSHamaps on 6 March
2013, 5 April 2013, and 20 April 2013, respectively. Bold black line and bold white line in Figures 4e–4g indicate 15 and
�15 cm contours of SSHa, respectively.
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Previous observations suggest that relative vorticity associated with the offshore flank of the Kuroshio is typi-
cally�2× 10�5 s�1 in the upper 300m (1m s�1 velocity difference over a Kuroshio half width of ~50 km) and
the maximum velocity of the Kuroshio ranges from 1.0 to 1.5m s�1 [Jan et al., 2015]. For comparison we esti-
mate relative vorticity on the eddies’ western (or leading) flanks and the associated maximum orbital veloci-
ties (Table S2). The maximum orbital velocity is 0.35–0.62m s�1 for eddies that impinged on the Taiwan array
and 0.32–0.79m s�1 for those at the Luzon array, both smaller than the Kuroshio maximum velocity.
Differences in maximum velocity between the Kuroshio and the impinging eddies likely restricts both linear
and nonlinear interactions to the offshore flank of the Kuroshio, leading to deformation of eddies before they
can reach across the Kuroshio maximum velocity core and advection of the SSH anomalies downstream
along the Kuroshio. Moreover, eddy relative vorticity magnitude is about 0.1–1.0 × 10�5 s�1, up to an order
of magnitude smaller than the Kuroshio’s relative vorticity on its offshore flank. An impinging eddy with com-
paratively weak vorticity cannot induce significant influence on the Kuroshio, and the interaction between
the two systems thus occurs mainly in the Kuroshio offshore flank [Chern and Wang, 2005]. Lien et al.
[2014] found that the Kuroshio’s ageostrophic component northeast of Luzon is more significant on the
onshore flank of the Kuroshio than on the offshore flank. The offshore Kuroshio could thus favor a significant
interaction with a nearly geostrophic eddy, whereas the agoestrophic onshore Kuroshio may hardly interact
with the eddy.

Generally, the dpyc anomaly events coincide with the arrivals of westward propagating eddies, which cause
deepening (or shoaling) of dpyc associated with a positive (or negative) SSHa system (Figure 4). However,
two dpyc deepening events, LZ7 and TW2, marked with gray lines in Figures 4b and 4a, occurred consecu-
tively at Luzon (L4) and Taiwan (T4), likely due to an eddy that impinged on the Luzon array from the east,
but was then carried northward to impact the Taiwan array from the south. A westward moving anticyclone,
originally detected by Lien et al. [2014], encountered the Luzon array in early March 2013 (Figure 4e), deepen-
ing the pycnocline at L4 (event LZ7 in Figure 4b). This impinging eddy was subsequently deformed and car-
ried downstream with the Kuroshio in early April 2013 (Figure 4f). The SSHa map in late April 2013 (Figure 4g)
suggests that the elongated anticyclone east of Luzon Strait reached the Taiwan array deepening the pycno-
cline at T4 (event TW2 in Figure 4a). Though a separate cyclone was present east of Taiwan, the pycnocline
remained anomalously deep (due to the positive SSHa from the south) until early May 2013. The time lag
between the two correlated dpyc deepening events at Luzon and then Taiwan is approximately 21 days, sug-
gesting advection at 0.36m s�1 from L4 to T4. This speed is consistent with Kuroshio velocity at 200–400m
depths measured by shipboard acoustic Doppler current profiler (ADCP) during ship surveys east of Taiwan
[Jan et al., 2015] and by moored ADCPs off northeast of Luzon [Lien et al., 2014]. This case suggests that dpyc
could be affected by SSHa systems from the south and the east. The resulting dpyc variation likely depends on
the relative strength of the impinging eddies.

4. Conclusions

Observations from PIES arrays located off Luzon and Taiwan suggest that Kuroshio maximum velocity—
which is normally larger than the orbital velocity of eddies that impinge on the Kuroshio in this region—could
influence the dynamics and deform the shape of eddies, thereby weakening the impact of eddies on pycno-
cline depth along the Kuroshio’s western flank. Possible Kuroshio acceleration (deceleration) due to imping-
ing anticyclonic (cyclonic) eddies increases (decreases) the magnitude of pycnocline slope across the
Kuroshio, particularly east of Taiwan where impinging eddies cause seesaw-like SSHa changes across the
Kuroshio. Eddies impinging on the Kuroshio east of Luzon do not generate an analogous response. The sig-
nificance of ageostrophic effects on the onshore flank of the Kuroshio [Lien et al., 2014] may overwhelm the
indirect influence of eddies. It may also be due to the open boundary condition on the western end of Luzon
PIES array, which is open to the South China Sea in contrast to the array east of Taiwan where Taiwan serves
as a solid wall boundary; this merits a thorough investigation in the future.

Kuroshio pycnocline depth (dpyc) along the offshore flank responds to impinging eddies, deepening (shoal-
ing) under the influence of positive (negative) SSHa. The Taiwan (Luzon) PIES arrays capture seven (nine) dpyc
anomalies during their 1.5 (1) years sampling period. Eddy influence on the Kuroshio pycnocline could be felt
up to 100–450 km away from the associated PIES station, depending on eddy size and strength. The duration
of interactions at T4 and L4 ranged from 12days to 54 days. During the period when both PIES arrays sampled
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together (November 2012 to June 2013), three (five) dpyc anomaly events occurred near Taiwan (Luzon), with
one event attributed to a single eddy that impinged on Luzon from the east, and was then carried northward
into the Taiwan array. The associated translation speed (L4 to T4) was estimated at 0.36m s�1.

These in situ arrays, together with idealized and realistic numerical models [Kuo and Chern, 2011;
Gopalakrishnan et al., 2013], provide a more complete view of the fate of eddies arriving along the western
boundary, and of their subsequent influence on the Kuroshio. Further quantifying the energy exchange that
governs Kuroshio/eddy interactions is challenging and will be the focus of future investigations using these
data. Particularly, analysis of model results will focus on the evolving process and dynamics of the seesaw-like
sea level and pycnocline depth variations across the Kuroshio east of Taiwan.
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